ANSYS弹性及塑性分析非常经典
ANSYS塑性

塑性基础
… 综述
Training Manual
… 比例极限和屈服点:
• 因为通常屈服点和比例极限之间差别很小, ANSYS 程序总是假定 它们是相同.
• 屈服点以下的应力-应变曲线部分称为弹性区, 屈服点以上的部分称 为塑性区.
屈服点
弹性
塑性
5-9
Basic Structural Nonlinearities
塑性基础
… 概述
Training Manual
塑性:
• 塑性变形是由于剪切应力(偏应力)引起的原子面的滑移而产生的 。这中错位运动本质上晶体结构中的原子重组,使其与新的原子相 邻。
– 卸载后,得到不可回复的应变或永久变形 – 滑移一般不产生任何体应变(不可压缩的条件下),不象弹性变形
屈服点y
卸载
弹性
• 屈服面随塑性流动在所有方向均
匀膨胀.
2
后继屈服面 初始屈服面
1
后继屈服面
初始屈服面
1 • 对于小应变循环载荷, 大多数材料显示出随动强化行为.
5-18
Basic Structural Nonlinearities
塑性基础
… 概述
随动强化:
• 线性随动强化的应力应变行为表述如下:
3
后继屈服面 '
塑性
5-5
塑性基础
… 概述
低碳钢的典型应力-应变曲线(夸大)
Training Manual
Basic Structural Nonlinearities
上屈服点
应变强化
弹性
理想塑性
破坏
5-6
Basic Structural Nonlinearities
ANSYS塑性解析

屈服点y 卸载 弹性
塑性
5-5
塑性基础
… 概述
低碳钢的典型应力-应变曲线(夸大)
Training Manual
Basic Structural Nonlinearities
上屈服点
应变强化
破坏 理想塑性 弹性
5-6
塑性基础
… 概述
Training Manual
Basic Structural Nonlinearities
B. 建模
C. 求解 D. 后处理
• 目的是了解如何在 ANSYS 模型中包括基本塑性选项.
• 另外, 更高级的塑性选项, 和其他材料非线性(如蠕变和超弹性)都 在高级结构非线性 培训手册中讨论.
5-3
塑性基础
A. 综述
回顾弹性:
• 在进行讨论塑性之前,回顾一下材料的弹性是有用的。
Training Manual
E
5-4
塑性基础
… 概述
塑性:
Training Manual
Basic Structural Nonlinearities
• 塑性变形是由于剪切应力(偏应力)引起的原子面的滑移而产生的 。这中错位运动本质上晶体结构中的原子重组,使其与新的原子相 邻。
– 卸载后,得到不可回复的应变或永久变形 – 滑移一般不产生任何体应变(不可压缩的条件下),不象弹性变形
Basic Structural Nonlinearities
5-12
• 对于单向拉伸是试件, 通过比较轴向应力与材料屈服应力可以确定 是否屈服. 然而, 对于多向应力状态, 有必要去定义一个屈服准则. • 屈服准则 是应力状态的单值 (标量)度量, 可以很容易地与单轴试验 得到的屈服应力相比较.
ANSYS弹性及塑性分析(非常经典)

目录什么是塑性 (1)路径相关性 (1)率相关性 (1)工程应力、应变与真实应力、应变 (1)什么是激活塑性 (2)塑性理论介绍 (2)屈服准则 (2)流动准则 (3)强化准则 (3)塑性选项 (5)怎样使用塑性 (6)ANSYS输入 (7)输出量 (7)程序使用中的一些基本原则 (8)加强收敛性的方法 (8)查看结果 (9)塑性分析实例(GUI方法) (9)塑性分析实例(命令流方法) (14)弹塑性分析在这一册中,我们将详细地介绍由于塑性变性引起的非线性问题--弹塑性分析,我们的介绍人为以下几个方面:•什么是塑性•塑性理论简介•ANSYS程序中所用的性选项•怎样使用塑性•塑性分析练习题什么是塑性塑性是一种在某种给定载荷下,材料产生永久变形的材料特性,对大多的工程材料来说,当其应力低于比例极限时,应力一应变关系是线性的。
另外,大多数材料在其应力低于屈服点时,表现为弹性行为,也就是说,当移走载荷时,其应变也完全消失。
由于屈服点和比例极限相差很小,因此在ANSYS程序中,假定它们相同。
在应力一应变的曲线中,低于屈服点的叫作弹性部分,超过屈服点的叫作塑性部分,也叫作应变强化部分。
塑性分析中考虑了塑性区域的材料特性。
路径相关性:即然塑性是不可恢复的,那么这种问题的就与加载历史有关,这类非线性问题叫作与路径相关的或非保守的非线性。
路径相关性是指对一种给定的边界条件,可能有多个正确的解—内部的应力,应变分布—存在,为了得到真正正确的结果,我们必须按照系统真正经历的加载过程加载。
率相关性:塑性应变的大小可能是加载速度快慢的函数,如果塑性应变的大小与时间有关,这种塑性叫作率无关性塑性,相反,与应变率有关的性叫作率相关的塑性。
大多的材料都有某种程度上的率相关性,但在大多数静力分析所经历的应变率范围,两者的应力-应变曲线差别不大,所以在一般的分析中,我们变为是与率无关的。
工程应力,应变与真实的应力、应变:塑性材料的数据一般以拉伸的应力—应变曲线形式给出。
ansys实例命令流-弹塑性分析命令流

