H2氢气H2传感器
1 氢元素及其常用的检测方法
1 氢元素及其常用检测方法你知道吗?当我们谈论氢元素时,我们谈论的不仅仅是化学元素周期表上的第一个元素,更是宇宙中最丰富的元素之一。
氢元素,以其无限潜力和惊人的多功能性而闻名,是宇宙的奇迹之一,也是人类科学探索和创新的不竭源泉。
人类对氢元素的认知历程可以追溯到古代。
早在十六世纪,瑞士的一名医生就发现了氢气。
他发现,把铁屑投到硫酸里会产生气泡,这些气泡可以燃烧。
然而,由于他是一位著名的医生,病人很多,没有时间去做进一步的研究。
十七世纪时,又有一位医生发现了氢气,他认为氢气与空气没有什么不同,很快就放弃了研究。
1766年,英国的一位化学家卡文迪什收集并研究了氢气。
他发现,把一定量的锌和铁投到充足的稀硫酸和盐酸(盐酸的化学式为ZnSO₄+H2SO4)中时,产生的气体量是固定的。
这说明这种新的气体的产生与所用酸的种类没有关系。
卡文迪什的这一发现标志着人类开始认真研究氢气。
随着同位素化学的兴起与发展,元素概念的界定逐渐建立在原子结构的基础上,现代元素概念逐步形成,即元素是核电荷数(质子数)相同的一类原子的总称。
而氢元素的概念被确定为质子数是1的所有氢原子的总称。
氢,这个简单的原子,却蕴含着巨大的能量。
它是太阳和恒星的心脏,通过核聚变反应释放出耀眼的光和热。
氢的存在使得行星星球上的生命得以维持,也让人类进一步探索宇宙的可能性。
然而,氢不仅仅是宇宙之火的燃料,它还是地球上环保、可持续能源的象征。
本文将带领您深入探索氢元素的神秘之处,从宇宙的起源到地球上的应用,以及未来可能的发展方向。
让我们一起揭开这个微小而又强大的元素的神秘面纱,探寻它如何塑造了我们的宇宙和未来。
氢元素的应用领域1. 能源生产:氢元素被广泛用于能源生产领域。
氢燃料电池是一项重要的技术,它将氢气与氧气反应产生电能和水,没有排放有害气体。
这使得氢成为清洁能源的候选者,可用于驱动电动汽车、发电和供热。
此外,氢还可以用于储能,通过电解水制备氢,将其存储起来,然后在需要时将其重新用于发电。
氢气H2检测仪报警器探测器探头
氢气H2检测仪报警器探测器探头氢气H2泄露检测探测器产品适用于各种环境和特殊环境中的氢气H2气体浓度和泄露,在线检测及现场声光报警,对危险现场的作业安全起到了预警作用,此仪器采用进口的电化学传感器和微控制器技术,具有信号稳定,精度高,重复性好等优点,防爆接线方式适用于各种危险场所,并兼容各种控制器,PLC,DCS等控制系统,可以同时实现现场报警和远程监控,报警功能,4-20mA标准信号输出,继电器开关量输出。
氢气H2气体传感器参数●工作电压DC5V±1%/DC24±1%波特率9600●测量气体氢气H2气体●检测原理电化学●采样精度±2%F.S●响应时间<30S●重复性±1%F.S●工作湿度10-95%RH,(无冷凝)●工作温度-30~50℃●长期漂移≤±1%(F.S/年)●存储温度-40~70℃●预热时间30S●工作电流≤50mA●工作气压86kpa-106kpa●安装方式7脚拔插式●质保期1年●输出接口7pIN●外壳材质铝合金●使用寿命2年●外型尺寸●(引脚除外)33.5X31 21.5X31●测量范围详见选型表●输出信号TTL(标配)0.4-2.0VDC(常规)/4-20mA ●数字信号格式数据位:8;停止位:1;校验位:无;氢气H2检测仪报警器探测器探头产品特性:①进口电化学传感器具有良好的抗干扰性能,适用寿命8年。
②采用先进微处理技术,响应速度快,测量精度高,稳定性和重复性好。
③检测现场具有具有现场声光报警功能,气体浓度超标即时报警,是危险场所作业的安全保障。
4现场带背光大屏幕LCD显示,直观显示气体浓度,类型,单位,工作状态等。
5独立气室,更换传感器无须现场标定,传感器关键参数自动识别。
6全量程范围温度数字自动跟踪补偿,保证测量准确性。
氢气H2检测仪报警器探测器探头技术参数:检测气体:空气中的氢气H2气体检测范围:0~50ppm,0~500ppm,0~1000ppm可选。
各类气体传感器的原理、结构及参数
各类气体传感器的原理、结构及参数气体传感器是气体检测系统的核心,通常安装在探测头内。
从本质上讲,气体传感器是一种将某种气体体积分数转化成对应电信号的转换器。
探测头通过气体传感器对气体样品进行调理,通常包括滤除杂质和干扰气体、干燥或制冷处理、样品抽吸,甚至对样品进行化学处理,以便化学传感器进行更快速的测量。
气体种类繁多,性质各异,因此,气体传感器种类也很多。
按待检气体性质可分为:用于检测易燃易爆气体的传感器,如氢气、一氧化碳、瓦斯、汽油挥发气等;用于检测有毒气体的传感器,如氯气、硫化氢、砷烷等;用于检测工业过程气体的传感器,如炼钢炉中的氧气、热处理炉中的二氧化碳;用于检测大气污染的传感器,如形成酸雨的NOx、CH4、O3,家庭污染如甲醛等。
按气体传感器的结构还可分为干式和湿式两类;按传感器的输出可分为电阻式和费电阻式两类;按检测院里可分为电化学法、电气法、光学法、化学法几类。
半导体气体传感器半导体气体传感器可分为电阻型和非电阻型(结型、MOSFET型、电容型)。
电阻型气敏器件的原理是气体分子引起敏感材料电阻的变化;非电阻型气敏器件主要有M()s二极管和结型二极管以及场效应管(M()SFET),它利用了敏感气体会改变MOSFET开启电压的原理,其原理结构与ISFET离子敏传感器件相同。
电阻型半导体气体传感器作用原理人们已经发现SnO2、ZnO、Fe2O3、Cr2O3、MgO、NiO2等材料都存在气敏效应。
用这些金属氧化物制成的气敏薄膜是一种阻抗器件,气体分子和敏感膜之间能交换离子,发生还原反应,引起敏感膜电阻的变化。
作为传感器还要求这种反应必须是可逆的,即为了消除气体分子还必须发生一次氧化反应。
传感器内的加热器有助于氧化反应进程。
SnO2薄。
氢气H2气体探测器
深圳市圣凯安科技有限公司 NE Sensor氢气H2气体报警器产品描述氢气H2气体报警器适用于各种工业环境和特殊环境中的氢气H2浓度连续在线检测,仪器采用进口电化学传感器和微控制器技术,具有信号稳定,精度高、重复性好等优点,防爆接线方式适用于各种危险场所。
仪器兼容各种控制报警器、PLC、DCS等控制系统,可以实现远程监视,远程控制,远程报警,计算机数据存储、分析等功能。
特点•现场气体浓度液晶显示;•高精度、长寿命的电化学、红外进口传感器;•强大的软件设置支持,满足客户1.0000-99999之间的任意量程和所有气体检测需求;•可通过控制器或遥控器,免开盖对探测器进行报警点调整、零点调整和目标点标定;•适用于几十种气体检测,可选择显示几十种常见气体名称;•气体单位名称PPM、%LEL、%VOL,可任意设定;•程序运算采用了三位浮点数技术,保证了运算的精度;•在全量程范围内任意设置上、下限报警点;•RS485总线通讯,布线简单方便;•4~20mA电流输出信号,可校正、全隔离,产品抗干扰能力强;•2组常开无源触点输出,用于控制风机或电磁阀的交流接触器;•精巧的电源设计、精湛的防雷设计、纯SMT元件贴片工艺,使得产品性能稳定;•巧妙的结构设计,探测器接线免上螺丝,安装极为简便;产品名称氢气H2报警器H2/NE-301检测气体氢气H2检测原理电化学原理检测范围0-1000ppm、0-2000ppm、0-4000ppm、0-5000ppm、0-10000ppm、0-20000ppm、0-40000ppm分辨率1ppm、2ppm、3ppm、3ppm、5ppm、6ppm、10ppm 检测方式扩散式、泵吸式可选显示方式液晶显示输出信号用户可根据实际要求而定,最远可传输2000米(单芯1mm²屏蔽电缆)①两线制4-20mA电流信号输出(三线制可选)②RS-485数字信号输出,配合RS232转接卡可在电脑上存储数据(选配)③2组继电器输出:无源触电容量220VAC3A,24VDC3A(选配)④报警信号输出:现场声光报警,报警声音:<90分贝(选配)检测精度≤±2%(F.S)重复性≤±1%零点漂移≤±1%(F.S/年)报警方式声、光报警响应时间小于20S恢复时间小于20S防爆类型本质安全型防爆标志Ex ibdIICT4防护等级IP65直接读数PPM、%LEL、%VOL任意设定传感器寿命24个月使用环境温度-20℃~+70℃;相对湿度≤95%RH(非凝露)工作电源24VDC(正常工作电压范围:10~30VDC)外型尺寸(含探枪长度)170×140×80mm重量 1.5Kg壳体材料不锈钢/铝合金。
手持式氢气H2气体探测器
深圳市圣凯安科技有限公司 NE Sensor氢气H2气体检测仪产品描述一种内置微型采样泵的便携式高精度的本质安全型设备;仪器采用进口世界著名传感器厂商的传感器和微控制器技术,响应速度快,测量精度高,稳定性和重复性好,各项参数用户可自定义设置,操作简单;液晶点阵显示技术支持图文描述,中英文操作界面可切换。
特点• 小巧、轻便、坚固•中、英文显示• 进口传感器• 二级声、光报警• 大屏幕数字、字符显示、瞬时值、峰值、最小值显示• 开机或需要时对显示、电池、传感器、声光报警功能自检• 安全提示:定期闪灯、声音提示• 出众的音频声音报警• 维护费用很低产品名称氢气H2检测仪 H2/NE-502 检测气体氢气H2检测原理电化学原理检测范围0-1000ppm、0-2000ppm、0-4000ppm、0-5000ppm、0-10000ppm、0-20000ppm、0-40000ppm分辨率1ppm、2ppm、3ppm、3ppm、5ppm、6ppm、10ppm 检测方式扩散式、泵吸式可选显示方式大屏幕液晶显示检测精度≤±3%(F.S)报警方式声、光报警响应时间小于20S恢复时间小于40S防爆类型本质安全型防爆标志Ex ibdIICT4防护等级IP65直接读数瞬时值、峰值、电池电压、最小值传感器寿命24个月使用环境温度-20℃~+70℃;相对湿度≤95%RH(非凝露)外型尺寸(含探枪长度)230mm(长)×65mm(宽)×38mm(厚)电池 3.7V锂离子充电电池电池工作时间连续工作大概200小时左右重量约4Kg(带铝塑板箱子)标准附件说明书、充电器、铝盒箱应用场所:石油石化、化工厂、工业生产、烟气尾气环境监测、冶炼厂、钢铁厂煤炭厂、热电厂、医药科研、制药生产车间、烟草公司、环境监测、学校科研、楼宇建设、消防报警、污水处理、工业气体过程控制、锅炉房、垃圾处理厂、隧道施工、输油管道、加气站、地下燃气管道检修、室内空气质量检测、危险场所安全防护、航空航天、军用设备监测、生物制药、家居环保、学校实验室等领域。
H2氢气浓度传感器
