几何图形中的分类讨论

合集下载

七上期中数学分类讨论(已整理)

七上期中数学分类讨论(已整理)

【前言】 考虑问题要全面一、什么就是分类讨论思想如果一个命题得题设或结论不唯一确定,有多种可能情况,难以统一解答,就需要按可能出现得各种情况分门别类地加以讨论,最后综合归纳出问题得正确答案,这种解决问题得思想叫做分类讨论。

二、“分类讨论”得解题步骤1、明确要分类进行讨论得对象(留意讨论对象得取值范围);2、原则:正确选择分类得标准,进行合理分类 (确定分类得标准就是重点、难点);3、归纳并作出结论;三、分类得原则1、不重复例1 对三角形进行分类,把三角形划分为:锐角三角形 、直角三角形、钝角三角形、等腰三角形分析:等腰三角形划分进来不恰当,分类得标准不一致,产生重合要么按角划分、要么按边划分回顾:书本对于有理数得划分,按照正负分,按整数分数分2、不遗漏例2 比较a 与-a 比较大小分析:a 得正负无法确定,故需要按照0,0,0a a a ><=分3种情况来讨论,不要遗漏0a =得情况3、逐层分类例3 已知0,0,,a ab b c a <>>>化简c a b a c b c a -+--+++2分析:除了对C 取值进行分类外,还需要进一步对2a c -进行分类讨论详细解答见--数形结合(答案)四、哪些地方可能会出现分类讨论从代数与几何得角度瞧都有可能。

其一就是涉及代数式或函数或方程中,根据字母不同得取值情况,分别在不同得取值范围内讨论解决问题。

其二就是根据几何图形得点与线出现不同位置得情况,逐一讨论解决问题【题型划分】【1、有理数概念、定义】例1 下列个数中:1330.70125---,,,,,中负分数有 个;负整数有 个;自然数有 个例2 已知数轴上有A 、B 两点,A 、B 之间得距离为1,点A 与原点O 得距离为3,那么点B 所对应得数为___________练习1、⑴在下列各数:(2)--,2(2)--,2--,2(2)-,2(2)--中,负数得个数为 个.⑵①10a -;②21a --;③a -;④2(1)a -+一定就是负数得就是 (填序号).2、⑴下列说法正确得就是( )A 、a -表示负有理数B 、一个数得绝对值一定不就是负数C 、两个数得与一定大于每个加数D 、绝对值相等得两个有理数相等⑵两数相加,其与小于其中一个加数而大于另一个加数,那么( )A 、这两个加数得符号都就是正得B 、这两个加数得符号都就是负得C 、这两个加数得符号不能相同D 、这两个加数得符号不能确定3、已知点A 在数轴上对应得数就是1,点B 对应得数就是-2,数轴上动点甲与乙,甲从A出发,开始以每秒1个单位长度移动,乙从B 出发,开始以每秒2个单位长度移动,若甲、乙两点同时开始移动,移动3秒钟后,甲、乙两点甲点对应得数就是几?乙点对应得数就是几?【2、绝对值中得a a 型】 当0a >时,1a a a a ==;当0a <时,1a a a a==-。

与全等有关的分类讨论问题及分类标准

与全等有关的分类讨论问题及分类标准

与全等有关的分类讨论问题及分类标准全等是数学中一个重要的概念,它在几何学、代数学以及逻辑学等领域都有广泛的应用。

全等是指两个或多个对象在形状和大小上完全相同,可以互相重合的性质。

在分类讨论中,我们经常会遇到与全等有关的问题,需要根据不同的分类标准来进行深入探讨。

一、形状全等与位置全等在讨论与全等有关的分类问题时,首先需要区分形状全等和位置全等的概念。

形状全等是指两个或多个对象在形状上完全相同,无论其位置如何变换,它们依然保持不变。

而位置全等则要求两个或多个对象在形状和位置上都完全相同。

两个圆形的铁环,如果它们的直径相同,那么它们在形状上是全等的;而如果两个铁环除了直径相同外,还需要它们的圆心位置也完全相同,那么它们在位置上才是全等的。

二、全等的分类标准在讨论与全等有关的分类问题时,可以根据不同的分类标准进行探讨。

以下是几个常见的分类标准:1. 几何形状:根据几何形状的特点,可以将全等的对象分为点全等、线段全等、角全等等。

点全等要求两个或多个点在位置上完全重合;线段全等要求两个或多个线段的长度相等且方向相同;角全等要求两个或多个角的大小相等。

2. 维度:根据对象所处的维度,可以将全等的对象分为二维全等和三维全等。

在二维几何中,两个或多个图形在平面上完全重合即为二维全等;而在三维几何中,除了形状相同外,还需要位置相同才能称为三维全等。

3. 对象类型:根据对象的类型,可以将全等的对象分为数字全等、图形全等、实物全等等。

数字全等要求两个或多个数字在数值上完全相同;图形全等要求两个或多个几何图形在形状和位置上都完全相同;实物全等要求两个或多个实物在形状、大小和位置上都完全相同。

三、个人观点与理解就我个人而言,全等的概念是数学领域中一个基础且重要的概念。

全等不仅仅是形状和大小的相等,更是对于对象间相互重合、相互匹配的描述。

无论是在几何学中,还是在代数学和逻辑学中,全等的概念都发挥着重要的作用。

在几何学中,全等的概念可以帮助我们判断和证明两个或多个几何图形的相等关系。

圆的分类讨论例题及习题

圆的分类讨论例题及习题

圆的分类讨论例题及习题圆中的分类讨论题------之两解情况一、根据点与圆的位置分类例1、点P 是圆0所在平面上一定点,点 P 到圆上的最大距离和最短距离分别为8和2, 则该圆的半径为 ___________________ 。

解:过点P 和圆心0作直线分别与圆0相交于A 、B 两点。

PA 、 PB 分别表示圆上各点到点 P的最长距离和最短距离。

(1)当点P 在圆内时,如图1所示,直径(2)当点P 在圆外时,如图2所示,直径--1 - :H .所以,圆0的直径为2或6。

练习1:若。

0所在平面内一点P 到。

0上的点的最大距离为a ,最 小距离为b ,则此圆的半径为()2: P 在。

0内,距圆心0的距离为4,。

0半径长为5,经过P 点, 有多少条?解:过P 点的弦长为整数的最短弦长是 6cm (该弦垂直于0P ,等于5与4的平方和的平方 根的2倍);最长的是10cm (过0、P 的直径);其间弦长为整数的长度还有 7、8、9cm ,所以共 有8条(其中的7、8、9各有两条,以0P 为对称轴)。

3:00的半径为2.5,动点P 到定点0的距离为2,动点Q 到P 的点的距离为1,则点P 、 Q 与O 0有何位置关系?二、弦与弦的位置关系不唯一,需要分类讨论例 1、圆 0 的直径为 10cm ,弦 AB//CD , AB=6cm , CD = 8cm ,求 AB 和CD 的距离。

解:(1)当AB 、CD 在圆心的同侧时,如图,过点 0作0M_AB 交 AB 于点M ,交CD于N ,连结OB 、0D ,得Rt 0MB , Rt 0ND ,然后 由勾股定理求0M = 4cm, 0N = 3cm ,故 AB 和 CD 的距离为 1cm 。

(2)当AB 、CD 在圆心的异侧时,如图9,仍可求得0M = 4cm, ON = 3cm 故AB 和CD 的距离为7cm 。

所以AB 和CD 的距离为1cm 和7cm 。

例2、已知弓形的弦长为8cm ,所在圆的半径为5cm ,则弓形的高为多少? ( 2或8cm )k _________ 止 ______________ ________ LAP . 定点 交于。

第3讲 分类讨论思想在解析几何中的应用(原卷版)

第3讲 分类讨论思想在解析几何中的应用(原卷版)

第3讲分类讨论思想在解析几何中的应用在解答某些数学问题时。

有时会遇到很多情况,需要对各种情况加以分类,并逐步求解,然后综合理解,这就是分类讨论法。

分类讨论是一种逻辑方法。

是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零,积零为整的思想,与归类整理的方法有关。

分类讨论思想在数学问题具有明显的。

逻辑性、综合性、探索性,能训练人的思维条理和概括性。

解析几何中的分类讨论思想涉及到直线的方程、圆与圆的位置关系,圆锥曲线的概念以及性质等问题。

也是高考常考查的知识点。

【应用一】分类讨论思想在直线、圆中的应用1、直线方程的几种形式2、圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22(r2>0).3、直线与圆的位置关系三种位置关系:相交、相切、相离.Δ<0 Δ>0 【例1.1】(2023四川南充高三模拟)过(2,2)P 作圆22:(1)1C x y -+=的切线,则其切线方程为____________. .【思维提升】涉及到直线的方程问题。