/FILNAME,Elastic-Plasitc,1/TITLE, Elastic-Plasitc Analysis!前处理。
/PREP7!**定义梁单元189。
ET,1,BEAM189 !定义单元。
!**梁截面1。
SECTYPE, 1, BEAM, HREC, , 0 !定义梁截面。
SECOFFSET, CENTSECDATA,50,100,6,6,6,6,0,0,0,0 !定义梁截面完成。
!**定义材料。
MPTEMP,,,,,,,, !定义弹塑性材料模型。
MPTEMP,1,0MPDATA,EX,1,,2.05e5MPDATA,PRXY,1,,0.3TB,BISO,1,1,2,TBTEMP,0TBDATA,,150,18600,,,, !定义弹塑性材料模型。
!**建立几何模型。
K,1, , , ,K,2 ,900,K,3 ,,50LSTR, 1, 2!**网格划分。
FLST,5,1,4,ORDE,1 !定义网格密度。
FITEM,5,1CM,_Y,LINELSEL, , , ,P51XCM,_Y1,LINECMSEL,,_YLESIZE,_Y1, , ,50, , , , ,1 !定义网格密度完成。
CM,_Y,LINE !网格划分。
LSEL, , , , 1CM,_Y1,LINECMSEL,S,_YCMSEL,S,_Y1LATT,1, ,1, , 3, ,1CMSEL,S,_YCMDELE,_YCMDELE,_Y1LMESH, 1 !网格划分完成。
!施加载荷及求解。
FINISH/SOL!**施加约束。
FLST,2,1,3,ORDE,1 !施加约束。
FITEM,2,1/GODK,P51X, , , ,0,UX,UY,UZ,ROTX, , ,FLST,2,1,3,ORDE,1FITEM,2,2/GODK,P51X, , , ,0,UY,UZ,ROTX, , , , !施加约束完成。
!**加载。
FLST,2,50,2,ORDE,2FITEM,2,1FITEM,2,-50SFBEAM,P51X,1,PRES,100, , , , , ,LSWRITE,1, !定义载荷步1完成。
ANSYS弹塑性分析教程

弹塑性分析在这一册中,我们将详细地介绍由于塑性变性引起的非线性问题--弹塑性分析,我们的介绍人为以下几个方面:∙ 什么是塑性 ∙ 塑性理论简介∙ ANSYS 程序中所用的性选项 ∙ 怎样使用塑性 ∙ 塑性分析练习题什么是塑性塑性是一种在某种给定载荷下,材料产生永久变形的材料特性,对大多的工程材料来说,当其应力低于比例极限时,应力一应变关系是线性的。
另外,大多数材料在其应力低于屈服点时,表现为弹性行为,也 就 是说,当 移 走 载 荷 时,其应变也完全消失。
由于屈服点和比例极限相差很小,因此在ANSYS 程序中,假定它们相同。
在应力一应变的曲线中,低于屈服点的叫作弹性部分,超过屈服点的叫作塑性部分,也叫作应变强化部分。
塑性分析中考虑了塑性区域的材料特性。
路径相关性:即然塑性是不可恢复的,那么这种问题的就与加载历史有关,这类非线性问题叫作与路径相关的或非保守的非线性。
路径相关性是指对一种给定的边界条件,可能有多个正确的解—内部的应力,应变分布—存在,为了得到真正正确的结果,我们必须按照系统真正经历的加载过程加载。
率相关性:塑性应变的大小可能是加载速度快慢的函数,如果塑性应变的大小与时间有关,这种塑性叫作率无关性塑性,相反,与应变率有关的性叫作率相关的塑性。
大多的材料都有某种程度上的率相关性,但在大多数静 力分 析所经历的应变率范围,两者的应力-应变曲线差别不大,所以在一般的分析中,我们变为是与率无关的。
工程应力,应变与真实的应力、应变: 塑性材料的数据一般以拉伸的应力—应变曲线形式给出。
材料数据可能是工程应力(P A 0)与工程应变(∆l 0),也可能是真实应力(P/A )与真实应变(nL l l ()0)。
大应变的塑性分析一般采用真实的应力,应变数据而小应变分析一般采用工程的应力、应变数据。
什么时候激活塑性:当材料中的应力超过屈服点时,塑性被激活(也就是说,有塑性应变发生)。
而屈服应力本身可能是下列某个参数的函数。
19.5 塑性分析实例_ANSYS 有限元分析从入门到精通_[共8页]
![19.5 塑性分析实例_ANSYS 有限元分析从入门到精通_[共8页]](https://img.taocdn.com/s3/m/f82d05c05f0e7cd185253616.png)
弹塑性分析 第 19 章(1)使用小的时间步长。
(2)如果自适应下降因子是关闭的,打开它,相反,如果它是打开的,且割线刚度正在被连续地使用,那么关闭它。
(3)使用线性搜索,特别是当大变形或大应变被激活时。
(4)预测器选项有助于加速缓慢收敛的问题,但也可能使其它的问题变得不稳定。
(5)可以将默认的牛顿-拉普森选项转换成修正的(MODI)或初始刚度(INIT)牛顿-拉普森选项,这两个选项比全牛顿-拉普森选项更稳定(需要更多的迭代),但这两个选项仅在小挠度和小应变塑性分析中有效。
6.查看结果(1)感兴趣的输出项(例如应力,变形,支反力等)对加载历史的响应应该是光滑的,一个不光滑的曲线可能表明使用了太大的时间步长或太粗的网格。
(2)每个时间步长内的塑性应变增量应该小于5%,这个值在输出文件中以“Max plastic Strain Step”输出,也可以使用POST26来显示这个值(Main Menu:Time Hist Postpro Define Variables)。
(3)塑性应变等值线应该是光滑的,通过任一单元的梯度不应该太大。
(4)画出某点的应力—应变图,应力是指输出量SEQV(Mises等效应力),总应变由累加的塑性应变EPEQ和弹性应变得来。
19.5 塑性分析实例在这个实例分析中,我们将进行一个圆盘在周期载荷作用下的塑性分析。
如图19-4所示,一个周边简支的圆盘,在其中心受到一个冲杆的周期作用。
由于冲杆被假定是刚性的,因此在建模时不考虑冲杆,而将圆盘上和冲杆接触的结点的y方向上的位移耦合起来。
由于模型和载荷都是轴对称的,因此用轴对称模型来进行计算。
求解通过4个载荷步实现。
问题详细说明。
材料性质如下:EX=70000(杨氏模量),NUXY=0.325(泊松比)塑性时的应力—应变关系如下:应变应力0.0007857 550.00575 1120.02925 1720.1 241加载历史如下:时间载荷0 01 -60002 7503 -6000下面分别是利用菜单操作和命令流方式进行有限元分析的方法。
空间弹塑性曲梁分析(ANSYS)

