(完整版)三角形中位线课件.ppt
合集下载
三角形中位线定理课件
三角形中位线定理的应用
在几何学、代数和三角学等领域,三角形中位线定理被广泛应用于证明和计算 。
三角形中位线定理的历史
该定理最早可追溯到古希腊数学家欧几里得,后来被其他数学家不断完善和证 明。
02
三角形中位线定理的证明
证明方法一:通过相似三角形证明
总结词
利用相似三角形的性质,通过一系列推导证明中位线定理。
VS
建筑学中的应用
在建筑设计或施工时,可以利用三角形中 位线定理来确保结构的稳定性和安全性。 例如,在桥梁或高层建筑的设计中,可以 利用该定理来分析结构的受力情况。
04
三角形中位线定理的拓展
三角形中位线定理的推广
三角形中位线定理的逆定理
如果一条线段平行于三角形的一边,并且通过三角形的另一边的 中点,那么这条线段就是三角形的中位线。
THANKS
感谢观看
在多边形中的应用
对于任意多边形,如果一条线段平行于一边,并且等于另一边的一半,那么这条线段就是多边形的中 位线。
中位线定理与其他几何定理的关系
与平行线性质定理的关系
三角形中位线定理的应用需要平行线的性质 定理来证明线段平行。
与勾股定理的关系
在直角三角形中,中位线定理可以与勾股定 理结合使用,以证明某些几何关系。
证明方法三:通过向量证明
总结词
利用向量的性质和运算规则,通过向量的表示和推导证明中位线定理。
详细描述
首先,利用向量的表示方法,我们可以将三角形的边表示为向量。然后,通过向量的加法和数乘运算,以及向量 的模长和夹角计算,我们可以推导出中位线定理。这种方法需要熟悉向量的性质和运算规则,但可以提供一种全 新的证明角度。
三角形中位线定理ppt课件
目录
在几何学、代数和三角学等领域,三角形中位线定理被广泛应用于证明和计算 。
三角形中位线定理的历史
该定理最早可追溯到古希腊数学家欧几里得,后来被其他数学家不断完善和证 明。
02
三角形中位线定理的证明
证明方法一:通过相似三角形证明
总结词
利用相似三角形的性质,通过一系列推导证明中位线定理。
VS
建筑学中的应用
在建筑设计或施工时,可以利用三角形中 位线定理来确保结构的稳定性和安全性。 例如,在桥梁或高层建筑的设计中,可以 利用该定理来分析结构的受力情况。
04
三角形中位线定理的拓展
三角形中位线定理的推广
三角形中位线定理的逆定理
如果一条线段平行于三角形的一边,并且通过三角形的另一边的 中点,那么这条线段就是三角形的中位线。
THANKS
感谢观看
在多边形中的应用
对于任意多边形,如果一条线段平行于一边,并且等于另一边的一半,那么这条线段就是多边形的中 位线。
中位线定理与其他几何定理的关系
与平行线性质定理的关系
三角形中位线定理的应用需要平行线的性质 定理来证明线段平行。
与勾股定理的关系
在直角三角形中,中位线定理可以与勾股定 理结合使用,以证明某些几何关系。
证明方法三:通过向量证明
总结词
利用向量的性质和运算规则,通过向量的表示和推导证明中位线定理。
详细描述
首先,利用向量的表示方法,我们可以将三角形的边表示为向量。然后,通过向量的加法和数乘运算,以及向量 的模长和夹角计算,我们可以推导出中位线定理。这种方法需要熟悉向量的性质和运算规则,但可以提供一种全 新的证明角度。
三角形中位线定理ppt课件
目录
三角形的中位线性质ppt课件
例1:口答
(1)三角形的周长为18cm,这个三角形
的三条中位线围成三角形的周长是多少?为
什么?
A
D
E
B
F
C
(1) △DEF的周长与 △ABC的周长有什么关系?
(2) △DEF的面积与 △ABC的面积有什么关系?
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
用符号语言表示 A
∵AE=EB AD=DC
1 ∴ DE∥BC, DE= 2 BC.
E
D
B
C
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
A 如图1:在△ABC中,DE是中位线
(1)若∠ADE=60°,
△ADE是什么三角形? 等边三角形
DE是△ABC的什么线? 中位线
DE与BC有什么样的位置关系和数量关系?
∴DE
1
BC
A
E
D
2
C
B
一般的三角形的中位线与第三边有什么
样的位置关系和数量关系呢?