若设直线的点斜式、斜截式方程必须考虑直线的斜率是否存在,特别是直线与圆的位置关系是要验证斜率不存在的情况。

这种问题也是经常考查也是学生最容易丢分的问题。

【变式1.1】(2023·山西·统考一模)经过()2,0A ,()0,2B ,()2,4C 三点的圆与直线240kx y k -+-=的位置关系为( ) A .相交B .相切C .相交或相切D .无法确定【变式 1.2】(2022年重庆市第八中学高三模拟试卷)若直线1:480l ax y ++=与直线2:3(1)60l x a y ++-=平行,则a 的值为( )A. 4-B. 3C. 3或4-D. 3-或6【变式1.3】 (202江苏扬州中学期中)(多选题)已知圆1O :()22325x y +-=,圆2O :()()2261125x y -+-=,下列直线中,与圆1O ,2O 都相切的是( ) A .34370x y +-=B .34320x y ++=C .43160x y --=D .43340x y -+=【变式1.4】(2022·辽宁鞍山·高二期中)过点()2,4P 引圆()()22111x y -+-=的切线,则切线的方程为( ) A .2x =-或4340x y +-= B .4340x y -+= C .2x =或4340x y -+=D .4340x y +-=【应用二】分类讨论思想在圆锥曲线定义中的应用1、 椭圆的定义平面内与两个定点F 1,F 2的距离之和等于常数(大于||F 1F 2)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P ={M |||MF 1+||MF 2=2a },||F 1F 2=2c ,其中a >0,c >0,且a ,c 为常数. (1)若a >c ,则集合P 为椭圆; (2)若a =c ,则集合P 为线段; (3)若a <c ,则集合P 为空集.2、 双曲线的定义平面内与两个定点F 1,F 2的距离之差的绝对值等于非零常数(小于||F 1F 2)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P ={M||| ||MF 1-||MF 2=2a },||F 1F 2=2c ,其中a ,c 为常数,且a >0,c >0.(1)当a <c 时,点P 的轨迹是双曲线; (2)当a =c 时,点P 的轨迹是两条射线; (3)当a >c 时,点P 不存在. 3、抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.【例2.1】(四川省双流中学2022年高三上学期期中)设定点()10,3F -,()20,3F ,动点P 满足条件129PF PF t t+=+(t 为常数,且0t >),则点P 的轨迹是______.【思维提升】涉及到圆锥曲线的定义问题一定要考虑定义要满足的条件,否则轨迹就不一定是圆锥曲线,如椭圆中忽略条件就有可能轨迹是线段,或者不存在。

专题14图形中的等腰三角形分类讨论(解析版)

专题14图形中的等腰三角形分类讨论(解析版)

专题14图形中的等腰三⾓形分类讨论(解析版)专题14 图形中的等腰三⾓形分类讨论教学重难点1.理解等腰三⾓形的性质和判定定理;2.能⽤等腰三⾓形的判定定理进⾏相关计算和证明;3.初步体会等腰三⾓形中的分类讨论思想;4.体会在函数动点中寻找某些特殊的点形成的等腰三⾓形;5.培养学⽣进⾏独⽴思考,提⾼独⽴解决问题的能⼒。

【备注】:1.此部分知识点梳理,根据第1个图先提问引导学⽣回顾学过的等腰三⾓形的性质,可以在⿊板上举例让学⽣画图;2再根据第2个图引导学⽣总结出题⽬中经常出现的⼀些等腰三⾓形的题型;3.和学⽣⼀起分析⼆次函数背景下等腰三⾓形的基本考点,为后⾯的例题讲解做好铺垫。

建议时间5分钟左右。

等腰三⾓形的性质:等腰三⾓形常见题型分类:函数背景下的等腰三⾓形的考点分析:1.求解相应函数的解析式;2.根据函数解析式求解某些特殊点的坐标;3.根据点的位置进⾏等腰三⾓形的讨论:分“指定腰长”和“不指定腰长”两⼤类;4.根据点的位置和形成的等腰三⾓形⽴等式求解。

【备注】:1.以下每题教法建议,请⽼师根据学⽣实际情况参考;2.在讲解时:不宜采⽤灌输的⽅法,应采⽤启发、诱导的策略,并在读题时引导学⽣发现⼀些题⽬中的条件(相等的量、不变的量、隐藏的量等等),使学⽣在复杂的背景下⾃⼰发现、领悟题⽬的意思;3.可以根据各题的“参考教法”引导学⽣逐步解题,并采⽤讲练结合;注意边讲解边让学⽣计算,加强师⽣之间的互动性,让学⽣参与到例题的分析中来;4.例题讲解,可以根据“教法指导”中的问题引导学⽣分析题⽬,边讲边让学⽣书写,每个问题后⾯有答案提⽰;5.引导的技巧:直接提醒,问题式引导,类⽐式引导等等;6.部分例题可以先让学⽣⾃⼰试⼀试,之后再结合学⽣做的情况讲评;7.每个题⽬的讲解时间根据实际情况处理,建议每题7分钟,选讲例题在时间⾜够的情况下讲解。

1.(2019青浦⼆模)如图1,已知扇形MON的半径为,∠MON=90°,点B在弧MN上移动,联结BM,作OD⊥BM,垂⾜为点D,C为线段OD上⼀点,且OC=BM,联结BC并延长交半径OM于点A,设OA=x,∠COM的正切值为y.(1)如图2,当AB⊥OM时,求证:AM=AC;(2)求y关于x的函数关系式,并写出定义域;(3)当△OAC为等腰三⾓形时,求x的值.整体分析:(1)先判断出∠ABM=∠DOM,进⽽判断出△OAC≌△BAM,即可得出结论;(2)先判断出BD=DM,进⽽得出,进⽽得出AE=,再判断出,即可得出结论;(3)分三种情况利⽤勾股定理或判断出不存在,即可得出结论.详解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM=∠BAM=90°.∵∠ABM+∠M=∠DOM+∠M,∴∠ABM=∠DOM.∵∠OAC=∠BAM,OC=BM,∴△OAC≌△BAM,∴AC=AM.(2)如图2,过点D作DE∥AB,交OM于点E.∵OB=OM,OD⊥BM,∴BD=DM.∵DE∥AB,∴,∴AE=EM.∵OM=,∴AE=.∵DE∥AB,∴,∴.()(3)(i)当OA=OC时.∵.在Rt△ODM中,.∵.解得,或(舍).(ii)当AO=AC时,则∠AOC=∠ACO.∵∠ACO>∠COB,∠COB=∠AOC,∴∠ACO>∠AOC,∴此种情况不存在.(ⅲ)当CO=CA时,则∠COA=∠CAO=α.∵∠CAO>∠M,∠M=90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA=2α>90°.∵∠BOA≤90°,∴此种情况不存在.即:当△OAC为等腰三⾓形时,x的值为.点睛:本题是圆的综合题,主要考查了相似三⾓形的判定和性质,圆的有关性质,勾股定理,等腰三⾓形的性质,建⽴y关于x 的函数关系式是解答本题的关键.图形背景下等腰三⾓形分类讨论的解题⽅法和策略:1.先寻找题⽬中的条件:相等的⾓、相等的边、相似的三⾓形等;2.根据题⽬中的条件求解相关线段的长度;3.等腰三⾓形讨论中,分三步⾛:分类、画图、计算;4.等腰讨论中,当不能直接利⽤边长相等求解时,⼀般情况下通过“画底边上的⾼”辅助线结合三⾓⽐计算求解;5.注意点的位置取舍答案;6.根据题⽬条件,注意快速、正确画图,⽤好数形结合思想;7.利⽤⼏何定理和性质或者代数⽅法建⽴⽅程求解都是常⽤⽅法。

分类讨论专题讲解——4.解析几何中的分类情形

分类讨论专题讲解——4.解析几何中的分类情形
是椭圆上的点,即 . .
因此点 落在双曲线 上.
(3)设所在抛物线的方程为 .
将 代入方程,得 ,即 .
当 时, ,此时点 的轨迹落在抛物线上;
当 时, ,此时点 的轨迹落在圆上;
当 且 时, ,此时点 的轨迹落在椭圆上;
当 时, ,此时点 的轨迹落在双曲上.
课后练习:
1.(选)正三棱柱的侧面展开图是边长分别为 和4的矩形,则它的的体积为__ __.
解:(1)设椭圆长半轴长及半焦距分别为 ,由已知得
,解得,
所以,椭圆 的标准方程为
(2)设 ,其中 .由已知 及点 在椭圆 上可得

整理得 ,其中 .
① 时.化简得
所以点 的轨迹方程为 ,轨迹是两条平行于 轴的线段.
② 时,方程变形为 ,其中
当 时,点 的轨迹为中心在原点、实轴在 轴上的双曲线满足 的部分.
分类讨论的步骤一般可分为以下几步:
①确定讨论的对象及其范围;
②确定分类讨论的标准,正确进行分类;
③逐步讨论,分级进行;
④归纳整合,作出结论.
【典型例题讲解】
Байду номын сангаас【例1】在平面直角坐标系 中,直线 与抛物线 相交于 两点.
(1)求证:“如果直线 过点 ,那么 ”是真命题;
(2)写出(1)中命题的逆命题,判断它是真明题还是假命题,并说明理由.
年级:高三辅导科目:数学课时数:3
课题
分类讨论专题讲解——4.解析几何中的分类情形
教学目的
1.能够就不同的问题进行了合理的分类,不重不漏;
教学内容
分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法.有关分类讨论思想的数学问题具有明显的逻辑性、探索性,能训练人的思维挑理性和概括性,所以在高考题中占有重要的位置.