H2氢气浓度传感器H2氢气浓度传感器特点:★整机体积小,重量轻★高精度,高分辨率,响应迅速快.★上、下限报警值可任意设定,自带零点和目标点校准功能,内置温度补偿,维护方便.★数据恢复功能,免去误操作引起的后顾之忧.★外壳采用特殊材质及工艺,不易磨损,易清洁,长时间使用光亮如新.H2氢气浓度传感器技术参数:★进口电化学传感器具有良好的抗干扰性能,使用寿命长达3年;★采用先进微处理器技术,响应速度快,测量精度高,稳定性和重复性好;★全量程范围温度数字自动跟踪补偿,保证测量准确性;★半导体纳米工艺超低功耗32位微处量器;★全软件自动校准,传感器多达6级目标点校准功能,保证测量的准确性和线性,并且具有数据恢复功能;★防高浓度气体冲击的自动保护功能H2氢气浓度传感器结构图:H2氢气浓度传感器接线示意图:H2氢气气体传感器参数工作电压DC5V±1%/DC24±1%波特率9600测量气体H2氢气气体检测原理电化学采样精度±2%F.S响应时间<30S重复性±1%F.S工作湿度10-95%RH,(无冷凝)工作温度-30~50℃长期漂移≤±1%(F.S/年)存储温度-40~70℃预热时间30S工作电流≤50mA工作气压86kpa-106kpa安装方式7脚拔插式质保期1年输出接口7pIN外壳材质铝合金使用寿命2年外型尺寸(引脚除外)33.5X31 21.5X31测量范围详见选型表输出信号TTL(标配)0.4-2.0VDC(常规)/4-20mA 数字信号格式数据位:8;停止位:1;校验位:无;传感器PIN脚定义图:传感器应用场所:医药科研、学校科研、制药生产车间、烟草公司、环境检测、楼宇建设、消防报警、污水处理、石油石化、化工厂、冶炼厂、钢铁厂、煤炭厂、热电厂、锅炉房、加气站、垃圾处理厂、隧道施工、输油管道、工业气体过程控制、室内空气质量检测、地下燃气管道检修、危险场所安全防护、设备检测等。
制取氢气检验
制取氢气检验氢气是一种非常重要的化学物质,它在许多工业和科学实验中起到了关键作用。
由于其重要性,制备和检验氢气的方法非常重要。
本文将讨论制备和检验氢气的方法,并详细介绍氢气的几种常见检验方法。
制备氢气的方法1. 金属和酸的反应制备氢气的最常见方法之一是将金属和酸反应。
例如,将锌和盐酸混合会使锌和盐酸反应生成氢气。
该反应的化学方程式为:Zn + 2HCl → ZnCl2 + H2在这个反应中,锌原子会与盐酸中的氢原子结合,生成氢气和氯化锌。
2. 电解水另一种制备氢气的方法是电解水。
这种方法涉及将水分解成氢气和氧气。
电解水需要使用一个电解槽,其中放入两个电极。
当通电时,水分子会分解成氢气和氧气,化学方程式为:2H2O → 2H2 + O2电解水是一种非常高效的方法,可以大规模生产氢气。
3. 水蒸气重整还有一种制备氢气的方法叫做水蒸气重整。
这种方法涉及将天然气或其他碳氢化合物和水蒸气在高温下反应,生成氢气。
这种方法通常在工业上用于大规模生产氢气。
检验氢气的方法一旦制备了氢气,就需要对其进行检验,以确保其纯度和质量。
以下是一些常见的检验方法:1. 燃烧检验对氢气进行燃烧检验是一种非常常见的方法。
将一小段点燃的木条放入氢气中,氢气会迅速燃烧,释放出强烈的白色火焰。
这种方法用于检验氢气的纯度和反应性。
2. 检测气体还可以使用气体检测器来检验氢气。
气体检测器可以测量氢气的浓度,并确保其在一定范围内。
这种方法通常用于工业和科学实验室中。
3. 氢气传感器氢气传感器是一种专门设计用于检测氢气的装置。
它可以快速、准确地检测氢气的浓度,并通过警报系统发出警报,以便及时采取措施。
4. 质谱仪检测质谱仪是一种高精度的分析仪器,可以用于检测氢气中可能存在的杂质。
它可以测量氢气中各种化学物质的浓度,并确定其纯度和质量。
总结制备和检验氢气是一项非常重要的工作,涉及许多不同的方法和技术。
通过使用适当的制备和检验方法,可以确保获得高质量和纯度的氢气,以满足各种工业和科学实验的需求。
炜盛科技 ME2-H2 氢气传感器 使用说明书
氢气气体传感器(型号:ME2-H2)使用说明书版本号:1.0实施日期:2016-04-10郑州炜盛电子科技有限公司Zhengzhou Winsen Electronic Technology Co., Ltd声明本说明书版权属郑州炜盛电子科技有限公司(以下称本公司)所有,未经书面许可,本说明书任何部分不得复制、翻译、存储于数据库或检索系统内,也不可以电子、翻拍、录音等任何手段进行传播。
感谢您使用炜盛科技的系列产品。
为使您更好地使用本公司产品,减少因使用不当造成的产品故障,使用前请务必仔细阅读本说明书并按照所建议的使用方法进行使用。
如果用户不依照本说明书使用或擅自去除、拆解、更换传感器内部组件,本公司不承担由此造成的任何损失。
您所购买产品的颜色、款式及尺寸以实物为准。
本公司秉承科技进步的理念,不断致力于产品改进和技术创新。
因此,本公司保留任何产品改进而不预先通知的权力。
使用本说明书时,请确认其属于有效版本。
同时,本公司鼓励使用者根据其使用情况,探讨本产品更优化的使用方法。
请妥善保管本说明书,以便在您日后需要时能及时查阅并获得帮助。
郑州炜盛电子科技有限公司ME2-H2 氢气传感器产品描述ME2-H2氢气传感器是燃料电池型传感器,氢气和氧气在工作电极和对电极上发生相应的氧化还原反应并释放电荷形成电流,产生的电流大小与氢气浓度成正比并遵循法拉第定律,通过测定电流的大小即可判定氢气浓度的高低。
传感器特点低功耗、高精度、高灵敏度、线性范围宽、抗干扰能力强、优异的重复性和稳定性。
主要应用广泛适合商业特别是民用领域的氢气浓度检测。
技术指标表1项目参数检测气体氢气(H2)量程0~30000ppm最大测量限40000ppm灵敏度(2±1)nA/ppm分辨率50ppm响应时间(T90)<30S负载电阻(推荐)200Ω重复性<3﹪输出值稳定性(/年)<10﹪输出线性度线性零点漂移(-40℃~90℃)≤100ppm温度范围-20℃~50℃湿度范围15﹪~90﹪RH压力范围标准大气压±10﹪使用寿命3年图1:传感器结构图基本电路图2: ME2-H2测试电路(R4根据需要可更换)传感器特性描述图3:传感器的灵敏度、响应恢复情况图4:传感器线性曲线交叉干扰特性ME2-H2传感器能对除目标气体外的其它气体产生响应。
氢探头原理
氢探头原理
氢探头是一种用于检测氢气的传感器。
其原理基于氢气与氢探头表面上的催化剂发生反应产生电子流的性质。
具体原理如下:
1. 氢气分子与氢探头上的催化剂表面发生吸附作用,吸附能力取决于探头表面的化学性质和催化剂的活性。
2. 被吸附的氢分子发生电子转移,释放出电子,形成氢离子。
3. 氢离子在探头表面产生电光声激发,使得电子被激发或迁移,形成电流。
4. 探头上的电流与氢气浓度成正比关系,通过测量电流的大小可以间接得到氢气浓度的信息。
需要注意的是,为了提高探头的灵敏度和稳定性,常常会使用特定的催化剂,如铂、铑、钯等,以增加氢气吸附的速率和效果。
此外,温度也会对探头的响应产生影响,通常需要进行温度补偿以保证准确性。
氢气传感器
氢气传感器氢气传感器特点:★整机体积小,重量轻★专业精选进口传感器,可以搭载电化学,催化燃烧,红外原理,热导原理的传感器。
★高精度,高分辨率,响应迅速快.★本安电路设计,可带电热拔插操作。
★数据恢复功能,免去误操作引起的后顾之忧.★自动温湿度补偿功能,出厂精准标定,无须再使用标定。
.★模拟电压或电流和串口同事输出,方便客户调试和使用。
★最精密的电路设计和制造工艺,生产复杂,使用简单。
★可与电脑连接通讯,自行标定校准。
★自带零点微调功能,方便选定参照数据。
★低功耗产品,可异动电源供电可大量用于分析仪仪器,大气,环境无人机监测。
氢气传感器结构尺寸图:氢气传感器直视图和PIN 脚定义图:氢气传感器工作电压DC5V±1%/DC24±1%波特率9600测量气体氢气H2气体检测原理电化学采样精度±2%F.S 响应时间<30S重复性±1%F.S 工作湿度0-95%RH,(无冷凝)工作温度-30~50℃长期漂移≤±1%(F.S/年)存储温度-40~70℃预热时间30S 工作电流≤50mA 工作气压86kpa-106kpa安装方式8脚拔插式质保期1年输出接口8pIN 外壳材质铝合金使用寿命2年外型尺寸(引脚除外)33.5X3121.5X31测量范围详见选型表输出信号TTL(标配)0.4-2.0VDC(常规)定制RS485/4-20mA引脚名称说明1+5V 电源接入PIN 脚2EN Rs485(3.3V),可接MCU Tx 3Rx/A 串口RX(3.3V),可接MCU Rx 5Scl I2C,Scl(3.3v)引脚6SDA I2C(3.3V)引脚7GND 电源GND 引脚8VOUT电压输出,0-5V/0.4-2.0V氢气传感器串口和电压采集接线定义图:氢气传感器I2C接线定义图:氢气传感器RS485接线定义图:氢气传感器交叉干扰系数高精度的传感器检测原理决定了它有良好的一致性,重复性,温湿度补偿等特性,但也不能忽略被检测气体之间的交叉干扰,为了达到很好的检测精准度,须考虑以下气体对该检测气体的干扰系数。
氢气查漏仪操作手册
前言电缆泄漏的氢气(H2)法检测技术是以瑞典TELECOMUNICATIONS公司,德国BUNDESPOST公司和其他一些公司多年电缆维修经验为基础的,结合了瑞典SENSISTOR AB公司研制和开发的现代化微电子传感器技术。
所以这些经验被用来开发一个比过去任何泄漏探测系统更有效、更可靠的综合泄漏定位系统。
SENSISTOR公司的氢气泄漏探测仪把气压法推向了一个新的高度,氢气(H2)法使气压法技术得以实现它所预期的目的。
本手册即是给潜在的用户介绍这中方法,也是给新用户一些有用的信息。
能否很好地使用SENSISTOR公司的氢气泄漏探测仪并不取决于对本手册的阅读,对于这一点,许多已用过该仪器的人员都知道,不过在你处理一些从未面临过的、十分困难的泄漏探测工作时,本手册可帮助你节约一些时间。
花半个小时读一读本手册中使你立即感兴趣的一些章节,在你外出处理一些特殊的泄漏探测的困难时,肯定会增强你的信心,我们希望你会发现实际工作起来比本手册所说的情况更简单。
我们SENSISTRO AB 公司将深深感激阁下对本手册提出意见和建议。
瑞典SENSISTRO 公司1.引言氢气法适用于无充填物的电话通讯电缆,如架空电缆、直埋电缆和管道电缆的泄漏的定位,本方法的三个步骤是:A.确定电缆泄漏故障的范围B.给电缆充灌示踪气体C.用氢气泄漏探测仪8012 对泄漏故障定位电缆故障范围的确定有一整套预定位常规,如绘制压力曲线图,气流量读数或阻抗测量。
给电缆充灌示踪气体的方法是以620毫巴的压强给最靠近可能有泄漏部位的给气阀灌气,若该处电缆上无气阀,则需要另行安装一个气阀。
电缆泄漏故障的定位方法是搜寻从泄漏处溢出的氢气,选择合适的氢气探头可使定位工作更方便,对此本手册有详细介绍,实际上泄漏故障的定位操作很容易,故而预定位检测的工作量可减到最小,有时候甚至不需要作预定位检测。