空间弹塑性曲梁分析(ANSYS)知识要点:(a) 非线性材料本构模型(b) 梯度压力(c) 空间建模(d) 设置荷载步长本案例为一空间1/4圆环形曲梁的弹塑性分析(1) 设定分析参数,在ANSYS窗口顶部Parameters菜单中选择Scalar Parameters,在Scalar Parameters窗口中输入以下控制参数:R1=5 (圆环内径);R2=6 (圆环外径);Thick=0.5 (圆环厚度);Fy=200e6 (钢材的屈服强度);P=1e5(压力梯度)(2) 下面开始建立有限元模型。
首先进入ANSYS主菜单Preprocessor->Element Type->Add/Edit/Delete,设定分析的单元类型为Solid 45号8节点空间六面体单元(3) 下面设定材料属性。
进入ANSYS主菜单Preprocessor->Material Props->Material Model,添加以下属性:Structural->Linear->Elastic->Isotropic,设定材料的弹性模量为2×109,泊松比为0.3。
(4) 由于本次分析为材料非线性分析,所以我们需要给材料设定非线性本构关系。
进入Structural->Nonlinear->Inelastic->Rate Independent->Isotropic Hardening Plasticity->Mises Plasticity->Bilinear,设定屈服强度为Fy, 屈服后的切线模量为200e9×0.01。
(5) 开始建立模型。
还是按照ANSYS标准的点、线、面、体建立模型。
首先建立关键点。
在ANSYS主菜单Preprocessor->Modeling->Create->Keypoints->In Active CS,输入以下关键点信息关键点编号X坐标Y坐标Z坐标(6) 下面开始建立弧线。
ANSYS弹性及塑性分析报告(非常经典)

ANSYS弹性及塑性分析报告(非常经典)目录什么是塑性 (1)路径相关性 (1)率相关性 (1)工程应力、应变与真实应力、应变 (1)什么是激活塑性 (2)塑性理论介绍 (2)屈服准则 (2)流动准则 (3)强化准则 (3)塑性选项 (5)怎样使用塑性 (6)ANSYS输入 (7)输出量 (7)程序使用中的一些基本原则 (8)加强收敛性的方法 (8)查看结果 (9)塑性分析实例(GUI方法) (9)塑性分析实例(命令流方法) (14)弹塑性分析在这一册中,我们将详细地介绍由于塑性变性引起的非线性问题--弹塑性分析,我们的介绍人为以下几个方面:什么是塑性塑性理论简介ANSYS程序中所用的性选项怎样使用塑性塑性分析练习题什么是塑性塑性是一种在某种给定载荷下,材料产生永久变形的材料特性,对大多的工程材料来说,当其应力低于比例极限时,应力一应变关系是线性的。
另外,大多数材料在其应力低于屈服点时,表现为弹性行为,也就是说,当移走载荷时,其应变也完全消失。
由于屈服点和比例极限相差很小,因此在ANSYS程序中,假定它们相同。
在应力一应变的曲线中,低于屈服点的叫作弹性部分,超过屈服点的叫作塑性部分,也叫作应变强化部分。
塑性分析中考虑了塑性区域的材料特性。
路径相关性:即然塑性是不可恢复的,那么这种问题的就与加载历史有关,这类非线性问题叫作与路径相关的或非保守的非线性。
路径相关性是指对一种给定的边界条件,可能有多个正确的解—内部的应力,应变分布—存在,为了得到真正正确的结果,我们必须按照系统真正经历的加载过程加载。
率相关性:塑性应变的大小可能是加载速度快慢的函数,如果塑性应变的大小与时间有关,这种塑性叫作率无关性塑性,相反,与应变率有关的性叫作率相关的塑性。
大多的材料都有某种程度上的率相关性,但在大多数静力分析所经历的应变率范围,两者的应力-应变曲线差别不大,所以在一般的分析中,我们变为是与率无关的。
工程应力,应变与真实的应力、应变:塑性材料的数据一般以拉伸的应力—应变曲线形式给出。
ANSYS弹性及塑性(详细、全面)1讲解

目录什么是塑性 (1)路径相关性 (1)率相关性 (1)工程应力、应变与真实应力、应变 (1)什么是激活塑性 (2)塑性理论介绍 (2)屈服准则 (2)流动准则 (3)强化准则 (3)塑性选项 (5)怎样使用塑性 (6)ANSYS输入 (7)输出量 (7)程序使用中的一些基本原则 (8)加强收敛性的方法 (8)查看结果 (9)塑性分析实例(GUI方法) (9)塑性分析实例(命令流方法) (14)弹塑性分析在这一册中,我们将详细地介绍由于塑性变性引起的非线性问题--弹塑性分析,我们的介绍人为以下几个方面:•什么是塑性•塑性理论简介•ANSYS程序中所用的性选项•怎样使用塑性•塑性分析练习题什么是塑性塑性是一种在某种给定载荷下,材料产生永久变形的材料特性,对大多的工程材料来说,当其应力低于比例极限时,应力一应变关系是线性的。
另外,大多数材料在其应力低于屈服点时,表现为弹性行为,也就是说,当移走载荷时,其应变也完全消失。
由于屈服点和比例极限相差很小,因此在ANSYS程序中,假定它们相同。
在应力一应变的曲线中,低于屈服点的叫作弹性部分,超过屈服点的叫作塑性部分,也叫作应变强化部分。
塑性分析中考虑了塑性区域的材料特性。
路径相关性:即然塑性是不可恢复的,那么这种问题的就与加载历史有关,这类非线性问题叫作与路径相关的或非保守的非线性。
路径相关性是指对一种给定的边界条件,可能有多个正确的解—内部的应力,应变分布—存在,为了得到真正正确的结果,我们必须按照系统真正经历的加载过程加载。
率相关性:塑性应变的大小可能是加载速度快慢的函数,如果塑性应变的大小与时间有关,这种塑性叫作率无关性塑性,相反,与应变率有关的性叫作率相关的塑性。
大多的材料都有某种程度上的率相关性,但在大多数静力分析所经历的应变率范围,两者的应力-应变曲线差别不大,所以在一般的分析中,我们变为是与率无关的。
工程应力,应变与真实的应力、应变:塑性材料的数据一般以拉伸的应力—应变曲线形式给出。
ansys弹塑性分析教程