例析初一数学中的分类讨论问题

例析初一数学中的分类讨论问题

例析初一数学中的分类讨论问题
分类讨论作为一种教学方式,是初中阶段数学教学中最重要的教学形式之一,其教学内容涉及几何、基本运算、有理数与无理数等。

分类讨论能让学生们深入地探究数学知识,例如,以几何中关于根据两个点之间的距离来推断出一条直线上的其他点,它其实是在分类讨论中被提出并进行更深入分析来加深学习的一个重点问题。

在初一数学中,分类讨论是学生将学习到的数学知识联系起来、思考回答问题的一种非常重要的教学方式。

通过分类讨论的方式,学生们可以将之前学习过的内容,按照类别联系起来,例如:初一数学中,物体绕着图形旋转时发生的变化情况,这种现象其实是多类问题的总称,包括椭圆、圆形、抛物线等,分类讨论是通过将其进行分类分析,再根据每类的特点来提出正确的结论的一个重点。

另外,也可以将初一数学学习的数与比联系起来,即“分式”,这一概念也是分类讨论的重点,学生们可以将概念分为一元分式、二元分式以及分式运算等几大类,根据不同类别的情况,来推断出正确的结果。

因此,分类讨论是学习初一数学最重要的教学设计之一,它涉及到从数学概念到数学应用的多个方面,有利于学生提升数学素养以及科学思维能力。

同时,分类讨论还可以激发学生们学习数学的兴趣,增强学生们对数学学科的钟爱之情,从而拥有一个深刻而系统的数学知识体系。

人教版七年级数学上册简单的几何图形 第四讲 有关角的分类讨论问题

人教版七年级数学上册简单的几何图形 第四讲 有关角的分类讨论问题

探究二:角的分类讨论
引发分类讨论的起因是各 种不确定性 引发角的分类讨论的 起因主要由: (1)角的分类的不确定; (2)角的一边的位置的不 确定.
能力提升
方法探究一:怎样做到不重复、不遗漏初探
例1.如图,你知道以A为定点的角有哪些吗?除了以A为定点的角 A 外,图中还有那些角?你会将它们表示出来吗?
【解析】以 A 为定点的角有 BAD 、 BAE 、
BAC 、 DAE 、 DAC 、 EAC ,其他
的角有 B 、 C 、 1 、 2 、 、 .
B
:由角的一边的位置不确定性引发的分类讨论问题
反思: (1)此题哪些地 方容易出错? (2)错误的原因 是什么? (3)通过正解, 能找到本类问题的解 决方法吗? (4)分类讨论法 的重点是什么?
指点迷津
有关角的分类讨论问题
课标引路
两个难点
知识梳理
探究一:什么是分类讨论
所谓分类讨论,就是在研究和解决数学问题时,当问题所给的对象不能进 行统一研究,我们就需要根据数学对象的本质属性的相同和不同点,将对象分 为不同种类,然后逐类进行研究和解决,最后综合各类结果得到整个问题的解 决,这一思想方法,我们称之为分类讨论思想.

怎样运用分类讨论思想解答几何中的动点问题

怎样运用分类讨论思想解答几何中的动点问题

数学篇几何动点问题一直是初中几何中的一个难点,因为点运动的位置不同,形成的图形就不同,符合结论的情况可能就不止一种.同学们在求解此类问题时常常因为考虑不周导致漏解而出错.因此,解答动点问题尤其要注意分类讨论.下面就如何运用分类讨论思想解答两类几何图形中的动点问题进行分析,以供参考.一、运用分类讨论思想解答等腰三角形中的动点问题等腰三角形具有两条边相等、底角相等的特点,在求解涉及等腰三角形的动点问题时,由于边的不确定性或角的不确定,需要运用分类讨论思想,从动态的角度逐一讨论三角形的三边两两相等的三种情况,或三角形的三个角为其顶角的三种可能性,然后综合所有分类的结果确定最终答案.例1如图1,在直角坐标系中,已知点P (-2,-1),点T (t ,0)是x 轴上的一个动点.(1)求点P 关于原点的对称点P ′的坐标;(2)当[t ]取何值时,△P ′TO是等腰三角形?图1图1-1分析:第(1)问求P 点的对称点P ′比较简单,利用对称性即可解答.第(2)问,T 是x 轴上的动点,它在运动的过程中△P ′TO 可能是等腰三角形但顶点未确定,需要分情况讨论.解:(1)∵P (-2,-1),∴P 关于原点的对称点P ′坐标为(2,-1),(2)由(1)知P ′(2,-1),作图如图1-1所示,①当△P ′TO 中,点P ′为顶点时,T 点为图1-1中T 4点,此时P ′T =P ′O ,T 坐标为T 4(4,0),②当△P ′TO 中,点T 为顶点时,T 点为图1-1中T 2点,此时TO =TP ′,又∵T (t ,0)且P ′(2,-1),∴(0-t )2+(0-0)2=(2-t )2+(-1-0)2解得,t =54,此时点T 坐标为T 2(54,0),③当△P ′TO 中,点O 为顶点时,T 点为图1-1中T 1和T 3点,此时TO =P ′O ,∵T (t ,0)且P ′(2,-1),∴(0-t )2+(0-0)2=(0-2)2+[0-(-1)]2,解得,t =±5,此时T 点坐标为T 1(-5,0)和T 3(5,0),综合①②③可知,当t 取-5、54、5、4时,△P ′TO 是等腰三角形.评注:本题看似简单,实则非常复杂.由于题目中没有明确等腰三角形的顶点,且T 为坐标轴上的一个动点,所以点T 、O 、P 均有可能为等腰三角形顶角的顶点,需要对此进怎样运用分类讨论思想解答几何中盐城市新洋初级中学吉华丽解法荟萃32数学篇行分类讨论.二、运用分类讨论思想解答圆中的动点问题圆既是轴对称图形,又是中心对称图形,还具有旋转不变性.圆的这些特性决定了与圆有关的动点问题可能存在多解.在解题时,我们可以根据题目要求初步绘制“圆”可能存在的位置,然后依据分类标准(比如x 轴、y 轴等)逐一分类讨论,做到不重不漏,最后综合所有情况得到完整答案.例2如图2,直线y =-43x +4与x 轴、y 轴分别交于点M ,N .(1)求M ,N 两点的坐标;(2)如果点P 在坐标轴上,以点P 为圆心,125为半径的圆与直线y=-43x +4相切,求点P 的坐标.图2图2-1分析:这是一个直线与圆相结合的题目.第(1)问,我们借助直线方程y=-43x +4可以直接求出M 、N 的坐标.第(2)问P 点在坐标轴上,到底在x 轴还是y 轴不确定,所以以P 点为圆心,半径为125的圆也具有不确定性,需要借助分类讨论思想加以讨论.解:(1)∵直线y =-43x +4与x 轴、y 轴分别交于点M ,N ,∴令x =0,y =4,即N (0,4).同理可得M (3,0).(2)经过分析发现P 点可能在x 轴上或y 轴上,通过作图发现可能有4种情况,如图2-1所示.①当P 在x 轴上时,设P (x 0,0),则圆P可能是图2-1中的两个虚线圆.125=43x ,解得x 0=0或6,此情况下P 点坐标为P 1(0,0)P 2(6,0);②当P 在y 轴上时,设P (0,y 0),则圆P可能是图2-1中的两个实线圆.125=|-43×0-y 0+4|4,解得y 0=0或8,此情况下P 坐标为P 3(0,0)和P 4(0,8),由此可见P 1和P 3重合,是同一个点.综合①②,符合条件的P 点一共有3个,分表为(0,0)、(6,0)、(0,8).评注:审题时一定要充分挖掘隐含条件,“点P 在坐标轴上”就是一个不确定的表述,可能存在多种情况.另外作图要准确,可以通过作图的方式大致确定点的位置,预估答案.此外,该题还有一个关键之处,即“点到直线的距离公式”.考试中常用的有两种公式,分别为:①设直线方程为一般式Ax +By +C =0,点P 的坐标为(x 0,y 0),则点P 到直线L 的距离为:d =|Ax 0+By 0+C |A 2+B2;②当P (x 0,y 0),直线L 的方程为截距式y =kx +b ,则P 点到直线的距离为d =|kx 0-y 0+b |1+k2.总之,动点问题常常要借助分类讨论思想辅助解题.一般涉及到与“直角三角形”“等腰三角形”“相似三角形”“圆”等相关的动点问题,往往具有不确定性,存在多解的情况.解法荟萃。

