第三章行波法
数理方程第三章行波法与积分变换法-PPT课件
t2
2019/3/8
3
数学物理方程与特殊函数
第3章行波法与积分变换法
x a t 1 1 u ( x , t ) ( x a t ) ( x a t ) ( ) d x a t 2 2 a
4 解的物理意义
u (,) x t ( x a t ) ( x a t ) a. 只有初始位移时,
2 2 u u 2 1 1 a , x ,t 0 2 2 t x u ( x ,0 ) 1 u ( x ,0 ) ( x ) , ( x ) , x 1 t 2 2 u u 2 2 2 a f (xt ,) , x ,t 0 2 2 t x u x ,0 ) 2( u ( x ,0 ) 0 , 0 , x 2 t x a t 1 1 u ( x , t ) ( x a t ) ( x a t ) ( ) d 1 x a t 2 2 a
u u u u u y y y
2 2 2 2 u u u u u u u u 2 2 2 y y y 2
数学物理方程与特殊函数
第3章行波法与积分变换法
第三章 行波法与积分变换法
一 行波法
1 基本思想: 先求出偏微分方程的通解,然后用定解条件确定 特解。这一思想与常微分方程的解法是一样的。 2 关键步骤: 通过变量变换,将波动方程化为便于积分的齐 次二阶偏微分方程。 3 适用范围:
数学物理方程第三章_行波法和积分变换法
[x − at , x + at ] 上的值,而与其他点上的初始条件无关,这个区间称为点 (x, t ) 的依赖区间,
它是过 ( x, t ) 点分别作斜率为 ±
1 的直线与 x 轴相交所截得的区间,如图 3-2 所示. a
(x,t0)
y
x O x-at0 x+at0
图 3-1
初 始 时 刻 t = 0 时 , 取 x 轴 上 的 一 个 区 间 [x1 , x 2 ] , 过 点 x1 作 斜 率 为
同理可得
2 ∂ 2u ∂ 2u ∂ 2u ⎤ 2⎡∂ u = + a + 2 ⎢ 2 ∂ξ∂η ∂η 2 ⎥ ∂t 2 ⎣ ∂ξ ⎦
将其代入式(3.1.1),得
∂ 2u =0 ∂ξ∂η
对 ξ 积分,得
∂u = f (η ) ∂η
对此式再关于η 积分,得
u = ∫ f (η )dη + f1 (ξ ) = f1 (ξ ) + f 2 (η )
第三章 行波法与积分变换法 本章我们介绍两个常用的解题方法:行波法和积分变换法。行波法只用于求解无界区 域上的波动方程定解问题, 积分变换法不受方程类型的限制, 一般应用于无界区域的定界问 题,有时也应用于有界域的定解问题.
3.1 达朗贝尔公式及波的传播 在求解常微分方程的特解时,一般先求出方程的通解,然后利用所给的定解条件去解出 通解中含有的任意常数,最后得到了满足所给条件的特解.这个想法能否推广到求解偏微分方 程的过程中呢?一般情况下,随着自变量个数的增加,偏微分方程的通解非常难求,并且偏微分 方程的通解一般都含有任意函数,这种任意函数很难由定解条件确定为具体的函数.所以在求 解数学物理方程时,主要采用通过分析各类具体的定解问题,直接求出符合定解条件的特解的 方法.但事情没有绝对的,在有些情况下,我们可以先求出含任意函数的通解,然后根据定解条 件确定出符合要求的特解.本节我们研究一维波动方程的求解,就采用这种方式. 3.1.1 达朗贝尔公式 如果我们所考察的弦无限长,或者我们只研究弦振动刚一开始的阶段,且距弦的边界较远 的一段,此时可以认为弦的边界,对此端振动的弦不产生影响.这样,定解问题就归结为如下形 式
第三章行波法(2)
显然取 时可以满足边界条件
于是
2.半无限长的杆,其端点受到纵向力 作用,求解杆的纵振动。
解:泛定方程 ,
的初始条件:
边界条件
对 的地方,端点的影响未传到,所以
。
对 的地方,需要考虑端点的影响。对a<0, 和 未定义,现将它们延拓。
其中 和 待定,应用达朗伯公式;
它应满足边界条件
显然,取 而 即可满足条件。
由条件(4), 。应用衔接条件(5)(6),得
将(8)对t积分,且由于 。
由(7)(9)消去 行
再得 。
所以解为:
反射波
透射波
补充:
4.求解半无限长理想传输线上电报方程的解,端点通过电阻 相接,初始电压分布为 ,初始电流分布 ,在什么条件下端点没有反射(这种情况叫作匹配)?