管道探头。
顾名思义它是用于管道电缆的泄漏的定位,方法很简单只需将它推入管道直至获得清晰的指示,此时探头顶部便已抵达泄漏部位,一点也不复杂,就像用一根长长的软吸管来吸允气体一样。
氢气传感器
结果和分析 如图所示,FBG固定在玻璃基 板上细微的凹槽中,使得Pt 掺杂的WO3涂层可以固定在靠 近FBG的表面。这个涂层在氢 响应过程中从灰色变为黑色。
左图反应了涂层在氢响应过后 的形态,可以看出,该涂层是 由不同面积的纳米薄片组成。 纳米薄片的厚度大约为50nm, 具有很大的比表面,为氢响应 提供了一个很大的表面。而且, 纳米包层之间还有大量间隙, 可以确保氢气可以在涂层中的 扩散。
上图是固定在玻璃基板前后在不同温度下的波长偏移,实验 结果便是,固定前后的温度敏感性增加了一倍。
测试不同氢气浓度下FBG氢传感器的响应,发现随着氢气浓 度的下降,响应时间变长,和文献中的数据相比,其响应 速度有了很大提高,而且能够在较低的氢气浓度下响应。 而且随着氢气浓度的增加,FBG的中心波长偏移越大。
一种使用掺杂Pt的WO3涂层的FBG氢气传 感器
氢气传感器有很大的应用前景,这篇文章介绍了一种FBG氢 气传感器的制备和结果分析。 这种氢气传感器使用掺杂Pt的WO3涂层在FBG上制备而成, 其具有很快的响应速度和高的灵敏度,而且通过对结构进行优 化,能够在很低的(200ppm)的氢气浓度下响应。
因为环境湿度对FBG的影响可以忽略,而环境温度可 以通过辅助的FBG来测量。所以我们可以从这个模型中推 算出波长偏移和氢气浓度的关系。
总结: 的来说,这篇文章中报道的FBG氢气传感器通过结 合涂层和温度铭感的FBG而使得其性能有了很大提升。在 室温下,对于8000ppm的浓度的氢气具有448pm的波长偏移。 而且这种传感器可以检测最低到200ppm的氢气浓度,而且 在较低的温度下也能工作。
实验测量了在室温下不同环境湿度对响应时间和FBG波长偏移的 影响,发现在不同的环境湿度下,响应时间和波长偏移并没有 比较明显的改变。这说明,环境湿度的变化对这种FBG氢传感器 灵敏度影响不大。这是由于FBG氢传感器的结构疏松多孔,所以 具有比较好的抗湿度干扰能力。
费加罗气体传感器
费加罗气体传感器广州南创陈工FIGARO是一家专业生产半导体气体传感器的公司,1962年发明全球第一款半导体产品,目前全球第一。
FIGARO的产品远销38个国家,在多个国家设立了分支机构或办事处,生产基地遍布美洲、东欧、中国等地;并在中国设立了广州南创传感器事业部,可为用户的实验和生产提供最佳的服务与解决方案。
半导体气体传感器采用金属氧化物半导体烧结工艺,对被检测的检测气体具有灵敏度高、响应时间短、成本低、长期稳定性好等优点。
我们的产品包括可燃气体、有毒气体、空气质量、一氧化碳、二氧化碳、氨气、汽车尾气、酒精等传感器元件、传感模块等,以及各种气体传感器的配套产品。
目前已经被广泛应用于家用燃气报警器、工业有毒气体报警器、空气清新机、换气空调、空气质量控制、汽车尾气检测、蔬菜大棚、酒精检测、孵化机械等。
费加罗气体传感器KE-25 KE-50信息费加罗气体传感器KE-25 KE-50性能:测量范围:0-100%O2精度:氧气传感器KE-25:±1%(全量程);氧气传感器KE-50:±2%(全量程)工作温度:5~40℃储存温度:-20~+60℃响应时间:KE-25:14±2秒;KE-50:60±5秒初始输出:KE-25:10.0–15.5mv;KE-50:47.0-65.0mv期望寿命:KE-25:5年;KE-50:10年费加罗气体传感器KE-25 KE-50特性:长寿命(KE-25-5年,KE-50-10年)不受CO2,CO,H2S,NOx,H2影响低成本,在常温下工作信号输出定,无需外部电源不需加热以上费加罗气体传感器技术参数以《OIML60号国际建议》92年版为基础,最新具体变化可查看《JJG669—12FIGARO广州南创传感器事业部检定规程》产品特性描述:氧气传感器KE-25 KE-50属于半导体气体传感器不受CO2,CO,H2S,NOx,H2影响,氧气传感器KE-25 KE-50低成本在常温下工作信号输出定,无需外部电源不需加热;精度氧气传感器KE-25:±1%(全量程);氧气传感器KE-50:±2%(全量程)。
电化学传感器(气体)
电化学传感器ME2-C0 一氧化碳CO 0-1000ppmME3-CO 一氧化碳CO 0-500ppm,0-1000ppm,0-2000ppm ME4-CO 一氧化碳CO 0-500ppm,0-1000ppm,0-2000ppm ME3-H2S 硫化氢H2S 0-200ppmME4-H2S 硫化氢H2S 0-200ppmME3-H2 氢气H2 0-200ppmME4-H2 氢气H2 0-1000ppmME3-NH3 氨气NH3 0-1000ppmME4-NH3 氨气NH3 0-50ppmME3-CL2 氯气CL2 0-50ppmME4-CL2 氯气CL2 0-20ppmME3-PH3 磷化氢PH3 0-20ppmME4-PH3 磷化氢PH3 0-20ppmME3-O2 氧气O2 0-25% max:30%ME2-O2 氧气O2 0-25% max;30%ME3-C2H5OH 酒精C2H5OH 0-1000ppmME4-C2H5OH 酒精C2H5OH 0-1000ppm催化燃烧式可燃气体MC101 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC102 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC105 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC106 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC108 氢气、可燃气体 0-100%LELMC112 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC112D 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC113 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC114 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MJC4/3.OL 甲烷、瓦斯 0-4%VOLMJC4/3.OJ 甲烷、瓦斯 0-4%VOLMJC4/2.8J 甲烷、瓦斯 0-4%VOLMJC4/2.5L 甲烷、瓦斯 0-4%VOLMC201 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC115 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC116 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC117 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC118 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC202 甲烷、液化气、丙烷等可燃性气体 0-100%LEL半导体式传感器MQ-2 可燃气体、烟雾 300 to 10000ppmMQ-4 天然气、甲烷 300 to 10000ppmMQ-5 液化气、甲烷、煤制气 300 to 5000ppmMQ-6 液化气、异丁烷、丙烷 100 to 10000ppmMQ-8 氢气、煤制气 50 to 10000ppmMQ306A 液化气、甲烷、煤制气 300 to 5000ppmMQ214 甲烷 300 to 5000ppmMQ216 液化气、甲烷、煤制气 100 to 10000ppmMQ-7 一氧化碳CO 10 to 1000ppmMQ307A 一氧化碳CO 10 to 500ppmMQ217 一氧化碳CO 10-1000ppmMQ-9 一氧化碳、可燃气体 10 to 1000ppm CO、100 to 10000ppm可燃气体MQ309A 一氧化碳、可燃气体 10 to 500ppm CO、300 to 5000ppm可燃气体臭氧O3 0.01-2ppmO3/10-500ppmO3氨气、苯、酒精、烟雾 10-300ppmNH3、10-1000ppm苯、10-600ppm酒精、1%/-10%/m3烟雾MQ136 硫化氢 1-200ppmMQ137 氨气 10-300ppmMQ138 醇类、苯类、醛类、酮类、酯类等有机挥发物 5-5000ppm酒精(乙醇) 10 to 1000ppmMQ303A 酒精(乙醇) 20 to 1000ppmMQ213 酒精 10-1000ppmMP-4 天然气 300 to 10000ppmMP-6 液化气 300 to 5000ppmMP-7 一氧化碳 10 to 1000ppmMP-8 氢气 50 to 10000ppmMP135 氢气、酒精、CO一氧化碳 10-100ppmH2、10-500ppm CO、10-1000ppm酒精离子烟雾传感器 HIS-07二氧化碳气体敏感元件 MG811 0 to 10000ppm热传导气体敏感元件 MD61 天然气、液化气、煤气、烷类等可燃气体及汽油、醇、酮、苯、四氟化碳、氟里昂 0-100%VOL热传导气体敏感元件 MD62 二氧化碳CO2 0-100%VOL热线型酒精气体敏感元件 MR513 酒精(乙醇) 0 to 1000ppm热线型可燃气体敏感元件 MR511 甲烷、丁烷 0 to 10000ppmQMZC型系列载体催化元件专用于检测甲烷、丁烷、氢气的传感元件MQ-KY型半导体气敏元件用于液石油气、气体浓度的检测、检漏、临控等设备中NQ--KR型半导体气敏元件用于天然气(甲烷)气体浓度的的检测检漏、监控等NQ--KR型半导体气敏元件用于天然气(甲烷)气体浓度的的检测检漏、监控等MQ-KT型半导体气敏元件用于天然气(甲烷)气体浓度的的检测检漏、监控等MQ-J1型半导体气敏元件用于对乙醇气体检漏、监控等MQ-K1型半导体气敏元件可燃性气体及可燃性液体蒸汽的检测NQ-Y型一氧化碳气敏元件是对一氧化碳气体具有较好选择性的气-电转CO 气体检测、报警检漏等设备MQ-KC型低功耗气敏元件用于天然气、煤气、液化石油气、烟雾等检漏、监控、报警装置TP-3A常温型酒敏传感器测量气体:酒精TP-3B常温型酒敏传感器测量气体:酒精TP-2常温低功耗CO传感器 COTP-5催化甲烷传感器甲烷紫外线传感器 UV-A/UV-BTP-3D口气传感器传感器对空气中的低浓度口气有极高的灵敏度TP-1.1A 非加热低功耗甲烷气体传感器TP-3C直热式酒敏传感器酒精TP-4空气污染物传感器混合气体GHS-20 湿敏电阻HU-10S 温湿度传感器模块HSM-40 温湿度传感器模块HM1500 / HM1520 高精度湿度传感器TH485 网络型温湿度变送器DS-10 凝露传感器UV-A S10 紫外线传感器。