几何图形中的分类讨论(圆专题)

几何图形中的分类讨论(圆专题)

圆与圆相切的位置关系不确定
已知相交两圆的半径分别为5cm和4cm,公共弦长6cm, 则这两个圆的圆心距为 。
相交圆圆心与公共弦的位置关系不唯一性
通过本节课的学习你有哪些收获?
与圆有关的分类讨论,常根据位置关系不确定进行分类:
1、点与圆的位置关系不确定
2、点在圆上位置不确定
3、两弦与圆心的位置关系不确定 4、圆与圆相切的位置关系不确定 5、相交圆圆心与公共弦的位置关系不唯一性
• (1)当0≤t≤5.5时,函数表达式为d=11-2t, 当t>5.5时,函数表达式为d=2t-11; (2)两圆 相切可分为如下四种情况: ①当两圆第一次外 切,由题意,可得11-2t=1+1+t,t=3; ②当两 圆第一次内切,由题意,可得11-2t=1+t-1,t= 11/3; ③当两圆第二次内切,由题意,可得2t11=1+t-1,t=11; ④当两圆第二次外切,由题 意,可得2t-11=1+t+1,t=13. 所以,点A出发 后3秒、 11/3秒、11秒、13秒时两圆相切
根据某一标准将数学对象分为不同种 类,然后分别对它们进行讨论,得出各 种情况下相应结论的数学思想方法。
分类讨论是一种重要的数学思想方法也是一种解题的策略! 在几何图形中,我们常根据位置关系不确定进行分类。 大多数表现为没有图,或题意不明确。
1、若点P是⊙O所在平面内的一点,到 ⊙O上各点最小距离是1,到⊙O的最大距 3 或 4 离是7,该圆的半径为____________
1、相距2cm的两个点A、B在直线l上.它们分别以 2cm/s和1cm/s的速度在直线l上同时向右平移,经过 t(s)后点A,B分别平移到点A1,B1的位置,⊙A1的 半径为1cm,以B为圆心BB1为半径作⊙B . (2) 问A出发后多少秒, ⊙A1恰好与⊙B相切. (1)试写出点A1B之间的距离d(cm )与时间t(s) 之间的函数表达式;

中考数学专题复习一分类讨论思想PPT课件

中考数学专题复习一分类讨论思想PPT课件
过点A作AD⊥BC,垂足为D, ∵∠ACB=75°-∠B=45°, sinACD AD,
AC
∴AD=AC×sin 45°, 在Rt△ABD中,∠B=30°,
∴AB=2AD=2AC×sin 45°=750 2 m.
答案:750 2 m
【知识归纳】解直角三角形实际应用的两点技能 1.转化:利用直角三角形或构造直角三角形解决实际问题,一 般先把实际问题转化为数学问题,若题目中无直角三角形,需 要添加辅助线(如作三角形的高等)构造直角三角形,再利用解 直角三角形的知识求解. 2.前提:解直角三角形时结合图形分清图形中哪个三角形是直 角三角形,哪条边是角的对边、斜边、邻边,此外正确理解俯 角、仰角、坡度、坡角等名词术语是解答此类题目的前提条件.
5.一次函数:已知一次函数与坐标轴围成的三角形的面积,求k 的值,常分直线交于坐标轴正半轴和负半轴讨论;确定反比例函 数与一次函数交点个数,常分一、三象限或二、四象限两种情 况讨论. 6.圆:圆的一条弦(直径除外)对两条弧,常分优弧和劣弧两种情 况讨论;求圆中两条平行弦的距离,常分两弦在圆心的同旁和两 旁两种情况讨论;圆与圆的相切,此时要考虑分外切和内切两种 情况讨论.
4.在几何中的应用:对于几何问题,我们常通过图形,找出边、 角的数量关系,通过边、角的数量关系,得出图形的性质等.
【例2】(2013·兰州中考)已知反比例函数y1= k 的图象与
x
一次函数y2=ax+b的图象交于点A(1,4)和点B(m,-2). (1)求这两个函数的解析式. (2)视察图象,当x>0时,直接 写出y1>y2时自变量x的取值范围. (3)如果点C与点A关于x轴对称, 求△ABC的面积.
5.(2013·十堰中考)如图,在小山的东侧A点有一个热气球,由

浅谈分类思想在初中几何入门中的应用

浅谈分类思想在初中几何入门中的应用

浅谈分类思想在初中几何入门中的应用作者:张晓会来源:《文理导航·教育研究与实践》 2020年第10期广东省中山市第一中学张晓会数学思想方法,是对数学的本质认识,是数学学习的一种重要指导思想和方法。

数学中的分类讨论思想,是一种重要的逻辑方法,它能使复杂的问题变得简单明了,还可以培养学生严密的数学逻辑思维和发散思维。

在初中平面几何中,分类思想也是比较常用的一种数学方法。

那么平面几何问题一般在什么情况下需要进行分类讨论呢?又该怎么进行分类呢?通常在平面几何未给出相应图形,且关键词具有“模糊性”性时,往往就需要我们进行分类讨论。

分类一般分为以下几步:首先,找出题目中的关键词;其次,画出相应图形;最后,分别按照图形进行分析作答。

下面仅以几个题目为例进行说明。

例1:已知:线段AB=5cm,点C在直线AB上,且BC=2cm,则AC=_____cm。

解析:本题没有给出相应的图形,并且关键词是“点C在直线AB上”而不是“点C在线段AB上”,而直线是具有无限延伸性,所以C点可能在线段AB上,也可能在线段AB的延长线上。

画出相应的图形(见下图)例3:在三角形ABC中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,MB平分∠ABC,E为射线BM上一点,若直线CE垂直于三角形ABC的一边,请写出∠BEC的度数。

解析:∵∠A=60°,∠ACB=40°∴∠ABC=180°-∠A-∠ACB=80°又∵MB平分∠ABC∴∠ABM=∠MBC=1/2∠ABC=40°本题只给出了基础的背景图形,关键词是“直线CE垂直于三角形ABC的一边”,没有明确说明具体时间那一条边,而三角形有三条边,所以本题要分三种情况讨论。