什么是塑性,,,,,,,,,,,,,,,,,,,,,,,,,,,,路径相关性卩口I—| 口丿 J ]—L- )))))))))))))))))))))))))))率相关性I I I 丿、I—))))))))))))))))))))))))))))工程应力、应变与真实应力、应变什么是激活塑性,,,,,,,,,,,,,,,,,,,,,,,, 塑性理论介绍V = ]—- I ALi J I "I_I 555555555555555555555555555屈服准则/1—1—1 / JI 人I I-*—■ -J 5555555555555555555555555555流动准则,,,,,,,,,,,,,,,,,,,,,,,,,,,,强化准贝y ,,,,,,,,,,,,,,,,,,,,,,,,,,,,塑性选项,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 怎样使用塑性,,,,,,,,,,,,,,,,,,,,,,,,,,, ANSYS 输入,,,,,,,,,,,,,,,,,,,,,,,,,,输出量I IJJ I 1I —)))))))))))))))))))))))))))))程序使用中的一些基本原则”加强收敛性的方法,,,,,,,,,,,,,,,,,,” 杳看结果塑性分析实例(GUI方法),,,,,,,,, 塑性分析实例(命令流方法),,,,,,,,1 1 1 1 2 2 2 3 3 5 6 7 7 8 8 9 9 14弹塑性分析在这一册中,我们将详细地介绍由于塑性变性引起的非线性问题--弹塑性分析,我们的介绍人为以下几个方面:什么是塑性«塑性理论简介・ANSY皐序中所用的性选项*怎样使用塑性•塑性分析练习题什么是塑性塑性是一种在某种给定载荷下,材料产生永久变形的材料特性,对大多的工程材料来说当其应力低于比例极限时,应力一应变关系是线性的。
另外,大多数材料在其应力低于屈服点时,表现为弹性行为,也就是说,当移走载荷时,其应变也完全消失。
ansys粘塑性分析-Anand模型

– 与率无关模型不同, 没有明显屈服面, 没有使用加 载/卸载准则(即没有Bauschinger 效应)。
– 假设在所有非零应力值处发生塑性流动, 虽然在低 应力处塑性流动可以忽略。
– Anand模型使用一个称作变形抗力(以“s”表示)的内
部标量变量来表示对材料非弹性流动的各向同性抗 力,以 NL,PSV (塑性状态变量)输出,
– 定义合适的结束时间(TIME)。记住, 对于有粘塑 性的非线性静态分析, 时间对应变率效应 很重要。
– 定义合适的子步数 (NSUBST) 或时间 增量(DELTIM), 以获得精确的结果 (见下面幻灯片)。
• 确保塑性应变增量足够小以捕捉响应, 这对 任何路径相关问题都是重要的。
Solution Controls > -Nonlinear Tab- Cutback Control
s t res s (e.g., psi, MPa) s t res s (e.g., psi, MPa)
dimensionless
dimensionless, a>1.0
所有常数必须为正的。
前面幻灯片所示的 Anand 模型的9个材料常 数可以通过命令或材料 GUI 定义(如下所示):
– 通过 TB,ANAND 定义 Anand 模型。
• 定义了合适的单元类型和材料性能后, 求解选 项与大多数非线性问题相似
Main Menu > Solution > -Analysis Type- Sol’n Control…
Solution Controls > -Basic Tab- Analysis Options – 若需要, 打开大位移效应(NLGEOM,ON)来指定大
ANSYS 高级技术分析:非线性_弹塑性分析

则 在土壤和脆性材料中 屈服应力是与静水压应力 侧限压力 有关的 侧限压力越高
发生屈服所需要的剪应力越大
流动准则
流动准则描述了发生屈服时 塑性应变的方向 也就是说 流动准则定义了单个塑性应
ε ε 变分量
pl
x
pl 等 随着屈服是怎样发展的
y
一般来说 流动方程是塑性应变在垂直于屈服面的方向发展的屈服准则中推导出来的
BKIN
• 双线性等向强化
BISO
• 多线性随动强化
MKIN
• 多线性等向强化
MISO
经典的双线性随动强化 BKIN 使用一个双线性来表示应力应变曲线 所以有两个斜率 弹
第3页
ANSYS
非
线
形
分
析
指
南
弹塑性分析
性斜率和塑性斜率 由于随动强化的 Vonmises 屈服准 则被使用 所以包含有鲍辛格效应
第1页
ANSYS
非
线
形
分
析
指
南
弹塑性分析
屈服准则的值有时候也叫作等效应力 一个通用的屈服准则是 Von Mises 屈服准则 当等效应力超过材料的屈服应力时 将会发生塑性变形
可以在主应力空间中画出 Mises 屈服准则 见 图 3 1
σ σ σ 在 3 D 中 屈服面是一个以 = = 为轴的圆柱面 在 2 D 中 屈服面是一
n( l )
0
大应变的塑性分析一般采用真实的应力 应变数据而小应变分析一般采用工程的应力
应变数据
什么时候激活塑性
当材料中的应力超过屈服点时 塑性被激活 也就是说 有塑性应变发生 而屈服应
力本身可能是下列某个参数的函数
• 温度 • 应变率 • 以前的应变历史 • 侧限压力 • 其它参数
ANSYS弹塑性分析教程9页word

目录什么是塑性 (1)路径相关性 (1)率相关性 (1)工程应力、应变与真实应力、应变 (1)什么是激活塑性 (2)塑性理论介绍 (2)屈服准则 (2)流动准则 (3)强化准则 (3)塑性选项 (5)怎样使用塑性 (6)ANSYS输入 (7)输出量 (7)程序使用中的一些基本原则 (8)加强收敛性的方法 (8)查看结果 (9)塑性分析实例(GUI方法) (9)塑性分析实例(命令流方法) (14)弹塑性分析在这一册中,我们将详细地介绍由于塑性变性引起的非线性问题--弹塑性分析,我们的介绍人为以下几个方面:∙什么是塑性∙塑性理论简介∙ANSYS程序中所用的性选项∙怎样使用塑性∙塑性分析练习题什么是塑性塑性是一种在某种给定载荷下,材料产生永久变形的材料特性,对大多的工程材料来说,当其应力低于比例极限时,应力一应变关系是线性的。
另外,大多数材料在其应力低于屈服点时,表现为弹性行为,也就是说,当移走载荷时,其应变也完全消失。
由于屈服点和比例极限相差很小,因此在ANSYS程序中,假定它们相同。
在应力一应变的曲线中,低于屈服点的叫作弹性部分,超过屈服点的叫作塑性部分,也叫作应变强化部分。
塑性分析中考虑了塑性区域的材料特性。
路径相关性:即然塑性是不可恢复的,那么这种问题的就与加载历史有关,这类非线性问题叫作与路径相关的或非保守的非线性。
路径相关性是指对一种给定的边界条件,可能有多个正确的解—内部的应力,应变分布—存在,为了得到真正正确的结果,我们必须按照系统真正经历的加载过程加载。
率相关性:塑性应变的大小可能是加载速度快慢的函数,如果塑性应变的大小与时间有关,这种塑性叫作率无关性塑性,相反,与应变率有关的性叫作率相关的塑性。
大多的材料都有某种程度上的率相关性,但在大多数静力分析所经历的应变率范围,两者的应力-应变曲线差别不大,所以在一般的分析中,我们变为是与率无关的。
工程应力,应变与真实的应力、应变:塑性材料的数据一般以拉伸的应力—应变曲线形式给出。
ANSYS命令流学习笔记13-plane单元在周期载荷作用下弹塑性分析