解:∵是理想传输线,∴ 。因此,定解问题是
球外为零。无论何时,压缩率与速度势的关系为 ,并且速度势满足方程
试对所有的 ,确定压缩率。
解:该问题的定解问题为:
上题的结果有:
讨论:(1)若 点在球外,则 ,所以 ,即 ,此时有
(2)若 点在球内,则 ,
(ⅰ)当 时,更有 ,得
(ⅱ)当当 时,而当 时, ,
( )当 ,更有 ,所以, ,此时有:
3.利用泊松公式求解下列定解问题
(1)
故原方程的解为:
补充:
6.应用泊松公式计算下述定解问题的解. ⊿ ,初始速度为零.初始位移在某个单位球内为1,在球外为零。
解:取单位球的球心为坐标原点,则定解问题为:
由泊松公式
(i)当点 (以 为矢径的点简称为点 ,下同)在单位球内时:
a.若 ,球面 完全在单位球内,从而
,
课件:第三章 行波法
0(3 .1)(3.2)
对于上述初值问题,由于微分方程现定解条件都是 线性的,所以叠加原理同样成立,即如果函数和 分
别是下ux述,0初 值utt问x,题aut2uxx,x0 x (3.3)
(3.4)
•和
uuxtt,0a20u,xux txf,0x((,33t..650))
的解,则 u u1x,t u2x就,t是 原初值问题 (3.1)(3.2)的解,这
1
2 1
2
x x
1
2a 1
2a
x
x0 x
x0
d d
c
2a c
2a
( 3.17)
把它们代入(3.13) 得初值问题(3.3)(3.4)的解
ux, t
x
at
2
x
at
1 2a
xat(3.1d8) xat
这个公式称为无限长弦自由振动的达朗贝尔公式,或称为达 朗贝尔解。这种求解方法称为达朗贝尔解法。
题大
有有
其局
特限
殊 的 优 点
性
, 但 对
,
内 波 动 方 程 的 定
解 问
题 ,
波 法 只 能 用 于 求
解 无
界 区
波解 法定 ,解 二问 是题 积和 分方
变法 换,
法一 。是
本 章 我 们 将 介
绍 另 外
两 个
引 言
3.2 达朗贝尔(D’Alembert)公式 波的传播
• 本章我们将介绍另外两个求解定解问题和方法, 一是行波法,二是积分变换法。行波法只能用于 求解无界区域内波动方程的定解问题,虽然有很 大有局限性,但对于波动问题有其特殊的优点, 所以该法是数理方程的基本之一。我们只注重解 决问题的思路,导出形式解,不追求分析的条件 与验证。积分变换法不受方程的类型限制,主要 用于无界区域,但对于有界区域也能应用
数学物理方程:第3章 波动问题的行波法
第3章 波动问题的行波法§3.1 二阶线性方程的分类与化简本节讨论:①两个自变量方程的分类与化简,②多个自变量方程的分类与化简⒈ 两个自变量方程的分类与化简二阶方程的一般形式 二阶变系数方程可写为1112220(,)2(,,,,)(,)xx xy yy x y Lu x y a u a u a u x y u u u f x y =+++Φ= (3.1.1)式中:11a 、12a 、22a 为x 、y 的函数,0(,,,,)x y x y u u u Φ为低阶导数项。
公式关于二阶导数项为线性的,即称方程为准线性的。
若0(,,,,)x y x y u u u Φ关于u 及其x u 、y u 为线性的,则称方程为线性的。
方程的变换 为了简化上述方程,作可逆变换:(,)(,)x y x y ξξηη=⎧⎨=⎩, (,)0(,)J x y ξη∂=≠∂, (,)(,)x x y y ξηξη=⎧⎨=⎩(3.1.2) 代入方程中,不难得到:11122212(,,,,)(,)Lu A u A u A u u u u f ξξξηηηξηξηξη=+++Φ= (3.1.3)式中: 22111112222x x y yA a a a ξξξξ=++ (3.1.4) 12111222()x x x y y x y y A a a a ξηξηξηξη=+++ (3.1.5)22221112222x x y yA a a a ηηηη=++ (3.1.6) 我们化简的目的是使得二次项的项数尽量少,并且值尽量为简单(如0ij A =或1ij A =±)。
顾及ij A 的表达式,取关于z 的一阶非线性偏微分方程2211122220x x y y a z a z z a z ++= (3.1.7)若该方程有解),(1y x z ϕ=、),(2y x z ψ=,则110A =及220A =;公式大大简化了。
行波法
+ c2 e
px +α y − iβ y
(12)
3.1 达朗贝尔公式
本节以行波解法为依据,介绍求解定解问题的达朗贝尔公式.