Unisense氢气传感器用户手册说明书
HYDROGEN SENSOR USER MANUALH ydrogen sensor user manual Copyright © 2021· Unisense A/S Version May 2021HYDROGEN SENSOR USER MANUALUNISENSE A/STABLE OF CONTENTS1: WARRANTY AND LIABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52: CONGRATULATIONS WITH YOUR NEW PRODUCT! . . . . . . . . . . . . . . . . . . . . . . . . . .6 2:1 S upport, ordering, and contact information63: OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84: GETTING STARTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 4:1 u npacking a new SenSor9 4:2 p olarization9 4:3 c onnecting the microSenSor9 4:4 p re-polarization10 4:5 c alibration10 Zero hydrogen reading 10 Hydrogen reading 105: MEASUREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 5:1 m ounting of the SenSorS13 5:2 e lectrical noiSe13 5:3 i nterference14 6: ADVANCED USE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 7: STORAGE AND MAINTENANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 7:1 c leaning the SenSor168: REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179: TROUBLESHOOTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 41: WARRANTY AND LIABILITY1:1 n otice to p urchaSerThis product is for research use only . Not for use in human diagnostic ortherapeutic procedures .1:2 w arningMicrosensors have very pointed tips and must be handled with care toavoid personal injury and only by trained personnel .Unisense A/S recommends users to attend instruction courses to ensureproper use of the products .1:3 w arranty and l iabilityThe Hydrogen sensor is covered by a 90 days limited warranty .Microsensors are a consumables . Unisense will only replacedysfunctional sensors if they have been tested according with theinstructions in the manual within 14 days of receipt of the sensor(s) .The warranty does not include repair or replacement necessitated byaccident, neglect, misuse, unauthorized repair, or modification of theproduct . In no event will Unisense A/S be liable for any direct, indirect,consequential or incidental damages, including lost profits, or for anyclaim by any third party, arising out of the use, the results of use, or theinability to use this product .Unisense mechanical and electronic laboratory instruments mustonly be used under normal laboratory conditions in a dry and cleanenvironment . Unisense assumes no liability for damages on laboratoryinstruments due to unintended field use or exposure to dust, humidityor corrosive environments .1:4 r epair or a djuStmentSensors and electrodes cannot be repaired . Equipment that is notcovered by the warranty will, if possible, be repaired by Unisense A/Swith appropriate charges paid by the customer . In case of return ofequipment please contact us for return authorization .For further information please see the document General Terms of Saleand Delivery of Unisense A/S as well as the manuals for the respectiveproducts .52: CONGRATULATIONS WITH YOUR NEW PRODUCT!2:1 s upport, ordering, and contact informationThe Hydrogen microsensor is a miniturized sensor for measuringpartial pressure of H2in the micromolar range .If you wish to order additional products or if you encounter anyproblems and need scientific/technical assistance, please do nothesitate to contact our sales and support team . We will respond toyour inquiry within one working day .E-mail:******************Unisense A/STueager 1DK-8200 Aarhus N, DenmarkTel: +45 8944 9500Fax: +45 8944 9549Further documentation and support is available at our websitewww .unisense .com .REPLACEMENT OF SENSORSUnisense will replace sensors that have been damaged during shipment provided that:• The sensors were tested immediately upon receipt in accordance with the delivery note and the manual• The seal is still intact.• The sensors are returned to Unisense for inspection within two weeks.