机械工程材料
机械工程材料的分类
机械工程材料的分类
一、机械工程材料涉及面很广,按属性可分为金属材料和非金属材料两大类:
金属材料包括黑色金属和有色金属。
有色金属用量虽只占金属材料的5%,但因具有良好的导热性、导电性,以及优异的化学稳定性和高的比强度等,而在机械工程中占有重要的地位。
非金属材料又可分为无机非金属材料和有机高分子材料。
前者除传统的陶瓷、玻璃、水泥和耐火材料外,还包括氮化硅、碳化硅等新型材料以及碳素材料(见碳和石墨材料)等。
后者除了天然有机材料如木材、橡胶等外,较重要的还有合成树脂(见工程塑料)。
此外,还有由两种或多种不同材料组合而成的复合材料。
这种材料由于复合效应,具有比单一材料优越的综合性能,成为一类新型的工程材料。
二、机械工程材料也可按用途分类:如结构材料(结构钢)。
工模具材料(工具钢)。
耐蚀材料(不锈钢)、耐热材料(耐热钢)、耐磨材料(耐磨钢)和减摩材料等。
三、由于材料与工艺紧密联系,也可结合工艺特点来进行分类,如铸造合金材料、超塑性材料、粉末冶金材料等。
粉末冶金可以制取用普通熔炼方法难以制取的特殊材料,也可直接制造各种精密机械零件,已发展成一类粉末冶金材料。
机械工程材料
04
特种工程材料
超导材料
超导性
某些材料在低温下电阻消 失,电流可以在其中无损 耗地流动,这种现象称为 超导性。
应用领域
超导材料在电力输送、磁 悬浮列车、核磁共振成像 等领域有广泛应用。
研究进展
目前,高温超导材料的研 究取得了重要进展,使得 超导技术的应用范围进一 步扩大。
纳米材料
纳米尺度
应用领域
再生资源回收利用的意义
随着资源的日益紧缺和环保意识的提高,再生资源的回收利用对于实现可持续发展具有重要意义。通 过回收利用废旧机械工程材料,可以减少对原生资源的开采,降低能源消耗和环境污染,同时也有助 于推动循环经济的发展。
废旧机械工程材料的处理方法和技术途径
废旧材料的分类与识别
物理处理方法
化学处理方法
和组织炎症。
应用领域
生物医用材料在医疗器械、人体 植入物、药物载体等领域有广泛
应用。
发展趋势
随着生物技术和医学的不断发展 ,生物医用材料的性能将不断提
高,应用领域也将不断扩大。
05
机械工程材料的性能与选用
力学性能与选用原则
强度
材料在静载荷作用下抵抗破坏 的能力,选用时需考虑工作应
力及安全系数。
刚度
生物处理方法利用微生物或酶 等生物制剂对废旧材料进行分 解和处理。这种方法对于处理 某些含有有机物的废旧材料具 有独特的优势。
循环经济在机械工程材料领域的应用前景
循环经济的理念
循环经济是一种以资源高效利用和循环 利用为核心的经济模式。它强调在生产 和消费过程中减少资源消耗和废弃物排 放,实现经济、社会和环境的协调发展 。
提高材料的耐磨性和耐腐蚀性
通过热处理工艺,可以在材料表面形成一层致密 的氧化膜或氮化膜,提高材料的耐磨性和耐腐蚀 性。
机械工程材料
机械工程材料机械工程材料是指用于机械制造和工程结构中的材料,它们具有特定的力学性能、物理性能、化学性能和加工性能。
机械工程材料的选择对于机械设计和制造具有至关重要的意义,它直接影响着机械产品的性能、质量和使用寿命。
在机械工程中,常用的材料包括金属材料、塑料材料、陶瓷材料和复合材料等。
金属材料是机械工程中最常用的材料之一,它具有优良的导热性、导电性和可塑性,适用于制造各种零部件和结构件。
常见的金属材料包括钢、铝、铜、铁等。
钢是一种铁碳合金,具有较高的强度和硬度,广泛应用于制造机械零部件和工程结构。
铝具有较低的密度和良好的耐腐蚀性,适用于制造航空器和汽车等轻型结构。
铜具有良好的导电性和导热性,常用于制造电气设备和散热器等。
铁是一种重要的结构材料,广泛应用于桥梁、建筑和机械设备中。
塑料材料是一类轻质、耐腐蚀、绝缘性能良好的材料,适用于制造各种零部件和外壳。
常见的塑料材料包括聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯等。
聚乙烯具有良好的耐磨性和耐冲击性,适用于制造容器和管道等。
聚丙烯具有良好的耐腐蚀性和耐热性,适用于制造化工设备和食品包装等。
聚氯乙烯具有良好的绝缘性能和耐候性,适用于制造电线电缆和建筑材料等。
聚苯乙烯具有良好的隔热性和吸音性,适用于制造保温材料和包装材料等。
陶瓷材料是一类硬度高、耐磨性好、耐高温的材料,适用于制造耐磨零部件和耐火结构。
常见的陶瓷材料包括氧化铝、氮化硅、碳化硅等。
氧化铝具有优良的耐磨性和耐腐蚀性,适用于制造磨料和耐火材料等。
氮化硅具有优良的耐磨性和高温强度,适用于制造刀具和轴承等。
碳化硅具有优良的耐磨性和高温强度,适用于制造耐磨零部件和陶瓷刀具等。
复合材料是由两种或两种以上的材料组成的材料,具有优良的综合性能,适用于制造高性能的结构件和零部件。
常见的复合材料包括玻璃钢、碳纤维复合材料、金属基复合材料等。
玻璃钢具有优良的耐腐蚀性和抗冲击性,适用于制造化工设备和船舶等。
碳纤维复合材料具有优良的强度和刚度,适用于制造航空器和汽车等轻型结构。
机械工程材料范文
机械工程材料范文根据机械工程材料的性质和特点,可以将其分为金属材料、非金属材料和复合材料。
金属材料是最常见也是最广泛使用的机械工程材料之一、金属材料具有高强度、良好的导热性、导电性和塑性等特点,适用于多种机械部件和结构的制造。
常见的金属材料包括钢、铝、铜、铁等。
钢是一种铁和碳的合金,具有高强度和耐磨性,适用于制造机械零件和工具。
铝具有轻巧、耐腐蚀性和良好的导热性,适用于制造飞机、汽车和电子设备等产品。
铜具有良好的导电性和导热性,适用于制造电线、电缆和发动机部件。
非金属材料是指不含金属元素的材料,常见的非金属材料包括塑料、橡胶、陶瓷和玻璃等。
塑料是一种由高分子化合物制成的材料,具有轻巧、耐腐蚀性和绝缘性等特点,适用于制造塑料件和密封件。