! ANSYS命令流学习笔记13 - PLANE单元在周期载荷作用下的弹塑性分析!学习重点:!1、复习材料本构关系,熟悉ansys定义非线性材料的命令流默认熟练掌握材料应力-应变曲线。
材料的力学性能数据一般用材料拉伸试验得到的应力-应变曲线来表示。
材料数据可能是工程应力(P/A0)和工程应变(△L/L0),也可能是真实应力(P/A)和真实应变(In(L/L0))。
当应变较小时,一般采用工程应力和工程应变,而大应变的塑性分析一般使用真实应力和真实应变。
一般分析用到理想弹塑性材料,例如本例子就用的理想弹塑性材料。
还有四种常用本构关系:(1) 双线性随动强化材料模型(BKIN),采用von Mises屈服准则,适用于各向同性材料的小应变问题,包括大多数金属材料。
(2) 双线性等向强化材料模型(BISO),采用von Mises屈服准则,适用于各向同性材料的大应变问题。
(3) 多线性随动强化材料模型(MKIN),采用von Mises屈服准则,适用于使用双线性随动强化材料模型(BKIN)不能足够表示应力-应变曲线的小应变问题。
(4) 多线性等向强化材料模型(MISO),采用von Mises屈服准则,适用于大应变问題。
!2、熟悉post26后处理弹塑性分析一般要输出应力应变的时程曲线,必须掌握post26的后处理方法。
!2、熟悉多载荷步的施加利用Lswrite和Lssolve命令,并确定在每一步中如何施加载荷和约束。
!3、分析步骤(1) 定义非线性材料、定义相关约束,本例中结构可以利用plane单元,简化为轴对称问题。
(2) 分4步施加载荷步,并依据载荷步文件进行求解。
(3) 第1步,0载荷,模拟初始状态。
(4) 第2步,施加正向载荷力。
(5) 第3步,施加反向载荷力。
(6) 第4步,施加正向载荷力。
(7) 设置求解选项,求解。
(8) 在后处理post1查看云图,post26中观察加载-应变曲线。
!问题描述! 一个周边简支的圆盘,在其中心受到一个冲杆的周期作用。
ANSYS弹塑性分析

弹塑性分析在这一册中,我们将详细地介绍由于塑性变性引起的非线性问题--弹塑性分析,我们的介绍人为以下几个方面:∙什么是塑性∙塑性理论简介∙ANSYS程序中所用的性选项∙怎样使用塑性∙塑性分析练习题什么是塑性塑性是一种在某种给定载荷下,材料产生永久变形的材料特性,对大多的工程材料来说,当其应力低于比例极限时,应力一应变关系是线性的。
另外,大多数材料在其应力低于屈服点时,表现为弹性行为,也就是说,当移走载荷时,其应变也完全消失。
由于屈服点和比例极限相差很小,因此在ANSYS程序中,假定它们相同。
在应力一应变的曲线中,低于屈服点的叫作弹性部分,超过屈服点的叫作塑性部分,也叫作应变强化部分。
塑性分析中考虑了塑性区域的材料特性。
路径相关性:即然塑性是不可恢复的,那么这种问题的就与加载历史有关,这类非线性问题叫作与路径相关的或非保守的非线性。
路径相关性是指对一种给定的边界条件,可能有多个正确的解—内部的应力,应变分布—存在,为了得到真正正确的结果,我们必须按照系统真正经历的加载过程加载。
率相关性:塑性应变的大小可能是加载速度快慢的函数,如果塑性应变的大小与时间有关,这种塑性叫作率无关性塑性,相反,与应变率有关的性叫作率相关的塑性。
大多的材料都有某种程度上的率相关性,但在大多数静力分析所经历的应变率范围,两者的应力-应变曲线差别不大,所以在一般的分析中,我们变为是与率无关的。
工程应力,应变与真实的应力、应变:塑性材料的数据一般以拉伸的应力—应变曲线形式给出。
材料数据可能是工程应力(P A0∆l l0n L l l())与工程应变(),也可能是真实应力(P/A)与真实应变()。
0大应变的塑性分析一般采用真实的应力,应变数据而小应变分析一般采用工程的应力、应变数据。
什么时候激活塑性:当材料中的应力超过屈服点时,塑性被激活(也就是说,有塑性应变发生)。
而屈服应力本身可能是下列某个参数的函数。
∙温度∙应变率∙以前的应变历史∙侧限压力∙其它参数塑性理论介绍在这一章中,我们将依次介绍塑性的三个主要方面:∙屈服准则∙流动准则∙强化准则屈服准则:对单向受拉试件,我们可以通过简单的比较轴向应力与材料的屈服应力来决定是否有塑性变形发生,然而,对于一般的应力状态,是否到达屈服点并不是明显的。
ANSYS非线形分析指南:弹塑性