1.当CE⊥BC时(如图七),∠BCE=90°,∴∠BEC=180°-∠MBC-∠BCE=50°。

2.当CE⊥AC时(如图八),∠ACE=90°∴∠BEC=180°-∠MBC-∠BCE=10°。

初中数学几何常用十大解题方法

初中数学几何常用十大解题方法

初中数学几何常用十大解题方法
初中数学几何是一门非常重要且广泛运用的学科,掌握一些常用的
解题方法能够加深对这门学科的理解,也有助于我们在考试中更为得
心应手。

下面是我总结的初中数学几何常用的十大解题方法。

1. 引理法:在证明一个重要的结论时,我们可以先引入一个类似的但
容易证明的结论,然后再运用这个结论推导得出所要证明的结论。

2. 分类讨论法:将不同情况按照不同性质分为若干个类别,然后分别
进行讨论,最后再根据各个情况得出所要求的答案。

3. 反证法:这种证明方法常用于证明命题的否定。

先假设结论不成立,然后推导得到一个矛盾的结论,说明原命题是成立的。

4. 相似性质法:找出几何图形之间的相似性质,利用这些性质建立几
何方程来求解未知量。

5. 对称性法:通过图形的对称性质,将几何问题转化为已知问题来解决。

6. 等角定理法:利用三角形等角定理推导问题,解决几何题。

7. 重心法:通过计算三角形各顶点的坐标,进而求出三角形的重心坐标,从而解决几何问题。

8. 勾股定理法:利用勾股定理解决几何题,是一种非常常见的解题方法。

9. 同位角反向法:通过同位角的反向推导,建立几何方程求解未知量。

10. 线性规划法:用代数的方法求解对于一些线性方程的优化问题,对
于一些几何问题也可以通过线性规划进行求解。

以上就是初中数学几何常用的十大解题方法,这些方法都有着广泛的
运用场景,希望大家在学习中能够加以应用,并且能够掌握更多的解
题方法。

分类讨论思想在数学教学中的应用

分类讨论思想在数学教学中的应用

分类讨论思想在数学教学中的应用
分类讨论思想是一种重要的逻辑思维方法,在数学教学中也有广泛的应用。

下面就分
类讨论思想在数学教学中的应用进行分类讨论。

一、几何问题中的分类讨论思想
几何问题中常常要根据几何图形的特征进行分类讨论,以达到解决问题的目的。

例如,初中数学中的“巧妙构造三平方数”问题,就可以利用分类讨论思想,将所有正整数分为
奇数与偶数两类,再利用勾股定理分别证明奇数与偶数的情况,最终得到结论。

这种分类
讨论思想在解决几何问题时尤为常见,不仅可以帮助学生理解几何知识,而且能够锻炼学
生的逻辑思维能力和解决问题的能力。

三、概率问题中的分类讨论思想
概率问题中的分类讨论思想同样重要。

在初中数学中,学生学习概率时,常常需要利
用分类讨论思想,将问题中的样本空间进行分类,从而计算出概率值。

例如,求掷骰子两次,点数和为6的概率,就可以将样本空间进行分类讨论,分别讨论两次掷骰子得到什么
点数的情况,最终计算出概率值。

这种分类讨论思想在初中概率学习中应用广泛,不仅帮
助学生掌握概率知识,而且能够提高学生的逻辑推理能力。

综上所述,分类讨论思想在数学教学中应用广泛,不仅可以帮助学生掌握各种数学知识,而且能够提高学生的逻辑思维能力和解决问题的能力。

因此,在数学教学中应注重培
养学生分类讨论思想的应用,使学生能够灵活运用这一思想方法解决各种数学问题。

几何图形中的分类讨论

几何图形中的分类讨论
数学专题复习
通过以上练习中,思 考有哪些问题需要分 类讨论?
第一关
例:如图,B(-1,0),点C在y轴的正半轴上, ∠CBO=60°,CA平行于x轴,∠CBA=90°.点 P从点Q(5,0)出发,沿x轴向左以每秒1个单位长 y 的速度运动,运动时间为t秒. (1)当t为何值时, C △BCP为直角三角形 A
A (2)当t为何值时, △ABP为等腰三角形。 B C
O
ห้องสมุดไป่ตู้Q x
第三关
例:(3)以点P为圆心, 2 3 为半径的圆与直线BC相 切, 求t的值; y A B C
O Q x
分类讨论的一般原则:
统一标准,不重不漏
分类讨论的一般步骤 : 1、正确选择分类的标准; (即从哪个角度分,怎么分) 2、画出符合条件的所有图形; 3、逐类讨论解决;
4、归纳并作出结论.
几何图形中常见的分类讨论 1.直角三角形

直角边 斜边
底 2.等腰三角形 腰
优弧 3.圆周角 劣弧
4.直线与圆相切:位置不确定
分类讨论注意事项:统一标准,不重不漏
检测时用心专注,相信自己一定行!
B
O
Q x
1、正确选择分类的标准; (即从哪个角度分,怎么分) 2、画出符合条件的所有图形; 3、逐类讨论解决; 4、归纳并作出结论.
第二关
例:如图,B(-1,0),点C在y轴的正半轴上, ∠CBO=60°,CA平行于x轴,∠CBA=90°.点 P从点Q(5,0)出发,沿x轴向左以每秒1个单位长 y 的速度运动,运动时间为t秒.

等腰三角形中的分类讨论问题

等腰三角形中的分类讨论问题

关于等腰三角形中分类讨论问题的探讨所谓分类讨论思想,就是在解答数学题时有时无法用同一种形式去解决,而需要选定一个标准,根据这个标准将问题划分成几个能用不同形式去解决的小问题,将这些小问题一一解决,从而使问题得到解决,这就是分类讨论的思想。

对于分类讨论问题,初中教学阶段虽然没有对此方面的教学要求,但是需要用分类讨论的思想去解决的问题却经常遇见,华东师大版七年级下册教材中典型的分类讨论问题是在“等腰三角形〞一节中,主要有由于几何图形性质不明确而需分类讨论的问题和几何图形之间的位置关系不明确而需分类讨论的问题。

下面举例简要论述这两类问题:一、当腰长或底边长不能确定时,必须进行分类讨论例1、〔1〕已知等腰三角形的两边长分别为8cm和10cm,求周长。

〔2〕等腰三角形的两边长分别为3cm和7cm,求周长。

分析:由等腰三角形的性质可知我们在解此题前,必须明确所给的边的定义,在这里哪条边是“腰〞,哪条边是“底〞不明确,而且还要考虑到三条线段能够构成三角形的前提,因此必须进行分类讨论。

解〔1〕因为8+8>10,10+10>8,则在这两种情况下都能构成三角形;当腰长为8时,周长为8+8+10=26;当腰长为10时,周长为10+10+8=28;故这个三角形的周长为26cm或28cm。

解〔2〕当腰长为3时,因为3+3<7,所以此时不能构成三角形;当腰长为7时,因为7+7>3,所以此时能构成三角形,因此三角形的周长为:7+7+3=17;故这个三角形的周长为17cm。

注意:对于此类题目在进行分类讨论时,必须运用三角形的三边关系来验证是否能构成三角形。

二、当顶角或底角不能确定时,必须进行分类讨论例2、等腰三角形的一个角是另一个角的4倍,求它的各个内角的度数;分析:题目没有指明“顶角是底角的4倍〞,还是“底角是顶角的4倍〞因此必须进行分类讨论。

解:〔1〕当底角是顶角的4倍时,设顶角为x ,则底角为4x ,∴ 4x+4x+x=1800, ∴ x=200, ∴ 4x=800,于是三角形的各个内角的度数为:200,800,800。

直角三角形分类讨论

直角三角形分类讨论

物理学中的应用
重力与加速度
在物理学的运动学中,直角三角 形被用于描述重力与加速度之间 的关系,例如自由落体运动中, 利用直角三角形计算速度和位移。
力的分解
在力学中,力可以分解为水平和 垂直方向的分力,而直角三角形
是解决这类问题的有效工具。
电磁学
在电磁学中,直角三角形用于描 述电场、磁场和电流之间的关系, 例如在电磁感应和交流电的分析
面积计算方法
直接计算
已知直角三角形的底和高,可以直接使用面积公式进行计算。
间接计算
当只知道直角三角形的一边和夹角时,可以通过三角函数或勾股 定理求出其他边长,再计算面积。
相似三角形法
当两个直角三角形相似时,可以通过相似比来计算面边角关系定理
勾股定理
钝角三角形边角关系
建筑设计
直角三角形在建筑设计中应用广 泛,如金字塔、塔吊等,利用其 稳定性来支撑和保持结构的平衡。
桥梁工程
在桥梁设计中,直角三角形常被用 于支撑和固定桥面,以确保桥梁的 稳定性和安全性。
建筑测量
直角三角形在建筑测量中用于确定 角度和高度,例如在测量建筑物的 高度和角度时,可以利用直角三角 形的性质来计算。
直角三角形中,两条 直角边的平方和等于 斜边的平方。
直角三角形中,两个 锐角的和为90度。
02
直角三角形的分类
按照角度分类
30-60-90度直角三角形
这类三角形中,有一个30度的锐角和两个60度的锐角,边长之间有一定的比例关 系,如3-4-5等。
45-45-90度直角三角形
这类三角形中,两个锐角都是45度,边长之间也有一定的比例关系,如1-1$sqrt{2}$等。
按照边长分类
等腰直角三角形

特殊三角形中的分类讨论模型—2024年中考数学常见几何模型全归纳之模型解读(全国通用)(解析版)

特殊三角形中的分类讨论模型—2024年中考数学常见几何模型全归纳之模型解读(全国通用)(解析版)

三角形中的重要模型-特殊三角形中的分类讨论模型 模型1、等腰三角形中的分类讨论模型【知识储备】凡是涉及等腰三角形边、角、周长、面积等问题,优先考虑分类讨论,再利用等腰三角形的性质与三角形三边关系解题即可。

1)无图需分类讨论①已知边长度无法确定是底边还是腰时要分类讨论;②已知角度数无法确定是顶角还是底角时要分类讨论; ③遇高线需分高在△内和△外两类讨论;④中线把等腰△周长分成两部分需分类讨论。

