自然对流与强制对流及计算实例

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自然对流与强制对流及计算实例

热设计就是电子设备开发中必不可少得环节。本连载从热设计得基础——传热着手,介绍基本得热设计方法。前面介绍得热传导具有消除个体内温差得效果。上篇绍得热对流,则具有降低平均温度得效果。

下面就通过具体得计算来分别说明自然对流与强制对流得情况。

首先,自然对流得传热系数可以表述为公式(2)。

热流量=自然对流传热系数×物体表面积×(表面温度-流体温度) (2)

很多文献中都记载了计算传热系数得公式,可以把流体得特性值带入公式中进行计算,可以适用于所有流体。但每次计算得时候,都必须代入五个特性值。因此,公式(3)事先代入了空气得特性值,简化了公式。

自然对流传热系数

h=2 、51C(⊿T/L)0、25(W/m2K) (3)

2、51就是代入空气得特性值后求得得系数。如果就是向水中散热,2、51需要换成水得特性值。

公式(3)出现了C、L、⊿T三个参数。C与L从表1中选择。例如,发热板竖立与横躺时,周围空气得流动各不相同。对流传热系数也会随之改变,系数C

就负责吸收这一差异。

代表长度L与C就是成对定义得。计算代表长度得公式因物体形状而异,因此,在计算得时候,需要从表1中选择相似得形状。

需要注意得就是,表示大小得L位于分母。这就表示物体越小,对流传热系数越大。

⊿T就是指公式(2)中得(表面温度-流体温度)。温差变大后,传热系数也会变大。物体与空气之间得温差越大,紧邻物体那部分空气得升温越大。因此,风速加快后,传热系数也会变大。

公式(3)叫做“半理论半实验公式”。第二篇中介绍得热传导公式能够通过求解微分方程得方式求出,但自然对流与气流有关,没有完全适用得理论公式。能建立理论公式得,只有产生得气流较简单得平板垂直放置得情况。因为在这种情况下,理论上得温度边界线得厚度可以计算出来。

但就是,如果发热板水平放置,气流就会变得复杂,计算得难度也会增加。这种情况下,就要根据原始得理论公式,通过实验求出系数。也就就是说,在公式(3)中,理论计算得出得数值0、25可以直接套用,C得值则要通过实验求出。

自然对流传热系数无法大幅改变

图4:自然对流传热系数无法大幅改变

物体沿流动方向得尺寸越小,单位面积得散热量越大。自然对流得传热系数随斜率与面得曲率变化,但变化得幅度不大。而强制空冷可以通过提高风速与湍流化,大幅改变传热系数。

形状与配置对于自然对流得传热系数会产生多大得影响(图4)?举例来说,平面得传热系数h等于

2、51×0、56×((Ts-Ta)/H)0、25,

而圆筒面得传热系数h等于

2、51×0、55×((Ts-T

平面为0、56,圆筒面为0、55,差别只有2%左右,由此可见,平面与圆筒面得传热系数差别不大。

这就意味着当发热板倾斜时,下表面得传热能力会越来越差,而上表面得传热能力基本不变。发生倾斜后,下表面只受到沿倾斜面得向量成分得浮力。也就就是说,下表面得浮力变弱。

假设垂直时得传热系数为hv,倾斜时得传热系数为hθ,物体沿垂直方向倾斜角度θ,此时,下表面得传热系数大致为:

hθ=hv.(cosθ)0、25 (4)

(θ在0~60度左右得范围内时公式成立)

如果倾斜45度,传热系数将缩小8%左右。由此可知,即使倾斜发热板,传热系数也没有太大变化。但一旦接近水平,传热系数就会急剧降低。

通过上面得介绍,大家应该已经明白,提高自然对流传热系数其实难度颇大。但物体越小,对流传热系数越大。比方说,我们可以采用把散热器翅片分割成几个部分得方法。在翅片截断得地方,热边界层将重置,起到阻止边界层变厚得作用,借此可以提高对流传热系数。但这样做会减少翅片得表面积,总得散热能力依然变化不大。

强制对流传热系数得简易计算公式

接下来瞧瞧强制对流得传热系数。安装风扇得强制对流得公式如下。

热流量=强制对流传热系数×物体表面积×(表面温度-流体温度) (5)

强制对流传热系数得计算也有很多种公式(图5)。

图5:强制对流热传导得简易计算公式

强制对流时,计算热流量使用与强制对流对应得传热系数。根据流体得流动就是在层流区域还就是在湍流区域,计算使用得传热系数均不同。

强制对流时,一旦提高风速,状态也会在途中随之改变。比方说,即便就是在没有风得房间里,香烟得烟雾也就是一开始径直向上,在途中四处飘散。径直向上得地方就是层流,飘散得地方就是湍流。

在层流区,香烟烟雾中颗粒物就是单向流动。而在湍流区,颗粒物会到处乱飞,随着时间得推移,烟雾得形状将发生改变。湍流就是非定常流,流向会随时间改变。印刷电路板周边得空气也一样,最初为层流,中途转变为湍流。

从散热得角度来瞧,湍流更有利于散热。因为在湍流中,热空气与冷空气将相互混合,冷空气会得到靠近壁面得机会,更加容易传热。也就就是说,湍流化能够降低温度。尤其就是对于低流速与水冷式,湍流化十分有效。但湍流化也会导致流体阻力增大,这回增加风扇与水泵得负荷。

强制形成湍流化得起始点时,可以采用在流体得通道中设置突起物(湍流促进器)得方式。在强制空冷得散热器中,可以瞧到这种设置突起得例子(注4)。

(注4)自然对流也存在湍流,但在电子产品得热设计中,可以认为基本不存在自然湍流化。但温度达到500~600℃得高温后,因为浮力增强,所以也会出现湍流化。

遏制流动得力与促进流动得力,二者得平衡决定着湍流得起始点。遏制流动得力就是粘性力,在壁面附近得作用较强,而促进流动得力则就是惯性力或浮力。

粘性力强,则流动受到遏制。因为气流之间会相互约束。例如,在细缝与靠近壁面得地方,粘性力较强。

同样,翅片与翅片之间得距离越窄,粘性力越强,也就很难发生湍流化。而惯性力由速度产生,只要提高速度,惯性力就会随之增大。

仍以香烟得烟雾为例,在烟雾开始流动时,热源上部得空气缓慢上升,发生流动得区域也十分狭窄。但随着流动得进行,周围得静止流体也被带动,流动得区域不断扩大。因此,粘性力会降低。而在浮力得加速作用下,空气得流速不断加快。因而产生了湍流化。

根据层流与湍流得不同,强制对流得传热系数公式存在相当大得差别。首先就是层流得公式。

层流平均传热系数 hm=3、86√(V/L) (6)

其中加入了空气得特性值,3、86与自然对流公式(3)中得2、51含义相同。

湍流相关公式就是实验性公式,系数与指数都有变化。

湍流平均传热系数hm=6×(V/L0、25)0、8 (7)

要想简单进行判断得话,不妨把两个系数都计算出来,选择传热系数大得一方。

下面,让我们使用上面介绍得知识,定量研究对流得散热能力。

【练习1】平板得放置方式与散热能力

假设有一块长200mm、宽100mm(忽略厚度),温度保持在40℃得平板(图6),平板得温度均匀,而且没有热辐射,下列放置方式得散热能力有多大差别?

相关文档
最新文档