锂电池MOSFETMOS充电保护Power此时onIC原理《3》

合集下载

MOS管电路工作原理和详解优质PPT课件

MOS管电路工作原理和详解优质PPT课件
回顾前面的例子,你找到它们的规律了吗?
小提示: MOS管中的寄生二极管方向是关键。
电路符号
小结:“MOS管用作开关时在电路中的连接方法”
NMOS管:
D极接输入; S极接输出。
PMOS管:
S极接输入; D极接输出。
输出端
S极
G极
N沟道
输入端
S极
G极
P沟道
D极
输入端
导通时
D极
输出端
导通时
电路符号
反证:
看看我们常见的NMOS管4816:
请注意:不论NMOS管还是PMOS管,上述PIN脚的确定方法都是一样的。
假如MOS管表面磨损,或是无法辨认PIN1的标记圆点,你可以用什么 方法确认PIN1脚,以及G极,D极和S极? 拿出万用表,试试吧!
实物
再来看看相似的DFN封装MOS管:
外形上来看,DNF封装的MOS管仍旧有8个脚,但已经变成贴片形式, 节约了高度,散热性能更好些。 但其PIN脚极性还是一样排列。
实物
最后,3PIN脚的MOS管: (1)SOT-23
3
D
G
S
1
2
PIN1为G极;PIN2为S极;PIN3为D极。
图纸习惯
但请大家特别注意:主板上标示的PIN1与PIN2脚与此刚好颠倒了。
主板图纸上也是如此。 而且,似乎作为一种错误的习惯被保持了下来。
另外一种3PIN脚的MOS管: (2)TO-252
电路符号
19V
Adapter
BAT 12V
Q1 Q2 隔离
19V 3. 适配器+电池
问题:如果不用Q2隔离,同时插上适配器和电池会怎样?
现象是: 大电流。 当然这只有在维修稳压电源上才可以看到:电流直接达到 稳压电源的最大值6A以上,短路灯狂闪。

bms控制mos冲放电原理

bms控制mos冲放电原理

bms控制mos冲放电原理电池管理系统(Battery Management System,BMS)是一种广泛应用于电动汽车、储能设备等领域的智能控制系统。

BMS的功能之一是控制金属氧化物半导体场效应管(MOSFET)进行冲放电操作。

本文将介绍BMS控制MOS冲放电的原理及其工作机制。

1. MOSFET概述MOSFET是一种常用的功率开关器件,具有快速开关速度、低开关损耗的特点。

通过调整MOSFET的导通与截止状态,可以控制电流在电路中的通断,实现对电池冲放电的控制。

MOSFET的核心部件包括栅极、漏极和源极,并通过输入电压来调节通断状态。

2. MOS冲放电原理BMS通过控制MOSFET的导通状态,实现对电池的冲放电。

在冲放电过程中,BMS会监测电池的电压及其他参数,并根据设定的阈值来判断是否需要进行冲放电操作。

当电池电压超过设定的上限值时,BMS会通过控制MOSFET导通,将电流从电池释放出来;当电池电压低于设定的下限值时,BMS会控制MOSFET截止,停止电池的放电。