橡胶具有弹性和耐磨性,适用于制造密封圈和橡胶轮胎等。
陶瓷具有高硬度和耐高温性,适用于制造瓷砖、陶瓷刀具和热交换器等。
玻璃由硅酸盐制成,具有透明、耐腐蚀和电绝缘等特性,适用于制造灯具、触摸屏和玻璃器皿等产品。
复合材料是由两种或两种以上不同性质的材料组合而成的材料。
复合材料具有高强度、低密度和抗腐蚀等特点,在航空航天、汽车、建筑等领域有广泛应用。
常见的复合材料包括碳纤维复合材料和玻璃纤维复合材料等。
碳纤维复合材料具有高强度和低密度,适用于制造飞机结构、汽车零件和体育器材等。
玻璃纤维复合材料具有良好的耐磨性和抗冲击性,适用于制造船舶、风力发电机叶片和储罐等。
除了上述材料之外,还有许多其他机械工程材料,如涂料、胶粘剂和润滑剂等。
涂料可以保护金属表面免受氧化和腐蚀,胶粘剂可以用于粘接和固定部件,润滑剂可以减少部件之间的摩擦和磨损。
总之,机械工程材料的选择和应用对产品的性能和质量有着重要影响。
机械工程师需要了解不同材料的特性和优缺点,根据产品的要求选择合适的材料,以确保产品的性能和寿命。
在这个快速发展的时代,新的材料也在不断涌现,给机械工程师提供了更多选择和创新的机会。
对于机械工程师来说,学习和研究材料科学是必不可少的一部分。
机械设计中的工程材料选择
机械设计中的工程材料选择在机械设计中,工程材料的选择是非常重要的一步。
不同的材料具有不同的性能特点和适用范围,合理选择适合的工程材料可以提高机械产品的性能和可靠性。
本文将从机械材料的分类、性能指标和工程选型等方面,介绍机械设计中的工程材料选择。
一、机械材料的分类在机械设计中,工程材料可以按照其组成和性能特点来进行分类。
常见的机械材料可以分为金属材料、非金属材料和复合材料三类。
1. 金属材料:包括钢铁、铜、铝、镁等,具有优良的导热、导电和可塑性能,在机械设计中应用广泛。
2. 非金属材料:包括陶瓷、聚合物和橡胶等,具有较低的密度、良好的绝缘性能和耐磨性能,常用于绝缘、密封和摩擦等特殊场合。
3. 复合材料:由两种或两种以上不同的材料组成,通过组合可以获得更好的性能。
例如,碳纤维增强复合材料具有高强度、高刚度和低密度等优点,在航空航天领域有广泛的应用。
二、材料性能指标在选择工程材料时,我们需要考虑材料的性能指标。
常见的材料性能指标包括强度、刚度、韧性、耐磨性、耐腐蚀性和导热性等。
1. 强度:材料的抗拉强度和屈服强度是衡量其承载能力的重要指标。
工程中常使用的强度指标有屈服强度、抗拉强度和硬度等。
2. 刚度:材料的刚度反映了其抵抗变形的能力。
对于需要抵抗变形和保持稳定形状的部件,如梁、轴等,需选择具有较大刚度的材料。
3. 韧性:材料的韧性决定了其抵抗断裂的能力。
对于需要在承受冲击和振动等载荷作用下保持完整的零件,如机床床身、汽车车架等,需选择具有良好韧性的材料。
4. 耐磨性:材料的耐磨性是指其在摩擦或磨损条件下的抵抗能力。
对于需要抗磨损的零件,如发动机零部件、切削工具等,需选择具有较高耐磨性的材料。
5. 耐腐蚀性:材料的耐腐蚀性反映了其在腐蚀介质中的稳定性。
对于需要在腐蚀环境下使用的零件,如化工设备、海洋工程等,需选择具有较好耐腐蚀性的材料。
6. 导热性:材料的导热性决定了其在导热和散热方面的性能。
对于需要导热或防止热积聚的部件,如散热器、热交换器等,需选择具有良好导热性的材料。
《机械工程材料》教学教案(全)
《机械工程材料》教学教案(一)教学目标:1. 了解机械工程材料的基本概念和分类。
2. 掌握机械工程材料的性能及应用。
3. 理解机械工程材料的选择原则。
教学内容:1. 机械工程材料的基本概念和分类2. 机械工程材料的性能及应用3. 机械工程材料的选择原则教学过程:一、导入(5分钟)1. 引导学生回顾已学的机械工程相关知识,为新课的学习做好铺垫。
2. 提问:什么是机械工程材料?机械工程材料有哪些分类?二、基本概念和分类(10分钟)1. 讲解机械工程材料的基本概念,如金属材料、非金属材料、复合材料等。
2. 介绍各类机械工程材料的特征及应用领域。
三、性能及应用(10分钟)1. 讲解机械工程材料的性能,如力学性能、物理性能、化学性能等。
2. 结合实际案例,阐述各类性能在工程中的应用。
四、选择原则(10分钟)1. 讲解机械工程材料的选择原则,如满足设计要求、经济性、可靠性等。
2. 引导学生学会根据实际工程需求选择合适的材料。
五、小结与作业(5分钟)1. 对本节课的主要内容进行小结。
2. 布置作业:请学生列举常见的机械工程材料,并简要介绍其性能及应用。
教学资源:1. 教材《机械工程材料》2. PPT课件3. 实际工程案例素材教学评价:1. 课堂问答:检查学生对机械工程材料基本概念、性能及应用的掌握情况。
2. 作业:评估学生对课堂所学知识的理解和应用能力。
《机械工程材料》教学教案(二)教学目标:1. 掌握机械工程材料的力学性能测试方法。
2. 了解机械工程材料的热处理工艺及应用。
3. 理解机械工程材料在实际工程中的焊接技术。
教学内容:1. 机械工程材料的力学性能测试方法2. 机械工程材料的热处理工艺及应用3. 机械工程材料在实际工程中的焊接技术教学过程:一、导入(5分钟)1. 回顾上节课的内容,为新课的学习做好铺垫。
2. 提问:机械工程材料的力学性能如何测试?二、力学性能测试方法(10分钟)1. 讲解机械工程材料的力学性能测试方法,如拉伸试验、冲击试验、硬度试验等。
为什么要学习机械工程材料
为什么要学习机械工程材料机械工程材料是指在机械工程领域中使用的材料,例如金属、塑料、陶瓷、纤维等。
学习机械工程材料对于机械领域的学生和专业人士来说是非常重要的。
本文将探讨为什么需要学习机械工程材料以及学习机械工程材料的好处。