• The sensors are correctly packed for return to Unisense, in accordance with the note included in the sensor box.6673: OVERVIEWThis manual covers all the Unisense H2 and H2-X sensors . For a complete list of sensors sizes and types please go towww .unisense .com .The standard hydrogen sensor type, the H2-type, is for use in environments where H2S is not expected to occur . The H2S insensitive type, the H2-X-type, has an H2S trap in front of the H2 sensing part, allowing the sensor to be used in H2S containing environments (see “5:3 Interference”) .The Unisense hydrogen microsensor is designed for research applications within physiology, biotechnology, environmental sciences, and related areas .With the minute tip size, excellent response time, and good sensitivity the Unisense hydrogen sensor facilitates reliable and fast measurements with a high spatial resolution .The H2-X sensor has a slightly longer response time than the corresponding H2 sensor .The Unisense hydrogen microsensor is a miniaturizedClark-type hydrogen sensor with an internal reference electrode and a sensing anode . The sensor must be connected to a high-sensitivity picoammeter where the anode is polarized against the internal reference . Driven by the external partial pressure, hydrogen from the environment will pass through the sensor tip membrane and will be oxidized at the platinum anode surface . The picoammeter converts the resulting oxidation current to a signal .Schematic view of a hydrogen sensorwith a LEMO plug.IMPORTANT Unisense sensorsare neitherintended nor approved for use inhumans84: GETTING STARTEDThe H2-type and H2-X-type sensors are used in the same way . Only the sensitivity to H2S and the response time differ between the two types of hydrogen sensors .4:1 u npacking a new sensorWhen receiving a new microsensor remove the shock-absorbing grey plastic net .4:2 p olarizationThe signal from the hydrogen sensor is generated in picoampere . Therefore the hydrogen sensor must be connected to a polarizing picoammeter (e .g . a UniAmp series amplifier) .The anode of the hydrogen sensors should be polarized at +100 mV relative to the cathode . This happens automatically on the Unisense UniAmp series instruments . On the Unisense Multimeter, Monometer and PA-2000 instruments this must be set manually . Please consult the relevant the instrument manual for how to adjust polarization . If you are using a PA2000, please check the polarization voltage before connecting the sensor, since incorrect polarization may destroy the sensor .4:3 c onnecting tHe microsensorInsert the connector into a pA input terminal on the amplifier . The connector contains connections for both internal reference electrode and sensing anode .WARNING Do not remove the seal and protectiveplastic tube before these stepsand calibrationare succesfullycompleted.WARNINGIncorrect polarization may destroy the sensorNOTE The conversionof sensor signal in pA to amplifiersignal in mV is controlled by thePre-Amp Range (mV/pA) setting on the amplifer (notPA-2000)94:4 p re-polarizationJust after connecting the sensor, the signal will be very high and unstable then drop rapidly over the first few minutes . After that the signal will drop slowly for up to 1 hour . Therefore, a periodof polarization is necessary before you can use the sensor . This is called the pre-polarization period .The signal should stabilize at 0-10 picoampere (on the PA2000, the sign will be negative since sensor is positively polarized) forzero hydrogen concentration, depending on the specific sensor .If the sensor is new or has not been operated for several days, it must be polarized for at least 1 hour before it can be calibrated and used . After shorter periods without polarization, the sensor should be polarized until it has exhibited a stable signal for 10 minutes .The signal depends on the specific sensor type (see the value in the specifications that came with the sensor) .If the signal does not stabilize or is too high or too low, refer to the ‘Trouble-shooting’ section of this manual .4:5 c alibrationThe calibration procedure is the same for the H2 and H2-X sensors . Calibration must be performed after the sensor signal has stabilized during pre-polarization .z ero hydrogen readingPlace/keep the sensor tip in water and read the signal . This signal is your calibration value for zero hydrogen conditions .h ydrogen readingThe hydrogen sensor responds linearly and consequently atwo-point calibration is sufficient . Prepare water with a defined hydrogen concentration, which is slightly above the maximum expected concentration to be measured . A defined hydrogen concentration can be obtained by 2 different procedures:IMPORTANT Hydrogen sensorsare sensitive to temperature andsalinity,IMPORTANT Calibration must be performed after pre-polarization when the sensorsignal hasstabilized.Always usea calibration solution with the same temperature and salinity as the sample solution.101 . Use a gas mixture controller