通过这种方式,BMS可以保护电池,避免其过充或过放,延长电池的使用寿命。

3. BMS控制MOS冲放电工作流程3.1 电压采集与监测BMS通过电压传感器对电池的电压进行实时采集,并将采集到的数据传输给控制模块。

控制模块会对电压进行监测,并进行处理与判断,确定是否需要进行冲放电操作。

3.2 判断阈值BMS设定了电池的上限电压和下限电压阈值,通过与采集到的电压数据比较,判断当前电池是否需要进行冲放电操作。

3.3 控制MOSFET通断根据判断结果,BMS控制MOSFET的导通与截止状态。

当电压超过上限值时,BMS导通MOSFET,允许电流从电池中流出;当电压低于下限值时,BMS截止MOSFET,停止电池的放电操作。

3.4 冲放电操作结束当电池的电压恢复到正常范围内,BMS会停止冲放电操作,保持MOSFET的导通状态,使电流可以正常通过电路。

锂电池保护芯片原理

锂电池保护芯片原理

锂电池保护原理锂电池保护板是对串联锂电池组的充放电保护;在充满电时能保证各单体电池之间的电压差异小于设定值一般±20mV,实现电池组各单体电池的均充,有效地改善了串联充电方式下的充电效果;同时检测电池组中各个单体电池的过压、欠压、过流、短路、过温状态,保护并延长电池使用寿命;欠压保护使每一单节电池在放电使用时避免电池因过放电而损坏;成品锂电池组成主要有两大部分,锂电池芯和保护板,锂电池芯主要由正极板、隔膜、负极板、电解液组成;正极板、隔膜、负极板缠绕或层叠,包装,灌注电解液,封装后即制成电芯,锂电池保护板的作用很多人都不知道,锂电池保护板,顾名思义就是保护锂电池用的,锂电池保护板的作用是保护电池不过放、不过充、不过流,还有就是输出短路保护;01锂电池保护板组成1、控制ic,2、开关管,另外还加一些微容和微阻而组成;控制ic 作用是对电池的保护,如达到保护条件就控制mos进行断开或闭合如电池达到过充、过放、短路、过流、等保护条件,其中mos管的作用就是开关作用,由控制ic开控制;锂电池可充型之所以需要保护,是由它本身特性决定的;由于锂电池本身的材料决定了它不能被过充、过放、过流、短路及超高温充放电,因此锂电池锂电组件总会跟着一块精致的保护板和一片电流保险器出现;锂电池的保护功能通常由保护电路板和PTC协同完成,保护板是由电子电路组成,在-40℃至+85℃的环境下时刻准确的监视电芯的电压和充放回路的电流;02保护板的工作原理1、过充保护及过充保护恢复当电池被充电使电压超过设定值VC,具体过充保护电压取决于IC后,VD1翻转使Cout变为低电平,T1截止,充电停止.当电池电压回落至VCR,具体过充保护恢复电压取决于IC时,Cout变为高电平,T1导通充电继续, VCR必须小于VC一个定值,以防止频繁跳变;2、过放保护及过放保护恢复当电池电压因放电而降低至设定值VD,具体过充保护电压取决于IC时, VD2翻转,以短时间延时后,使Dout变为低电平,T2截止,放电停止,当电池被置于充电时,内部或门被翻转而使T2再次导通为下次放电作好准备;3、过流、短路保护当电路充放回路电流超过设定值或被短路时,短路检测电路动作,使MOS管关断,电流截止;03保护板主要零件的功能介绍R1:基准供电电阻;与IC内部电阻构成分压电路,控制内部过充、过放电压比较器的电平翻转;一般在阻值为330Ω、470Ω比较多;当封装形式即用标准元件的长和宽来表示元件大小,如0402封装标识此元件的长和宽分别为和较大时,会用数字标识其阻值,如贴片电阻上数字标识473, 即表示其阻值为47000Ω即47KΩ第三位数表示在前两位后面加0的位数;R2:过流、短路检测电阻;通过检测VM端电压控制保护板的电流,焊接不良、损坏会造成电池过流、短路无保护,一般阻值为1KΩ、2KΩ较多;R3:ID识别电阻或NTC电阻前面有介绍或两者都有;总结:电阻在保护板中为黑色贴片,用万用表可测其阻值,当封装较大时其阻值会用数字表示,表示方法如上所述,当然电阻阻值一般都有偏差,每个电阻都有精度规格,如10KΩ电阻规格为+/-5%精度则其阻值为Ω-Ω范围内都为合格;C1、C2:由于电容两端电压不能突变,起瞬间稳压和滤波作用;总结:电容在保护板中为黄色贴片,封装形式0402较多,也有少数0603封装长,宽;用万用表检测其阻值一般为无穷大或MΩ级别;电容漏电会产生自耗电大,短路无自恢复现象;FUSE:普通FUSE或PTCPositive Temperature Coefficient的缩写,意思是正温度系数;防止不安全大电流和高温放电的发生,其中PTC有自恢复功能;总结:FUSE在保护板中一般为白色贴片,LITTE公司提供FUSE会在FUSE上标识字符D-T,字符表示意思为FUSE能承受的额定电流,如表示D额定电流为,S为4A,T为5A等;U1:控制IC;保护板所有功能都是IC通过监视连接在VDD-VSS间的电压差及VM-VSS间的电压差而控制C-MOS执行开关动作来实现的;Cout:过充控制端;通过MOS管T2栅极电压控制MOS管的开关;Dout:过放、过流、短路控制端;通过MOS管T1栅极电压控制MOS管的开关; VM:过流、短路保护电压检测端;通过检测VM端的电压实现电路的过流、短路保护UVM=IRMOSFET;总结:IC在保护板中一般为6个管脚的封装形式,其区别管脚的方法为:在封装体上标识黑点的附近为第1管脚,然后逆时针旋转分别为第2、3、4、5、6管脚;如封装体上无黑点标识,则正看封装体上字符左下为第1管脚,其余管脚逆时针类推C-MOS:场效应开关管;保护功能的实现者;连焊、虚焊、假焊、击穿时会造成电池无保护、无显示、输出电压低等不良现象;总结:CMOS在保护板中一般为8个管脚的封装形式,它时由两个MOS管构成,相当于两个开关,分别控制过充保护和过放、过流、短路保护;其管脚区分方法和IC 一样;在保护板正常情况下,Vdd为高电平,Vss、VM为低电平,Dout、Cout为高电平;当Vdd、Vss、VM任何一项参数变换时,Dout或Cout的电平将发生变化,此时MOSFET 执行相应的动作开、关电路,从而实现电路的保护和恢复功能;04保护板常见不良分析一、无显示、输出电压低、带不起负载:此类不良首先排除电芯不良电芯本来无电压或电压低,如果电芯不良则应测试保护板的自耗电,看是否是保护板自耗电过大导致电芯电压低;如果电芯电压正常,则是由于保护板整个回路不通元器件虚焊、假焊、FUSE不良、PCB板内部电路不通、过孔不通、MOS、IC损坏等;具体分析步骤如下:一、用万用表黑表笔接电芯负极,红表笔依次接FUSE、R1电阻两端,IC的Vdd、Dout、Cout端,P+端假设电芯电压为,逐段进行分析,此几个测试点都应为;若不是,则此段电路有问题;1. FUSE两端电压有变化:测试FUSE是否导通,若导通则是PCB板内部电路不通;若不导通则FUSE有问题来料不良、过流损坏MOS或IC控制失效、材质有问题在MOS或IC动作之前FUSE被烧坏,然后用导线短接FUSE,继续往后分析;2. R1电阻两端电压有变化:测试R1电阻值,若电阻值异常,则可能是虚焊,电阻本身断裂;若电阻值无异常,则可能是IC内部电阻出现问题;3. IC测试端电压有变化:Vdd端与R1电阻相连;Dout、Cout端异常,则是由于IC 虚焊或损坏;4. 若前面电压都无变化,测试B-到P+间的电压异常,则是由于保护板正极过孔不通;二、万用表红表笔接电芯正极,激活MOS管后,黑表笔依次接MOS管2、3脚,6、7脚,P-端;管2、3脚,6、7脚电压有变化,则表示MOS管异常;2.若MOS管电压无变化,P-端电压异常,则是由于保护板负极过孔不通;二、短路无保护:1. VM端电阻出现问题:可用万用表一表笔接IC2脚,一表笔接与VM端电阻相连的MOS管管脚,确认其电阻值大小;看电阻与IC、MOS管脚有无虚焊;2. IC、MOS异常:由于过放保护与过流、短路保护共用一个MOS管,若短路异常是由于MOS出现问题,则此板应无过放保护功能;3. 以上为正常状况下的不良,也可能出现IC与MOS配置不良引起的短路异常;如前期出现的BK-901,其型号为‘312D’的IC内延迟时间过长,导致在IC作出相应动作控制之前MOS或其它元器件已被损坏;注:其中确定IC或MOS是否发生异常最简易、直接的方法就是对有怀疑的元器件进行更换;三、短路保护无自恢复:1. 设计时所用IC本来没有自恢复功能,如G2J,G2Z等;2. 仪器设置短路恢复时间过短,或短路测试时未将负载移开,如用万用表电压档进行短路表笔短接后未将表笔从测试端移开万用表相当于一个几兆的负载;3. P+、P-间漏电,如焊盘之间存在带杂质的松香,带杂质的黄胶或P+、P-间电容被击穿,IC Vdd到Vss间被击穿.阻值只有几K到几百K;4. 如果以上都没问题,可能IC被击穿,可测试IC各管脚之间阻值;四、内阻大:1. 由于MOS内阻相对比较稳定,出现内阻大情况,首先怀疑的应该是FUSE或PTC 这些内阻相对比较容易发生变化的元器件;2. 如果FUSE或PTC阻值正常,则视保护板结构检测P+、P-焊盘与元器件面之间的过孔阻值,可能过孔出现微断现象,阻值较大;3. 如果以上多没有问题,就要怀疑MOS是否出现异常:首先确定焊接有没有问题;其次看板的厚度是否容易弯折,因为弯折时可能导致管脚焊接处异常;再将MOS管放到显微镜下观测是否破裂;最后用万用表测试MOS管脚阻值,看是否被击穿;五、ID异常:1. ID电阻本身由于虚焊、断裂或因电阻材质不过关而出现异常:可重新焊接电阻两端,若重焊后ID正常则是电阻虚焊,若断裂则电阻会在重焊后从中裂开;2. ID过孔不导通:可用万用表测试过孔两端;3. 内部线路出现问题:可刮开阻焊漆看内部电路有无断开、短路现象;。