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
观察猜想
在△ABC中,中位线
DE和边BC什么关系? D
DE∥BC
A E
DE和边BC关系
B
C
位置关系: 平行
数量关系:DE是BC的一半
2三角线中位线PPT课件(华师大版)
华东师大版《数学 ·九年级(上)》
§24.4.1 三角形的中位线 第一课时
1
1.什么叫三角形的中线?
A
三角形的一个顶点到对边中点的 连线,叫做三角形的中线。
如:线段AF;
2.思考:什么叫三角形的中位线? D
E 三条
连结三角形两边中点的线段
叫三角形的中位线。 如;线段DE;
B
F
C
思考:一个三角形共有几
则DE5=c_m_____.
2.△ABC中,D、E分别是AB、AC的中点,∠A=50°,
∠B=70°,则∠AED6=0_度____.
A
A
A
D
D
E
D
E
E
O
B
C
(1)
B (2)
CB
(3)
C
3.如图,E是平行四边形ABCD的AB边上的中点,且 AD=20cm,那么OE1=0 cm。
15
例3:如图,△ABC中,D、E分别是边BC、AB的中点, A边平行的直线必平分第三边.
6
例1:求证:三角形的一条中位线与第三边的中线互相平分.
已知:如图,在△ABC中AD=DB,AF=FC,BE=EC
求证:AE、DF互相平分
A
证明:连结DE、EF
D
F
∵D、E、F分别为AB、BC、AC上中点
∴DE、EF为△ABC的中位线
B EC
(3)顺次连结菱形各边中点 所得的四边形是__矩__形____。
矩形
11
(4)顺次连结正方 形各边中点所得的四 边 形 是正__方_形________ 。
(5)顺次连结梯形各边 中点所得的四边形是 ___平__行__四__边_形____。
§24.4.1 三角形的中位线 第一课时
1
1.什么叫三角形的中线?
A
三角形的一个顶点到对边中点的 连线,叫做三角形的中线。
如:线段AF;
2.思考:什么叫三角形的中位线? D
E 三条
连结三角形两边中点的线段
叫三角形的中位线。 如;线段DE;
B
F
C
思考:一个三角形共有几
则DE5=c_m_____.
2.△ABC中,D、E分别是AB、AC的中点,∠A=50°,
∠B=70°,则∠AED6=0_度____.
A
A
A
D
D
E
D
E
E
O
B
C
(1)
B (2)
CB
(3)
C
3.如图,E是平行四边形ABCD的AB边上的中点,且 AD=20cm,那么OE1=0 cm。
15
例3:如图,△ABC中,D、E分别是边BC、AB的中点, A边平行的直线必平分第三边.
6
例1:求证:三角形的一条中位线与第三边的中线互相平分.
已知:如图,在△ABC中AD=DB,AF=FC,BE=EC
求证:AE、DF互相平分
A
证明:连结DE、EF
D
F
∵D、E、F分别为AB、BC、AC上中点
∴DE、EF为△ABC的中位线
B EC
(3)顺次连结菱形各边中点 所得的四边形是__矩__形____。
矩形
11
(4)顺次连结正方 形各边中点所得的四 边 形 是正__方_形________ 。
(5)顺次连结梯形各边 中点所得的四边形是 ___平__行__四__边_形____。
三角形的中位线ppt课件
∴AB= + = + =13.
∵点 D,E 分别是直角边 BC,AC 的中点,
∴DE 是 Rt△ABC 的中位线.
∴DE= AB=6.5.
三角形中位线的两个作用
位置关系: ∵ ,分别为,
⇒
的中点, ∴ ∥ .
数量关系: ∵ ,分别为,
的中点, ∴ = .
新知应用
1.如图所示,在△ABC中,点D,E分别为AB,AC的中点,若DE=2,则BC的长
为( D
)
A.1
B.2
C.3
D.4
2.如图所示,在Rt△ABC中,∠A=90°,AB=3,AC=4,D,E,F分别是边
AB,BC,AC的中点,连接DE,DF,EF,∠ADF的度数为53°.求:
A.1
B.2
C.3
D.4
4.如图所示,在四边形ABCD中,AC⊥BD,AC=6,BD=8,点E,F分别是边AD,BC
5
的中点,连接EF,则EF的长是
.