首先,学习机械工程材料可以帮助我们了解材料的特性和性能。
机械材料的特性包括硬度、韧性、耐磨性、热阻性等等。
学习这些特性能帮助我们了解材料的局限性,知道哪些材料最适合用于不同的机械应用。
例如,一些零部件需要耐磨性极强的材料,而另一些零部件则需要高强度的材料来承受压力。
了解这些特性可以帮助我们选择最适合特定应用的材料。
其次,学习机械工程材料可以帮助我们了解材料的加工和制造工艺,包括锻造、铸造、挤压、成型等等。
选择合适的生产过程对于制造高质量的产品来说是必要的。
比如,在锻造过程中,我们可以通过调整温度和压力来控制材料的拉伸和硬度,从而生产出高质量的零部件。
因此,学习加工和制造工艺是非常重要的。
第三,学习机械工程材料可以让我们了解不同材料的成本和环境影响。
不同的材料具有不同的造价,而且它们的生产对环境有不同的影响。
通过了解生产成本和材料的环境影响,我们可以选择最经济和最环保的材料。
学习机械工程材料的好处还包括帮助我们设计更耐用、更高效、更安全、更环保的机械产品。
随着科技的进步,机械产品的性能要求越来越高,要求产品必须拥有更好的安全性、更低的能耗、更长的使用寿命等。
了解不同材料的特性可以帮助我们设计更轻量化、更高效的零部件,同时提高产品的质量和可靠性。
此外,选择更环保的材料可以减少我们对环境的影响。
总之,学习机械工程材料对于机械工程领域的学生和专业人士来说是非常重要的。
了解不同材料的特性、生产工艺、成本和环境影响都是为了设计更好的机械产品。
通过学习机械工程材料可以提高我们的专业知识、技能和实践经验,从而在职场中脱颖而出,取得更好的职业发展。
《机械工程材料》教学大纲
《机械工程材料》教学大纲机械工程材料教学大纲一、课程名称:机械工程材料二、课程性质:专业课三、课程目标:1.理解机械工程材料的基本概念、分类和特点;2.掌握常见的机械工程材料的组织结构、力学性能及其与材料结构的关系;3.熟悉机械工程材料的重要应用和材料选择原则;4.培养学生的创新思维和问题解决能力,提高其对材料科学的研究兴趣。
四、课程内容和教学方法:1.材料的基本概念和分类-材料的定义和基本特点;-材料的分类及其性质;-材料的常见制备方法。
2.金属材料-金属结构与性能;-常见金属材料的组织结构和力学性能;-金属材料的变形与强化机制。
3.陶瓷材料-陶瓷材料的特点和分类;-陶瓷材料的组织结构和性能;-陶瓷材料的制备和应用。
4.高分子材料-高分子材料的基本特点和分类;-高分子材料的组织结构和性能;-高分子材料的制备和应用。
5.复合材料-复合材料的概念和分类;-复合材料的组织结构和力学性能;-复合材料的制备方法和应用。
6.材料选择与设计-材料选择的原则和方法;-材料在工程设计中的应用。
7.环境腐蚀与防护-环境腐蚀的基本原理和分类;-常见环境腐蚀的防护措施。
教学方法:1.以讲授为主,结合案例分析和实例讲解;2.组织学生参观机械工程材料的应用场所,加深对材料的理解;3.进行课堂互动和讨论,提高学生的问题解决能力;4.设计实验,培养学生的实验操作技能和数据处理能力。
五、评估方式:1.平时成绩(包括课堂表现、作业、小组讨论等)占30%;2.期中考试占30%;3.期末考试占40%。
六、参考书目:。
机械设计基础学习机械工程材料的选择与应用
机械设计基础学习机械工程材料的选择与应用机械设计是机械工程学科的核心领域之一,它涉及到机械元件的设计、制造与应用。
而在机械设计的过程中,材料的选择与应用是至关重要的因素之一。
本文将探讨机械设计中常用的工程材料以及它们的特点与应用。
一、金属材料金属材料是机械设计中最常用的材料之一。
常见的金属材料包括钢、铁、铝、铜等。
钢具有高强度、刚性和耐磨性的特点,广泛应用于制造机械零件和结构件。
铝材轻巧、导热性好,常用于制造轻型机械零件和外壳。
铜材具有良好的导电性和导热性,适用于电子元器件的制造。
在选择金属材料时,需要考虑其强度、耐腐蚀性、导电性等特性,以及成本和可加工性等因素。
二、合成材料合成材料是指由两种或两种以上的材料组合而成的材料。
常见的合成材料有复合材料、聚合材料、陶瓷复合材料等。
复合材料由纤维和基质组成,具有高强度、高刚度和低密度的特点,在航空航天、汽车制造等领域得到广泛应用。
聚合材料如塑料、橡胶等具有良好的抗腐蚀性和绝缘性能,常用于制造密封件和电气元件。
陶瓷复合材料具有高温耐磨性和绝缘性能,适用于高温和腐蚀环境下的应用。
三、非金属材料非金属材料包括塑料、橡胶、玻璃等。
塑料具有良好的韧性和绝缘性能,广泛应用于电器、家具等领域。
橡胶具有良好的弹性和耐磨性,适用于制造密封件和减震器等。
玻璃具有透明的特性,适用于制造光学元件和仪器。
四、选材原则在机械设计中,选材的原则是根据机械零件所处的工作环境和工作要求来选择合适的材料。
首先,要考虑材料的强度和刚度,以保证机械零件在工作负荷下不发生变形和破坏。
其次,要考虑材料的耐磨性和耐腐蚀性,以延长机械零件的使用寿命。
同时,还需考虑材料的导热性、导电性和绝缘性能,以满足特定工作要求。
最后,成本和可加工性也是选材的考虑因素之一。
五、材料应用案例1. 在汽车制造领域,使用高强度的钢材制造车身和车架,以提高碰撞安全性能。
2. 在飞机制造领域,使用复合材料制造机翼和机身,以提高飞机的轻量化和燃油效率。
机械工程中常用的材料及其特性分析
机械工程中常用的材料及其特性分析机械工程是应用物理学和材料科学的领域,其中涉及到广泛的材料选择。
在机械工程中,材料的选择和使用对于提高产品性能和延长寿命至关重要。
本文将分析机械工程中常用的几种材料及其特性。
1. 金属材料金属材料是机械工程中最常见的材料之一。
金属具有良好的导电性、热传导性和可塑性。
常用的金属材料包括钢、铝、铜和铁等。
- 钢:钢具有强度高、硬度大的特点,同时具有较好的塑性。