2)“两定一动”等腰三角形存在性问题:即:如图:已知A ,B 两点是定点,找一点C 构成等腰ABC △方法:两圆一线具体图解:①当AC AB =时,以点A 为圆心,AB 长为半径作⊙A ,点C 在⊙A 上(B ,C 除外)②当BC AB =时,以点B 为圆心,AB 长为半径作⊙B ,点C 在⊙B 上(A ,E 除外)③当BC AC =时,作AB 的中垂线,点C 在该中垂线上(D 除外)【答案】C【分析】由已知等式,结合非负数的性质求m 、n 的值,再根据m 、n 分别作为等腰三角形的腰,分类求解.【详解】解:()2350m n −+−=,30m −≥,()250n −≥,30m ∴−=,50n −=,解得:3m =,5n =,当3m =作腰时,三边为3,3,5,符合三边关系定理,周长为:33511++=,当5n =作腰时,三边为3,5,5,符合三边关系定理,周长为:35513++=,故选:C .【点睛】本题考查了等腰三角形的性质,三角形的三边关系,非负数的性质,关键是根据非负数的性质求m 、n 的值,再根据m 或n 作为腰,分类求解. 例2.(2023春·黑龙江佳木斯·八年级校考期中)一个等腰三角形的周长为18cm ,且一边长是4cm ,则它的腰长为( )A .4cmB .7cmC .4cm 或7cmD .全不对【答案】B【分析】根据等腰三角形的定义,两腰相等,结合三角形的三边关系,进行求解即可.【详解】解:当4cm 为腰长时,则底边长为182410−⨯=cm ,∵4410+<,不符合题意;∴4cm 为底边长,∴等腰三角形的腰长为:()11847cm 2⨯−=;故选B . 【点睛】本题考查等腰三角形的定义,三角形的三边关系.解题的关键是掌握等腰三角形的两腰相等,注意讨论时要根据三角形的三边关系,判断能否构成三角形.例3.(2023春·四川达州·八年级校考阶段练习)等腰三角形的一个角是80︒,则它顶角的度数是( )A .80︒B .80︒或20︒C .80︒或30︒D .20︒【答案】B【分析】根据三角形的内角和为180︒,进行分类讨论即可【详解】解:①当底角为80︒时,顶角18080220=︒−︒⨯=︒,②当顶角为80︒时,顶角度数80=︒,综上:顶角度数为80︒或20︒;故选:B .【点睛】本题考查了三角形的内角和为180︒,等腰三角形两底角相等,解题的关键是书熟练掌握相关内容. 例3.(2023·四川广安·八年级校考期中)等腰三角形的一个外角为100︒,则它的底角为( )A .55︒B .80︒C .55︒或80︒D .以上都不是 【答案】D【分析】等腰三角形的一个外角等于100︒,则等腰三角形的一个内角为80︒,但已知没有明确此角是顶角还是底角,所以应分两种情况进行分类讨论.【详解】∵等腰三角形的一个外角等于100︒,∴等腰三角形的一个内角为80︒,①当80︒为顶角时,其他两角都为50︒、50︒,②当80︒为底角时,其他两角为80︒、20︒,所以等腰三角形的底角可以是50︒,也可以是80︒.故选:D .【点睛】本题考查了等腰三角形的性质和三角形的内角和定理;在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错. 例4.(2023·四川绵阳·八年级校考阶段练习)等腰三角形一腰上的高与另一腰的夹角为70︒,则等腰三角形的顶角度数为 .【答案】20︒或160︒【分析】要注意分类讨论,等腰三角形可能是锐角三角形也可能是钝角三角形,然后根据三角形的内角和以及三角形的外角的性质即可求解.【详解】解:若三角形为锐角三角形时,如图,AB AC =,70ACD ∠=︒,CD 为高,即90ADC ∠=︒,此时180A ACD ADC ∠+∠+∠=︒,∴180907020A =︒−︒−︒=︒,若三角形为钝角三角形时,如图,AB AC =,70ACD ∠=︒,CD 为高,即90ADC ∠=︒,此时9070160BAC D ACD ∠=∠+∠=︒+︒=︒,综上,等腰三角形的顶角的度数为20︒或160︒.故答案为:20︒或160︒. 【点睛】本题主要考查了等腰三角形的性质,三角形外角的性质,三角形内角和定理,解题的关键是根据题意画出图形,并注意分类讨论. 例5.(2023·山东滨州·八年级校考期末)我们称网格线的交点为格点.如图,在6行5⨯列的长方形网格中有两个格点A 、B ,连接AB ,在网格中再找一个格点C ,使得ABC 是等腰直角三角形,则满足条件的格点C 的个数是( )A .3B .4C .5D .6【答案】C 【分析】根据题意,结合图形,分两种情况讨论:①AB 为等腰直角ABC 底边;②AB 为等腰直角ABC 其中的一条腰.【详解】如图:分情况讨论:①AB 为等腰直角ABC 底边时,符合条件的格点C 点有2个;②AB 为等腰直角ABC 其中的一条腰时,符合条件的格点C 点有3个.故共有5个点,故选:C .【点睛】本题考查了等腰三角形的性质和判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.例6.(2023·北京·八年级期中)Rt △ABC 中,∠BAC =90°,AB =AC =2,以AC 为一边.在△ABC 外部作等腰直角三角形ACD ,则线段BD 的长为____.【答案】4或【分析】根据题意分类讨论,①90CAD ∠=︒,②90ACD ∠=︒,③90ADC ∠=︒,分别作出图形,再结合已知条件勾股定理求解即可.【详解】解:①如图,当90CAD ∠=︒时,902BAC AB AC ∠=︒==,,ACD △是等腰直角三角形,2AC AD AB ∴===,180BAD BAC CAD ∠=∠+∠=︒,224BD AB AD ∴=+=+=;②如图,当90ACD ∠=︒时,过点D 作DE BC ⊥,交BC 的延长线于点E ,902BAC AB AC ∠=︒==,,ACD △,ABC 是等腰直角三角形,2CD AC AB ∴===,18045DCE ACD ACB ∠=︒−∠−∠=︒, 又DE BC ⊥,∴DEC 是等腰直角三角形,DE CE ∴=,在Rt DEC △中,22222DC CE DE DE =+=,∴2DE DC ==在Rt ABC 中,BC 在Rt BDE 中,BD =③如图,当90ADC ∠=︒时,902BAC AB AC ∠=︒==,ACD △,ABC 是等腰直角三角形, 2CD AD AC ∴===在Rt ABC 中,BC ==Rt BDC 中,BD =综上所述,BD 的长为:4或4或.【点睛】本题考查了勾股定理,等腰三角形的性质,分类讨论是解题的关键. 例7.(2023·福建南平·八年级校考期中)已知△ABC 中,如果过顶点B 的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC 的关于点B 的二分割线.如图1,Rt △ABC 中,显然直线BD 是△ABC 的关于点B 的二分割线.在图2的△ABC 中,∠ABC =110°,若直线BD 是△ABC 的关于点B 的二分割线,则∠CDB 的度数是 .【答案】40°或90°或140°【分析】分三种情况讨论,由等腰三角形的性质和直角三角形的性质可求解.【详解】解:①如图,当∠DBC=90°,AD=BD 时,直线BD 是△ABC 的关于点B 的二分割线,∵∠ABC=110°,∠DBC=90°,∴∠ABD=20°,∵AD=BD ,∴∠A=∠ABD=20°,∴∠CDB=∠A+∠ABD=40°;②如图,当∠BDC=90°,AD=BD 时,直线BD 是△ABC 的关于点B 的二分割线,或当∠BDC=90°,CD=BD 时,直线BD 是△ABC 的关于点B 的二分割线,;③如图,当∠ABD=90°,CD=BD 时,直线BD 是△ABC 的关于点B 的二分割线,∵∠ABC=110°,∠ABD=90°,∴∠DBC=20°,∵CD=BD ,∴∠C=∠DBC=20°,∴∠BDC=140°.综上所述:当∠BDC 的度数是40°或90°或140°时,直线BD 是△ABC 的关于点B 的二分割线.【点睛】本题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,理解二分割线是本题关键. 且ABP 为等腰三角形,则点【答案】(2,0)或(2,0)−或(64+或(6−【分析】根据等腰三角形的判定,分①AB=BP ;②AB=AP ;③AP=BP 三种情况求解即可.