例子. 一维波动方程的达朗贝尔公式
设有一维无界弦自由振动(即无强迫力)定解问题为
泛定方程 u tt − a 2 u xx = 0 初始条件
(1) (2) (3)
u t =0 = ϕ ( x ), ut
第三章 行波法与积分变换法 3.0 二阶线性偏微分方程的行波解
通解法中有一种特殊的解法―行波法, 即以 自变量的线性组合作变量代换,进行求解 的一种方法,它对波动方程类型的求解十 分有效.
1.简单的含实系数的二阶线性偏微分方程 为了方便起见,我们首先讨论如下的含实常系数的 简单二阶线性偏微分方程
au xx + bu xy + cu yy = 0
,则
u( x, y) = c1e
2
px+q1 ( p ) y
+ c2e
px+q2 ( p ) y (10)
(ii) b − 4ac = 0, 抛物型,上述方程有相等的实根
q1 ( p ) = q2 ( p )
,则
u(x, y) = c1e
px+q1 ( p) y
+ c2 xe
px+q1 ( p) y
(11)
⎧ 根据(10)得 ⎪0,( x ≤ x1 ) ⎪ x 1 ⎪1 Φ( x) = ∫−∞ψ (ξ )dξ = ⎨ 2a ( x − x1 )ψ 0 ,( x1 ≤ x ≤ x2 ) 2a ⎪ ⎪1 ⎪ 2a ( x2 − x1 )ψ 0 ,,( x ≥ x2 ) ⎩
这里
数学物理方程课件第三章行波法与积分变换法
U (,0)
a 2 2U (, t), (), dU (,0)
dt
(),
t0
U (,t) Acosat Bsin at
U (,0) A ()
B () a
U (,t) () cos at () sin at
a
f(x ) F ()e j
x
f()d
F ()
0
j
数学物理方程与特殊函数
u(x,t) 1 (x at) (x at) 1
xat
( )d
t2
2a xat
t
P( x, t )
依赖区间
x
x at x at
x x1 at
x x2 at
决定区域
x1
x2
x
t
x x1 at
影响区域
x1
x2
x x2 at
x at C 特征线 x at x at 特征变换
第3章行波法与积分变换法
补充作业: 解定解问题
4
2u t 2
25
2u x2
,
u(
x,
0)
sin
x,
u ( x, t
0)
3x,
y 0, x x
数学物理方程与特殊函数
第3章行波法与积分变换法
二 积分变换法
1 傅立叶变换法
傅立叶变换的定义
U (, t) u(x, t)e jxdx
数学物理方程与特殊函数
第3章行波法与积分变换法
u(x,t) 1 (x at) (x at) 1
xat
( )d
2
2a xat
5 达朗贝尔公式的应用
utt
a
u |t0
数学物理方程chpt3_行波法
由达朗贝尔公式(11)可见,解在( x, t )这一点的数值仅仅依赖于 x轴上的区间[x-at,x at]内的初始条件,而与其它点上的初始条件 无关。这个区间[x-at,x at]称为点(x,t)的依赖区间。它是由过(x,t) 的两条斜率分别为 1 的直线在x轴上所围成的区间。如图3所示。
a
t
(x,t)
1
x at
( )d
⑾
2
2a xat
问题:定解问题(Ⅰ)的解在点(x,t)上的值跟初始条件在x轴上哪些点有关?
§3.2 行波法—一维波动方程的达朗贝尔解
三、依赖区间与影响区域
u(x, t) 1 [(x at) (x at)]
1
x at
( )d
2
2a xat
⑾
问题:定解问题(Ⅰ)的解在点(x,t)上的值跟初始条件在x轴上哪些点有关?
在此区域之外的波动不受区间[x1, x2 ]上初始扰动的影响(仍为静止状态),称这个不等式 确定的区域为区间[x1, x2 ]的影响区域。如图4所示。 在上面的讨论中,平面上的直线x at c(常数)对波动方程的研究起着重要的作用,称
它们为波动方程(Ⅰ)的特征线。 t
影响区域
x=x0-at
x=x0+at x
• 齐次波动方程反映了介质经过扰动后,激 发的波一直向前传播,形成行波,故使用
这种原理的方法称为行波法。 • 本章将要介绍的行波法(Travelling wave
method)是求解波动方程初值问题的一种 有效方法,它只能够求解无界区域波动方 程的定解问题。
本章主要内容
• 能够导出并且记住一维波动方程的通解 (达朗贝尔公式);
§3.2 行波法—一维波动方程的达朗贝尔解
数学物理方程第三章 行波法
(1.7)
f 1 ( ), f 2 ( )是待定的任意二次连续 可微函数 .