它被广泛应用于制造机械零件和结构件。
- 铝:铝具有较低的密度和良好的耐腐蚀性,适用于制造轻型结构和航空航天器件。
- 铜:铜具有良好的导电性和导热性,广泛应用于电子设备和导线等领域。
- 铁:铁是常见的结构材料,具有良好的韧性和可塑性。
2. 塑料材料塑料是一种具有可塑性、耐腐蚀性和绝缘性的高分子化合物。
它们在机械工程领域中得到了广泛应用。
- 聚乙烯(PE):聚乙烯具有较高的强度和良好的耐化学性,常用于制造管道、储罐和塑料零件等。
- 聚丙烯(PP):聚丙烯是一种具有良好耐腐蚀性和高韧性的材料,常用于汽车零部件和容器等领域。
- 聚氯乙烯(PVC):聚氯乙烯是一种广泛使用的塑料材料,它具有优异的耐化学性和电绝缘性能,常用于制造管道、电线等。
- 聚苯乙烯(PS):聚苯乙烯具有低成本、良好的耐冲击性和绝缘性能,在包装和电子器件等领域有广泛应用。
3. 纤维材料纤维材料是由纤维形状的颗粒组成的材料,常用于机械工程领域的结构件和强度要求较高的零件。
- 碳纤维:碳纤维具有极高的强度和刚度,同时重量很轻,被广泛应用于航空航天、汽车和体育器材等领域。
- 玻璃纤维:玻璃纤维具有优异的强度、耐腐蚀性和绝缘性能,在船舶、风力发电和建筑等领域有广泛应用。
- 聚酰胺纤维(ARAMID):聚酰胺纤维具有很高的强度和耐热性,广泛用于防弹材料、绳索和高温隔热材料等。
4. 陶瓷材料陶瓷材料是一类脆性材料,具有良好的耐磨、耐高温和绝缘性能。
在机械工程中,陶瓷材料主要用于制造轴承、绝缘体和切削工具等。
机械工程材料材料性能
机械工程材料材料性能概述机械工程材料是用于制造机械零件和设备的材料。
材料性能是评估材料适用性的重要指标。
本文将介绍机械工程材料的材料性能,并深入讨论材料性能的几个关键方面。
强度和硬度强度是机械工程材料的一个重要性能指标,它表示材料抵抗外力的能力。
强度通常通过材料的屈服强度、抗拉强度和抗压强度来衡量。
屈服强度是材料在受力过程中开始发生可观变形的应力值,抗拉强度是材料在拉伸力下能承受的最大应力值,而抗压强度则是材料在受压力下能承受的最大应力值。
硬度是材料抵抗表面划伤或穿透的能力。
硬度测量可以使用各种硬度测试方法,例如洛氏硬度测试、布氏硬度测试和维氏硬度测试。
机械工程材料的强度和硬度取决于它们的化学成分、晶体结构和加工工艺。
通常情况下,高碳钢和合金钢具有较高的强度和硬度,而铝合金和镁合金则具有较低的强度和硬度。
韧性和脆性韧性是材料抵抗断裂的能力,也是衡量材料耐冲击性、耐疲劳性和耐剪切性的重要指标。
韧性较高的材料能够吸收大量的能量才发生破坏,而韧性较低的材料则容易发生断裂。
脆性是材料容易发生断裂的性质。
脆性材料在受到应力时会发生迅速且不可逆转的断裂,而韧性材料则会在受到应力时发生局部变形,使材料产生可逆的形变。
韧性和脆性之间有一个材料特性称为冷脆性。
冷脆性是指材料在低温下变得更加脆性的能力。
某些材料在低温下会变得非常脆弱,容易发生断裂。
疲劳性疲劳性是指材料在交替或反复加载下产生破坏的能力。
疲劳破坏是机械工程材料最常见的失效方式之一。
当材料受到交替或反复加载时,它会累积微小的应力和变形,最终导致疲劳破坏。
疲劳性能包括疲劳寿命和疲劳极限。
疲劳寿命是指材料承受一定载荷下的循环加载次数,达到失效的循环次数。
疲劳极限是指材料在无限次循环加载下能承受的最大应力水平。
机械工程材料的疲劳性能和寿命可以通过疲劳试验来评估和预测。
疲劳试验通常会在不同应力水平下进行,以确定材料的疲劳曲线和SN曲线。
耐腐蚀性耐腐蚀性是机械工程材料抵抗化学物质和环境侵蚀的能力。
机械工程材料的定义和分类
绪论一、机械工程材料的定义和分类1 定义:机械工程材料主要指用于机械工程、电器工程、建筑工程、化工工程、航空航天工程等领域的材料。
2、分类按化学成分分为: 金属材料(用量最大、应用范围最广)高分子材料(质轻、耐腐蚀、化工、机械、航空航天等)陶瓷材料(高电强、高硬度、耐腐蚀、绝缘、勇于电器化工等)复合材料(轻、高强度、结合两种材料的性能优点,用于航空航天等领域)二(机械)工程材料的性能力学性能()保证构件安全可靠(1)材料的使用性能物理性能包括两方面化学性能切削加工性能保证构件容易制备铸造性能材料的工艺性能焊接性能热处理性能:实际进行机械设计时:主要考虑的是材料的使用性能,其中有以力学性能最为重要。
原因:如果力学性能不能瞒住工作的要求时,将引起重大事故,带来灾难。
(如泰坦尼克巨轮的沉没,哥伦比亚号航天分级的解体和坠毁等)这些都是由于零件(部件)的失效引起的。
第一章机械零件的失效分析简介:一失效的定义1任何一个机械零件或部件都要具有一定的功能:(零件设计功能)(1)P、T、M 下,保持一定的几何形状和尺寸(最基本的要求,桥梁,钢轨等)(2)实现规定的机械运动(发动机中的活塞和衢州,把直线运动转换成沿圆周运动)(3)传递力和能(齿轮,传递力矩,水轮机江水能转变成电能)2失效:零件失去设计要求的效能(功能)----失效形式多样,常见的分为以下几种方式。
过量变形断裂磨损腐蚀2引起失效的原因:外界载荷、温度、介质等材料又损害作用(外界对材料的损害)材料本身:抵抗损害的能力。
(这种能力是有限的)若:前者大于后者------失效前者等于后者-------临界状态前者小于后者------正常工作二研究失效的意义1通过失效分析-----找出失效原因------确定相应的抗力指标-----为选材和制定工艺提供依据;2通过失效分析----减少和预防机械产品类事故的重复发生,提高产品质量、减少经济损失;3失效分析工作是机械产品维修工作的基础,确定维修的技术和方法,提高维修工作的质量和效益;4失效分析可以为人仲裁事故责任、侦破犯罪等提高可靠的技术依据。
工程机械材料汇总表