5.如图所示,在△ABC中,AB=AC,点D是边AB上一点,DE∥BC交AC于点E,连
接BE,点F,G,H分别为BE,DE,BC的中点.求证:FG=FH.
点D,E,F,G依次连接,得到四边形DEFG.求证:四边形DEFG是平行四边形.
证明:∵AB,OB,OC,AC 的中点分别为 D,E,F,G,
∴DG 是△ABC 的中位线,EF 是△OBC 的中位线.
∴DG∥BC,DG= BC,EF∥BC,EF= BC.∴DG∥EF,DG=EF.
∴四边形 DEFG 是平行四边形.
到点D,使AB=2AD,连接DE,DF,AE,EF,AF与DE交于点O.试说明AF与DE互相
∵点 D,E 分别是直角边 BC,AC 的中点,
∴DE 是 Rt△ABC 的中位线.
∴DE= AB=6.5.
三角形中位线的两个作用
位置关系: ∵ ,分别为,
⇒
的中点, ∴ ∥ .
数量关系: ∵ ,分别为,
的中点, ∴ = .
新知应用
1.如图所示,在△ABC中,点D,E分别为AB,AC的中点,若DE=2,则BC的长
为( D
)
A.1
B.2
C.3
D.4
2.如图所示,在Rt△ABC中,∠A=90°,AB=3,AC=4,D,E,F分别是边
AB,BC,AC的中点,连接DE,DF,EF,∠ADF的度数为53°.求:
A.1
B.2
C.3
D.4
4.如图所示,在四边形ABCD中,AC⊥BD,AC=6,BD=8,点E,F分别是边AD,BC
5
的中点,连接EF,则EF的长是
.
5.如图所示,在△ABC中,AB=AC,点D是边AB上一点,DE∥BC交AC于点E,连
接BE,点F,G,H分别为BE,DE,BC的中点.求证:FG=FH.
点D,E,F,G依次连接,得到四边形DEFG.求证:四边形DEFG是平行四边形.
证明:∵AB,OB,OC,AC 的中点分别为 D,E,F,G,
∴DG 是△ABC 的中位线,EF 是△OBC 的中位线.
∴DG∥BC,DG= BC,EF∥BC,EF= BC.∴DG∥EF,DG=EF.
∴四边形 DEFG 是平行四边形.
到点D,使AB=2AD,连接DE,DF,AE,EF,AF与DE交于点O.试说明AF与DE互相
16.5_三角形的中位线定理课件
16.5
三角形中位线定理
和林中学
刘红迁
猜想
• 把任意一个三角形分成四个全等的 三角形.
做法:连接每两边的中点.
你认为这种做法对吗?
三角形的中位线
• 定义:
连接三角形两边中点的线段 叫做三角形的中位线. A
D E
B
C
如图:在△ABC中,D,E分别是两边
的中点,则DE是△ABC的中位线.
如图:在△ABC中,D,E分别是两边 的中点,则DE是△ABC的中位线. D
D B E C
定理:经过三角形一边中点与另一边平行的 直线平分第三边.
• 小结:1、三角形的中位线平行于 第三 并 且等于第三边的 一半 。2、经过三角形 一边中点与另一边 中点的直线平行于第 三边
达标检测: 1.如图:EF是△ABC 的中位线,BC=20, 则EF= ( 10 );
变式训练:在△ABC中,中线CE、BF相交点O、 M、N分别是OB、OC的中点,则EF和MN的关 A 系是( 平行且相等 )
M
验证
• 把任意一个三角形分成四个全等的 A 三角形.
D B E C
F
做法:连接每两边的中点. 你认为这种做法对吗?
• 讨论:三角形共有几条中位线?其中任 意两条中位线与原来的三角形的某部分 可以组合成什么图形?所有中位线连接 起来的三角形与原来的三角形成什么关 系?请用实例说明。
思考:若点D是△ABC的边AB的中点,作 DE∥BC交AC于点E,你认为点E一定是AC的 A 中点吗?为什么?
D B
A
F
C E
变式训练,已知:如图,在ABCD中,E是CD
的中点,F是AE的中点,FC与BE交与G. 求证:GF=GC.