to obtain a defined mixture ofhydrogen and hydrogen free inert gas from a gas tank (e .g .N2) as bulk carrier gas . For instance, to obtain a hydrogenconcentration of 40,25 µM in the calibration chamber at 20°C, bubble the water in the calibration chamber vigorously witha gas mixture containing a 95 % N2 and 5 % H2 . The hydrogenpartial pressure is in this case 0 .05 atm, and the Solubility is 805 μmol/L/atm . Multiplying the solubility with the partialpressure results in the concentration: 805 µmol/L/atm * 0,05 atm = 40,25 µM .See Table 1 for more values of the solubility, or use the H2calculator in the Unisense SensorTrace Suite software .Start the software, click “Tools” and select “H2 calculator” . .For a Unisense CAL300 calibration chamber,5 minutes of bubbling at a rate of 5 l perminute is sufficient time to achieve 99 % of theconcentration . If the equipment (gas mixturecontroller) is available, this method can beconvenient, as you can switch between differentconstant hydrogen conditions without changingthe water . Use the solubility table (Table 1),or the H2calculator in the SensorTrace software to find the correct mixture at temperatures other than 20°C .To obtain correct concentrations, the headspace above thewater in the calibration chamber must be closed except fora hole only slightly larger than the microsensor shaft . Thiseffectively prevents ambient air from entering the vessel . We recommend the CAL300 Calibration Chamber for calibrations .2 . Add a defined volume of hydrogen-saturated water to adefined volume of water in a calibration chamber . For instance,1 ml of H2saturated water contains 0,805 µmol at 20°C (see Table 1), or the H2 calculator in the SensorTrace software,and to obtain water with a hydrogen concentration of 10 µM,3 .08 ml hydrogen-saturated water should be added to a totalvolume of 246,9 ml hydrogen free water in the calibrationWARNING Vigorous bubbling water with anygas may cause the water to coolconsiderably.Monitor the temperature tofind a suitablebubbling rate,which does notcool the watersignificantly.Calibration chamber CAL300chamber . After the addition of hydrogen-saturated water tothe calibration chamber mix it thoroughly by moving thesensor in its protection tube up and down for a few seconds and read the signal when it is stable . Do not stir bubbles into the water or mix by bubbling, as this will remove hydrogenfrom the water . A magnetic stirrer is not recommended asa mixing tool as a magnetic stirring can introduce electricalnoise to the signal . The hydrogen in the water will slowlyescape to the atmosphere and the concentration can only be considered constant for a few minutes .Hydrogen sensors respond linearly in the range of 0 to 100 %) and signals can be hydrogen (Low Range sensor from 0 - 10% H2linearly converted to partial pressure .Check and repeat calibration at appropriate intervals to ensure that all measurements can be converted to correct concentrations . When the sensor is new, the appropriate interval may be every2 hours; later it may be 24 hours . To minimize the need for calibrations, keep the sensor polarized between measurements, unless the time between measurements exceeds several days or unless the picoammeter batteries are running out . The membrane permeability of hydrogen microsensors changes with time, so a change in signal of up to 50 % may occur over months .If the sensor functions according to the criteria given in the delivery note, the seal and protective plastic tube can be carefully removed before making measurements.5: MEASUREMENTSThe H2-type sensor should be used in H2S free environments . If H2Sis expected to be present, the H2-X-type sensor should be used .Hydrogen sensors can be used for a wide variety of measurements(see our website for further information www .unisense .com) . Themost common use of hydrogen sensors is for making profiles ine .g . sediment or animal tissue where a high spatial resolution iswanted, or for hydrogen measurements in water samples .5:1 m ounting of tHe sensorsAlthough the Unisense microsensors are made of glass, the tipis flexible and can bend slightly around physical obstacles . Thesensor is thus rather sturdy in the longitudinal direction . However,large obstacles like stones or lateral movements of the sensorwhen the tip is in contact with a solid substrate may cause the tip Array to break .Furthermore, due to the small size of the microsensor tip andto the steepness of gradients in many environments, even adisplacement of the sensor tip of few