工程机械材料汇总表1. 前言本文档旨在对工程机械常用材料进行汇总和介绍,以便于在工程机械设计和选择材料时提供参考。
2. 常用材料2.1 金属材料2.1.1 钢材•优点:强度高、刚性好、耐磨性好、可焊接性好、容易加工•缺点:易生锈•应用场景:工程机械主体结构、承载部件2.1.2 铝合金•优点:密度低、强度高、耐腐蚀、导热性好•缺点:易受磨损•应用场景:工程机械外壳、轻量化构件2.1.3 铸铁•优点:强度高、刚性好、耐磨性好•缺点:易生锈、脆性大•应用场景:工程机械基座、齿轮箱、曲轴箱2.2 非金属材料2.2.1 聚合物•优点:重量轻、成本低、绝缘性好、耐磨性好•缺点:耐高温性能差•应用场景:工程机械密封件、橡胶零件2.2.2 复合材料•优点:强度高、刚度大、耐腐蚀、重量轻•缺点:成本较高•应用场景:工程机械结构件、车身部件2.3 其他材料2.3.1 润滑油•作用:减小机械零件之间的摩擦、冷却润滑、防止磨损和腐蚀•分类:矿物油、合成油、生物基润滑油等•应用场景:工程机械润滑系统2.3.2 涂料•作用:保护表面、美化外观、防止腐蚀和氧化•分类:底漆、面漆、防腐涂料、防火涂料等•应用场景:工程机械表面处理3. 材料选择原则在工程机械设计中,选择合适的材料至关重要。
以下是一些常用的材料选择原则:•强度要求:根据工程机械的设计要求和工作环境决定材料的强度和刚度。
•寿命要求:考虑材料的耐久性、耐磨性和抗腐蚀性,以满足机械的使用寿命要求。
•成本考虑:根据工程机械的预算和性能需求,选择经济合理的材料。
•生产工艺:考虑材料的可加工性和焊接性,以保证制造过程的顺利进行。
•环境因素:根据工作环境的特点,选用耐腐蚀、耐高温或防火等特殊材料。
4. 材料性能参数表下表列出了一些常见工程机械材料的性能参数,供参考:材料强度导热性耐磨性抗腐蚀性重量钢材高中等高中等中等铝合金中等高中等高低铸铁高中等高中等中等聚合物低低高低低复合材料高中等高高低润滑油N/A N/A 高高N/A涂料N/A N/A 中等高N/A5. 结论本文档汇总了工程机械常用的材料,并介绍了它们的优点、缺点和应用场景。
机械工程师的材料选择资料
机械工程师的材料选择资料在机械工程领域,材料的选择扮演着至关重要的角色。
不同的工程项目需要使用不同材料来满足特定的要求,包括强度、耐磨性、耐腐蚀性等。
本文将讨论几种常见的材料,并探讨其在机械工程中的应用。
1. 金属材料金属材料是机械工程中最常见的材料之一。
它们具有良好的导热性、导电性和强度。
常见的金属材料包括钢、铝合金和铜合金。
- 钢:由铁和碳组成的合金,具有优异的强度和耐腐蚀性。
钢常用于制造机械零件和结构,如车轮、齿轮和支撑结构等。
- 铝合金:具有轻质、耐腐蚀和导热性好的特点,适用于制造飞机、汽车和电子设备等需要重量轻、却具有足够强度的零部件。
- 铜合金:由铜和其他合金元素(如锌、镍)组成,具有良好的导电性和导热性。
铜合金常用于制造电子器件、导线和换热器等。
2. 聚合物材料聚合物材料在机械工程中也扮演着重要的角色。
它们通常具有良好的绝缘性能和耐腐蚀性,并且相对较轻。
- 聚丙烯:一种常见的聚合物,具有良好的耐低温性和耐腐蚀性。
聚丙烯常用于制造管道、容器和电路板等。
- 聚酰胺:也被称为尼龙,具有优异的强度和耐磨性。
尼龙常用于制造齿轮、垫圈和轴承等。
- 聚醚酮:具有良好的耐热性和耐腐蚀性,适用于制造高温和化学腐蚀环境下的零部件,如汽车发动机配件和化工设备等。
3. 复合材料复合材料是由两种或更多种不同材料组成的复合结构。
它们能够结合各种材料的优点,并且常常具有出色的强度、刚性和低重量。
- 碳纤维增强复合材料:由碳纤维和树脂组成,具有卓越的强度和刚度。
碳纤维复合材料被广泛应用于航空航天、汽车和体育器材等领域。
- 玻璃纤维增强复合材料:由玻璃纤维和树脂组成,具有良好的绝缘性和耐腐蚀性。
玻璃纤维复合材料常用于制造船舶、水处理设备和建筑材料等。
- 陶瓷/陶瓷复合材料:具有优异的耐高温和耐磨性。
陶瓷复合材料常用于制造切割工具、发动机零部件和防弹材料等。
总结:在机械工程中,材料的选择是一个复杂而重要的决策。
机械工程师需要根据具体项目的要求来选择合适的材料,以确保产品的性能和耐久性。
机械制造中的机械工程材料与应用
机械制造中的机械工程材料与应用机械工程是一个广泛而重要的领域,它涉及到许多不同类型的机械设备和系统的设计、制造和维护。
在机械制造中,使用适当的机械工程材料对于提高产品的质量和性能至关重要。
本文将探讨机械工程材料的种类和其在机械制造中的应用。
一、金属材料金属材料是机械工程中最常用的材料之一。
金属具有良好的强度、硬度和导热性能,使其非常适合机械零部件的制造。
常见的金属材料包括钢、铝、铜和铁等。
1. 钢:钢是机械制造中最常用的金属材料之一。
它具有优异的强度和韧性,可以用于制造各种零部件,如轴、齿轮和轮毂等。
钢的不同成分和处理方式可以产生不同的特性,如不锈钢、弹簧钢和合金钢等。
2. 铝:铝是一种轻质金属,具有良好的导热性和抗腐蚀性能。
它被广泛应用于航空、汽车和电子行业中,用于制造飞机结构、汽车车身和电子外壳等部件。
3. 铜:铜具有良好的导电性和导热性能,因此它常用于制造电气设备、线缆和管道等。
此外,铜还具有良好的抗腐蚀性能,使其在海洋工程和化学工业中广泛应用。
4. 铁:铁是一种常见的金属材料,在机械制造中被广泛使用。
它可以通过锻造、铸造和焊接等工艺进行加工,用于制造结构零件、轴承和齿轮等。
二、非金属材料除了金属材料外,机械工程中还广泛使用一些非金属材料,如塑料、复合材料和陶瓷等。
这些材料具有独特的性能,适用于特定的机械制造应用。
1. 塑料:塑料是一种轻质、耐腐蚀的材料,具有良好的绝缘性能。
它在机械制造中常用于制造塑料零件、密封件和绝缘材料等。
常见的塑料材料有聚乙烯、聚丙烯和聚氯乙烯等。