u( x,0) f 1 ( x) f 2 ( x) ( x)
u ( x) - x (1.2) t t 0
x
1 f ( x ) f ( x ) ( )d 1 2 u( x ,0) a0 af 1( x ) af 2( x ) ( x ) t x 1 1 x f 1 ( x ) ( x ) ( )d 1 2 2a 0 f 1 ( x ) f 2 ( x ) ( )d
第三章 行波法
• • • • • 主要内容 掌握一维弦振动的解 掌握类比方法求三维、二维问题的解 了解偏微分方程的分类 会求偏微分方程的特征线
§1 弦振动的初值问题
无限长均匀细杆的振动问题,就可以表达成如下形式
2 2u 2 u x , t 0 (1.1) 2 a 2 x t u ( x ) - x (1.2) u(0, x ) ( x ), t t 0
(1.8)
(1.8)称作达朗贝尔公式。这种求解方法也称达朗贝尔解法或行波法(特征线法)。 这种方法对一般的偏微分方程来说是十分困难的。因此只适合波动方程定解问题的求解。
1.2 达朗贝尔公式的物理意义
达朗贝尔公式的物理意义
u( x, t ) f 1 ( x at) f 2 ( x at) (1.7) 先考察 u2 ( x, t ) f 2 ( x at) 的意义
2 2u u 2 a 波 动 方 程 , 双 曲 型 方 .程 2 2 t x 2 u u 2 a 热 传 导 方 程 , 抛 物 型程 方. 2 t x
第三章-行波法(1)
第三章 行波法§3.1 达朗贝尔公式(P150-152)1.确定下列初值问题的解(1)()()20,,00,,01tt xx t u a u u x u x -===解:因为()()0,1x x ϕψ==由达朗贝尔公式有:()()()()1,22x at x at x at x at u x t d aϕϕψαα+--++=+⎰ =t(2)()()220,,0sin ,,0tt xx t u a u u x x u x x -===解:因为()()2sin ,x x x x ϕψ==由达朗贝尔公式有:()()()()1,22x at x atx at x at u x t d a ϕϕψαα+--++=+⎰ =2231sin cos 626x at x at a t a⎡⎤++⎣⎦ =2231sin cos 3x at x t a t ++ (3)()()230,,0,,0tt xx t u a u u x x u x x -===解:因为()()3,x x x x ϕψ==由达朗贝尔公式有:()()()()1,22x at x atx at x at u x t d a ϕϕψαα+--++=+⎰ =()()1cos cos 122x at x at x at x at e d aα+---+++⎰ =1cos cos x at e t -+2.求解无界弦的自由振动,设弦的初始位移为()x ϕ,初始速度为()'a x ϕ-。
解:该问题的数学模型为:()()()()2',,0,0,,0tt xx t u a u x t u x x u x a x ϕϕ⎧=-∞<<+∞>⎪⎨==-⎪⎩由达朗贝尔公式:()()()()'1,22x at x atx at x at u x t a d a ϕϕϕαα+--++=+-⎰=()x at ϕ- 2.求解弦振动方程的古沙问题()()()()()(),,,,tt xx u u u x x x x u x x x x ϕψ=⎧⎪-=-∞<<+∞⎨⎪=-∞<<+∞⎩解:该方程的通解为:()()()12,u x t f x t f x t =++- (1)令:t x =-()()()1202x f f x ϕ=+令: t x =()()()1220x f x f ψ=+令2y x =,则有:()()()()12210202y f y f y f y f ψϕ⎧⎛⎫=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪=- ⎪⎪⎝⎭⎩所以:()()1102x t f x t f ψ+⎛⎫+=- ⎪⎝⎭,()()2202x t f x t f ϕ-⎛⎫-=- ⎪⎝⎭()()()12,0022x t x t u x t f f ψϕ+-⎛⎫⎛⎫=+-+⎡⎤ ⎪ ⎪⎣⎦⎝⎭⎝⎭又 ()()121(0)(0)002f f ϕψ+=+⎡⎤⎣⎦ 所以古沙问题解为: ()()()00,222x t x t u x t ϕψψϕ++-⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭3.求解无限长理想传输线上电压和电流的传播情况。
第三章 行波法-1
r →0
1 u (r , t ) = 4πr 2
∫∫ u(ξ ,η, ζ , t )dS
S rM
根据 u 的连续性, 可知
这个平均值在 M ( x,y,z ) 固定后, 仅与 r 和 t 有关.
可以证明,作为 r, t 的函数 u
个函数可以由初始条件来确定. 这就是三维波动方程 的关于原点为球对称的解. 整理得
2
即
1 (ru )rr u tt = a r
(ru )tt
= a (ru )rr
2
2.一般情形 考虑 u在以r为半径的球面S rM 上的平均值
其中
ξ = x + r sin θ cos ϕ η = y + r sin θ sin ϕ ζ = z + r cos θ
ξ = 3x − y η = x + y
∂ 2u ∂ ∂u ∂u ∂ξ ∂ ∂u ∂u ∂η = (− + ) + (− + ) 2 ∂y ∂ξ ∂ξ ∂η ∂y ∂η ∂ξ ∂η ∂y
∂ 2u ∂ 2u ∂ 2u = −2 + 2 ∂ξ ∂ξ∂η ∂η 2
代入方程化简得:
∂ 2u =0 ∂ξ∂η
ξ = x + y − cos x η = −x + y − cos x
∂ 2u =0 ∂ξ∂η
则原方程可以变为
于是,方程的通解为
u(x, y) = f1 (x + y − cosx) + f 2 (−x + y − cosx)
其中 f 1
f ,2
是任意的二次连续可微函数.