锂电池保护IC及MOS介绍演示文稿

锂电池保护IC及MOS介绍演示文稿

MOS管







IC

电芯
+
-
充电
FUSE








IC


+
-
充电








IC


+
-
充电








IC


+
-
充电








IC


+
-
充电
此时充电MOS关
过过放ຫໍສະໝຸດ 充控控制
IC

+
-
充电
4.25-4.35V 3.8-4.1V
电 量








IC 制
锂电池保护IC及 MOS介绍演示文稿
1)A级市场 注:A级市场的保护IC主要的生产商有精工、理光、美之美;MOSFET 主要的生产商有 AO、DIODES、 ST ;
2)B级市场 注: B级市场的保护IC主要的生产商有富晶、新德、中星微; MOSFET主要的生产商有三合微、华瑞、南海、茂达;
3)C级市场 注: C级市场的保护IC主要的生产商有士兰、黑森林、金微科; MOSFET主要的生产商有珠海南科、黑森林、金微科; 注: 目前我们公司在做的品牌有:精工、美之美(均为日本品牌)

3.7v锂电池保护板原理图

3.7v锂电池保护板原理图

3.7v锂电池保护板原理图电子发烧友网 > 电源/新能源 > 基准/监控/保护电路 > 正文•锂电池保护板•锂电池3.7v锂电池保护板原理图 - 全文来源:网络整理· 2017年12月15日10:35 · 140533次阅读锂电池保护板主要由维护IC(过压维护)和MOS管(过流维护)构成,是用来保护锂电池电芯安全的器材。

锂电池具有放电电流大、内阻低、寿数长、无回忆效应等被人们广泛运用,锂离子电池在运用中禁止过充电、过放电、短路,不然将会使电池起火、爆破等丧命缺陷,所以,在运用可充锂电池都会带有一块维护板来维护电芯的安全。

1、电压保护能力过充电保护板:保护板有必要具有防止电芯电压超越预设值的才干过放电维护:保护板有必要具有防止电芯电压底于预设值的才干。

2、电流能力(过流保护电流,短路保护)保护板作为锂电芯的安全保护器材,既要在设备的正常作业电流规模内,能可靠工作,又要在当电池被意外短路或过流时能迅速动作,使电芯得到保护。

3、导通电阻定义:当充电电流为500mA时,MOS管的导通阻抗。

由于通讯设备的工作频率较高,数据传输要求误码率低,其脉冲串的上升及下降沿陡,故对电池的电流输出能力和电压稳定度要求高,因而保护板的MOS管开关导通时电阻要小,单节电芯保护板通常在《70mΩ,如太大会导致通讯设备作业不正常,如手机在通话时突然断线、电话接不通、噪声等现象。

4、自耗电流定义:IC作业电压为3。

6V,空载状况下,流经保护IC的作业电流,一般极小。

保护板的自耗电流直接影响电池的待机时刻,通常规则保护板的自耗电流小于10微安。

5、机械功能、温度适应能力、抗静电能力保护板有必要能通过国标规则的轰动,冲击实验;保护板在40到85度能安全工作,能经受±15KV的非触摸ESD静电测验。

锂电池充放电保护电路的特点及工作原理锂电池的保护功能通常由保护电路板和PTC协同完成,保护板由电子元件组成,在-40℃~+85℃的环境下时刻准确地监视电芯的电压和充放电回路的电流,并及时控制电流回路的通断;PTC的主要作用是在高温环境下进行保护,防止电池发生燃烧、爆炸等恶性事故。

锂电池电路板中保护芯片基本工作原理

锂电池电路板中保护芯片基本工作原理

锂电池电路板中保护芯片基本工作原理锂电池PACK设计过程中一定会用到锂电池保护板或者相应的BMS,甚至于各种通信协议,但是锂电池保护十分重要,这些必须要要知道保护芯片工作原理,只有了解这些基本的保护芯片工作原理,才能更好的设计锂电池组,甚至可以协助品质部分一起分析异常电池或电路。

1、保护芯片工作原理中的主要元器件的介绍:IC:它是保护芯片的核心,首先取样电池电压,然后通过判断发出各种指令。

MOS管:它主要起开关作用2、保护芯片正常工作:保护芯片上MOS管刚开始可能处于关断状态,电池接上保护芯片后,必须先触发MOS管,P+与P-端才有输出电压,触发常用方法——用一导线把B-与P-短接。

3、保护芯片过充保护:在P+与P-上接上一高于电池电压的电源,电源的正极接B+、电源的负极接B-,接好电源后,电池开始充电,电流方向如图所示的I1的流向电流从电源正极出发,流经电池、D1、MOS2到电源负极(这时MOS1被D1短路),IC通过电容来取样电池电压的值,当电池电压达到4.25v时,IC发出指令,使引脚CO为低电平,这时电流从电源正极出发,流经电池、D1、到达MOS2时由于MOS2的栅极与CO相连也为低电平,MOS2关断,整个回路被关断,电路起到保护作用。

4、保护芯片过放保护:在P+与P-上接上一合适的负载后,电池开始放电其电流方向如I2,电流从电池的正极经负载、D2、MOS1到电池的负极,(这时MOS2被D2短路);当电池放电到2.5 v时IC 采样并发出指令,让MOS1截止,回路断开,电池被保护了。

5、过流保护:在P+与P-上接上一合适的负载后,电池开始放电其电流方向如I2,电流从电池的正极经负载、D2、MOS1到电池的负极,(这时MOS2被D2短路);当负载突然减小,IC通过VM引脚采样到突然增大电流而产生的电压这时IC采样并发出指令,让MOS1截止,回路断开,电池被保护了。

6、短路保护:在P+与P-上接上空负载后,电池开始放电其电流方向如I2,电流从电池的正极经负载、D2、MOS1到电池的负极,(这时MOS2被D2短路); IC通过VM引脚采样到突然增大电流而产生的电压这时IC采样并发出指令,让MOS1截止,回路断开,电池被保护了。

