_高三数学第一轮总复习课件19(1).ppt

合集下载

人教版高中数学课件:高三数学第一轮复习的课件 平面向量坐标运算

人教版高中数学课件:高三数学第一轮复习的课件 平面向量坐标运算
2 3
k<
2 3
思考2:△ABC为钝角三角形,求k的范围?
k<

3 2 13
<k<
3 2

3
<k < 2
3 2
13
或k>
11 3
思考3:△ABC为锐角三角形,求k的范围?
让我们共同来提高! 问题2已知向量 u ( x , y ) 与 v ( y , 2 y x ) 的对应关系用 v f (u ) 表示. (1)设a (1,1), b (1, 0 ) ,求向量 f ( a )及 f (b ) 的坐标; (2)证明:对于任意向量 a , b 及常数m,n恒有: f ( m a n b ) mf ( a ) nf ( b ) 成立; (3)求使 f ( c ) ( p , q )(p,q为常数)的向量 c 的坐标. 解:⑴ 由题意,知:
五、作业布置:
苏大《自我测试》B册 P179 §32 作业部分及例题2
△ABC为钝角三角形,求k的范围?
AB AC
y C4 C2 B
<0且
AB 、 AC
不共线;
k<
2 3
即 2 3 k <0

BA BC
BC <0且 BA、 不共线. 即 1 ( 2 ) 3 ( k 3 )<0
又 mf ( a ) nf ( b ) m ( a 2 , 2 a 2 a 1 ) n ( b 2 , 2 b 2 b1 ),
( ma 2 nb 2 , 2 ma 2 2 nb 2 ma 1 nb 1 )
f ( m a n b ) mf ( a ) nf ( b ).
若u
( x , y ),

2025届高三数学一轮复习课件-+简单的三角恒等变换

2025届高三数学一轮复习课件-+简单的三角恒等变换

)
A.π 3
B.5π 12
C.π6
D.π4
解析 ∵0<α<π2,0<β<π2,∴0<α+β<π,由 cosα=17,sin(α+β)=5143,得 sinα=473,
cos(α+β)=±1114.若 cos(α+β)=1114,则 sinβ=sin[(α+β)-α]=sin(α+β)cosα-cos(α+
解析
sinα -
3
cosα

2
12sinα-
3
2
cosα

2sin
α-π3

m

1




1≤sinα-π3≤1,所以-2≤2sinα-π3≤2,所以-2≤m-1≤2,解得-1≤m≤3,
则 m 的取值范围是[-1,3].
课堂小结(1分钟)
【通性通法】 三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通常是 把复杂的三角函数通过恰当的三角变换,转化为一种简单的三角函数,再研究转化 后函数的性质.在这个过程中通常利用辅助角公式,将 y=asinx+bcosx 转化为 y= Asin(x+φ)或 y=Acos(x+φ)的形式,以便研究函数的性质,解题时注意观察角、函 数名、结构等特征,注意利用整体思想解决相关问题.
因为 x∈π4,32π,所以 x-71π2∈-π3,1112π,
所以 sinx-71π2∈- 23,1,
所以- 22sinx-71π2∈- 22, 46,
即函数
f(x)在区间π4,32π上的最大值为
46,最小值为-
2 2.
(2)因为 cosθ=45,θ∈32π,2π, 所以 sinθ=-35,所以 sin2θ=2sinθcosθ=-2245, cos2θ=cos2θ-sin2θ=1265-295=275, 所以 f2θ+π3=- 22sin2θ+π3-71π2 =- 22sin2θ-π4=-12(sin2θ-cos2θ) =12(cos2θ-sin2θ)=12×275+2245=3510.