《数学物理方程》第3章 行波法与积分变换法
2 2 dS 1 dd
M Cat : ( x ) 2 ( y) 2 ( at ) 2 at dd
(at ) 2 ( x ) 2 ( y ) 2
sin( x at ) sin( x at ) 1 x at cos d sin( x at ) 解 u( x , t ) 2 2 x at
u( x ,0) f ( x ) g ( x ) 3 x 2 u ( x ,0) 1 f ( x ) g ( x ) 0 1 f ( x ) g ( x ) C y 3 3 9 2 3 2 解 出f ( x ) x C , g( x ) x C 4 4
2 2
2a t
wtt a 2 w xx ( t , x ) 设w( x , t , )是 的解 w( x , , ) 0, wt ( x , , ) f ( x , ) t x a( t ) 1 t f (,)d 则 u( x, t ) w( x, t , )d d 0 x a ( t ) 2a 0 2
x at uxx u 2u u 变换 u 0 2 x at utt a (u 2u u ) u h( )d g() f ( ) g() 方程通解 u( x , t ) f ( x at ) g( x at )
M Sat
0
0
积分中x y z是常数
2 ( x at sin cos ) ( y at sin sin ) ( z at cos ) 2 d ( at ) sin d 0 t 0 4a at
第三章 行波法
,那么在 之间呢?我们不能回答这个问题,事实上,当 时, ,取极限就是把不等的部分补上了。不过,要严格证 明这个问题, 需要用到 函数, , 它相当于(3.1.14)的极限形式。 直接的推导见[23]p206-210,那里也称之为冲量法。
6ቤተ መጻሕፍቲ ባይዱ
5
,
另一推导见[24] P58-60,[1]p54-57
在唯一解 证明 注意到 Dalembert 公式知道 Cauchy 问题(3.1.13)的解。 初始条件:显然 是
1. 一维波动方程的 Cauchy 问题
1.1 一维齐次波动方程的 Cauchy 问题
1.1.1 DAlembert 公式 考察齐次弦振动方程的 Cauchy 问题 (3.1.1) 为求此问题的解,注意到弦振动方程有两簇特征线 为新的坐标轴,则可将弦振动方程化为第一标准型,为此引进坐标变换 由链式法则可将(3.1.1)的泛定方程化为 (3.1.3) 两边对 积分再对 积分得 (3.1.4) 代回到原变量 可得原方程的一般解 (3.1.5) 其中 与 是两个任意连续可微函数。 为了求 Cauchy 问题(3.1.1)的解,还须适当地选取 使得初始条件成立,但我们实际 做的却是用初值去定出这两个任意可微函数。将初值代入通解(3.1.5)得 (3.1.6) (3.1.7) 对(3.1.7)积分得 ,若以特征线 (3.1.2)
,则
必是半无界问题(3.2.3)的解。
我们将
表为更明确的形式。
(3.2.5) 这样我们求得了半无界问题(3.2.3)的形式解。为了保证形式解(3.2.5)的确是问题(3.2.3) 的解,还须对右端函数加上一定的条件,例如,我们可以证明: 定理 3.5 如果 , 且适 合如下的相容性条件, ,则半无界问题(3.2.3)的解 ,该解由公式(3.2.5)表出且在有限时间内按最大模一致稳定。 证明 我们只证相容性条件,其余留着习题。 注意到初始条件 ,边界条件 , 。而 。由 的 ,由 所以 。/// 2.2 再看 的情形 ,则原问题(3.2.1)化为在 ,从而 ,从而 得
第三章-行波法
第三章 行波法§3.1 达朗贝尔法(行波法)考虑无界弦的自由振动问题,有定解问题如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧==∂∂=∂∂)()0,()()0,(22222x x u x x u x u a t u tψϕ ∞+<∞-+∞<<∞->+∞<<∞-x x t x 0, 对于上面的标准形方程,它有两族特征曲线1c at x =+,2c at x =-作变换at x +=ξ,at x -=η由上面的方程变为:02=∂∂∂ηξu 求上面偏微分方程的解先对η积分一次得)(1ξηf u =∂∂ 再对ξ积分一次得:⎰+=+=)()()()(2ηξηξξG F f d f u其中G F ,是具有任意连续可微函数,将原自变量代回得原方程的通解为)()(),(at x G at x F t x u -++=下面通过初始条件确定上面的任意函数G F ,∵ )(0x u t ϕ==,)(0x u t t ψ==∴ )()()(x x G x F ϕ=+ (1))()()(//x x aG x aF ψ=- (2)对(2)从0x 