三角形的中位线及性质PPT课件
在三角形中,中位线通常用两个大写 字母表示,其中一个是起点,另一个 是终点。
例如,如果中位线连接顶点A和顶点C 的中点,则表示为AC。
三角形中位线的性质
中位线平行于第三边
中位线与第三边平行,这是中位线的基本性质。
中位线长度是第三边的一半
中位线的长度等于第三边长度的一半。
中位线与第三边平行且等长
中位线与第三边平行且长度相等。
线的长度性质。
三角形中位线与第三边之间的角度相等
03
三角形的中位线与第三边之间的角度相等,这是三角形中位线
的角度性质。
三角形中位线的定理
三角形中位线定理
三角形的中位线长度等于第三边长度的一半,即ME=1/2EB,其中ME是中位 线,EB是第三边。
三角形中位线定理的推论
如果一个线段与三角形的两边平行,则该线段被三角形的另一边平分。
过程。
03
三角形中位线的证明
三角形中位线定理的证明方法
位线与底边平行且等于底 边一半的性质,证明中位 线定理。
平行四边形法
构造一个平行四边形,利 用平行四边形的性质,证 明中位线定理。
相似三角形法
通过构造相似三角形,利 用相似三角形的性质,证 明中位线定理。
三角形中位线定理证明的实例
实例一
利用定义法证明中位线定 理
实例二
利用平行四边形法证明中 位线定理
实例三
利用相似三角形法证明中 位线定理
三角形中位线定理证明的注意事项
注意中位线的定义和性质
注意证明方法的选取
在证明过程中,要明确中位线的定义 和性质,确保正确使用。
根据具体的情况,选取适当的证明方 法,以达到简洁明了的证明效果。
05
例如,如果中位线连接顶点A和顶点C 的中点,则表示为AC。
三角形中位线的性质
中位线平行于第三边
中位线与第三边平行,这是中位线的基本性质。
中位线长度是第三边的一半
中位线的长度等于第三边长度的一半。
中位线与第三边平行且等长
中位线与第三边平行且长度相等。
线的长度性质。
三角形中位线与第三边之间的角度相等
03
三角形的中位线与第三边之间的角度相等,这是三角形中位线
的角度性质。
三角形中位线的定理
三角形中位线定理
三角形的中位线长度等于第三边长度的一半,即ME=1/2EB,其中ME是中位 线,EB是第三边。
三角形中位线定理的推论
如果一个线段与三角形的两边平行,则该线段被三角形的另一边平分。
过程。
03
三角形中位线的证明
三角形中位线定理的证明方法
位线与底边平行且等于底 边一半的性质,证明中位 线定理。
平行四边形法
构造一个平行四边形,利 用平行四边形的性质,证 明中位线定理。
相似三角形法
通过构造相似三角形,利 用相似三角形的性质,证 明中位线定理。
三角形中位线定理证明的实例
实例一
利用定义法证明中位线定 理
实例二
利用平行四边形法证明中 位线定理
实例三
利用相似三角形法证明中 位线定理
三角形中位线定理证明的注意事项
注意中位线的定义和性质
注意证明方法的选取
在证明过程中,要明确中位线的定义 和性质,确保正确使用。
根据具体的情况,选取适当的证明方 法,以达到简洁明了的证明效果。
05
三角形中位线定理PPT教学课件
2 在△ADC中,同1 理可得
B
F
C
HG//AC,HG= AC
2
所以EF//HG,EF=HG
所以四边形EFGH是平行四边形
从例1中你能得到什么结论?
顺次连接四边形各边中点的 线段组成一个平行四边形 演示2
顺次连接矩形各边中点的线
段组成一个 菱形
演示3 为什么?
(1) 顺次连结平行四边 形各边中点所得的四边形是 什么?
是AC的中点。 则有:DE∥BC, DE=
1
BC.
2
A
能说出理由
吗?
E
D
B
C
如图:在△ABC中,D是AB的中点,E
是AC的中点。
则有:DE∥BC, DE= 1 BC.
2
A
分析:
延长ED到F,使DF=ED , 连接CF
易证△ADE≌△CFE,
E
D
F 得CF=AE , CF//AB
又可得CF=BE,CF//CE
面
(3)那雪正下得紧。
描
(4)看那雪,到晚越下得紧了。屋时,四下里崩坏了, 又被朔风吹撼,动摇得很。
侧
面
(5)那两间草厅已被雪压倒了。
描
(6)火盆内火种都被雪水浸灭了。
写
推动情节 烘托人物
风雪对情节发展的推动作用
4、投宿庙中
风 雪 3、压倒草厅
5、大石倚门 6、隔门偷听
2、途中见庙
思 考 1.林冲性格是怎样变化发展的?