第1章 第1讲集合的概念与运算-2021版高三数学(新高考)一轮复习课件共45张PPT

第1章 第1讲集合的概念与运算-2021版高三数学(新高考)一轮复习课件共45张PPT

第一章 集合与常用逻辑用语
高考一轮总复习 • 数学 • 新高考
返回导航
[解析] (1)B={x|x∈A}={1,2,3}=A,故选 C.
(2)∵集合 A={x|x=sin n3π,n∈Z}={0, 23,- 23},且 B⊆A,∴集合 B 的个 数为 23=8,故选 C.
(3)解法一:(列举法),由题意知
高考一轮总复习 • 数学 • 新高考
返回导航
(2)(多选题)(2020·湖南长郡中学模拟改编)已知集合 M={y|y=x-|x|,x∈R},N
={y|y=(12)x,x∈R},则下列不正确的是(ABD )
A.M=N
B.N⊆M
C.M=∁RN
D.(∁RN)∩M=∅
(3)已知集合 A={x|x2-3x-10≤0},B={x|mx+10>0},若 A⊆B,则 m 的取值范
返回导航
(3)若 a+2=1,则 a=-1,A={1,0,1},不合题意;若(a+1)2=1,则 a=0 或-
2,当 a=0 时,A={2,1,3},当 a=-2 时,A={0,1,1},不合题意;若 a2+3a+3=1,
则 a=-1 或-2,显然都不合题意;因此 a=0,所以 2 0200=1.
∵1∉A,∴a+2≠1,∴a≠-1;(a+1)2≠1,解得 a≠0,-2;a2+3a+3≠1 解
A.(-1,1)
B.(1,2)
C.(-1,+∞)
D.(1,+∞)
[解析] 由题意得A∪B={x|x>-1},即A∪B=(-1,+∞),故选C.
第一章 集合与常用逻辑用语
高考一轮总复习 • 数学 • 新高考
返回导航
6. (2019·全国卷Ⅱ,5分)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B

新课标2023版高考数学一轮总复习第1章预备知识第1节集合课件

新课标2023版高考数学一轮总复习第1章预备知识第1节集合课件

根据集合的运算结果求参数的值或范围的方法 (1)将集合中的运算关系转化为两个集合之间的关系.若集合中 的元素能一一列举,则用观察法得到不同集合中元素之间的关系;若 是与不等式有关的集合,则一般利用数轴解决,要注意端点值能否取 到. (2)将集合之间的关系转化为解方程(组)或不等式(组)问题求解.
1.设集合 A={(x,y)|x2+y2=1},B={(x,y)|x+y=1},则 A∩B
(5,6] 解析:因为 P 中恰有 3 个元素,所以 P={3,4,5},故 k 的取值范围为(5,6].
与集合中的元素有关问题的求解思路 (1)确定集合中元素的特征,即集合是数集还是点集或其他集合. (2)看清元素的限制条件. (3)根据限制条件求参数的值或确定集合中元素的个数,但要检 验参数是否满足集合元素的互异性.
1.A∪B=A⇔B⊆A. 2.A∩B=A⇔A⊆B. 3.∁U(∁UA)=A.
4.常用结论 (1)若有限集 A 中有 n 个元素,则 A 的子集有 2n 个,真子集有(2n -1)个,非空真子集有(2n-2)个. (2)子集的传递性:A⊆B,B⊆C⇒A⊆C. (3)∁U(A∩B)=(∁UA)∪(∁UB), ∁U(A∪B)=(∁UA)∩(∁UB).
(4)集合与集合间的基本关系 ①子集:集合A中任意一个元素都是集合B中的元素.用符号表 示为 A⊆B (或 B⊇A ). Venn图如图所示:
②真子集:集合 A⊆B,但存在元素 x∈B,且 x A.用符号表示 为:A B(或 B A).
Venn 图如图所示:
③集合相等:集合A的任何一个元素都是集合B的元素,同时集 合B的任何一个元素都是集合A的元素.用符号表示为 A=B .
1.设全集 U=R,则集合 M={0,1,2}和 N={x|x·(x-2)·log2x=0} 的关系可表示为( )