到x 积分得:⎰-+=-x x x G x F d ax G x F 0)()()(1)()(00ααψ (3) (1)+(3)得 )]()([21)(21)(21)(000x G x F d a x x F x x -++=⎰ααψϕ ⎰---=x x x G x F d a x x G 0)]()([21)(21)(21)(00ααψϕ ∴ ⎰+-+++-=at x atx d a at x at x t x u ααψϕϕ)(21)]()([21),( 该公式叫达朗贝尔公式例:确定初值问题:⎪⎩⎪⎨⎧==>∞+<∞∂∂=∂∂-122222)0,( cos )0,(0 e x u x x u ,t x -x u a tu t 解:略。
达朗贝尔方程的物理定义:先讨论0)(=x ψ (即振动只有初始位移))]()([21),(at x at x t x u ++-=ϕϕ 先看)(at x -ϕ项:当0=t 时若观察者位于c x =处,此时 )()(c at x ϕϕ=-在x 轴上,若观察者以速度a 沿轴正方向运动,则在t 时刻观察者位于at c x +=处,此时:)()()(c at at c at x ϕϕϕ=-+=-由于t 是任意的,这说明观察者在运动过程中随时可以看到相同的波形,可见,波形和观察者一样,以速度a 沿x 轴正方向传播。
第三章行波解
第三章行波法数理方法研究物理和工程问题的三大步骤:1、写出定解问题2、求解3、分析解答我们已经学会了导出方程和写出定解条件(定解问题)的基本方法,下边的重点是求解和解答过程:各种求解数学物理方程的方法,主要包括:1、行波法2、分离变量法3、积分变换法4、格林函数法5、保角变换法本章问题的引入:1、无限长细弦的抖动(一维)2、投石入水中形成的圆形扩散波(二维)3、灯塔上的灯光(三维)若当研究问题时只关心一端时间某处发生的振动,边界的影响还来不及达到该处,波将一直向前传播,称此为行进波(行波),解决这类行波问题引入了行波法。
中心:用行波法求解无界空间波动问题。
1、掌握达朗贝尔公式的应用和行波法解题步骤;2、有源问题化为无源问题的冲量法;3、三维问题化为一维问题的平均值法。
三、分析解答:1、适定性的证明:(1)解存在:并且满足泛定方程和定解条件;利用公式(2)唯一性:因为f 1和f 2的任意性已经由定解条件确定,所以解是唯一的。
(3)稳定性:不妨设:()()()()110022|, |t t t x x u u x x ϕψϕψ==⎧⎧⎪⎪==⎨⎨⎪⎪⎩⎩()()()()1212||,||x x x x ϕϕδψψδ−≤−≤2、行波法:(1)它基于波动的特点;(2)引入了坐标变换简化方程;(3)优点:求解方式易于理解,求解波动方程十分方便;(4)缺点:通解不易求,有局限性。
习题 3.12232110, (,0)0, (,0)1;(3) 0, (,0), (,0);8230(,0)3(,0)0tt xx t tt xx t xx xy yy yu a u u x u x u a u u x x u x x u u u u x x u x −===−===+−=⎧⎪=⎨⎪=⎩、确定下列初值问题的解:()、解下列初值(仅需思考,选作)问题:OXYZ(,,)M x y z 0000(,,)M x y z ϕθ处的解和xyzz ′x ′y ′ϕθ(,,)M x y z ′′′′(,,)M x y z泊松公式的物理意义:定解问题在M 点t 时刻的值与以M 点为中心,以at 为半径的球面上的初值确定的。
Chapter3 波动方程初值问题的行波法
特征方程
2u
2u
2u
u
u
A x2
2B xy
C
y 2
D
x
E
Байду номын сангаас
y
Fu
0
China University of Petroleum
11
China University of Petroleum
12
其通解为
China University of Petroleum
13
求解,得
China University of Petroleum
China University of Petroleum
2
●基本思想 先求出偏微分方程的通解,然后用定解条件确定特
解。这一思想与常微分方程的解法是一样的。
●关键步骤: 通过变量代换,将波动方程化为便于积分的二
阶偏微分方程。
●适用范围: 无界域内波动方程。
China University of Petroleum
China University of Petroleum
18
China University of Petroleum
19
基尔霍夫(Kirchhoff)公式
China University of Petroleum
20
China University of Petroleum