提示:林冲刺配沧州,邂逅李小二,从 言谈中表现了他什么样的思想状况
提示:陆谦、富安来到沧州表明了什么?林冲 的反应表现了他什么样的思想状况?
提示:当林冲知道看守草料场本是这伙人的 诡计,这时林冲是什么态度?
《三角形的中位线》ppt课件
∵点E,F分别是边AB,BC的中点,
H A
∴EF//AC,EF 1 AC.
2
同理,GH//AC,GH
1
AC.
2
E B
∴EF//GH,且EFGH.
F
∴四边形EFGH是平行四边形.
D G C
结论:顺次连接四边形四边中点所得的四边形是平行四边形.
2. △ABC中,点D、E、F分别为边BC、AB、CA的中点,则
求证:A1B1=B1C1
分析:证明“线段相等” 常利用全等 添加辅助线构造全等
证明:过点B1作EF∥AC,分别交直线
l1 、 l3于点EF.
A
A1 E
l1
∴四边形ABB1E,BCFB1都是平行四边形.
B
∴EB1=AB,B1F=BC.
C
B1
l2
F
C1
l3
∵AB=BC,
∴EB1=B1F.
探究
已知,直线l1 、 l2 、 l3互相平行,直线AC与直线A1C1分别交 直线l1 、 l2 、 l3于点A , B , C,和点A1 , B1 , C1,且AB=BC.
布置作业
教科书第85页习题19.2 第12题、第15题.
课程结束
拓展
【中点三角形】 顶点是中点的三角形,我们称之为中点三角形.
A
D
E
B
F
C
中点三角形的周长是原三角 形的周长的一半.
中点三角形的面积是原三角形 的面积的四分之一
随堂练习
1. 如图,点E,F,G,H分别是四边形ABCD的边AB,BC,CD, DA的中点.求证:四边形EFGH是平行四边形.
证明:连接AC.在△ABC中,
中位线是连接三角形两边中点的线段.
《三角形的中位线定理》PPT课件 (共28张PPT)
6 ⑥ 若△ABC的面积为24,△DEF的面积是_____
探究活动
1、三角形三条中位线围成的三角形 的周长与原三角形的周长有什么关系?
2、三角形三条中位线围成的三角形的面积与原三角 形的面积有什么关系?
设 计 方 案:
A
(中点)D
E(中点)
B
F (中点)
C
A、B两点被池塘隔开,如何才 能知道它们之间的距离呢?
(4)顺次连结矩形各边中点所得的四 边形是什么?
菱形
例2已知:如图,四边形ABCD中,E、F、 G、H分别是AB、BC、CD、DA的中点. 求证(1)四边形EFGH是平行四边形。
(2)请增加一个条件使得四 边形ADFE为菱形。 (3)请增加一个条件使得四 边形ADFE为矩形。
A
H D E G F C
四边形BCFD是平行四边形吗?说 说你的理由!
F
已知: 如图:在△ABC中,D是AB的中点, E是AC的中点。 1 求证: DE∥BC, DE= BC.
A
E B D C
2
分析:
延长ED到F,使DF=ED , 连接CF
易证△ADE≌△CFE,
F
得CF=AE , ∠A=∠ACF
又可得CF=BE,CF//BE
在AB外选一点C,连结AC和 BC,并分别找出AC和BC的中点M、 N,如果测得MN = 20m,那么A、 B两点的距离是多少?为什么?
M 20 C
A
40
N
B
A
E
F
C
D
H G
B
在△ABC中,E、F、G、H分别为AC、CD、 BD、 AB的中点,若AD=3,BC=8,则四边 形EFGH的周长是 11 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CD、EF的长短相等吗?为什么?
EC
A
l
1
l2
FD
B
夹在两平行线间的平行线段相等。
2.如图,在四边形ABCD中, AB∥CD, 且 CD等于AB的一半。E是BC的中点,DE交 AC于点F , 求证 : DE被AC平分.
A
没有任何测量工具的情况下,小明
M
通过学习,估测出了A,B两地之间
的距离:先在AB外选一点C,然后步 C 测出AC,BC的中点M,N,并测出
N
B
MN的长,由此他就知道了A,B间的
距离.你能说出其中的道理吗?
其中的道理是:
连结A、B, ∵MN是△ABC的的中位线,∴AB=2MN.