高考数学一轮总复习课件:随机抽样、用样本估计总体

高考数学一轮总复习课件:随机抽样、用样本估计总体

6.(2020·天津)从一批零件中抽取 80 个,测量其直径(单位: mm),将所得数据分为 9 组:[5.31,5.33),[5.33,5.35),…,[5.45, 5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽 取的零件中,直径落在区间[5.43,5.47)内的个数为( B )
n 的样本进行调查,其中从丙车间的产品中抽取了 3 件,则 n=
(D ) A.9
B.10
C.12
D.13
【解析】 由分层抽样可得630=2n60,解得 n=13.
【讲评】 进行分层抽样的相关计算时,常利用以下关系式 巧解:
①总样体本的容个量数nN=该层该抽层取的的个个体体数数; ②总体中某两层的个体数之比等于样本中这两层抽取的个 体数之比.
5.对某商店一个月内每天的顾客人数进行了统计,得到样本 的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( A )
A.46,45,56 B.46,45,53 C.47,45,56 D.45,47,53
解析 从茎叶图中可以看出样本数据的中位数为中间两个数的 平均数,即45+2 47=46,众数是 45,极差为 68-12=56,故选择 A.
状元笔记
(1)一个抽样试验能否用抽签法,关键看两点:一是制签是否 方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都 较小时可用抽签法.
(2)在使用随机数表时,如遇到取两位数或三位数,可从选择 的随机数表中的某行某列的数字计起,每两个或每三个作为一个 单位,自左向右选取,有超过总体号码或出现重复号码的数字舍 去.
个最高分、1 个最低分,得到 7 个有效评分.7 个有效评分与 9 个
原始评分相比,不变的数字特征是( A )

高三数学第一轮复习课件(ppt)目录

高三数学第一轮复习课件(ppt)目录

Page 12
目录 CONTENTS
第二章
2.1 函数及其表示 2.2 函数的单调性与最值 2.3 函数的奇偶性与周期性 2.4 一次函数、二次函数 2.5 指数与指数函数 2.6 对数与对数函数 2.7 幂函数 2.8 函数的图象及其变换 2.9 函数与方程
函数
2.10 函数模型及其应用
第一讲:三角函数
S ABC=1/2bcsinA=1/2absinC=1/2ah,可得sinA=√15/8,sinC=√15/4。
∴cosA=7/8,cosC=1/4,
∴cos(A-C)=7/8 x 1/4 + √15/8 x √15/4
=11/16 c=2
A
b=2
h=√15/2
Page 21
B
C 1/2 a
1/2
C、﹙1,+∞﹚
D、[1,+∞﹚
解析:由于3x>0,所以3x+1>1,所以f(x)>0,集合表示为(0,+∞),答案为A
2、已知函数y=2x+1的值域为(5,7),则对应的自变量x的范围为(

A、[2,3)
B、[2,3]
C、(2,3)
D、(2,3]
解析:根据题意:5<2x+1<7,解得2<x<3,用集合表示为(2,3),答案为C
A [1,2]
解析:解二元一次不等式x2 +2x-8≤0,可得-4≤x≤2,所以M为[-4,2]; 解不等式3x-2≥2x-1,可得x≥1,所以N为[1,+∞﹚。此时我们可以应用数轴马 上解决问题:
-4 0 1 2
如图所示,阴影部分即为所求。答案:A 启示:掌握好数轴工具,在集合、函数问题( B
B、﹙-∞,5]

D、[5,+∞﹚

高三数学(文 新课标)一轮复习课件:第一章 集合与常用逻辑用语 ppt

高三数学(文 新课标)一轮复习课件:第一章 集合与常用逻辑用语 ppt

2019年6月1日
缘分让我们相遇,缘分让我们在一起
1
2.常用逻辑用语 (1)理解命题的概念.
(2)了解“若 p,则 q”形式的命题及其逆命题、否命题
与逆否命题,会分析四种命题的相互关系. (3)理解必要条件、充分条件与充要条件的含义. (4)了.解逻辑联结词“或”“且”“非”的含义. (5)理解全称量词和存在量词的意义.
第一章 集合与常用逻辑用语
考纲链接
1.集合 (1)集合的含义与表示 ①了解集合的含义,体会元素与集合的属于关系. ②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题. (2)集合间的基本关系 ①理解集合之间包含与相等的含义,能识别给定集合的子集. ②在具体情境中,了解全集与空集的含义. (3)集合的基本运算 ①理解两.个集合的并集与交集的含义,会求两个简单集合的并集与交集. ②理解在给定集合中一个子集的补集的含义,会求给定子集的补集. ③能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.
=∅,则实数 a 的取值范围为________.
2019年6月1日
缘分让我们相遇,缘分让我们在一起
19
解:(1)因为{1,a+b,a}=0,ba,b,a≠0, 所以 a+b=0,ba=-1,从而 b=1, 所以 a=-1,b=1,所以 b-a=2.故填 2. (2)由 A=∅知方程 ax2+3x-2=0 无实根, 当 a=0 时,x=23不合题意,舍去;
(6)能正确地对含一个量词的命题进行否定 .
2019年6月1日
缘分让我们相遇,缘分让我们在一起
2
• 1.1 集合及其运算
2019年6月1日
缘分让我们相遇,缘分让我们在一起
3
1.集合的基本概念