【详解】∵ABP 为等腰三角形,①当AB BP =时,如图①,∵AB ==∴BP =∵(6,0)B ,∴(6P +或(6P −;②当AB AP =时,如图② 作AC BP ⊥于C 点,则(2,0)C ,∵AB AP =,∴BC CP =,∵624BC =−=,∴4CP =,∴(2,0)P −.③当AP BP =时,如图③,作AP BP ⊥,∴4AP BP ==,∴(2,0)P .综上所述:点P 的坐标为(2,0)或(2,0)−或(6+或(6−,故答案为:(2,0)或(2,0)−或(6+或(6−.【点睛】本题考查了等腰三角形的判定与性质、勾股定理、坐标与图形,熟练掌握等腰三角形的判定与性质,灵活运用分类讨论的思想解决问题是解答的关键. 八年级校考期中)如图,ABC 中,A 【答案】(1)16(2)6或2(3)4或2或95或3【分析】(1)设cm PB PA x ==,则()4cm PC x =−,利用勾股定理求出3cm AC =,在Rt ACP 中,依据222AC PC AP +=,列方程求解即可得到t 的值.(2)如图所示,当点P 在AC 上时,过P 作PD AB ⊥于D ,设cm PD PC y ==,则()3cm AP y =−,在Rt ADP 中,依据222AD PD AP +=,列方程求解即可得到t 的值.当点P 与点B 重合时,点P 也在ABC ∠的角平分线上,此时,522AB t ==.(3)分四种情况:当P 在AB 上且AP CP =时,当P 在AB 上且3cm AP CA ==时,当P 在AB 上且AC PC =时,当P 在BC 上且3cm AC PC ==时,分别依据等腰三角形的性质即可得到t 的值.【详解】(1)解:如图,设cm PB PA x ==,则()4cm PC x =−,90ACB ∠=︒,5cm AB =,4cm BC =,3cm AC ∴,在Rt ACP 中,由勾股定理得222AC PC AP +=,()22234x x ∴+−=,解得258x =,258BP ∴=,2556582216AB BP t ++∴===;(2)解:如图所示,当点P 在AC 上时,过P 作PD AB ⊥于D ,BP 平分ABC ∠,90C ∠=︒,PD AB ⊥PD PC ∴=,DBP CBP ∠=∠,在BCP 与BDP △中,BDP BCP DBP CBP BP BP ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AAS BDP BCP ∴≌4cm BC BD ∴==,541cm AD ∴=−=,设cm PD PC y ==,则()3cm AP y =−,在Rt ADP 中,由勾股定理得222AD PD AP +=,()22213y y ∴+=−,解得43y =,43CP \=,454313226AB BC CP t ++++∴===,当点P 与点B 重合时,点P 也在ABC ∠的角平分线上,此时,522AB t ==. 综上所述,点P 恰好在ABC ∠的角平分线上,t 的值为316或52.(3)解:分四种情况:①如图,当P 在AB 上且AP CP =时,∴A ACP ∠=∠,∵A B ∠∠=︒+90,90ACP BCP ∠+∠=︒,B BCP ∴∠=∠,CP BP AP ∴==,P ∴是AB 的中点,即15cm 22AP AB ==,524AP t ∴==. ②如图,当P 在AB 上且3cm AP CA ==时,∴322AP t ==. ③如图,当P 在AB 上且AC PC =时,过C 作CD AB ⊥于D , ∵1122ABC S AC BC AB CD =⋅=⋅,∴12cm 5AC BC CD AB ⋅==,在Rt ACD △中,由勾股定理得9cm 5AD =,182cm 5AP AD ∴==,925AP t ∴==. ④如图,当P 在BC 上且3cm AC PC ==时,则431cm BP =−=,6322AB BP t +∴===. 综上所述,当t 的值为54或32或95或3时,ACP △为等腰三角形.【点睛】本题属于三角形综合题,考查了角平分线的性质,等腰三角形的性质以及勾股定理的综合运用.画出图形,利用分类讨论的思想是解第(3)题的关键. 例10.(2022春·四川成都·八年级校考期中)如图,在平面直角坐标系内,点O 为坐标原点,经过()26A−,的直线交x 轴正半轴于点B ,交y 轴于点C OB OC =,,直线AD 交x 轴负半轴于点D ,若ABD △的面积为27(1)求直线AB 的表达式和点D 的坐标;(2)横坐标为m 的点P 在线段AB 上(不与点A B 、重合),过点P 作x 轴的平行线交AD 于点E ,设PE 的长为()0y y ≠,求y 与m 之间的函数关系式并直接写出相应的m 取值范围;(3)在(2)的条件下,在x 轴上是否存在点F ,使PEF !为等腰直角三角形?若存在求出点F 的坐标;若不存在,请说明理由.【答案】(1)()450y x D =−+−,,(2)()33242y m m =+−<<,(3)存在,点F 的坐标为2,05⎛⎫ ⎪⎝⎭或16,05⎛⎫− ⎪⎝⎭或8,07⎛⎫− ⎪⎝⎭ 【分析】(1)据直线AB 交x 轴正半轴于点B ,交y 轴于点C ,OB OC =,设直线AB 解析式为y x n =−+,把A 的坐标代入求得n 的值,从而求得B 的坐标,再根据三角形的面积建立方程求出BD 的值,求出OD 的值,从而求出D 点的坐标; (2)直接根据待定系数法求出AD 的解析式,先根据B A 、的坐标求出直线AB 的解析式,将P 点的横坐标代入直线AB 的解析式,求出P 的纵坐标,将P 的纵坐标代入直线AD 的解析式就可以求出E 的横坐标,根据线段的和差关系就可以求出结论;(3)要使PEF !为等腰直角三角形,分三种情况分别以点P E F 、、为直角顶点,据等腰直角三角形的性质求出(2)中m 的值,就可以求出F 点的坐标.【详解】(1)解:OB OC =,∴设直线AB 的解析式为y x n =−+,∵直线AB 经过()26A −,,26n ∴+=,4n ∴=,∴直线AB 的解析式为4y x =−+,()40B ∴,,4OB ∴=,ABD 的面积为()2726A −,,,16272ABD S BD =⨯⨯=,9BD ∴=,5OD ∴=,()50D ∴−,,∴直线AB 的解析式为()450y x D =−+−,,(2)解:设直线AD 的解析式为y ax b =+,()26A −,,()50D −,∴2650a b a b −+=⎧⎨−+=⎩,解得210a b =⎧⎨=⎩.∴直线AD 的解析式为210y x =+;∵点P 在AB 上,且横坐标为m ,()4P m m ∴−+,,PE x ∥轴,∴E 的纵坐标为4m −+,代入210y x =+得,4=210m x −++,解得62m x −−=,6,42m E m −−⎛⎫∴−+ ⎪⎝⎭, PE ∴的长63322m m y m −−=−=+;即332y m =+,()24m −<<;(3)解:在x 轴上存在点F ,使PEF !为等腰直角三角形,①当90FPE ∠=︒时,如图①,有PF PE =,4PF m =−+,332PE m =+,3432m m ∴−+=+,解得25m =,此时2,05F ⎛⎫ ⎪⎝⎭; ②当90PEF ∠=︒时,如图②,有EP EF =,EF 的长等于点E 的纵坐标,4EF m ∴=−+,3432m m ∴−+=+,解得:25m =, ∴点E 的横坐标为61625m x −−==−,∴16,05F ⎛⎫− ⎪⎝⎭;③当90PFE ∠=︒时,如图③,有FP FE =,FPE FEP ∴∠=∠.180FPE EFP FEP ∠+∠+∠=︒,45FPE FEP ∴∠=∠=︒.作FR PE ⊥,点R 为垂足,18045PFR FPE PRF ∴∠=︒−∠−∠=︒,=PFR RPF ∴∠∠,=FR PR ∴.同理=FR ER ,12FR PE ∴=.∵点R 与点E 的纵坐标相同,4FR m ∴=−+,∴134322m m ⎛⎫−+=+ ⎪⎝⎭,解得:107m =, 10184477PR FR m ∴==−+=−+=,∴点F 的横坐标为10188777−=−,8,07F ⎛⎫∴− ⎪⎝⎭. 综上,在x 轴上存在点F 使PEF !为等腰直角三角形,点F 的坐标为2,05⎛⎫ ⎪⎝⎭或16,05⎛⎫− ⎪⎝⎭或8,07⎛⎫− ⎪⎝⎭.【点睛】本题考查了等腰直角三角形的性质,三角形的面积公式的运用,待定系数法求一次函数的解析式 模型2、直角三角形中的分类讨论模型【知识储备】凡是涉及直角三角形问题,优先考虑直角顶点(或斜边)分类讨论,再利用直角三角形的性质或勾股定理解题即可。