2. 复合材料:复合材料是由两种或更多种材料组合而成的材料。
它通常由纤维增强材料和基体材料组成,例如碳纤维增强塑料和玻璃纤维增强复合材料。
复合材料具有优异的强度和轻质化特性,在航空航天、汽车和体育器材等领域得到广泛应用。
3. 陶瓷:陶瓷是一种硬、脆且耐高温的材料。
它具有优异的耐磨性和耐腐蚀性能,被广泛应用于制造刀具、轴承和瓷器等产品。
机械工程材料的定义和分类
机械工程材料的定义和分类一、机械工程材料的定义机械工程材料是指用于机械工程中各种零件制造的原材料,是机械制造工业的基础,它直接影响机械工程的质量、性能和使用寿命。
机械工程材料包括金属材料、非金属材料和复合材料三大类,主要用于机械制造工业中各种零部件的制造。
二、机械工程材料的分类1. 金属材料金属材料是机械工程材料中最为常见的一类材料,主要使用各种金属(包括铁、铜、铝、钛、锌、镁等)及其合金。
金属材料的优点是具有良好的机械性能,高强度、高韧性、耐磨性、耐腐蚀性和导电性及热导性能,因此它们适用于制造各种零部件。
根据材料的特性,金属材料又可以分为钢、铜、铝、镁、钛、锌等几大类。
2. 非金属材料非金属材料是机械工程材料中较为多样化的一类,以其特殊的性质在大量的场合中得到了应用。
非金属材料包括塑料、橡胶、陶瓷、复合材料、玻璃、纤维、橡胶、绝缘材料等。
非金属材料主要用于制造不同于金属材料的零部件,如塑料、橡胶等材料就非常适合用于制造一些耐腐蚀或不需要高强度的零件。
3. 复合材料复合材料是指由两种或两种以上的材料以一定的比例和方法交织或贴合在一起形成的材料,其重量比、强度比和成本比均优于单一材料。
技术进步和应用广泛使复合材料已成为一类重要的机械工程材料。
复合材料具有高强度、高刚度、低重量、耐腐蚀、耐磨损、耐腐蚀性能为普通材料的十多倍。
由于它们的高性能和轻量化,它们正被广泛应用于汽车、飞机、火箭、船舶和航天等领域。
4. 其他材料除了以上三类基本材料以外,机械制造行业中还有其他材料的应用,如铸造材料、导电材料、电子材料、各种涂料材料和粘合剂等。
这些材料和其它使用领域,如建筑、家庭、农业、矿业,也是机械工程材料中存在的,供各类专业制造企业采购和制造使用。
总之,机械工程材料是机械工程制造不可缺少的材料,分类清晰,用途广泛。
其材料选择、特性和加工等方面都是机械工程师需要熟悉和掌握的知识,因为选材的不当或加工失误,都可能会导致相关零部件的品质不好或损坏,所以关于机械工程材料准确的了解和使用对于机械工程领域有着十分重要的意义。
机械工程材料期末总结
机械工程材料期末总结
机械工程材料是机械工程学科中的重要内容,涉及到材料的选择、设计与应用等方面。
在期末总结中,可以从以下几个方面进行总结:
1. 材料的分类与特性:总结常见的机械工程材料,包括金属材料、陶瓷材料、聚合物
材料等,并阐述它们的特性和应用范围。
例如,金属材料具有良好的导电性和导热性,适用于制造机械零件;陶瓷材料具有良好的耐高温和耐磨损性能,适用于高温工作环境。
2. 材料的选择与设计:总结机械工程师在选择材料和设计机械零件时需要考虑的因素。
例如,考虑到机械零件的强度和刚度要求,需要选择强度高、刚度大的材料;考虑到
机械零件的重量要求,需要选择密度小的材料。
3. 材料的加工与表面处理:总结机械工程师在材料加工和表面处理过程中的常见方法
和技术。
例如,常见的加工方法有切削、冲压、焊接等;常见的表面处理方法有热处理、电镀、喷涂等。
4. 材料的故障与保护:总结机械工程师在材料使用过程中可能出现的故障和保护方法。
例如,金属材料可能出现疲劳、腐蚀等问题,可以通过增加零件的强度、防腐涂层等
方式进行保护。
5. 材料的环境与可持续性:总结机械工程师在材料选择和设计中需要考虑的环境和可
持续性因素。
例如,选择可再生材料、减少材料浪费等方式可以提高材料的可持续性。
最后,总结机械工程材料的知识点和技能,以及在期末考试中的学习心得和体会。
同时,对未来的学习和应用提出展望和规划。
机械工程材料的定义和分类
机械工程材料的定义和分类
机械工程材料是指用于制造机械零件、机械设备、工具和结构件等的材料。
它是机械制造行业中不可或缺的重要组成部分,直接影响着机械产品的性能、质量和寿命。
机械工程材料可以根据不同的标准进行分类,常见的分类方式包括:
1. 金属材料:包括黑色金属和有色金属,如钢、铁、铜、铝、镁等。
金属材料具有良好的力学性能、导电性、导热性和可塑性等特点,广泛应用于机械制造领域。
2. 非金属材料:包括塑料、橡胶、陶瓷、复合材料等。
非金属材料具有密度低、比强度高、耐腐蚀、隔热、隔音等特点,常用于制造机械零件、密封件、绝缘材料等。
3. 复合材料:由两种或两种以上不同性质的材料组成,具有比单一材料更优异的综合性能。
常见的复合材料包括纤维增强复合材料、层压复合材料等,广泛应用于航空航天、汽车制造、体育器材等领域。
4. 功能材料:具有特殊物理、化学或生物功能的材料,如磁性材料、光敏材料、生物医用材料等。
功能材料常用于制造传感器、电子元件、医疗器械等高性能产品。
总之,机械工程材料的分类是多样的,不同的材料具有不同的特点和应用领域。
在机械设计和制造过程中,选择合适的材料是至关重要的,它直接影响着产品的性能、质量和成本。
因此,了解各种机械工程材料的特点和分类,对于提高机械产品的设计和制造水平具有重要意义。
机械工程材料
机械工程材料机械工程材料是指用于制造机械和设备的材料。
它们具有特定的物理、化学和机械性能,能够承受各种负荷和环境的影响,并满足设计和制造要求。
机械工程材料主要包括金属材料、非金属材料和复合材料。
金属材料是机械工程中最常用的材料之一。
常见的金属材料有钢、铁、铝、铜、镁等。
金属材料具有良好的导电、导热和强度特性,适用于制造结构件和传动件等机械零件。