21
14
即 从而,原定解问题的解为
China University of Petroleum
15
China University of Petroleum
16
1.4 无界弦的强迫振动和齐次化原理
China University of Petroleum
第三章 行波法
第三章 行波法§3.1 达朗贝尔法(行波法)考虑无界弦的自由振动问题,有定解问题如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧==∂∂=∂∂)()0,()()0,(22222x x u x x u x u a t u tψϕ ∞+<∞-+∞<<∞->+∞<<∞-x x t x 0, 对于上面的标准形方程,它有两族特征曲线1c at x =+,2c at x =-作变换at x +=ξ,at x -=η由上面的方程变为:02=∂∂∂ηξu 求上面偏微分方程的解先对η积分一次得)(1ξηf u =∂∂ 再对ξ积分一次得:⎰+=+=)()()()(2ηξηξξG F f d f u其中G F ,是具有任意连续可微函数,将原自变量代回得原方程的通解为)()(),(at x G at x F t x u -++=下面通过初始条件确定上面的任意函数G F ,∵ )(0x u t ϕ==,)(0x u t t ψ==∴ )()()(x x G x F ϕ=+ (1))()()(//x x aG x aF ψ=- (2)对(2)从0x 到x 积分得:⎰-+=-x x x G x F d ax G x F 0)()()(1)()(00ααψ (3)(1)+(3)得)]()([21)(21)(21)(000x G x F d a x x F x x -++=⎰ααψϕ ⎰---=x x x G x F d a x x G 0)]()([21)(21)(21)(00ααψϕ ∴ ⎰+-+++-=at x atx d a at x at x t x u ααψϕϕ)(21)]()([21),( 该公式叫达朗贝尔公式例:确定初值问题:⎪⎩⎪⎨⎧==>∞+<∞∂∂=∂∂-122222)0,( cos )0,(0 e x u x x u ,t x -x u a t u t 解:略。
达朗贝尔方程的物理定义:先讨论0)(=x ψ (即振动只有初始位移))]()([21),(at x at x t x u ++-=ϕϕ 先看)(at x -ϕ项:当0=t 时若观察者位于c x =处,此时 )()(c at x ϕϕ=-在x 轴上,若观察者以速度a 沿轴正方向运动,则在t 时刻观察者位于at c x +=处,此时:)()()(c at at c at x ϕϕϕ=-+=-由于t 是任意的,这说明观察者在运动过程中随时可以看到相同的波形,可见,波形和观察者一样,以速度a 沿x 轴正方向传播。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)和(4)应满足边界条件 即
由此解得
以此代入(3)和(4)得到解答
右边第二项是反射波,要想没有反射波,应令右边第二项的系数为零,即
,
端点没有反射波,意味着电波的能量全部被电阻吸收,
这叫做阻抗匹配,这时负载阻抗R等于传输线的特性阻抗 。
5.在弦的x=0处悬挂着质量为M的载荷,有一行波 ,从x<0的区域向悬挂点行进,试求反射波和透射波,
补充:(习题2.1)
10.求解无限长理想传输线上电压和电流的传播情况,设始电压分布为 ,初始电流分布为 。
解:(1)电压的传播情况:
传输线方程: ,式中 。
初始条件:
由达朗伯公式有:
(2)电流的传播情况:
传输线方程: ,式中 ,初始条件:
应用一维无界空间解达朗伯公式:
11.在G/C=R/L条件下求无限长传输线上的电报方程的通解。
解:关于j和v的电报方程为
以j的方程为代表求其通解。直接求其通解是比较困难的,因此要作函数变换,以消去一阶微分项。
令 ,
则 ,
代入关于j的方程,并约去公共因子 后得:
+
如果选取 , 并注意 ,
则 代入上式,方程化简为:
,即 ,其中
如果初始条件为
,
则
,
利用达朗伯公式,可以得到关于 的通解为:
∴
12.无限长弦在点x=x0受到初始冲击,冲量为I,试求解弦的振动。
解:根据三维泊松公式有:
因为:
,
,
,
所以:
4.在泊松公式中,若将球面 上的积分代一 平面上的圆 的积分,并注意球面上下两半都投影于同一圆,便可导出二维空间的泊松公式。试推导二维空间的泊松公式:
解:将三维泊松公式中球面 上的积分代一 平面上的圆 的积分,而积分面积元 则应以 在 上的投影代替,即
又球面 上下两半部都投影于同一圆,所以,
c.若 ,则 与单位球相交,设它在球内的部分为 ,因在球外 而在 上, .
∴ .
∵
,
∴
.