高三数学一轮复习数列求和的方法总结课件 (共19张PPT)

高三数学一轮复习数列求和的方法总结课件 (共19张PPT)

2 23
3 24
n2n1
n 2n1
由-得
1 2
Sn
1 2
1 22
1 23
1 2n
n 2n1
5
1 2 Sn
1 [1 ( 1 ) n ]
2
2
1 1
n 2 n1
2
得:
Sn
2
2n 2n
6
例、求1, 数 3, 5列 , 7, , 2n1 2 4 816 2n
的前 n项.和 解 S n : 1 2 2 3 2 2 5 3 2 7 4 2 n 2 n 1
1 (1 1 1 1 1 1 )
4 223
n n1
1 (1 1 ) n 4 n 1 4(n 1)
14
五、分组求和法 如果一个数列的通项公式可写成 cn=an+bn的形式,而数列{an},{bn}是 等差数列或等比数列或可转化为能 够求和的数列,可采用分组求和法.
15
例、已知等比数{列 an}的前n项和为Sn, a4 2a3, S2 6. (1)求数列{an}的通项公式. (2)数列{bn}满足:bn an log2 an,求数列 {bn}的前n项和Tn. 解:设数 {an列 }的首项 a1,公 为比q(q为 0) 则 a1q32a1q2
.
.
.
.
.②

-②
:1 2
Sn
1 2
2 22
+
2 23
+
2 24
+
+
2 2n
2n 1 2 n1
11+ 1 + 1 + 2 2 22 23
+
1 2 n1

高三数学一轮复习北师大PPT课件

高三数学一轮复习北师大PPT课件
=13×82×4 14-13×42×2 14=2243 14(cm3).
第42页/共61页
[点评] 求锥体的体积常用方法为:割补法和等积变 换法:(1)割补法:求一个几何体的体积可以将这个几何 体分割成几个柱体、锥体,分别求出柱体和锥体的体积, 从而得出几何体的体积.有时将几何体补成易求几何体的 体积,如长方体、正方体,然后求出两个或几个几何体的 体积之差.
第12页/共61页
5.(2010·浙江理)若某几何体的三视图(单位:cm)如 图所示,则此几何体的体积是________cm3.
第13页/共61页
[答案] 114 [解析] 三视图还原为一个正棱台和长方体的组合体, 对棱台:下底边长8,上底边长为4,高为3,对其上的长 方体,边长为4,4,2,则体积为144cm3.
第25页/共61页
如图,在直三棱柱ABC-A1B1C1中,AB=BC=,AA1 =2,∠ABC=90°,E、F分别为AA1、B1C1的中点,沿棱 柱的表面从E点到F点的最短路径的长度为d,求d的最小 值.
第26页/共61页
[分析] 可将直三棱锥的表面展开,利用“两点间线 段最短”来解决.
[解析] 将三棱柱的侧面、底面展开有三种情形:
方体各个面的中心为顶点的凸多面体的体积为
()
2
2
3
2
A. 6
B. 3
C. 3
D.3
[答案] B
第10页/共61页
[解析] 本小题主要考查正方体的有关性质和凸多 面体的体积公式.
如图,凸多面体为两个相同正四棱锥的组合体, ∵AC= 2,AE=1, 且 AECF 为正方形, ∴EC=1,∴SAECF=1, ∵高为 22, ∴V=2×31× 22= 32,故选 B.