mosfet用于锂电保护电路原理

mosfet用于锂电保护电路原理

mosfet用于锂电保护电路原理MOSFET(金属氧化物半导体场效应晶体管)是一种广泛应用于电力电子设备的半导体器件。

在锂电池保护电路中,MOSFET主要用于防止电池过充、过放和短路等异常情况的发生,从而保护电池的安全。

MOSFET用于锂电保护电路的原理主要是利用其开关特性和导通电阻小的特点。

当电池电压正常时,控制器输出的PWM 信号控制MOSFET的导通和关断,使电池与负载之间的电流得以正常流动。

当电池电压异常时,控制器会立即切断MOSFET的导通,使电池与负载之间的电流迅速断开,从而防止电池过充或过放。

具体来说,当电池电压超过设定的最大值时,控制器会通过PWM信号将MOSFET关闭,使电池停止充电,防止电池过充。

同样,当电池电压低于设定的最小值时,控制器也会通过PWM 信号将MOSFET关闭,使电池停止放电,防止电池过放。

此外,当电池短路时,控制器会立即切断MOSFET的导通,使电池与负载之间的电流迅速断开,防止电池短路。

MOSFET在锂电保护电路中的应用具有很多优点。

首先,MOSFET的导通电阻小,可以降低电池的保护电路的功耗。

其次,MOSFET的开关速度快,可以实现快速的过充、过放和短路保护。

此外,MOSFET的体积小,重量轻,便于集成在电池保护电路中。

最后,MOSFET的工作温度范围广,可以在-55℃到+150℃的环境中正常工作,适合在各种恶劣环境下使用。

然而,MOSFET在锂电保护电路中的应用也存在一些问题。

例如,MOSFET的导通电阻虽然小,但在大电流下仍然会产生一定的热量,可能会影响电池的性能和寿命。

此外,MOSFET的开关速度虽然快,但如果控制器的控制精度不够高,可能会导致电池的保护效果不佳。

因此,如何提高MOSFET在锂电保护电路中的应用效果,是当前研究的一个重要方向。

功率MOS管的锂电池保护电路

功率MOS管的锂电池保护电路

功率MOS管的短路保护解析通常,由于磷酸铁锂电池的特性,在应用中需要对其充放电过程进行保护,以免过充过放或过热,以保证电池安全的工作。

短路保护是放电过程中一种极端恶劣的工作条件,本文将介绍功率MOS管在这种工作状态的特点,以及如何选取功率MOS管型号和设计合适的驱动电路。

电路结构及应用特点电动自行车的磷酸铁锂电池保护板的放电电路的简化模型如图1所示。

Q1为放电管,使用N沟道增强型MOS管,实际的工作中,根据不同的应用,会使用多个功率MOS管并联工作,以减小导通电阻,增强散热性能。

RS为电池等效内阻,LP为电池引线电感。

正常工作时,控制信号控制MOS管打开,电池组的端子P+和P-输出电压,供负载使用。

此时,功率MOS管一直处于导通状态,功率损耗只有导通损耗,没有开关损耗,功率MOS管的总的功率损耗并不高,温升小,因此功率MOS管可以安全工作。

但是,当负载发生短路时,由于回路电阻很小,电池的放电能力很强,所以短路电流从正常工作的几十安培突然增加到几百安培,在这种情况下,功率MOS 管容易损坏。

磷酸铁锂电池短路保护的难点(1)短路电流大在电动车中,磷酸铁锂电池的电压一般为36V或48V,短路电流随电池的容量、内阻、线路的寄生电感、短路时的接触电阻变化而变化,通常为几百甚至上千安培。

(2)短路保护时间不能太短在应用过程中,为了防止瞬态的过载使短路保护电路误动作,因此,短路保护电路具有一定的延时。

而且,由于电流检测电阻的误差、电流检测信号和系统响应的延时,通常,根据不同的应用,将短路保护时间设置在200μS至1000μS,这要求功率MOS管在高的短路电流下,能够在此时间内安全的工作,这也提高了系统的设计难度。

短路保护当短路保护工作时,功率MOS管一般经过三个工作阶段:完全导通、关断、雪崩,如图2所示,其中VGS为MOS管驱动电压,VDS为MOS管漏极电压,ISC为短路电流,图2(b)为图2(a)中关断期间的放大图。

mos管工作原理详细讲解

mos管工作原理详细讲解

mos管工作原理详细讲解
金属氧化物半导体场效应晶体管(MOSFET)是一种重要的半导体器件,广泛应用于电子设备中。

MOSFET的工作原理基于对导电通道的控制。

结构和材料
MOSFET由一个半导体基底(衬底)组成,通常是硅或氮化镓。

在基底上形成两个高度掺杂的区域(源极和漏极),其之间是一个电隔离层,称为栅极氧化物。

工作原理
MOSFET的工作原理可以分为三个基本模式:
1. 截止模式
当栅极与源极之间没有电压(VGS = 0)时,MOSFET处于截止模式。

栅极氧化物阻止电流在源极和漏极之间流动,因为没有载流子可通过导电通道。

2. 线性模式(三极管模式)
当栅极电压逐渐增加(VGS > 0)时,MOSFET进入线性模式。

在栅极氧化物和基底的界面处形成一个反型层(导电通道),允许电流在源极和漏极之间流动。

导电通道的宽度随栅极电压的增加而增长。

3. 饱和模式
当栅极电压进一步增加(VGS > Vth,阈值电压)时,MOSFET 进入饱和模式。

导电通道的宽度达到最大值,此时电流在源极和漏极之间不再受栅极电压的影响。

电流主要由漏极-源极电压(VDS)控制。

MOSFET特性
MOSFET的特性由其漏极电流-栅极电压(IDS-VGS)和漏极电流-漏极电压(IDS-VDS)的关系决定。

应用
MOSFET广泛应用于各种电子设备中,包括:数字逻辑电路
放大器
开关
电源管理
优点
MOSFET具有许多优点,包括:
高输入阻抗
低功耗
快速开关能力
易于集成
可靠性高。

锂电池保护IC及MOS介绍PPT课件

锂电池保护IC及MOS介绍PPT课件
1)A级市场 注:A级市场的保护IC主要的生产商有精工、理光、美之美;MOSFET 主要的生产商有 AO、DIODES、 ST ;
2)B级市场 注: B级市场的保护IC主要的生产商有富晶、新德、中星微; MOSFET主要的生产商有三合微、华瑞、南海、茂达;
3)C级市场 注: C级市场的保护IC主要的生产商有士兰、黑森林、金微科; MOSFET主要的生产商有珠海南科、黑森林、金微科; 注: 目前我们公司在做的品牌有:精工、美之美(均为日本品牌)
It'S An Honor To Walk With You All The Way
讲师:XXXXXX XX年XX月XX日

IC

放电
+
LOAD
IC
+
LOAD
放电 -
电 压
2.3-2.5V







IC

+
-
放电
电流 门限







IC

+
-
放电
电流 门限
单节保护 IC S8261
单节保护 IC S8261
单节保护 IC S8261
单节保护 IC S8261
SOT23-6
单节保护 IC S8261
MOS DMG8601(DIODES)
MOS DMN4468(DIODES)
MOS DMN4468(DIODES)
MOS AOD442
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits

锂电池充电保护IC原理

锂电池充电保护IC原理

(2) 过度放电:
在过度放电的情形下,电解液因分解而导致电池特性劣化,并造成充电次数的降低,锂电池保护IC用以保护其过放电的状况发生, 达成保护动作。
过度放电保护IC原理:为了防止锂电池过度放电之状态,假设锂电池接上负载,当锂电池电压低于其过放电电压检测点(假设设定为2.3V),将激活过放电保护,将Power MOS由ON'OFF,进而截止放电,达成保护以避免电池过放电现象发生, 并将电池保持在低静态电流的状态(standby mode),此时耗电为0.1uA
未来的发展将如前述,提高侦测电压的精度、降低保护IC的耗电流及包装、整合MOS 、提高误动作防止功能等,同时充电器连接端子的高耐压化也是开发的重点。
包装方面,目前已由SOT23-6渐渐的朝向SON6,将来还有CSP的Package,甚至COB产品的出现,用以满足现在所强调的轻薄短小,而保护IC也不是所有的功能都一定必须要用的,可根据不同的锂电池材料开发出单一保护(如:只有过充保护或过放保护功能),可大大的减少成本及空间,这对我们来说可未尝不是一件好事.
(4) 缩小保护电路组件: 将过充电和短路保护用的延迟电容给内包到保护IC里面
保护IC的要求:
(A) 过度充电保护的高精化:
当锂离子电池有过度充电状态时,为防止因温度上升所导致的内压上升,须截止充电状态。此保护IC即检视电池电压,当侦测到过度充电时,则过度充电侦测的Power-MOSFET使之OFF而截止充电。此时所应注意者,就是过度充电的检测电压的高精度化,在电池充电时,使电池充电到饱满的状态是使用者很在意的问题,同时,兼顾到安全性的问题,就得在达到容许电压时截止充电状态。要同时符合这两个条件,就要有非常高精度的侦测器,目前精度为25mV,但将来势需有更精度的要求。

锂电池保护电路原理及功能有哪些

锂电池保护电路原理及功能有哪些

锂电池保护电路原理及功能有哪些?离子电池保护电路包括过度充电保护、过电流/短路保护和过放电保护,要求过充电保护高精度、保护IC功耗低、高耐压以及零伏可充电等特性.本文详细介绍了这三种保护电路的原理、新功能和特性要求.近年来,PDA、数字相机、手机、便携式音频设备和蓝牙设备等越来越多的产品采用锂电池作为主要电源.锂电池具有体积小、能量密度高、无记忆效应、循环寿命高、高电压电池和自放电率低等优点,与镍镉、镍氢电池不太一样,锂电池必须考虑充电、放电时的安全性,以防止特性劣化.针对锂电池的过充、过度放电、过电流及短路保护很重要,所以通常都会在电池包内设计保护线路用以保护锂电池.由于锂离子电池能量密度高,因此难以确保电池的安全性.在过度充电状态下,电池温度上升后能量将过剩,于是电解液分解而产生气体,因内压上升而发生自燃或破裂的危险;反之,在过度放电状态下,电解液因分解导致电池特性及耐久性劣化,从而降低可充电次数.锂离子电池的保护电路就是要确保这样的过度充电及放电状态时的安全性,并防止特性劣化.锂离子电池的保护电路是由保护IC及两颗功率MOSFET所构成,其中保护IC监视电池电压,当有过度充电及放电状态时切换到以外挂的功率MOSFET来保护电池,保护IC的功能有过度充电保护、过度放电保护和过电流/短路保护.过度充电保护过度充电保护IC的原理为:当外部充电器对锂电池充电时,为防止因温度上升所导致的内压上升,需终止充电状态.此时,保护IC需检测电池电压,当到达4.25V时(假设电池过充点为4.25V)即激活过度充电保护,将功率MOS由开转为关断,进而截止充电.另外, 还必须注意因噪声所产生的过度充电检出误动作,以免判定为过充保护.因此,需要设定延迟时间,并且延迟时间不能短于噪声的持续时间.过度放电保护在过度放电的情况下,电解液因分解而导致电池特性劣化,并造成充电次数的降低.采用锂电池保护IC可以避免过度放电现象发生,实现电池保护功能.过度放电保护IC原理:为了防止锂电池的过度放电状态,假设锂电池接上负载,当锂电池电压低于其过度放电电压检测点(假定为2.3V)时将激活过度放电保护,使功率MOSFET由开转变为关断而截止放电,以避免电池过度放电现象发生,并将电池保持在低静态电流的待机模式,此时的电流仅0.1uA.当锂电池接上充电器,且此时锂电池电压高于过度放电电压时,过度放电保护功能方可解除.另外,考虑到脉冲放电的情况,过放电检测电路设有延迟时间以避免发生误动作.过电流及短路电流因为不明原因(放电时或正负极遭金属物误触)造成过电流或短路,为确保安全,必须使其立即停止放电.过电流保护IC原理为,当放电电流过大或短路情况发生时,保护IC将激活过(短路)电流保护,此时过电流的检测是将功率MOSFET的Rds(on)当成感应阻抗用以监测其电压的下降情形,如果比所定的过电流检测电压还高则停止放电,计算公式为: V-=I×Rds(on)×2(V-为过电流检测电压,I为放电电流).假设V-=0.2V,Rds(on)=25mΩ,则保护电流的大小为I=4A.同样地,过电流检测也必须设有延迟时间以防有突发电流流入时发生误动作.通常在过电流发生后,若能去除过电流因素(例如马上与负载脱离),将会恢复其正常状态,可以再进行正常的充放电动作.锂电池保护IC的新功能除了上述的锂电池保护IC功能之外,下面这些新的功能同样值得关注:1. 充电时的过电流保护当连接充电器进行充电时突然发生过电流(如充电器损坏),电路立即进行过电流检测,此时Cout将由高转为低,功率MOSFET由开转为关断,实现保护功能.V-(Vdet4过电流检测电压,Vdet4为-0.1V)=I(充电电流)×Rds(on)×22. 过度充电时的锁定模式通常保护IC在过度充电保护时将经过一段延迟时间,然后就会将功率MOSFET关断以达到保护的目的,当锂电池电压一直下降到解除点(过度充电滞后电压)时就会恢复,此时又会继续充电-保护-放电-充电-放电.这种状态的安全性问题将无法获得有效解决,锂电池将一直重复着充电-放电-充电-放电的动作,功率MOSFET的栅极将反复地处于高低电压交替状态,这样可能会使MOSFET变热,还会降低电池寿命,因此锁定模式很重要.假如锂电保护电路在检测到过度充电保护时有锁定模式,MOSFET将不会变热,且安全性相对提高很多.在过度充电保护之后,只要充电器连接在电池包上,此时将进入过充锁定模式.此时,即使锂电池电压下降也不会发生再充电的情形,将充电器移除并连接负载即可恢复充放电的状态.3. 减小保护电路组件尺寸将过度充电和短路保护用的延迟电容集成到到保护IC里面,以减小保护电路组件尺寸.对保护IC性能的要求1. 过度充电保护的高精度化当锂离子电池有过度充电状态时,为防止因温度上升所导致的内压上升,须截止充电状态.保护IC将检测电池电压,当检测到过度充电时,则过度充电检测的功率MOSFET使之关断而截止充电.此时应注意的是过度充电的检测电压的高精度化,在电池充电时,使电池充电到饱满的状态是使用者很关心的问题,同时兼顾到安全性问题,因此需要在达到容许电压时截止充电状态.要同时符合这两个条件,必须有高精度的检测器,目前检测器的精度为25mV,该精度将有待于进一步提高.2. 降低保护IC的耗电随着使用时间的增加,已充过电的锂离子电池电压会逐渐降低,最后低到规格标准值以下,此时就需要再度充电.若未充电而继续使用,可能造成由于过度放电而使电池不能继续使用.为防止过度放电,保护IC必须检测电池电压,一旦达到过度放电检测电压以下,就得使放电一方的功率MOSFET 关断而截止放电.但此时电池本身仍有自然放电及保护IC的消耗电流存在,因此需要使保护IC消耗的电流降到最低程度.3. 过电流/短路保护需有低检测电压及高精度的要求因不明原因导致短路时必须立即停止放电.过电流的检测是以功率MOSFET的Rds(on)为感应阻抗,以监视其电压的下降,此时的电压若比过电流检测电压还高时即停止放电.为了使功率MOSFET的Rds(on)在充电电流与放电电流时有效应用,需使该阻抗值尽量低,目前该阻抗约为20mΩ~30mΩ,这样过电流检测电压就可较低.4. 耐高电压电池包与充电器连接时瞬间会有高压产生,因此保护IC应满足耐高压的要求.5. 低电池功耗在保护状态时,其静态耗电流必须要小0.1uA.6. 零伏可充电有些电池在存放的过程中可能因为放太久或不正常的原因导致电压低到0V,故保护IC需要在0V时也可以实现充电.保护IC发展展望如前所述,未来保护IC将进一步提高检测电压的精度、降低保护IC的耗电流和提高误动作防止功能等,同时充电器连接端子的高耐压也是研发的重点.在封装方面,目前已由SOT23-6逐渐转向SON6封装,将来还有CSP封装,甚至出现COB产品用以满足现在所强调的轻薄短小要求.在功能方面,保护IC不需要集成所有的功能,可根据不同的锂电池材料开发出单一保护IC,如只有过充保护或过放保护功能,这样可以大大减少成本及尺寸.当然,功能组件单晶体化是不变的目标,如目前手机制造商都朝向将保护IC、充电电路以及电源管理IC等外围电路与逻辑IC构成双芯片的芯片组,但目前要使功率MOSFET的开路阻抗降低,难以与其它IC集成,即使以特殊技术制成单芯片,恐怕成本将会过高.因此,保护IC的单晶体化将需一段时间来解决.。