不同种类的金属材料具有不同的力学性能和耐腐蚀性,可以根据不同的应用要求选择合适的金属材料。
非金属材料主要包括塑料、橡胶、陶瓷等。
塑料具有轻质、耐腐蚀、可塑性好等特点,适用于制造机械外壳、密封件等部件。
橡胶具有弹性好、抗老化和耐磨损等特性,常用于制造密封件和弹性元件。
陶瓷具有高强度、高硬度和耐高温等特点,适用于制造高温部件和摩擦材料。
复合材料是由两种或两种以上的不同材料组成的材料。
常见的复合材料有纤维增强复合材料和金属基复合材料等。
纤维增强复合材料由纤维和基体材料组成,具有轻质、高强度和良好的抗冲击性能。
金属基复合材料由金属基体和强化相组成,具有高强度、高温抗氧化性和耐热疲劳性能。
复合材料广泛应用于航空、航天、汽车和船舶等领域。
机械工程材料在机械制造过程中起着至关重要的作用。
合适的材料选择可以提高机械的耐磨、抗腐蚀和抗冲击性能,延长使用寿命,降低维修成本。
因此,在机械设计和制造时,需要根据具体的工作条件和要求选择合适的材料,并进行必要的表面处理和热处理,确保材料的性能和可靠性。
总之,机械工程材料是机械制造中不可或缺的重要组成部分。
通过合理的材料选择和处理,可以提高机械的性能和可靠性,满足不同场合下的使用需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、硬度(第二节金属材料的力学性能) HV维氏硬度—主要用于测定很薄材料和表面薄层硬度。 HS肖氏硬度—肖氏硬度计机体体积较小,携带方便,主要用于测定大而笨重的 工件或大型钢材的硬度。肖氏硬度试验,在工件上基本不留痕迹,适于测定精 密量具的表面硬度。 各种硬度的硬度值之间不存在理论上的换算关系,它们之间不能用来直接比较 材料的硬度高低。 在要求不很精确时使用。 当布氏硬度值在200~600HBS(W)范围时: HRC≈1/10HBS(W) 当布氏硬度值小于450HBS时: HBS≈HV HS≈1/6HBS 硬度指标的测定与其他力学性能指标测定相比较,其试验方法简便、迅速、易 掌握,不需要特殊加工试样,试样可以是大小、厚薄、形状各异的原材料,也 可以是毛坯件或成品零件。 生产中常把硬度指标作为技术条件之一标注在图样中。表1—4所列是一些钢件 的硬度要求
四、冲击韧度(第二节金属材料的力学性能)
金属材料的冲击韧度αk与其化学成分、组织、表面质量
及温度等因素有关。有些材料在常温下,具有较好的韧性, 不显示脆性,但在一定的较低温度下韧性降低,发生向脆性 的转化.显示出脆性。这种脆性转变在工程中很值得注意。
机械工程材料
金属材料
• 黑色金属 • 有色金属
非金属材料 复合材料
第一章 金属材料基础知识
第一节 钢材生产概述 第二节 金属材料的力学性能 第三节 金属的物理、化学性能及工艺性能 复习思考题
第一节钢材生产概述(第一章)
一、钢与生铁 二、钢的分类 三、钢铁材料的生产过程 四、钢材品种
二、塑性(第二节金属材料的力学性能)
二、塑性
是指金属材料在载荷作用下,产生塑性变形而不被破坏的能力。塑性也 是通过拉伸试验测定的。表示塑性的指标是:
• 伸长率
伸长率是指试样拉断后标距伸长量与原始标距长度之比,即
• 式中 l0——试棒原始标距长度(mm); • l1。一试棒拉断后的标距长度(mm)。 • 试棒原始标距长度l0。为试棒原始直径d0的5倍(l0=5d0)时, 称短试棒,其伸长率以δ5表示 • 试棒原始标距长度l0。为试棒原始直径d0的5倍(l0=5d0)时, 称短试棒,其伸长率以δ5表示(1.2~1.5) • 试棒原始标距长度l0。为试棒原始直径d0的10倍(l0=10d0) 时,称短试棒,其伸长率以δ10表示 • 同一材料的伸长率,δ5与δ10之间的关系为:δ5≈(1.2~ 1.5)δ10
一、钢与生铁(第一节钢材生产概述)
钢和生铁都是铁碳合金。
• 固态下可以形变的铁碳合金称为钢(一般含碳量低 于2.11%; • 固态下几乎不发生形变的铁碳合金称为生铁(含碳 量高于2%)
二、钢的分类(第一节钢材生产概述)
(一)按钢的化学成分分类
按钢的化学成分,钢可分为: • 1.碳素钢-碳素钢是含碳量低于2.11%的铁碳合金。 • 2.合金钢-合金钢是加入了某些合金元素的碳素钢
• (二)型钢
常用的型钢有圆钢、方钢、扁钢、六角钢、角钢、槽 钢和工字钢等。直径在6~9mm的圆钢常称为线材。 各种型钢都有具体的规格,通常以其断面形状的主要 尺寸来表示。常用的型钢断面形状及其规格如表1-1所 示。
四、钢材品种(第一节钢材生产概述)
• (三)钢管
钢管有无缝钢管和有缝钢管(焊接钢管)两类。断面形状 一般为圆形中空,也有方形,三角形等异型断面钢管。 1.无缝钢管 它是钢坯经穿孔、轧制、拉拔等多种工 序制成的。规格以外径x壁厚来表示。外径小于5mm 的钢管称为毛细钢管。 2.有缝钢管 它是以钢带或钢板为坯料.经卷压成形、 焊接、精整等工序制成。规格用公称口径来表示,单 位为英寸。公称口径是其内径的近似尺寸值,一般都 略小于其实际内径尺寸。焊接钢管有1/8“~6”共l4 种口径;镀锌焊接钢管有1/2”~2 1/2”共7种口径。
• (四)钢丝
直径小于6mm的小型圆钢称为钢丝。其规格以直径的 毫米数表示
第二节金属材料的力学性能
金属材料的性能包括使用性能和工艺性能。 • 使用性能,是指机器零件在正常工作情况下材料所应具备的性能, 如力学性能和物理、化学性能。 • 工艺性能则是指在制造机器零件和工具过程中,材料能够接受各种 冷、热加工的能力,如材料的铸造性能、锻造性能、焊接性能、热 处理性能及切削加工性能。 金属材料在承受外力作用时所表现出来的性能通称为力学性能。 • 主要力学性能有;强度、塑性、硬度、冲击韧度和疲劳强度等。 一、强度 二、塑性 三、硬度 四、冲击韧度 五、疲劳强度