高三数学第一轮复习《第1课时 集合的概念及其基本运算》课件

高三数学第一轮复习《第1课时 集合的概念及其基本运算》课件

探究提高 在解决两个数集关系问题时,避免出错的 一个有效手段即是合理运用数轴帮助分析与求解,另 外,在解含有参数的不等式(或方程)时,要对参数 进行讨论.分类时要遵循“不重不漏”的分类原则, 然后对每一类情况都要给出问题的解答. 分类讨论的一般步骤:①确定标准;②恰当分类; ③逐类讨论;④归纳结论.
(2)当a=0时,显然B A;
当a<0时,若B A,如图,
4 则 a
1 a
1 2
2
,
a a
8 1.
2
1 2
a
0;
当a>0时,若B A,如图,
则4 a
1 a
2
1
2
,
a a
2 .0
2
a
2.
综上知,当B
A时,
1 2
a
2
(3)当且仅当A、B两个集合互相包含时,A=B.
由(1)、(2)知,a=2.
( B)
A.a<1 B.a≤1 C.a<2 D.a≤2
解析 由图象得a≤1,故选B.
明年目标
工作详情
题型一 集合的基本概念
【例1】 集合A={0,2,a},B={1,a2},
若A∪B={0,1,2,4,16},则a的值为 ( )
A.0
B.1
C.2
D.4
思维启迪 根据集合元素特性,列出关于a的方程
则A∩( UB)等于 A.{x|0≤x<1}
(B) B.{x|0<x≤1}
C.{x|x<0}
D.{x|x>1}
解析 ∵B={x|x>1},
∴ UB={x|x≤1}. 又A={x|x>0},
∴A∩( UB)={x|0<x≤1}。

高三数学一轮复习 函数与方程、函数模型及应用课件 新人教B版

高三数学一轮复习 函数与方程、函数模型及应用课件 新人教B版

• 四、实系数一元二次方程ax2+bx+c=0(a≠0)的实根的 符号与系数之间的关系 • 1.方程有两个不相等的正实数根⇔
• 2.方程有两个不相等的负实根⇔
• 五、一元二次方程f(x)=ax2+bx+c=0(a≠0)的区间根问 题 • 研究一元二次方程的区间根,一般情况下需要从以下三 个方面考虑: • 1.一元二次方程根的判别式; • 2.对应二次函数区间端点函数值的正负;
(3)若f(x0)· f(b0)<0,则方程f(x)=0的一个根位于区间 (x0,b0)中,令a1=x0,b1=b0. 1 第四步:取区间(a1,b1)的中点x1= 2 (a1+b1),重复第 二、第三步,……直到第n次,方程f(x)=0的一个根总在 区间(an,bn)中. 第五步:当|an-bn|<ε,(ε是规定的精确度)时,区间 (an,bn)内的任何一个值就是方程f(x)=0的一个近似根. 注意:二分法只适用于求函数f(x)的变号零点.
解析:(1)设投资x万元时,A产品的利润为f(x)万 元,B产品的利润为g(x)万元. 由题设f(x)=k1x,g(x)=k2 x, 1 1 由图知f(1)=4,∴k1=4. 5 5 又g(4)=2,∴k2=4. 1 5 从而f(x)= x(x≥0),g(x)= x(x≥0). 4 4
• 解析:(1)当0<x≤100时,f(x)=60; • 当100<x≤600时,f(x)=60-(x-100)×0.01=61- 0.01x.
60 ∴f(x)= 61-0.01x
0<x≤100 . 100<x≤600
• • • • •
(2)设利润为y元,则0<x≤100时, y=60x-50x=10x, ∴x=100时,ymax=1000元. 当100<x≤600时, y=(61-0.01x)·x-50x=11x-0.01x2

2024届高三数学一轮复习-求数列通项公式的方法 课件(共25张ppt)

2024届高三数学一轮复习-求数列通项公式的方法 课件(共25张ppt)