充电电池保护IC的实现原理

充电电池保护IC的实现原理

充电电池保护IC的实现原理充电电池使用过程中,过充电、过放电和过电流是影响电池使用寿命和性能主要因素,充电电池保护IC通过保护环路有效监测并防止对电池产生损害。

本文将详细阐述保护IC实现原理以及此类IC发展趋势。

近年来,由于锂离子充电电池符合便携式电子产品在小型、重量轻及使用时间长方面要求,因而从移动电话和PDA等为代表便携式电子产品,到笔记本计算机、VTR等都开始大量采用锂离子充电电池。

然而,另一方面,锂离子充电电池需要过充和过放等保护,所以通常在电池包里必须放置保护回路。

本文将介绍锂离子充电电池保护用IC所产生作用,以及此类产品未来发展趋势。

锂离子充电电池保护IC功能在锂离子充电电池使用过程中,可能会由于使用者错误使用而造成过充,产生电池温度上升;其次,由于电解液分解而产生瓦斯,使其内部压力上升,以及金属锂等释出而造成有起火及破裂危险。

相反,在放电时,如果产生过放将会分解电解液,使得电池特性产生劣化。

为了避免过充及过放所产生安全性问题,并防止电池特性劣化,在锂离子电池包中采用了保护回路,如图1所示。

基本上,该保护回路由两个FET和专用IC(以下称为保护IC)构成。

保护IC负责监测电池电压,并控制两个FET栅极,而FET分别实现过充和过放控制功能。

a. 锂离子充电电池保护用IC基本功能关于锂离子充电电池保护,必须具有以下3个保护功能。

1. 过充监测防止电池特性劣化、起火及破裂,确保安全性。

2. 过放监测防止电池特性劣化,确保电池使用寿命。

3. 过电流监测防止FET破坏,短路保护及确保搬运时安全性。

采用保护回路来实现以上三种保护功能,提高电池包安全性和可靠性。

b. 通常状态在通常状态下可以自由充放电,因此控制用FET都为接通状态。

为了有效地利用放电电流及充电电流,在FET里采用了小接通阻抗功率MOS管。

c. 过充电保护过充保护功能是指在达到某个电压(以下称为过充电检测电压)时,禁止由充电器继续充电。

锂电池充电保护电路原理及应用

锂电池充电保护电路原理及应用

锂离子电池以其优良的特性,被广泛应用于:手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。

一、锂电池与镍镉、镍氢可充电池:锂离子电池的负极为石墨晶体,正极通常为二氧化锂。

充电时锂离子由正极向负极运动而嵌入石墨层中。

放电时,锂离子从石墨晶体内负极表面脱离移向正极。

所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。

因而这种电池叫做锂离子电池,简称锂电池。

锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。

镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。

镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制。

二、锂电池的特点:1、具有更高的重量能量比、体积能量比;2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压;3、自放电小可长时间存放,这是该电池最突出的优越性;4、无记忆效应。

锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电;5、寿命长。

正常工作条件下,锂电池充/放电循环次数远大于500次;6、可以快速充电。

锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时;7、可以随意并联使用;8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池;9、成本高。

与其它可充电池相比,锂电池价格较贵。

三、锂电池的内部结构:锂电池通常有两种外型:圆柱型和长方型。

电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。

正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。

负极由片状碳材料组成的锂离子收集极和铜薄膜组成的电流收集极组成。

电池内充有有机电解质溶液。

另外还装有安全阀和PTC元件,以便电池在不正常状态及输出短路时保护电池不受损坏。

锂电池保护板原理详细分析

锂电池保护板原理详细分析

锂电池保护电路锂电池保护电路由于锂电池的化学特性,在正常使用过程中,其内部进行电能与化学能相互转化的化学正反应,但在某些条件下,如对其过充电、过放电和过电流将会导致电池内部发生化学副反应,该副反应加剧后,会严重影响电池的性能与使用寿命,并可能产生大量气体,使电池内部压力迅速增大后爆炸而导致安全问题,因此所有的锂电池都需要一个保护电路,用于对电池的充、放电状态进行有效监测,并在某些条件下关断充、放电回路以防止对电池发生损害下图为一个典型的锂电池保护电路原理图。

如上图所示,该保护回路由两个MOSFET(V1、V2)和一个控制IC (N1)外加一些阻容元件构成。

控制IC负责监测电池电压与回路电流,并控制两个MOSFET的栅极,MOSFET在电路中起开关作用,分别控制着充电回路与放电回路的导通与关断,C3为延时电容,该电路具有过充电保护、过放电保护、过电流保护与短路保护功能,其工作原理分析如下:1、正常状态在正常状态下电路中N1的“CO”与“DO”脚都输出高电压,两个MOSFET都处于导通状态,电池可以自由地进行充电和放电,由于MOSFET的导通阻抗很小,通常小于30毫欧,因此其导通电阻对电路的性能影响很小。