初中数学几何题解题技巧

初中数学几何题解题技巧

初中数学几何题解题技巧
数学几何是初中的一个重要学科,它包括了几何的基本概念、定义、公理、定理、图形等,学习几何最重要的就是理解其中的概念及其公理定理,以便更好地解决几何题目。

几何这一学科的解题有其一定的技巧,只要熟练掌握这些技巧,就可以准确地做好几何题。

下面就来详细讲解一下这些技巧:
首先是分类讨论。

分类讨论主要是根据题目中几何图形的形状或属性,将题目分为几个类别,然后根据具体情况分别解决,因为不同类别的图形有不同的性质,所以分类讨论能够有效地帮助我们解决几何题目。

其次是几何图形的相似性原理。

相似性原理指的是当两个几何图形它们的对应边的比值相等时,它们就是相似的,如果它们的大小不等,那么我们可以使用它们的比值来计算题目。

这种方法不仅可以减少解题的时间,而且可以让解题过程变得更加简单。

此外,还有平面角平分线定理。

平面角平分线定理是指,若一个角被两条相交的直线平分,则这两条直线必然相交于角的垂心。

这个定理不仅可以极大地帮助我们计算几何中的角的大小,而且可以用来计算各个边和角的大小,从而解决几何问题。

最后是三角函数定理。

三角函数定理是指,当两个三角形都有相同的三角函数关系式时,这两个三角形是相似的。

这个定理可以用来求出两个三角形的边长比值,以及计算一个三角形内角的大小等等,从而帮助我们更好地解决几何问题。

通过以上介绍,我们可以看到,解决几何问题需要熟练掌握一些解题技巧,例如分类讨论、相似性原理、平面角平分线定理、三角函数定理等等,这些都是解决几何题目的重要手段。

因此,学习初中数学几何,我们一定要把握好这些解题技巧,才能在数学几何考试中取得良好成绩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何图形中的分类 讨论
分类讨论:
根据某一标准将数学对象分为不同种 类,然后分别对它们进行讨论,得出各 种情况下相应结论的数学思想方法。
分类讨论是一种重要的数学思想方法也是一种解题的策略! 在几何图形中,我们常根据位置关系不确定进行分类。
考考你,快速做一做
1、A、B是⊙O上的两点,且∠AOB=1360, C是⊙O上不与A、B重合的任意一点, 则∠ACB的度数是___________.
度数是_6_8__o_或 __1_1_2. o
C1 点在圆上位置不确定
点在优弧或劣弧
O
A
B
C2
2、已知横截面直径为100cm的圆形下水道,如 果水面宽AB为80cm,则下水道中水的最大深 度 20cm 或80cm .
弦与圆心的位置关系不确定
3半、径已为知2⊙cmO,1与则⊙OO1O2相2的切长,是⊙_1O_或1_的_5_半__径c为m 3.cm,⊙O2的
O B
AP A
P O B
点与圆的位置关系不确定
点与圆
变2式、:弦如A图B把,⊙已O知的A、圆B周两分点成的1坐:2标,分则别弦为AB2 所3, 0 、
(对0,的2)圆,周P角是的△度AO数B外是接6 圆0 0 上或的1 2一0 0 点,。且∠AOP=30°,
则点P的坐标为_(_2__3 _, 2_) _或__ _3_, 1
0
4
x
-3
练. 如图,点P为正比例函数 y 3 x 图象上 2
的一个动点, P 的半径为3,设点P的坐
标为 x, y .
求 P 与直线 x 2 相切时点的坐标.
y 3x 2
x2
8、如图,点A,B在直线MN上,AB=11厘 米,⊙A,⊙B的半径均为1厘米.⊙A以每 秒2厘米的速度自左向右运动,与此同时, ⊙B的半径也不断增大,其半径r(厘米) 与时间t(秒)之间的关系式为r=1+t (t≥0).
O·2 ·O1
6、如图,在7×4的方格(每个方格的边长为
1个单位长)中,⊙A的半径为1,⊙B的半 径为2,将⊙A由图示位置向右平移__1_, _3_或 5 个单位长后,⊙A与⊙B相切.
A
B
圆与圆相切的位置关系不确定
7、直线
y
3 4
x
3
与x轴,y轴分别交于点M,N
(1)求M,N两点的坐标;
(2)如果点P在x轴上,以点P为圆心,3为半径
通过本节课的学习你有哪些收获?
与圆有关的分类讨论,常根据位置关系不确定进行分类:
1、点与圆的位置关系不确定 2、点在圆上位置不确定 3、两弦与圆心的位置关系不确定 4、圆与圆相切的位置关系不确定
作业
• 复习。 • 强化练习卷。
下课了!
再见!
谢谢指导!
点与圆
1、若点P是⊙O所在平面内的一点,到 ⊙O上各点最小距离是1,到⊙O的最大 距离是7,该圆的半径为_3___或___4_____
6、如图,在7×4的方格(每个方格的边长为 1个单位长)中,⊙A的半径为1,⊙B的半 径为2,将⊙A由图示位置向右平移 ______ 个单位长后,⊙A与⊙B相切.
A
B
5、若⊙O1与⊙O2相切,圆心距为6cm,⊙O1的 半径为10cm,则 ⊙O2的半径4_c_m__或__1_6_c_m。
O·1 O·2
y
C
B
P2
Q
AO
H
AB x
P1 C’
点在圆上位置不确定
线与圆
已知⊙O的半径为5cm,AB、CD是⊙O的弦, 且AB=6cm, CD=8cm,AB∥CD,则AB与CD之 间的距离为 7cm 或 1cm ;
A
2、已知横截面直径为100cm的圆形下水道 , 如果水面宽AB为80cm,则下水道中水的 最大深度 .
3、3c已m知,⊙⊙OO12与的⊙半O径2相为切2 c,m⊙,O则1的O半1O径2的为长 ______cm.
4、如图,已知在直角坐标系中,半径为2的
1、若A、B是⊙O上的两点,且∠AOB=1360,C 是⊙O上不与A、B重合的任意一点,则∠ACB的
(2)如果点P在坐标轴上,以点P为圆心,3为半径
的圆与直线 y
3 4
x
3
相切,求点P的坐标.
y
0
4
x
-3
变式
7、直线
y
3 x 3 与x轴,y轴分别交于点M,N 4
(1)求M,N两点的坐标;
(2)如果点P在坐标轴上,以点P为圆心,3为半径
的圆与这条直线相切,问符合条件的点P有几个?
y
请写出它们
的坐标。
①当两圆第一次外切,由题意,
可得11-2t=1+1+t,t=3;
②当两圆第一次内切,由题意, 可得11-2t=1+t-1,t= 1 3 1
③当两圆第二次内切,由题意,可得2t-11=1+t-1,
t=11;
④当两圆第二次外切,由题意,可得2t-11=1+t+1,t=13.所以,点A出发后3秒、1
3
1
秒、11秒、13秒时两圆相切.
O·1 O·2
O1
O·2
圆与圆相切的位置关系不确定
4、如图,已知在直角坐标系中,半径为2的 圆的圆心坐标为(3,-3),当该圆向上平 移_1_或__5__个单位时,它与x 轴相切.
归纳小结
• 点、弦、圆与圆位置不确定需要分类讨论 • 分类思想在动态问题中运用
更上一层楼
5、若⊙O1与⊙O2相切,圆心距为6cm,⊙O1 的半径为10cm,则 ⊙O2的半径___cm。
(1)试写出点A,B之间的距离d(厘米)与 时间t(秒)之间的函数表达式;
(2)问点A出发后多少秒两圆相切?
解:(1) ①当0≤t≤5.5时,点A在点B的左侧, 此时函数表达式为d=11-2t,
②当t>5.5时,点A在点B的右侧, 故函数表达式为d=2t-11;
(2)解:两圆相切可分为如下四种情况:
②当P2点在x轴上,并且在M点的右侧时,
设⊙P2与直线 则P2B⊥MN,
y
3 4
x
3
上切于点B,连P2B.
∵OA=P2B=3,
∴ P 2B M N O M
∴P2M=MN=5,∴OP2=9.
∴P1点坐标是(9,0);
尝试一下,解决下列的问题
7、直线
y
3 4
x
3
与x轴,y轴分别交于点M,N
(1)求M,N两点的坐标;
的圆与直线 y
3 4
x
3
相切,求点P的坐标.
y
B
P10
4
M
P2
x
-3A
N
解设则:⊙P1P①A1⊥当与MP直N1线点,在y x 轴34 x上 3,上并切且于在点M点A,的连左P侧1A时., ∵OA=P1A=3,
∴ A P 1M N O M
∴P1M=MN=5,∴OP1=1. ∴P1点坐标是(-1,0);
相关文档
最新文档