再得出 的表达式
例五.2
在数列 中,1 = 1,+1 =

,求通项公式 ?
3 +2
解:由题意,两边同取倒数,得

1
an+1
+k=2
1
an
+k

1
an+1
1
an+1
=
=
1
2
an
1
2 +3
an
+k
对比原式,得k = 3

1
an
1
an
+ 3 为首项为4,公比为2的等比数列
+ 3 = 4 · 2n−1 = 2n+1
解题思路:设 ,构造等比数列{ + }
具体步骤: 设+1 + = +
即+1 = ⋅ + − 1 ·
对比原式,得k =
q
p−1
得到以1 +为首项,为公比的等比数列{ + }
例四.1
在数列 an 中,a1 = 1,an+1 = 3an + 1,求通项公式an ?
故an =
1
2n+1 −3
六、取对数法
①形如+1 = ⋅
对数运算法则: log ⋅ = log + log
解题思路:等式两边同取对数,构造等比数列
log ⋅= · log
具体步骤: 两边同取以p为底的对数,得log +1 = log + 1
使用条件:已知+1 − =
解题思路: 2 − 1 = 1

2023届高考人教A版数学一轮复习课件:函数的概念及其表示

2023届高考人教A版数学一轮复习课件:函数的概念及其表示

A.0
)
B.2
C.3
D.-3
2 ()
(2)(2021广东珠海高三期中)若一次函数f(x)满足f(f(x))=x+1,则g(x)=

(x>0)的值域为
.
答案 (1)D
(2)[2,+∞)
解析 (1)由 f(x)-2f
1
f(x)=3

2
+

1

=x+2,可得
1

1
-2f(x)= +2,联立两式可得

(2)(2021湖南长沙长郡中学高三二模)已知函数f(x)= ( + 2), ≤ 0, 则
f(-5)=
.
答案 (1)B (2)e
解析 (1)当a≤0时,f(a)=a2+1=5,解得a=-2;当a>0时,f(a)=2a+3=5,解得a=1.
故选B.
e , > 0,
(2)由f(x)= ( + 2), ≤ 0, 得f(-5)=f(-5+2)=f(-3)=f(-3+2)=f(-1)=f(1+2)=f(1)=e.
的定义域是[1,+∞),则
2
+ -1
函数y=f(x)的定义域是
.
答案 (1)D
解析
(2)(1,2]
(1)因为函数 f(x)的定义域为[-2,1],所以对于函数
(3-2)
y=
,有
lg(1-)
-2 ≤ 3-2 ≤ 1,
(3-2)
解得 0<x<1,因此函数 y=
的定义域为(0,1).
1- > 0,
-2,代入 x=2 可得 f(2)=-3,故选 D.

高考数学一轮总复习课件:导数的概念与运算

高考数学一轮总复习课件:导数的概念与运算

(4)f(x)= 1-1 2x2;
π (5)f(x)=cos(3x2- 6 ).
【解析】 (1)∵f′(x)=(2x5+8x4-5x3+2x2+8x-5)′,
∴f′(x)=10x4+32x3-15x2+4x+8.
(2)∵f(x)=11+ -
xx+11+-
x x
=(1+ 1-xx)2+(1- 1-xx)2
π 5.设正弦函数y=sinx在x=0和x= 2 处的瞬时变化率为
k1,k2,则k1,k2的大小关系为( A )
A.k1>k2
B.k1<k2
C.k1=k2
D.不确定
解析 ∵y=sinx,∴y′=(sinx)′=cosx. π
k1=cos0=1,k2=cos 2 =0,∴k1>k2.
授人以渔
题型一 导数的概念(自主学习)
(3)设切点为(x0,y0),则切线的斜率为k=x02=1, 解得x0=±1,故切点为1,53或(-1,1). 故所求切线方程为y-53=x-1或y-1=x+1. 即3x-3y+2=0或x-y+2=0.
【答案】 (1)4x-y-4=0 (2)4x-y-4=0或x-y+2=0 (3)3x-3y+2=0或x-y+2=0
状元笔记
求曲线的切线方程的两种类型 (1)在求曲线的切线方程时,注意两个“说法”:求曲线在 点P处的切线方程和求曲线过点P的切线方程,在点P处的切线, 一定是以点P为切点;过点P的切线,不确定点P在不在曲线上, 点P不一定是切点. (2)求曲线过点P(x0,y0)的切线方程的步骤为: 第一步,设出切点坐标P′(x1,f(x1));
数的平均变化率Δ Δyx的极限是否存在.
(2)利用导数定义求函数的导数时,先算函数的增量Δy,