microns may change itsenvironment .Therefore, we recommend that measurements should beperformed only in a stabilized set-up free of moving or vibratingdevices . We recommend the Unisense lab stand LS and theUnisense micromanipulator MM33 (MM33-2 or MMS) forMicromanipulator laboratory use . For in-situ use, we recommend our in situ stand(IS19) and a micromanipulator .5:2 e lectrical noiseThe signal of the microsensor is very small (10-13 to 10-10 ampere) .Although both the Unisense amplifiers and the UnisenseHydrogen microsensors are very resistant to electrical noise fromthe environment, electrical fields may interfere with the sensorsignal . Therefore, we recommend that unnecessary electrical/mechanical equipment is switched off and the sensor or wires arenot touched during measurements and signal recording .5:3 i nterferenceSulphide in the H2S form may interfere with the H2 measurements . The standard hydrogen sensor, the H2-type, is very sensitive to H2S and other reduced sulphur gases . It should, therefore, not be used in environments where H2S and other reduced sulphur gases are present . The H2-X sensor type is not sensitive to H2S up to 100 µM in solution or 1000 ppm H2S in gas . The H2S trap on the H2-X sensor works by removing protons from the H2S and the ionized formsof sulfide cannot pass through the silicone membrane into the H2 sensing part . Other sulphur gases where protons are less easily removed may still penetrate the silicone membrane . The H2-X sensor may, therefore, still be sensitive to other reduced sulphur gases than H2S . It is recommended to only expose the H2S-X sensor to H2S when needed, to maximize the lifetime of the H2S trap . The H2-X sensor may be made even more resistant to H2S . If you needacustombuiltsensor,*************************6: ADVANCED USEUnisense can construct hydrogen sensors for customer requested applications at additional costs . The most frequently requested construction options are described on our website www .unisense . com .The options include for instance customer specified dimensions, response time, stirring sensitivity, pressure tolerance, range and detection limit . If your specifications for a special hydrogen sensor is not described at our web page please contact sales@unisense . com for further options and prices .6:1 Examples of advanced applications• Consumption/production rates of hydrogen . E .g . during enzyme assays in small samples in Unisense microrespiration chambers MRCh• Measurements of hydrogen under high external pressuree .g . in closed pressurized systems, underwater and deep sea applications• Long-term hydrogen monitoringIfyouhavequestions,*******************************7: STORAGE AND MAINTENANCEStore the sensor in the protective plastic tube used for shipping . The hydrogen microsensor can be stored with the tip exposed to water or air . The room in which the hydrogen microsensor is stored should be dry and not too hot (10-30°C) . If the sensor is used regularly it can be stored polarized .7:1 c leaning tHe sensorDepending on which substance is present on the sensor tip or membrane, the sensor can be cleaned with different solutes .The standard method is to rinse with 96 % ethanol (NOT in the protection tube), then rinse with 0 .01 M HCl and rinse with water . This will remove most substances .Alternatively it is possible to rinse with 0 .1M NaOH, isopropanol or different detergents8: REFERENCES• Revsbech, N . P ., and B . B . Jørgensen . 1986 . Microelectrodes: Their Use in Microbial Ecology, p . 293-352 . In K . C . Marshall (ed .), Advances in Microbial Ecology, vol . 9 . Plenum, New York .• Itoh, T ., et al . 2009 . Molecular Hydrogen Suppresses FcepsilonRI-Mediated Signal Transduction and Prevents Degranulation of Mast Cells . Biochem . Biophys . Res . Commun . 389:651-656 .• Kajiya, M . et al . 2009 . Hydrogen From Intestinal Bacteria Is Protective for Concanavalin A-Induced Hepatitis . Biochemical and Biophysical Research Communications 386:316-321 .• Kajiya, M . et al . 2009 . Hydrogen Mediates Suppression of Colon Inflammation Induced by Dextran Sodium Sulfate . Biochemical and Biophysical Research Communications 386:11-15 .• Vopel, K ., et al . 