(ii)当点 在单位球外时
a.若 ,与单位球分离,在 上 ,∴ .
b.若 将单位球包含于内,在 上 ,∴ .
c.若 与单位球相交,设它在球内的部分为 ,与(i)之c相同的计算,得
综上述,在球内
在球外
7.应用泊松公式计算下述定解问题的解. ⊿ ,初始速度为零,初始位移在球 以内为 ,在球外为零。
(x<0)
电压 和电流 在 点有。
(i)对于 端点的影响尚未到达,由达朗伯公式;
同理
这就是从 的区域沿x轴正方向朝着端点x=0行进的入射波。
(ii)对于 ,必须考虑到端点的反射,直接从通解出发有
(1)
(2)
其中 和 是待求的反射波,因传输是理想的,故
(1)和(2)应满足 和 。
即
由于 所以上列两式即
(1)
故原方程的解为:
补充:
6.应用泊松公式计算下述定解问题的解. ⊿ ,初始速度为零.初始位移在某个单位球内为1,在球外为零。
解:取单位球的球心为坐标原点,则定解问题为:
由泊松公式
(i)当点 (以 为矢径的点简称为点 ,下同)在单位球内时:
a.若 ,球面 完全在单位球内,从而
,
b.若 ,单位球将在球面 内,这时 ,从而 .
,
显然取 时可以满足边界条件
于是
2.半无限长的杆,其端点受到纵向力 作用,求解杆的纵振动。
解:泛定方程 ,
的初始条件:
边界条件
对 的地方,端点的影响未传到,所以
。
对 的地方,需要考虑端点的影响。对a<0, 和 未定义,现将它们延拓。
其中 和 待定,应用达朗伯公式;
它应满足边界条件
显然,取 而 即可满足条件。
∴
将上式对t积分,并利用 得
,
∴
而反射波 。
故本题之解透射波为:
当 时,
当 时,
反射波
当 , 时,
当 , 时,
习题2.3(P162)
1.证明球面问题
的解为:
解:将该问题利用球坐标转换为一维问题。在球对称的情况下原方程可变为:
令 ,则原方程变为:
得通解为:
即,原方程的通解为
将初始条件代入有
求解并整理
2.以半径为 的球内含有气体,在初始时刻时是静止的,在球内的初始压缩率为 ,在
解:设波传到分界点x=0处的时刻为t=0,则依题意
衔接条件为
上式中 是荷载Mg的位移,在x<0的区域中,方程(1)的通解为
其中 是待求的反射波。由条件(2)知
即
由 的解知
。
在 的区域,只有透射波,而没有反射波,故(3)的解为
其中 是待求的反射波,由条件(4),可知
即
由 可得
。
应用衔接条件(5),(6),可得
。
3.平面偏振的平面光波沿x轴行进而垂直地投射于两种介质的分界面上,入射光波的电场强度 ,其中 是第一种介质的折射率。求反射光波和透射光波[提示:在分界面上,E连续, 。
解:入射光波传到分界面x=0处的时刻为t=0,得定解问题:
衔接条件
在x<0的区域中,(1)之解为
由条件(2)可得
在区域x>0,没有反射波,只有透射波。因此(3)的解为
[提示: ]。
解:
习题2.2(P154)
1.一根无限长的弦与 轴的正半轴重合,处于平衡状态中,左端位于原点,当 时左端点最微小的振动 ,求弦的振动规律。
解:当 显然有
当 ,将初始条件延拓到x<0半无界区域,
其中 和 尚未确定。
将达朗伯公式应用于延拓后的无界弦。
且令其满足边界条件得到:
即
记 at为 ,则
球外为零。无论何时,压缩率与速度势的关系为 ,并且速度势满足方程
试对所有的 ,确定压缩率。
解:该问题的定解问题为:
上题的结果有:
讨论:(1)若 点在球外,则 ,所以 ,即 ,此时有
(2)若 点在球内,则 ,
(ⅰ)当 时,更有 ,得
(ⅱ)当当 时,而当 时, ,
( )当 ,更有 ,所以, ,此时有:
3.利用泊松公式求解下列定解问题
将其代入三维波送公式有:
+
即:
5.利用二维泊松公式求解下面的定解问题
解:根据二维泊松公式有:
思考:能否用简单的方法求解第2题和第5题
第2题:由于该方程为线性方程,故可以利用叠加原理来求解。于是该题可以变为下面三个一维波动方程的解的叠加。
(1) (2) (3)
故原方程的解为:
第5题:由初始条件可知 ,将二维波动方程分解为一维波动方程的叠加
由条件(4), 。应用衔接条件(5)(6),得
将(8)对t积分,且由于 。
由(7)(9)消去 行
再得 。
所以解为:
反射波
透射波
补充:
4.求解半无限长理想传输线上电报方程的解,端点通过电阻 相接,初始电压分布为 ,初始电流分布 ,在什么条件下端点没有反射(这种情况叫作匹配)?
解:∵是理想传输线,∴ 。因此,定解问题是