高三数学一轮复习PPT课件

高三数学一轮复习PPT课件
如何求解? 解:①若 B=∅,则 Δ=m2-4<0, 解得-2<m<2; ②若 1∈B,则 12+m+1=0, 解得 m=-2,此时 B={1},符合题意; ③若 2∈B,则 22+2m+1=0, 解得 m=-52,此时 B=2,12,不合题意. 综上所述,实数 m 的取值范围为[-2,2).
第28页/共60页
第23页/共60页
[典题 2] (1)已知集合 A={x|x2-3x+2=0,x∈R},B
={x|0<x<5,x∈N},则满足条件 A⊆C⊆B 的集合 C 的个
数为( D )
A.1
B.2
C.3
D.4
第24页/共60页
[解析] 由 x2-3x+2=0,得 x=1 或 x=2, ∴A={1,2}. 由题意知 B={1,2,3,4}, ∴满足条件的 C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.
第30页/共60页
1.[2017·广东河源东江中学月考]已知全集 U=R,集合 A ={y|y=2x,x∈R},B={y|y=x2,x∈R},则能正确表示集 合 A,B 关系的韦恩(Venn)图是( C )
A
B
C
D
第31页/共60页
解析:∵A={y|y=2x,x∈R}=(0,+∞),B={y|y=x2,x ∈R}=[0,+∞),∴A B.故选 C.
[点石成金] 1.集合间基本关系的两种判定方法和一个关键
第29页/共60页
2.根据两集合的关系求参数的方法 已知两个集合之间的关系求参数时,要明确集合中的元素, 对子集是否为空集进行分类讨论,做到不漏解. (1)若集合元素是一一列举的,依据集合间的关系,转化为解 方程(组)求解,此时注意集合中元素的互异性; (2)若集合表示的是不等式的解集,常依据数轴转化为不等式 (组)求解,此时需注意端点值能否取到.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