2008 . Modification of Sediment-Water Solute Exchange by Sediment-Capping Materials: Effects on O2 and PH . Marine and Freshwater Research 59, 1101-1110 .Problem High and drifting signal .Possible cause The sensor tip is broken .Solution Replace the hydrogen microsensor .Problem The signal is very low .Possible cause Damage to internal working electrode .Solution Replace the hydrogen microsensor .Problem Very low sensitivity to H2 and low signal Possible cause 1Bubble in the narrow parts of the sensor,often not visible to naked eyeSolution 1Shake the sensor gently like shaking an oldmercury fever thermometerPossible cause 2Bubble in the sensor tip, not visible to thenaked eyeSolution2Soak the sensor in degassed water for atleast 2 hours . Degas water by boiling it andsubsequently cool it to room temperaturewithout getting air into it .Problem Slow response .Possible cause Insoluble compounds deposited at thesensor tip .Solution Rinse with 96 % ethanol, rinse with 0 .01 MHCl and rinse with water .Problem Unstable signal or the signal fluctuatesif the set-up is touched or equipment isbeing introduced in the medium you aremeasuring in .Possible cause Electrical disturbance of the sensorthrough the tip membrane .Solution Ground the set-up using the bluegrounding cable supplied with theamplifier . Connect the reference plug onthe amplifier (blue plug) with the mediumyou are measuring in .If you encounter other problems and need scientific/technical assistance, please contact **********************************(wewillansweryouwithinoneworkday)Table 1: Equilibrium hydrogen concentrations (µmol/litre) at ambient hydrogen partial pressure of 1 atm. in water as a function of temperature.Ref. Wiesenburg and Guinasso 1979. J.Chem Eng. Data 24(4):356-36021·*****************。
热失控h2传感器原理
热失控h2传感器原理
热失控H2传感器是一种广泛应用于氢气泄漏检测和火灾预警
系统的气体传感器。
它基于热传导原理工作。
传感器的基本结构通常由两个热敏电阻组成,一个作为探头(活性电阻)暴露在气体环境中,另一个用作参考(参考电阻)固定在恒温器中。
当氢气泄漏到探头电阻上时,氢气与空气周围形成了可燃混合物,导致热敏电阻上的温度升高。
热敏电阻的电阻值与温度呈负相关关系,因此当温度升高时,电阻值下降。
通过测量热敏电阻的电阻值变化,可以得知氢气的存在和浓度。
为了排除环境温度的影响,系统还需要一个参考电阻。
它被恒温器保持在恒定的温度下,它的电阻值不会随气体浓度变化而变化。
通过比较探头和参考电阻的电阻值,来确定氢气的存在和浓度。
通过将传感器输出与预设的氢气浓度阈值进行比较,可以触发警报或采取相应的控制措施,以便进行泄漏检测和火灾预警。
MQ-8 氢气气体传感器
TEL:86-371-65333056 65333076
FAX:86-371-65333066
Email:winsensor@
郑州炜盛电子科技有限公司
MQ-8
Rs/Ro
MQ-8 气敏元件的结构和外形如图 1 所示(结构 A or B), 由微型 AL2O3 陶瓷管、SnO2 敏感层,测量电极和加 热器构成的敏感元件固定在塑料或不锈钢制成的腔体内,加热器为气敏元件提供了必要的工作条件。封装 好的气敏元件有6只针状管脚,其中4个用于信号取出,2个用于提供加热电流。
郑州炜盛电子科技有限公司
技器
特点
* 对氢气高灵敏度
* 可抗乙醇蒸汽、LPG、烹饪油烟的干扰
* 具有长期的使用寿命和可靠的稳定性
应用
适用于家庭或工业上对氢气泄漏的监测装置,可不受乙醇蒸汽、LPG、油烟、一氧化碳等气体的干扰。
测量电路如图2所示
E. 灵敏度特性曲线
100
MQ-8
10
1
0.1
0.01 100
H2 LPG CH4 CO alcohol air
1000
ppm 10000
图3给出了MQ-8 型气敏元件 的灵敏度特性。
其中: 温度:20℃、 相对湿度:65% 、 氧气浓度:21% RL=5k Ω Rs:元件在不同气体,不同浓度下 的电阻值。 R0:元件在洁净空气中的电阻值。
郑州炜盛电子科技有限公司
MQ-8
当精确测量时,报警点的设定应考虑温湿度的影响。
TEL:86-371-65333056 65333076
FAX:86-371-65333066
Email:winsensor@
预热时间
温度: 20℃±2℃ Vc:5.0V±0.1V 相对湿度: 65%±5% Vh: 5.0V±0.1V
氢气气体探测仪
地址:深圳市龙华新区大浪下岭排新工业区14栋4楼官网:氢气气体探测仪地址:深圳市龙华新区大浪下岭排新工业区14栋4楼官网:量程选择图表产品描述:固定式氢气气体探测仪采用先进的进口传感器,性能稳定,灵敏可靠,抭中毒性好。
带高精度液晶显示,防爆型外壳,扩散式或泵吸式。
这款探测仪的特点是具有最大的灵活性,性能和操作简单使用方法。
应用于各种气体泄漏的场所,如:城市燃气、石油、化工、制药、钢铁、特殊工业厂房等领域。
产品特点:(1)原装进口传感器,自动温度补偿、零点漂移及满量程漂移补偿.(2)防高浓度气体冲击的自动保护及传感器故障自检功能.(3)电路防护设计,大大降低安装和使用过程中的故障率.(4)红外遥控方式,不开盖即可对探测器进行调整,安全方便.(5)全量程范围温度数字自动跟踪补偿,保证测量准确性.(6)温度补偿、多级校准,能同时符合国标和各个地区地方、省级计量局标准.氢气H2气体探测仪详细参数工作电压DC5V ±1%/DC24±1%波特率9600测量气体氢气H2气体检测原理电化学采样精度±1%F.S 响应时间<5S 重复性±1%F.S 工作湿度0-95%RH 工作温度-30~50℃长期漂移≤±1%(F.S/年)存储温度-40~70℃预热时间10S 工作电流≤50mA 工作气压86kpa-106kpa安装方式固定安装质保期3年输出接口多种外壳材质铝合金使用寿命3-5年外型尺寸183143107mm(L ×W ×H )1.5Kg测量范围详见选型表输出信号标配:RS485,4-20mA 氢气H2气体探测仪量程选择表量程(ppm)精度(ppm )0-00.010-100.10-500.10-1000.10-100010-50001其他特殊量程电话咨询技术工程师地址:深圳市龙华新区大浪下岭排新工业区14栋4楼官网:传输方式:①电缆传输:3芯、4芯电缆线,远距离传输(1-2公里)②GPRS 传输:可内置GPRS 模块,实时远程传输数据,(选配)接收设备:用户电脑、控制报警器、PLC 、DCS 、等报警方式:现场声光报警、外置报警器、远程控制器报警、数据采集报警等报警设置:标准配置两级报警,可选三级报警;可设置报警方式:常规高低报警电器接口:3/4″NPT 内螺纹、1/2″NPT 内螺纹,同时支持2种电器连接方式壳体材料:压铸铝+喷砂氧化/氟氮漆,防爆防腐蚀氢气H2在线浓度探测仪电气接线定义图氢气H2在线浓度探测仪外形尺寸及安装方式地址:深圳市龙华新区大浪下岭排新工业区14栋4楼官网:探测仪安装方式:气体检测报警器安装方式有抱管安装、墙壁安装、支架固定安装等方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H2氢气H2传感器
H2氢气H2传感器特点:
★整机体积小,重量轻
★高精度,高分辨率,响应迅速快.
★上、下限报警值可任意设定,自带零点和目标点校准功能,内置温度补偿,维护方便.
★数据恢复功能,免去误操作引起的后顾之忧.
★外壳采用特殊材质及工艺,不易磨损,易清洁,长时间使用光亮如新.
H2氢气H2传感器技术参数:
★进口电化学传感器具有良好的抗干扰性能,使用寿命长达3年;
★采用先进微处理器技术,响应速度快,测量精度高,稳定性和重复性好;
★全量程范围温度数字自动跟踪补偿,保证测量准确性;
★半导体纳米工艺超低功耗32位微处量器;
★全软件自动校准,传感器多达6级目标点校准功能,保证测量的准确性和线性,并且具有数据恢复功能;★防高浓度气体冲击的自动保护功能
H2氢气H2
传感器结构图:
H2氢气H2传感器接线示意图
:
一氧化氮NO气体传感器参数
工作电压DC5V±1%/DC24±1%波特率9600
测量气体一氧化氮NO气体检测原理电化学
采样精度±2%F.S响应时间<30S
重复性±1%F.S工作湿度10-95%RH,(无冷凝)工作温度-30~50℃长期漂移≤±1%(F.S/年)存储温度-40~70℃预热时间30S
工作电流≤50mA工作气压86kpa-106kpa
安装方式7脚拔插式质保期1年
输出接口7pIN外壳材质铝合金
使用寿命2年外型尺寸
(引脚除外)33.5X31 21.5X31
测量范围详见选型表
输出信号TTL(标配)0.4-2.0VDC(常规)/4-20mA 数字信号格式数据位:8;停止位:1;校验位:无;
传感器PIN脚定义图:
传感器应用场所:
医药科研、学校科研、制药生产车间、烟草公司、环境检测、楼宇建设、消防报警、污水处理、石油石化、化工厂、冶炼厂、钢铁厂、煤炭厂、热电厂、锅炉房、加气站、垃圾处理厂、隧道施工、输油管道、工业气体过程控制、室内空气质量检测、地下燃气管道检修、危险场所安全防护、设备检测等。