此状态下保护电路的消耗电流为μA级,通常小于7μA。

2、过充电保护锂离子电池要求的充电方式为恒流/恒压,在充电初期,为恒流充电,随着充电过程,电压会上升到4.2V(根据正极材料不同,有的电池要求恒压值为4.1V),转为恒压充电,直至电流越来越小。

电池在被充电过程中,如果充电器电路失去控制,会使电池电压超过4.2V后继续恒流充电,此时电池电压仍会继续上升,当电池电压被充电至超过4.3V时,电池的化学副反应将加剧,会导致电池损坏或出现安全问题。

在带有保护电路的电池中,当控制IC检测到电池电压达到4.28V(该值由控制IC 决定,不同的IC有不同的值)时,其“CO”脚将由高电压转变为零电压,使V2由导通转为关断,从而切断了充电回路,使充电器无法再对电池进行充电,起到过充电保护作用。

MOS 原理

MOS 原理
退出
第三章 晶体场效应管
▪ 若考虑沟道长度调制效应
则VDS →沟道长度l →沟道电阻Ron略。
因此
VDS →ID略。
由上述分析可描绘出ID随VDS 变化的关系曲线:
ID VGS一定
0 VGS –VGS(th)
VDS
曲线形状类似三极管输出特性。
退出
第三章 晶体场效应管
MOSFET工作原理:
利用半导体表面的电场效应,通过栅源电压 VGS的变化,改变感生电荷的多少,从而改变感 生沟道的宽窄,控制漏极电流ID。 • MOS管仅依靠一种载流子(多子)导电,故 称单极型器件。
电路符号及电流流向
D
ID
D
ID
D
ID
U
G
G
U G
U G
S NEMOS
转移特性
ID
S NDMOS
ID
S PEMOS
ID
D
ID
U
S PDMOS
ID
0 VGS(th) VGS
VGS(th) 0 VGS
VGS(th) 0 VGS
退出
0 VGS(th VGS
)
第三章 晶体场效应管
饱和区(放大区)外加电压极性及数学模型

▪ VDS极性取决于沟道类型 N沟道:VDS > 0, P沟道:VDS < 0
▪ VGS极性取决于工作方式及沟道类型 增强型MOS管: VGS 与VDS 极性相同。 耗尽型MOS管: VGS 取值任意。
▪ 饱和区数学模型与管子类型无关
ID
COXW
2l
(VGS
VGS(th) )2
退出
第三章 晶体场效应管
gm
iD vGS

锂电池组保护板均衡充电基本工作原理之欧阳科创编

锂电池组保护板均衡充电基本工作原理之欧阳科创编

成组锂电池串联充电时,应保证每节电池均衡充电,否则使用过程中会影响整组电池的性能和寿命。

常用的均衡充电技术有恒定分流电阻均衡充电、通断分流电阻均衡充电、平均电池电压均衡充电、开关电容均衡充电、降压型变换器均衡充电、电感均衡充电等。

而现有的单节锂电池保护芯片均不含均衡充电控制功能;多节锂电池保护芯片均衡充电控制功能需要外接CPU,通过和保护芯片的串行通讯(如I2C总线)来实现,加大了保护电路的复杂程度和设计难度、降低了系统的效率和可靠性、增加了功耗。

本文针对动力锂电池成组使用,各节锂电池均要求充电过电压、放电欠电压、过流、短路的保护,充电过程中要实现整组电池均衡充电的问题,设计了采用单节锂电池保护芯片对任意串联数的成组锂电池进行保护的含均衡充电功能的电池组保护板。

仿真结果和工业生产应用证明,该保护板保护功能完善,工作稳定,性价比高,均衡充电误差小于50mV。

锂电池组保护板均衡充电基本工作原理采用单节锂电池保护芯片设计的具备均衡充电能力的锂电池组保护板示意图如图1所示。

其中:1为单节锂离子电池;2为充电过电压分流放电支路电阻;3为分流放电支路控制用开关器件;4为过流检测保护电阻;5为省略的锂电池保护芯片及电路连接部分;6为单节锂电池保护芯片(一般包括充电控制引脚CO,放电控制引脚DO,放电过电流及短路检测引脚VM,电池正端VDD,电池负端VSS等);7为充电过电压保护信号经光耦隔离后形成并联关系驱动主电路中充电控制用MOS管栅极;8为放电欠电压、过流、短路保护信号经光耦隔离后形成串联关系驱动主电路中放电控制用MOS管栅极;9为充电控制开关器件;10为放电控制开关器件;11为控制电路;12为主电路;13为分流放电支路。

单节锂电池保护芯片数目依据锂电池组电池数目确定,串联使用,分别对所对应单节锂电池的充放电、过流、短路状态进行保护。

该系统在充电保护的同时,通过保护芯片控制分流放电支路开关器件的通断实现均衡充电,该方案有别于传统的在充电器端实现均衡充电的做法,降低了锂电池组充电器设计应用的成本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锂离子电池因能量密度高,使得难以确保电池的安全性。

具体而言,在过度充电状态下,。

电池温度上升后能量将过剩,于是电解液分解而产生气体,因内压上升而导致有发火或破裂的危机。

反之,在过度放电状态下,电解液因分解导致电池特性劣化及耐久性劣化(即充电次数降低)。

锂离子电池的保护电路就是要确保这样的过度充电及放电状态时的安全性,并防止特性的劣化。

锂离子电池的保护电路是由保护IC、及两颗Power-MOSFET所构成。

其中保护IC为监视电池电压;当有过度充电及放电状态时,则切换以外挂的Power-MOSFET来保护电池,保护IC的功能为: (1)过度充电保护、(2)过度放电保护、(3)过电流/短路保护。

以下就这三项功能的保护动作加以说明
(1) 过度充电:
当锂电池发生过度充电时,。

电池内电解质会被分解,使得温度上升并产生气体,使得压力上升而可能引起自燃或爆裂的危机,锂电池保护IC用意就是要防止过充电的情形发生。

过度充
电保护IC原理:
当外部充电器对锂电池充电时,为防止因温度上升所导致的内压上升,需终止充电状况,此时保护IC需检测电池电压,当到达4.25V时(假设电池过充点为4.25V)及激活过充电保护,将Power MOS由ON'OFF,进而截止充电。