中位线定理应用
已知:在四边形ABCD中,AD=BC, P是对角线BD的中点,M是DC的中点,
如图,有一块三角形的蛋糕,准备平均 分给四个小朋友,要求四人所分的形状大小 相同,请设计合理的解决方案。
三角形的中位线
获取新知
连结三角形两边中点的线段叫三角形的中位线
A 你还能画出几条三角形的中位线?
D
E
B
F
C
温馨提示
三角形有三条中位线
三角形的中位线和三角形的中线不同
A 概念对比 A
D
E
D 中线DC
1 2
BC
D
E
B
C
A
D
E F
B
C
三角形的中位线平行且等于第三边的一半.
A
几何语言:
D E ∵DE是△ABC的中位线
(或AD=BD,AE=CE)
B
C
D E/
/
1 2
B
C
用 ① 证明平行问题
途 ② 证明一条线段是另一条线段的两倍或一半
初试身手
A
练习1.如图,在△ABC中,D、E分、别F分是别 A是BA、BA、CA的C中、点BC的中点
中位线DE
B
C
B
C
(1)相同之处——都和边的中点有关; (2)不同之处:
三角形中位线的两个端点都是边的中点;
三角形中线只有一个端点是边的中点,另一端点 是三角形的顶点。
想一想
问题1:△ABC中,若D是AB的中点时,E也是AC
的中点,则DE与BC存在何种关系?
A
D
E
B
C
DE和边BC关系
位置关系: DE∥BC
∴四边形EFGH是平行四边形
E,F是AB,BC的中点,你联想到什么?
要使EF成为一个三角形的中位线应怎样添加辅助线?
(1) 顺次连结平行四边 形各边中点所得的四边形是 什么?
(2)顺次连结菱形各边中点 所得的四边形是什么?
平行四边形
矩形
(3)顺次连结正方 形各边中点所得的四 边形是什么?
正方形
(4)顺次连结矩形各边 中点所得的四边形是什 么?
C
探究活动
1、 三角形三条中位线围成的三角 形的周长与原三角形的周长有什么 关系?
2、三角形三条中位线围成的三角形的面积与原三角 形的面积有什么关系?
设 计 方 案:
A
(中点)D
E(中点)
B
F
C
(中点)
例 求证三角形的一条中位线与第三边上的中线 互相平分.
已知:△ABC中,AD=DB,BE=EC,AF=FC.
互相垂直 相等
互相垂直且相等 既不互相垂直也不相等
矩形 菱形 正方形 平行四边形
2.如图, A 、B两点被池塘隔开,在AB外选 一点C,连接AC和BC,怎样测出A、B两点 的实际距离?根据是什么?
A
C
B
定理应用
3、已知:如图,A,B两地被池塘隔开
A
,在没有任何测量工具的情况下,小
M
明通过学习,估测出了A,B两地之
间的距离:先在AB外选一点C,然后 C 步测出AC,BC的中点M,N,并测出
N
B
MN的长,由此他就知道了A,B间的
距离.你能说出其中的道理吗?
其中的道理是:
连结A、B, ∵MN是△ABC的的中位线,∴AB=2MN.
巩固练习
1.如图,点D、E、F分别是△ABC的边AB、 BC、CA的中点,以这些点为顶点,你能在 图中画出多少个平行四边形?
N是AB的中点.求证∠1=∠2.
典例示范
已知:如图,在四边形ABCD中,E、F、G、H分别是 AB、BC、CD、DA的中点.
猜想四边形EFGH的形状并证明。
A
H
E
B
F
答: 四边形EFGH为平行四边形。
D
证明:如图,连接AC
G
同∵理EEF得F是/:△/ 12AGABHC/C/的12 A中C位线
C
GH//EF
求证:AE与DF互相平分.
证明:连接DE、EF,因为
A
AD=DB,BE=EC,
所以DE ∥AC(三角形的中位线平
行于第三边并且等于第三边的一
半)。
D
F 同理EF ∥AB。
所以四边形ADEF是平行四边形。
B
E
C因边此形A的E对、角D线F互互相相平平分分。)(平行四
定理应用
已知:如图,A,B两地被池塘隔开,在
A
D
F
B
E
C
课堂检测:
1.如图,在△ABC中, BC>AC,点D在BC边上, 且DC=AC, ∠ACB的平分线CF交AD于F ,点E是 AB的中点,连接EF,求证:EF是△ABD的中位线.