ANSYS⾮线形分析指南:弹塑性⽬录什么是塑性 (1)路径相关性 (1)率相关性 (1)⼯程应⼒、应变与真实应⼒、应变 (1)什么是激活塑性 (2)塑性理论介绍 (2)屈服准则 (2)流动准则 (3)强化准则 (3)塑性选项 (5)怎样使⽤塑性 (6)ANSYS输⼊ (7)输出量 (7)程序使⽤中的⼀些基本原则 (8)加强收敛性的⽅法 (8)查看结果 (9)塑性分析实例(GUI⽅法) (9)塑性分析实例(命令流⽅法) (14)弹塑性分析在这⼀册中,我们将详细地介绍由于塑性变性引起的⾮线性问题--弹塑性分析,我们的介绍⼈为以下⼏个⽅⾯:什么是塑性塑性理论简介ANSYS程序中所⽤的性选项怎样使⽤塑性塑性分析练习题什么是塑性塑性是⼀种在某种给定载荷下,材料产⽣永久变形的材料特性,对⼤多的⼯程材料来说,当其应⼒低于⽐例极限时,应⼒⼀应变关系是线性的。
另外,⼤多数材料在其应⼒低于屈服点时,表现为弹性⾏为,也就是说,当移⾛载荷时,其应变也完全消失。
由于屈服点和⽐例极限相差很⼩,因此在ANSYS 程序中,假定它们相同。
在应⼒⼀应变的曲线中,低于屈服点的叫作弹性部分,超过屈服点的叫作塑性部分,也叫作应变强化部分。
塑性分析中考虑了塑性区域的材料特性。
路径相关性:即然塑性是不可恢复的,那么这种问题的就与加载历史有关,这类⾮线性问题叫作与路径相关的或⾮保守的⾮线性。
路径相关性是指对⼀种给定的边界条件,可能有多个正确的解—内部的应⼒,应变分布—存在,为了得到真正正确的结果,我们必须按照系统真正经历的加载过程加载。
率相关性:塑性应变的⼤⼩可能是加载速度快慢的函数,如果塑性应变的⼤⼩与时间有关,这种塑性叫作率⽆关性塑性,相反,与应变率有关的性叫作率相关的塑性。
⼤多的材料都有某种程度上的率相关性,但在⼤多数静⼒分析所经历的应变率范围,两者的应⼒-应变曲线差别不⼤,所以在⼀般的分析中,我们变为是与率⽆关的。
⼯程应⼒,应变与真实的应⼒、应变:塑性材料的数据⼀般以拉伸的应⼒—应变曲线形式给出。
ANSYS弹塑性分析教程

弹塑性分析在这一册中,我们将详细地介绍由于塑性变性引起的非线性问题--弹塑性分析,我们的介绍人为以下几个方面:∙ 什么是塑性 ∙ 塑性理论简介∙ ANSYS 程序中所用的性选项 ∙ 怎样使用塑性 ∙ 塑性分析练习题什么是塑性塑性是一种在某种给定载荷下,材料产生永久变形的材料特性,对大多的工程材料来说,当其应力低于比例极限时,应力一应变关系是线性的。
另外,大多数材料在其应力低于屈服点时,表现为弹性行为,也 就 是说,当 移 走 载 荷 时,其应变也完全消失。
由于屈服点和比例极限相差很小,因此在ANSYS 程序中,假定它们相同。
在应力一应变的曲线中,低于屈服点的叫作弹性部分,超过屈服点的叫作塑性部分,也叫作应变强化部分。
塑性分析中考虑了塑性区域的材料特性。
路径相关性:即然塑性是不可恢复的,那么这种问题的就与加载历史有关,这类非线性问题叫作与路径相关的或非保守的非线性。
路径相关性是指对一种给定的边界条件,可能有多个正确的解—内部的应力,应变分布—存在,为了得到真正正确的结果,我们必须按照系统真正经历的加载过程加载。
率相关性:塑性应变的大小可能是加载速度快慢的函数,如果塑性应变的大小与时间有关,这种塑性叫作率无关性塑性,相反,与应变率有关的性叫作率相关的塑性。
大多的材料都有某种程度上的率相关性,但在大多数静 力分 析所经历的应变率范围,两者的应力-应变曲线差别不大,所以在一般的分析中,我们变为是与率无关的。
工程应力,应变与真实的应力、应变: 塑性材料的数据一般以拉伸的应力—应变曲线形式给出。
材料数据可能是工程应力(P A)与工程应变(∆ll),也可能是真实应力(P/A )与真实应变(nL l l ()0)。
大应变的塑性分析一般采用真实的应力,应变数据而小应变分析一般采用工程的应力、应变数据。
什么时候激活塑性:当材料中的应力超过屈服点时,塑性被激活(也就是说,有塑性应变发生)。
而屈服应力本身可能是下列某个参数的函数。
ANSYS塑性分析指南

在使用经典的双线性随动强化时,可以分下面三步来定义材料特性。
1、 定义弹性模量
2、 激活双线性随动强化选项
3、 使用数据表来定义非线性特性
双线性等向强化(BIS0),也是使用双线性来表示应力-应变曲线,在此选项中,等向强化
的 Von Mises 屈服准则被使用,这个选项一般用于初始各向同性材料的大应变问题。需要
怎样使用塑性
在这一章中,我们将介绍在程序中怎样使用塑性,重点介绍以下几个方面
• 可 用 的 ANSYS 输 入
• ANSYS 输 出 量
• 使用塑性的一些原则
• 加强收敛性的方法
• 查看塑性分析的结果
ANSYS 输 入:
当使用 TB 命令选择塑性选项和输入所需常数时,应该考虑到:
• 常数应该是塑性选项所期望的形式, 例如,我们总是需要应力和总的应变,而不是应力
第1页
ANSYS
非
线
形
分
析
指
南
弹塑性分析
塑性材料的数据一般以拉伸的应力—应变曲线形式给出。材料数据可能是工程应力
A l L l ( P 0 )与工程应变( ∆l 0 ),也可能是真实应力(P/A)与真实应变( n ( l ) )。 0 大应变的塑性分析一般采用真实的应力,应变数据而小应变分析一般采用工程的应力、
果 Fy 是系统刚开始屈服时的载荷,那么在塑性范围内的载荷增量应近似为:
• 0.05*Fy- 对用面力或集中力加载的情况
• Fy- 对用位移加载的情况
3、 当模拟类似梁或壳的几何体时,必须有足够的网格密度,为了能够足够的模拟弯曲反
应,在厚度方向必须至少有二个单元。
第5页
ANSYS
非
线
ANSYS塑性分析指南