三、硬度(第二节金属材料的力学性能)
(二)洛氏硬度 洛氏硬度试验也是用规定的载荷将压头垂直地压入被测材料的表面, 但它是以压痕的深度来确定硬度值的。洛氏硬度值可从洛氏硬度计刻度 盘上直接读出。洛氏硬度用符号HR表示,无单位。
洛氏硬度操作简便、迅速,在硬度计上可直接读出硬度值,故适于大批 生产。 压痕较小,几乎不损伤工件表面,所以不仅可测半成品硬度,也可测定 成品工件的硬度。对较软、较硬和特硬材料均可测定,故硬度测定范围 宽。 不适于测定铸铁一类表面组织不均匀的材料
二、塑性(第二节金属材料的力学性能)
• 断面收缩率。
试棒单位横截面积的减缩率称为断面收缩率。
式中A0——试棒原始横截面积(mm2); A1——试棒拉断处横截面积(mm2)
金属材料的δψ值和ψ值越大,说明其塑性越好。良好的 塑性,是保证顺利完成轧制、锻造、拉拔、冲压等成 形工艺及电阻焊:摩擦焊等工艺的必要条件;一定的 塑性亦可避免机器零件在使用中万一超载而发生突然 折断。
(二)炼钢
• 炼钢的过程就是将生铁进行精炼.将生铁中的碳和硅、锰、磷、硫 等元素含量降低到规定范围。如果炼制合金钢,还需加入所要求的 合金元素。获得所需要的合金钢。 • 大量使用的钢其含碳量一般均低于1.4%。炼好的钢除小部分浇注成 铸钢件外,绝大部分浇注或钢锭,经压力加工制成各种钢材。 • 镇静钢:质量好,组织致密,气泡少,力学性能好。绝大部分优质 钢和合金钢都是镇静钢,需经热处理的受力零件都选用镇静钢。 • 沸腾钢:成本低,表面质量好,具有良好的塑性、冲压性能和焊接 性能,多用于低碳钢轧成薄板使用。不宜用于制造需经热处理的重 要零件 • 半镇静钢:其性能介于镇静钢与沸腾钢之间。
三、硬度(第二节金属材料的力学性能)
三、硬度
硬度是指金属材料抵抗更硬的物体压入金属表面的能力。金属材料的 硬度指标是在硬度计上测定的。机械制造厂中常用的硬度测试方法主要 是布氏硬度法和洛氏硬度法。 • (一)布氏硬度 布氏硬度试验原理如图l—5所示。用规定的载荷F将压头垂直 压入被测材料表面,经规定的保持载荷时间后卸除载荷,在被测 材料表面形成了直径d的压痕,用读数放大镜测量出压痕直径数 值,并用此值查布氏硬度数值表,即可得到布氏硬度值。材料越 软,压痕直径越大,则布氏硬度值越低。
三、钢铁材料的生产过程(第一节钢材生产概述) (三)钢的成材 轧制、挤压、拉拔、锻 造等都是常用压力加工 的几种主要方法,如图 1—2所示。
• 主要通过压力加工 • 轧制—热轧和冷轧 • 拉拔—
四、钢材品种(第一节钢材生产概述)
四、钢材品种
• (一)钢板
薄板(厚度δ≤4mm) 厚板(厚度δ>4mm)。 成张钢板的规格以厚度×宽度×长度表示; 成卷供应的钢板规格以厚度×宽度表示。
三、钢铁材料的生产过程(第一节钢材生产概述)
炼钢用炉,主要有转炉、平炉和电炉。它们所炼制 的铜分别称为转炉钢、平炉钢和电炉钢。
• 转炉利用鼓入的氧气或空气进行吹炼。主要生产普通碳 素结构钢、部分低合金结构钢和优质钢。 • 平炉炼钢主要用煤气作燃料进行燃烧,使炉料熔化、升 温,靠炉气中的氧和加入的铁矿石使铁水中的杂质氧化。 主要用于生产优质碳素结构钢。 • 电炉炼钢利用电能作热源,炉料主要是废钢。电炉炼钢 质量最高,主要生产各种优质合金钢,如不锈钢、高速 钢、耐热合金钢等。
Байду номын сангаас
三、钢铁材料的生产过程(第一节钢材生产概述)
钢铁材料通常经过下列三个阶段获得。先由铁矿石—生 铁—生铁—钢—钢锭—钢材,如图1—1所示。
三、钢铁材料的生产过程(第一节钢材生产概述)
(一)生铁冶炼
• 生铁冶炼是将炼铁原料——铁矿石、燃料——焦炭、熔剂——石灰 石等炉料,按一定比例装入高炉进行冶炼。 • 高炉生铁可分为炼钢用生铁和铸造用生铁
• •
抗拉强度是指金属材料在断裂前所能承受的最大标称拉应力,即b点的应力, 也称强度极限。以符号σb表示。 σb= Fb/A0 式中σb——抗拉强度(N/mm2或MPa);
• Fb——试棒被拉断前所承受的最大载荷(N);
A0——试棒原始横截面积(mm2)。 条件屈服点-有些金属材料,如高碳钢、铸铁、淬火钢等,屈服现象极不明 显。工程上规定。以试棒原始标距长度(l0)部分产生0.2%塑性变形时的应力 值作为其屈服点,以σ0.2表示
一、强度(第二节金属材料的力学性能)
强度—是指金属材料在载荷作用下,抵抗产 生塑性变形和破坏的能力。
• 根据载荷作用方式不同,强度有抗拉强度、抗压 强度、抗弯强度和抗剪切强度 • 抗拉强度-最基本的强度指标。 抗拉强度指标是通过拉伸试验测定的。图1—4为低 碳钢的拉伸曲线。
一、强度(第二节金属材料的力学性能) 应力—单位截面积上所承受的内力。 • σ= F/A 式中σ—应力(N/mm2或MPa); • F—载荷(N); • A—试棒横截面积(mm2) 金属材料强度指标主要有屈服点和抗拉强度。 (一) 屈服点 屈服点是指金属材料开始产生显著塑性变形时的最低应力,即s点的应力。 σs= Fs/A0
三、硬度(第二节金属材料的力学性能)
布氏硬度指标用符号:HB。
• HBS—用淬火钢球为压头,适用于测量布氏硬度值在450以下的金属 材料; • HBW—用硬质合金球为压头适用于测量布氏硬度值在450~650之间 的金属材料。 • 硬度数值均标写在布氏硬度符号之前。如,230HBS、500HBw。 特点:布氏硬度试验压痕较大,试验结果较准确。但试验结果的求得较 麻烦,费时间。 主要用于测量布氏硬度值小于450的较软金属材料的硬度,如热轧钢材, 经退火、正火、调质处理的钢和有色金属等;适用于原材料、铸造和锻 造的毛坯件、半成品件;还适用 于测定铸铁及滑动轴承合金等软且组织不均匀的材料 布氏硬度的压痕大,不能测定成品件的硬度,不适于测太薄的材料硬度。