如图,l1 // l2 , 线段AB//CD//EF, 且 点A、C、E在l1上,B、D、F在l2上,则AB、
D
B
F
①③若A∠CA=4DcEm=,B65C°=6,cm则,∠ABB==685cm度,,为什么? E ②④若则若△△BCDAEB=F8Cc的的m周周,长长则=为_D9_2Ec_4m_,=_4△_ DcEmF的,周为长什是么_1_?2___
⑤ 图中有__3___个平行四边形 ⑥ 若△ABC的面积为24,△DEF的面积是__6___
则有DE//BC,DE=
1 2
1
DF= 2
BC
F
C
解题分析 3.
A
证明:延长DE到F,使EF=DE,连接FC、DC、AF
∵AE=EC ∴四边形ADCF是平行四边形 ∴ CF∥DA,CF=DA
∴CF∥BD,CF=BD
∴四边形DBCF是平行四边形
∴又DDFE∥=B12CD,F DF=BC
∴DE∥BC且DE=
(5)顺次连结梯形各边 中点所得的四边形是什 么?
(6)顺次连结等腰梯形 各边中点所得的四边形 是什么?
菱形
平行四边形
菱形
结论
实际上,顺次连接四边形各边中点所得
到的四边形一定是平行四边形,但它是否特 殊的平行四边形取决于它的对角线是否垂直 或者是否相等,与是否互相平分无关.
原四边形两条对角线
连接四边中点所得四边形
数量关系: DE= 1 BC. 2
如图:在△ABC中,D是AB的中点,E
是AC的中点. 则有:DE∥BC, DE=1BC.A Nhomakorabea2
D
E
B
C
D B
解题分析2:
延长DE到F,使EF=DE , 连接CF
易证△ADE≌△CFE,
得CF=AD , CF//AB
A E
又可得CF=BD,CF//BD
所以四边形BCFD是平行四边形
EC
A
l
1
l2
FD
B
夹在两平行线间的平行线段相等。
2.如图,在四边形ABCD中, AB∥CD, 且 CD等于AB的一半。E是BC的中点,DE交 AC于点F , 求证 : DE被AC平分.
A
没有任何测量工具的情况下,小明
M
通过学习,估测出了A,B两地之间
的距离:先在AB外选一点C,然后步 C 测出AC,BC的中点M,N,并测出
N
B
MN的长,由此他就知道了A,B间的
距离.你能说出其中的道理吗?
其中的道理是:
连结A、B, ∵MN是△ABC的的中位线,∴AB=2MN.
中位线定理应用
已知:在四边形ABCD中,AD=BC, P是对角线BD的中点,M是DC的中点,
如图,有一块三角形的蛋糕,准备平均 分给四个小朋友,要求四人所分的形状大小 相同,请设计合理的解决方案。
三角形的中位线
获取新知
连结三角形两边中点的线段叫三角形的中位线
A 你还能画出几条三角形的中位线?
D
E
B
F
C
温馨提示
三角形有三条中位线
三角形的中位线和三角形的中线不同
A 概念对比 A
D
E
D 中线DC
1 2
BC
D
E
B
C
A
D
E F
B
C
三角形的中位线平行且等于第三边的一半.
A
几何语言:
D E ∵DE是△ABC的中位线
(或AD=BD,AE=CE)
B
C
D E/
/
1 2
B
C
用 ① 证明平行问题
途 ② 证明一条线段是另一条线段的两倍或一半
初试身手
A
练习1.如图,在△ABC中,D、E分、别F分是别 A是BA、BA、CA的C中、点BC的中点
中位线DE
B
C
B
C
(1)相同之处——都和边的中点有关; (2)不同之处:
三角形中位线的两个端点都是边的中点;
三角形中线只有一个端点是边的中点,另一端点 是三角形的顶点。
想一想
问题1:△ABC中,若D是AB的中点时,E也是AC
的中点,则DE与BC存在何种关系?
A
D
E
B
C
DE和边BC关系
位置关系: DE∥BC
∴四边形EFGH是平行四边形
E,F是AB,BC的中点,你联想到什么?
要使EF成为一个三角形的中位线应怎样添加辅助线?
(1) 顺次连结平行四边 形各边中点所得的四边形是 什么?
(2)顺次连结菱形各边中点 所得的四边形是什么?
平行四边形
矩形
(3)顺次连结正方 形各边中点所得的四 边形是什么?