ANSYS塑性分析指南引言:塑性分析是材料力学中的一个重要研究内容,它可以用来研究材料在外力作用下的塑性变形和破坏行为。
ANSYS作为一种常用的有限元分析软件,可以进行复杂结构的塑性分析。
本文将提供一份ANSYS塑性分析的指南,以帮助读者了解塑性分析的基本原理和使用ANSYS进行塑性分析的基本流程。
一、塑性分析的基本原理塑性分析基于塑性力学理论,其基本原理包括:弹性和塑性本构关系、流动规则和判据准则。
弹性和塑性本构关系是描述材料在加载作用下的应力应变关系的数学表达式。
流动规则是描述材料的变形行为的数学表达式,它代表了材料的塑性流动过程。
判据准则用于判断材料是否发生应力屈服或破坏。
二、ANSYS塑性分析的基本步骤1.建立有限元模型:首先根据实际结构建立有限元模型,在ANSYS软件中进行网格划分,选择适当的元素类型和网格密度。
2.设定材料本构关系:根据实际材料的力学性能,设定材料的弹性和塑性本构关系,在ANSYS中选择相应的材料模型,并设定材料的本构参数。
3.定义边界条件:根据实际结构的边界条件,定义结构的约束和加载方式,在ANSYS中设定相应的节点约束和荷载。
4.运行塑性分析:利用ANSYS提供的塑性分析功能运行分析,得到结构的应力、应变和变形等结果。
5.结果分析和后处理:根据分析结果,评估结构的安全性和可靠性,进行优化设计。
利用ANSYS提供的后处理工具进行结果的可视化和数据的提取。
三、ANSYS塑性分析的扩展功能除了基本的塑性分析功能,ANSYS还提供了一些扩展功能,以满足复杂结构的塑性分析需求。
以下是其中的几个扩展功能:1.动态塑性分析:用于研究结构在动态载荷作用下的塑性响应,如爆炸、冲击等。
2.温度场塑性分析:用于研究材料在高温环境下的塑性行为。
3.多尺度塑性分析:用于研究材料的微观塑性行为,并将其引入宏观塑性分析中。
4.非线性大变形塑性分析:用于研究结构在大变形和塑性变形条件下的力学行为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录什么是塑性 (1)路径相关性 (1)率相关性 (1)工程应力、应变与真实应力、应变 (1)什么是激活塑性 (2)塑性理论介绍 (2)屈服准则 (2)流动准则 (3)强化准则 (3)塑性选项 (5)怎样使用塑性 (6)ANSYS输入 (7)输出量 (7)程序使用中的一些基本原则 (8)加强收敛性的方法 (8)查看结果 (9)塑性分析实例(GUI方法) (9)塑性分析实例(命令流方法) (14)弹塑性分析在这一册中,我们将详细地介绍由于塑性变性引起的非线性问题--弹塑性分析,我们的介绍人为以下几个方面:•什么是塑性•塑性理论简介•ANSYS程序中所用的性选项•怎样使用塑性•塑性分析练习题什么是塑性塑性是一种在某种给定载荷下,材料产生永久变形的材料特性,对大多的工程材料来说,当其应力低于比例极限时,应力一应变关系是线性的。
另外,大多数材料在其应力低于屈服点时,表现为弹性行为,也就是说,当移走载荷时,其应变也完全消失。
由于屈服点和比例极限相差很小,因此在ANSYS程序中,假定它们相同。
在应力一应变的曲线中,低于屈服点的叫作弹性部分,超过屈服点的叫作塑性部分,也叫作应变强化部分。
塑性分析中考虑了塑性区域的材料特性。
路径相关性:即然塑性是不可恢复的,那么这种问题的就与加载历史有关,这类非线性问题叫作与路径相关的或非保守的非线性。
路径相关性是指对一种给定的边界条件,可能有多个正确的解—内部的应力,应变分布—存在,为了得到真正正确的结果,我们必须按照系统真正经历的加载过程加载。
率相关性:塑性应变的大小可能是加载速度快慢的函数,如果塑性应变的大小与时间有关,这种塑性叫作率无关性塑性,相反,与应变率有关的性叫作率相关的塑性。
大多的材料都有某种程度上的率相关性,但在大多数静力分析所经历的应变率范围,两者的应力-应变曲线差别不大,所以在一般的分析中,我们变为是与率无关的。
工程应力,应变与真实的应力、应变:塑性材料的数据一般以拉伸的应力—应变曲线形式给出。
材料数据可能是工程应力)。
(P A0)与工程应变(∆l l0),也可能是真实应力(P/A)与真实应变(n L l l()0大应变的塑性分析一般采用真实的应力,应变数据而小应变分析一般采用工程的应力、应变数据。
什么时候激活塑性:当材料中的应力超过屈服点时,塑性被激活(也就是说,有塑性应变发生)。
而屈服应力本身可能是下列某个参数的函数。
•温度•应变率•以前的应变历史•侧限压力•其它参数塑性理论介绍在这一章中,我们将依次介绍塑性的三个主要方面:•屈服准则•流动准则•强化准则屈服准则:对单向受拉试件,我们可以通过简单的比较轴向应力与材料的屈服应力来决定是否有塑性变形发生,然而,对于一般的应力状态,是否到达屈服点并不是明显的。
屈服准则是一个可以用来与单轴测试的屈服应力相比较的应力状态的标量表示。
因此,知道了应力状态和屈服准则,程序就能确定是否有塑性应变产生。
屈服准则的值有时候也叫作等效应力,一个通用的屈服准则是Von Mises 屈服准则,当等效应力超过材料的屈服应力时,将会发生塑性变形。
可以在主应力空间中画出Mises 屈服准则,见 图3-1。
在3-D 中,屈服面是一个以123σσσ==为轴的圆柱面,在2-D 中,屈服面是一个椭圆,在屈服面内部的任何应力状态,都是弹性的,屈服面外部的任何应力状态都会引起屈服。
注意:静水压应力状态(123σσσ==)不会导致屈服:屈服与静水压应力无关,而只与偏差应力有关,因此,1180σ=,230σσ==的应力状态比123180σσσ==的应力状态接近屈 服。
Mises 屈服准则是一种除了土壤和脆性材料外典型使用的屈服准则,在土壤和脆性材料中,屈服应力是与静水压应力(侧限压力)有关的,侧限压力越高,发生屈服所需要的剪应力越大。
流动准则:流动准则描述了发生屈服时,塑性应变的方向,也就是说,流动准则定义了单个塑性应变分量(x plε,y plε 等)随着屈服是怎样发展的。
一般来说,流动方程是塑性应变在垂直于屈服面的方向发展的屈服准则中推导出来的。
这种流动准则叫作相关流动准则,如果不用其它的流动准 则(从其它不同的函数推导出来)。
则叫作不相关的流动准则。
强化准则:强化准则描述了初始屈服准则随着塑性应变的增加是怎样发展的。
一般来说,屈服面的变化是以前应变历史的函数,在ANSYS 程序中,使用了两种强化准则。