另外,过充电检出,因噪声所产生的误动作也是必须要注意的,以免判定为过充保护,因此需要延迟时间的设定,而delay time也不能短于噪声的时间。

(2) 过度放电:
在过度放电的情形下,电解液因分解而导致电池特性劣化,并造成充电次数的降低,锂电池保护IC用以保护其过放电的状况发生, 达成保护动作。

过度放电保护IC原理:为了防止锂电池过度放电之状态,假设锂电池接上负载,当锂电池电压低于其过放电电压检测点(假设设定为2.3V),。

将激活过放电保护,将Power MOS由ON'OFF,进而截止放电,达成保护以避免电池过放电现象发生, 并将电池保持在低静态电流的状态(standby mode),此时耗电为0.1uA
当锂电池接上充电器,且此时锂电池电压高于过放电电压时,过放电保护功能方可解除。

另外,为了对于脉冲放电之情形,过放侦测设有延迟时间用以预防此种误动
作的发生。

(3) 过电流及短路电流
因为不明原因(放电时或正负极遭金属物误触)造成过电流或短路电流发生,为确保安全,使其停止放电。

电流保护IC原理:
当放电电流过大或短路情况发生时,保护IC将激活过(短路)电流保护,此时过电流的检测是将Power MOS的Rds(on)当成感应阻抗用以监测其电压的下降情形,若比所定的过电流检测电压还高则停止放电,
公式为:
V-(过电流检测电压)=I(放电电流)*Rds(on)*2
假设V-=0.2V, Rds(on)=25mΩ,则保护电流的大小为I=4A
同样的,过电流检出也必须要设有延迟时间以防有突然的电流流入时,。

会发生误动作,使其发生保护的误动作。

通常在过电流发生后,若能移除过电流之因素(例如:马上与负载脱离..),就会回复其正常状态,可以再实行正常的充放电动作
锂电池
保护IC的新功能:
除了上述的锂电池保护IC功能之外,现在还有一些新的功能值得我们注意,以东瑞电子所独家代理的"Ricoh"锂电池保护IC为例---R5426
(1) 充电时,过电流之保护:
当连接充电器在充电时突然有过电流发生(充电器损坏),即发生充电时过电流检测,此时将Cout将由High'Low,Power MOS由ON'OFF,达成保护之动作。

V-(Vdet4过电流检测电压)=I(充电电流)*Rds(on)*2
注:Vdet4为-0.1V
(2) 缩短测试时间:
假设测完一片PCB所需要花的时间为1秒,那100万片则需要100万秒,非常的耗时,同样的也很没有效率,故我们可以利用以下之功能来缩短测试时间。

(A) 当我们将R5426之DS pin open时,此时delay time为规格书上所示
(B) 当我们将R5426之DS pin接VDD时,此时delay time将只有1/90.
(C) 当我们将R5426之DS pin接Vim(min=1.2V,max=VDD-1.1V),此时将可忽略delay time
(3) 过充时锁住模式(Latch):
通常保护IC在过充电保护时经过一段延迟时间之后就会将Power MOS关掉(Cout),用以达到保护的目的,当锂电池电压一直下降到解除点(Overcharge Hysteresis Voltage)时就会回复,此时又会继续的充电,又保护,又放电充电放电,这种情形并不是一种很好的状况且安全性的问题将无法有效的获得解决。

锂电池一直重复着做着充电放电充电放电的动作, Power MOS的Gate将反复的High/Low,。

这样可能会使MOSFET变热.,也同时对于电池的寿命造成引想,由此可知Latch Mode的重要性。

假如锂电时保护电路在侦测到过充电保护时有Latch Mode,MOSFET将不会变热,且安全性相对的提高许多。

在侦测到过充电保护之后,只要有连接充电器在电池包上,此时之状态及到达过充时锁住模式,因此,。

虽然锂电池的电压一值下降,但不会发生再充电的情形.要解除这个状况,只要将充电器移除并连接负载即可
回复充放电的状态。

(4) 缩小保护电路组件: 将过充电和短路保护用的延迟电容给内包到保护
IC里面
保护IC的要求:
(A) 过度充电保护的高精化:
当锂离子电池有过度充电状态时,。

为防止因温度上升所导致的内压上升,须截止充电状态。

此保护IC即检视电池电压,当侦测到过度充电时,则过度充电侦测的Power-MOSFET使之OFF而截止充电。

此时所应注意者,。

就是过度充电的检测电压的高精度化,。

在电池充电时,使电池充电到饱满的状态是使用者很在意的问题,。

同时,兼顾到安全性的问题,就得在达到容许电压时截止充电状态。

要同时符合这两个条件,就要有非常高精度的侦测器,目前精度为25mV,但将来势需有更精度的要求。

(B) 减低保护IC的耗电流达到过度放电保护目的:
已充过电的锂离子电池电随着使用时间,电池电压会渐减,最后低到规格标准值以下。

此时就需要再度充电。

若未充电而继续使用的话,恐就无法再充电了(过
放电状态)。

而为防止过放电状态,保护IC即要侦测电池电压的状态,一旦到达过放电侦测电压以下,就得使放电一方的Power-MOSFET OFF而截止放电。

但此时电池本身仍有自然放电及保护IC的消费电流存在,因此需要使保护IC的耗电流降到最低的程度。

(C) 过电流/短路保护需有低侦测电压及高精度的要求:
因不明原因导致短路而有大电流耗损时,为确保安全而使之停止放电。

在过电流的侦测是以Power MOS的Rds(on)为感应阻抗,以监视其电压的下降,此时的电压若比过电流侦测电压还高时即停止放电。

为了使Power MOS的Rds(on)在充电电流与放电电流时有效的应用,需使该阻抗值尽量低,(目前约20mΩ~30mΩ)。

如此,过电流侦测电压就可较低。

(D) 实现耐压值:
电池包与充电器连接时瞬间会有高压产生,因此保护IC因具备有"耐高压的要求(Ricoh的保护IC即可承受到28V)
(E) 低耗电:
当到达保护时,其静态耗电流必须要小(0.1uA)
(F) 零伏可充电:
有些电池在存放的过程中可能因为放太久或不正常的原因导致电压低到0V,故
保护IC需要在0V也可以充电的动作
保护IC功能未来发展
未来的发展将如前述,提高侦测电压的精度、降低保护IC的耗电流及包装、整合MOS 、提高误动作防止功能等,同时充电器连接端子的高耐压化也是开发的重点。

包装方面,目前已由SOT23-6渐渐的朝向SON6,将来还有CSP的Package,甚至COB 产品的出现,用以满足现在所强调的轻薄短小,而保护IC也不是所有的功能都一定必须要用的,可根据不同的锂电池材料开发出单一保护(如:只有过充保护或过放保护功能),可大大的减少成本及空间,这对我们来说可未尝不是一件好事.
当然,功能组件单晶化是一致的目标,如目前行动电话制造商都朝向将保护IC、充电电路、电源管理IC等外围电路集成单芯片,与逻辑IC构成双芯片的芯片组,但目前要使Power MOS的开路阻抗降低,难以与其它IC合组,即使以特殊技术制成单芯片,恐怕成本将会过高,因此,保护IC的单晶化将需一段时间来解决。

相关文档
最新文档