,
E 2
,
半径为
1 2
D2 E2 4F的圆的方程,
在解题时要注意方程表示圆的条件.
共 44 页
20
变式2:若曲线x2+y2+a2x+(1-a2)y-4=0关于直线y-x=0对称的 曲线仍是其本身,则实数a为( )
9
4.(2009 全国Ⅱ)双曲线 x2 y2 1的渐近线与圆x 32
63
y2 r2 r 0相切,则r=( )
A. 3 B.2 C.3 D.6
答案:A
共 44 页
10
共 44 页
11
解读高考第二关 热点关 题型一 求圆的方程 例1(2009·广东)以点(2,-1)为圆心且与直线x+y=6相切的圆 的方程是.
共 44 页
12
解析 : 设圆的方程为(x 2)2 (y 1)2 r2 r 0,圆心
(2, 1)到直线x y 6的距离为 2 1 6 5 ,则r 5 .
2
2
2
圆的方程为(x 2)2 (y 1)2 25 . 2
点评:求圆的方程关键是确定圆心和半径,在解决问题时注
意运用圆的性质确定圆心和半径.
共 44 页
4
考点训练
1.(2009·重庆)圆心在y轴上,半径为1,且过点(1,2)的圆的方
程是( )
A.x2+(y-2)2=1
B.x2+(y+2)2=1
C.(x-1)2+(y-3)2=1
D.x2+(y-3)2=1
答案:A
解析:根据题意,设所求圆的圆心坐标为(0,b),则圆的方 程可表示为x2+(y-b)2=1,把(1,2),代入得b=2,∴圆的方程 为x2+(y-2)2=1.
解析 : 两直线x y 0, x y 4 0互相平行, 所以两直线
距离为圆的直径,所以r 4 2.设圆心O m, m,则圆
22 心到直线x y 0的距离为2,即 m m 2.又m 0,
2
m 1,所以圆心O 1, 1,方程为x 12 y 12 2.
共 44 页
7
3.(2009·上海)点P(4,-2)与圆x2+y2=4上任一点连线的中点 轨迹方程是( ) A.(x-2)2+(y+1)2=1 B.(x-2)2+(y+1)2=4 C.(x+4)2+(y-2)2=4 D.(x+2)2+(y-1)2=1 答案:A
共 44 页
13
例2求圆心在直线5x-3y=8上,且与两坐标轴相切的圆的标准
方程.
解析 : 设所求圆的方程为(x a)2 (y b)2 r2.
圆与两坐标轴相切,a b, r a .
又 圆心(a,b)在直线5x 3 y 8上,5a 3b 8,
a b, a 4, a 1,
所以它表示一个圆的方程.
2由1可知,它的圆心为m 1, 2m 3,半径为2.
设圆心的坐标为 x, y,则yx2mm13,即y 2x 5.
故它是圆心在直线y 2x 5上运动且半径为2的圆. 点评 : 方程x2 y2 Dx Ey F 0当D2 E2 4F 0时,
表示圆心
D 2
当D2 E2 4F 0时,方程表示的是以( D , E)为 22
圆心, 1 D2 E2 4F为半径的圆. 2
当D2 E2 4F 0时,方程①只有一个实数解
x
D 2
,y
E 2
,方程表示一个点
D 2
,
E 2
;
当D2 E2 4F 0时,方程不表示任何图形.
共 44 页
3
3.求圆的方程的方法 (1)几何法:通过研究圆的性质、直线与圆、圆与圆的位置关 系,进而求得圆的基本量(圆心、半径)和方程. (2)代数法:用“待定系数法”求圆的方程,其一般步骤是: ①根据题意选择方程的形式——标准形式或一般形式; ②利用条件列出关于a,b,r或D,E,F的方程组; ③解出a,b,r或D,E,F,代入标准方程或一般方程.
第四十八讲 圆与圆的方程
共 44 页
1
走进高考第一关 考点关 回归教材 1.圆的标准方程
圆心为C a, b , 半径是r的圆的标准方程为
(x a)2 (y b)2 r2 特别地,当圆心在坐标原点时,圆的方程为 x2 y2 r 2
共 44 页
2
2.圆的一般方程
二元一次方程x2 y2 Dx Ey F 0, ①
共 44 页
8
解析 : 设圆上任一点Q(x0, y0 ), PQ的中点M x, y,
由题意得
22yx42xy00,
即 ,
x y
0 0
2x 2y
4, 2,
又 Q(x0 , y0 )在圆x2 y2 4上,
(2x 4)2 (2y 2)2 4,即(x 2)2 (y 1)2 1.
),B(-1,1)且圆心在直线x+y-2=0上的圆的方 程是( ) A.(x-3)2+(y+1)2=4 B.(x+3)2+(y-1)2=4 C.(x-1)2+(y-1)2=4 D.(x+1)2+(y+1)2=4
答案:C
共 44 页
16
共 44 页
17
共 44 页
18
题型二 圆的标准方程与一般方程的关系 例3已知方程x2+y2-2(m-1)x-2(2m+3)y+5m2+10m+6=0 (1)此方程是否表示一个圆的方程?请说明理由; (2)若此方程表示一个圆,当m变化时,它的圆心和半径有什么 规律?请说明理由.
共 44 页
19
解 : 1方程可化为x (m 1)2 y (2m 3)2 4,
共 44 页
5
2.(2009·辽宁)已知圆C与直线x-y=0及x-y-4=0都相切,圆心 在直线x+y=0上,则圆C的方程为( ) A.(x+1)2+(y-1)2=2 B.(x-1)2+(y+1)2=2 C.(x-1)2+(y-1)2=2 D.(x+1)2+(y+1)2=2 答案:B
共 44 页
6
由5a 3b 8,得 b 4,或 b 1,
r | a |
r 4 r 1.
所求圆的方程为: (x 4)2 (y 4)2 16
或(x 1)2 (y 1)2 1.
共 44 页
14
点评:确定圆的要素是圆心和半径,求圆的方程时只要把圆心 和半径求出来即可,一般是根据题目给出的已知条件通过联 立关于圆心坐标和半径的方程组解决.解题时注意把几何条 件转化为方程组时要准确无误,几何条件和代数方程要等价, 在列出方程组后,解方程组要准确,防止计算结果出错.
相关文档
最新文档