等向强化是指屈服面以材料中所作塑性功的大小为基础在尺寸上扩张。
对M ises 屈服准则来说,屈服面在所有方向均匀扩张。
见图3-2。
图3-2 等向强化时的屈服面变化图由于等向强化,在受压方向的屈服应力等于受拉过程中所达到的最高应力。
随动强化假定屈服面的大小保持不变而仅在屈服的方向上移动,当某个方向的屈服应力升高时,其相反方向的屈服应力应该降低。
见图3-3。
图3-3 随动强化时的屈服面变化图在随动强化中,由于拉伸方向屈服应力的增加导致压缩方向屈服应力的降低,所以在对σ的差值,初始各向同性的材料在屈服后将不再是向同应的两个屈服应力之间总存一个2y性的。
塑性选项ANSYS程序提供了多种塑性材料选项,在此主要介绍四种典型的材料选项可以通过激活一个数据表来选择这些选项。
•经典双线性随动强化BKIN•双线性等向强化BISO•多线性随动强化MKIN•多线性等向强化MISO经典的双线性随动强化(BKIN)使用一个双线性来表示应力应变曲线,所以有两个斜率,弹性斜率和塑性斜率,由于随动强化的Vonmises 屈服准则被使用,所以包含有鲍辛格效应,此选项适用于遵守Von Mises 屈服准则,初始为各向同性材料的小应变问题,这包括大多数的金属。
σ和切向斜率T E,可以定义高达六条不同温度下的曲需要输入的常数是屈服应力y线。
注意:•使用MP命令来定义弹性模量•弹性模量也可以是与温度相关的•切向斜率Et不可以是负数,也不能大于弹性模量在使用经典的双线性随动强化时,可以分下面三步来定义材料特性。
1、定义弹性模量2、激活双线性随动强化选项3、使用数据表来定义非线性特性双线性等向强化(BIS0),也是使用双线性来表示应力-应变曲线,在此选项中,等向强化的Von Mises 屈服准则被使用,这个选项一般用于初始各向同性材料的大应变问题。
需要输入的常数与BKIN选项相同。
多线性随动强化(MKIN)使用多线性来表示应力-应变曲线,模拟随动强化效应,这个选项使用Von Mises 屈服准则,对使用双线性选项(BKIN)不能足够表示应力-应变曲线的小应变分析是有用的。
需要的输入包括最多五个应力-应变数据点(用数据表输入),可以定义五条不同温度下的曲线。
在使用多线性随动强化时,可以使用与BKIN相同的步骤来定义材料特性,所不同的是在数据表中输入的常数不同,下面是一个用命令流定义多线性随动强化的标准输入。
MPTEMP,,10,70MPDATA,EX,3,,30ES,25ESTB,MK2N,3TBTEMP,,STRA2NTBDA TA,,0.01,0.05,0.1TBTEMP,10TBDA TA,,30000,37000,38000TBTEMP,70TBDA TA,,225000,31000,33000多线性等向强化(MISO)使用多线性来表示使用Von Mises屈服准则的等向强化的应力-应变曲线,它适用于比例加载的情况和大应变分析。
需要输入最多100个应力-应变曲线,最多可以定义20条不同温度下的曲线。
其材料特性的定义步骤如下:1、定义弹性模量2、定义MISO数据表3、为输入的应力-应变数据指定温度值4、输入应力-应变数据5、画材料的应力-应变曲线与MKIN 数据表不同的是,MISO的数据表对不同的温度可以有不同的应变值,因此,每条温度曲线有它自己的输入表。
怎样使用塑性在这一章中,我们将介绍在程序中怎样使用塑性,重点介绍以下几个方面•可用的ANSYS 输入•ANSYS 输出量•使用塑性的一些原则• 加 强 收 敛 性 的 方 法• 查 看 塑 性 分 析 的 结 果ANSYS 输 入:当使用T B 命令选择塑性选项和输入所需常数时,应该考虑到:• 常数应该是塑性选项所期望的形式, 例如,我们总是需要应力和总的应变,而不是应力与塑性应变。
• 如果还在进行大应变分析,应力-应变曲线数据应该是真实应力-真实应 变。
对双线性选项(BK I N ,BISO ),输入常数y σ和T E 可以按下述方法来决定,如果材料没有明显的屈服应力y σ,通常以产生0.2%的塑性应变所对应的应力作为屈服应力,而T E 可以通过在分析中所预期的应变范围内来拟合实验曲线得到。
其它有用的载荷步选项:• 使用的子步数(使用的时间步长),既然塑性是一种与路径相关的非线性,因此需要使用许多载荷增量来加载• 激活自动时间步长• 如果在分析所经历的应变范围内,应力-应变曲线是光滑的,使用预测器选项,这能够极大的降低塑性分析中的总体迭代数。
输出量在塑性分析中,对每个节点都可以输出下列量:EPPL -塑性应变分量x plε, y pl ε等等EPEQ -累加的等效塑性应变SEPL -根据输入的应力-应变曲线估算出的对于EPEQ 的等效应 力HPRES -静水压应力PSV -塑性状态变量PLWK -单位体积内累加的塑性功上面所列节点的塑性输出量实际上是离节点最近的那个积分点的值。
如果一个单元的所有积分点都是弹性的(EPEQ =0),那么节点的弹性应变和应力从积分点外插得到,如果任一积分点是塑性的(EPEQ>0),那么节点的弹性应变和应力实际上是积分点的值,这是程序的缺省情况,但可 以人为的改变它。
程序使用中的一些基本原则:下面的这些原则应该有助于可执行一个精确的塑性分析1、 所需要的塑性材料常数必须能够足以描述所经历的应力或应变范围内的材料特性。
2、 缓慢加载,应该保证在一个时间步内,最大的塑性应变增量小于5%,一 般 来说,如果Fy 是系统刚开始屈服时的载荷,那么在塑性范围内的载荷增量应近似为:• 0.05*Fy - 对用面力或集中力加载的情况• Fy - 对用位移加载的情况3、 当模拟类似梁或壳的几何体时,必须有足够的网格密度,为了能够足够的模拟弯曲反应,在厚度方向必须至少有二个单元。
4、 除非那个区域的单元足够大,应该避免应力奇异,由于建模而导致的应力奇异有:• 单点加载或单点约束• 凹角• 模型之间采用单点连接• 单点耦合或接触条件5、 如果模型的大部分区域都保持在弹性区内,那么可以采用下列方法来降低计算时间:• 在弹性区内仅仅使用线性材料特性( 不 使 用TB 命 令)• 在线性部分使用子结构加强收敛性的方法:如果不收敛是由于数值计算导致的,可以采用下述方法来加强问题的收敛性:1、使用小的时间步长2、如果自适应下降因子是关闭的,打开它,相反,如果它是打开的,且割线刚度正在被连续地使用,那么关闭它。