正方形
(4)顺次连结矩形各边 中点所得的四边形是什 么?
C
探究活动
1、 三角形三条中位线围成的三角 形的周长与原三角形的周长有什么 关系?
2、三角形三条中位线围成的三角形的面积与原三角 形的面积有什么关系?
设 计 方 案:
A
(中点)D
E(中点)
B
F
C
(中点)
例 求证三角形的一条中位线与第三边上的中线 互相平分.
已知:△ABC中,AD=DB,BE=EC,AF=FC.
互相垂直 相等
互相垂直且相等 既不互相垂直也不相等
矩形 菱形 正方形 平行四边形
2.如图, A 、B两点被池塘隔开,在AB外选 一点C,连接AC和BC,怎样测出A、B两点 的实际距离?根据是什么?
A
C
B
定理应用
3、已知:如图,A,B两地被池塘隔开
A
,在没有任何测量工具的情况下,小
M
明通过学习,估测出了A,B两地之
间的距离:先在AB外选一点C,然后 C 步测出AC,BC的中点M,N,并测出
N
B
MN的长,由此他就知道了A,B间的
距离.你能说出其中的道理吗?
其中的道理是:
连结A、B, ∵MN是△ABC的的中位线,∴AB=2MN.
巩固练习
1.如图,点D、E、F分别是△ABC的边AB、 BC、CA的中点,以这些点为顶点,你能在 图中画出多少个平行四边形?
N是AB的中点.求证∠1=∠2.
典例示范
已知:如图,在四边形ABCD中,E、F、G、H分别是 AB、BC、CD、DA的中点.
猜想四边形EFGH的形状并证明。
A
H
E
B
F
答: 四边形EFGH为平行四边形。
D
证明:如图,连接AC
G
同∵理EEF得F是/:△/ 12AGABHC/C/的12 A中C位线
C
GH//EF
求证:AE与DF互相平分.
证明:连接DE、EF,因为
A
AD=DB,BE=EC,
所以DE ∥AC(三角形的中位线平
行于第三边并且等于第三边的一
半)。
D
F 同理EF ∥AB。
所以四边形ADEF是平行四边形。
B
E
C因边此形A的E对、角D线F互互相相平平分分。)(平行四
定理应用
已知:如图,A,B两地被池塘隔开,在
A
D
F
B
E
C
课堂检测:
1.如图,在△ABC中, BC>AC,点D在BC边上, 且DC=AC, ∠ACB的平分线CF交AD于F ,点E是 AB的中点,连接EF,求证:EF是△ABD的中位线.
如图,l1 // l2 , 线段AB//CD//EF, 且 点A、C、E在l1上,B、D、F在l2上,则AB、
D
B
F
①③若A∠CA=4DcEm=,B65C°=6,cm则,∠ABB==685cm度,,为什么? E ②④若则若△△BCDAEB=F8Cc的的m周周,长长则=为_D9_2Ec_4m_,=_4△_ DcEmF的,周为长什是么_1_?2___
⑤ 图中有__3___个平行四边形 ⑥ 若△ABC的面积为24,△DEF的面积是__6___
则有DE//BC,DE=
1 2
1
DF= 2
BC
F
C
解题分析 3.
A
证明:延长DE到F,使EF=DE,连接FC、DC、AF
∵AE=EC ∴四边形ADCF是平行四边形 ∴ CF∥DA,CF=DA
∴CF∥BD,CF=BD
∴四边形DBCF是平行四边形
∴又DDFE∥=B12CD,F DF=BC
∴DE∥BC且DE=
(5)顺次连结梯形各边 中点所得的四边形是什 么?
(6)顺次连结等腰梯形 各边中点所得的四边形 是什么?
菱形
平行四边形
菱形
结论
实际上,顺次连接四边形各边中点所得
到的四边形一定是平行四边形,但它是否特 殊的平行四边形取决于它的对角线是否垂直 或者是否相等,与是否互相平分无关.
原四边形两条对角线
连接四边中点所得四边形
数量关系: DE= 1 BC. 2
如图:在△ABC中,D是AB的中点,E
是AC的中点. 则有:DE∥BC, DE=1BC.A Nhomakorabea2
D
E
B
C
D B
解题分析2:
延长DE到F,使EF=DE , 连接CF
易证△ADE≌△CFE,
得CF=AD , CF//AB
A E
又可得CF=BD,CF//BD
所以四边形BCFD是平行四边形