偏振光的获得和检测
光的偏振实验方法
光的偏振实验方法光的偏振是光学中的重要现象,它涉及到光的传播方向和振动方向的关系。
为了研究和观察光的偏振现象,科学家们开发了许多实验方法。
本文将介绍一些常用的光的偏振实验方法。
一、马吕斯交叉法马吕斯交叉法是一种简单而直观的光的偏振实验方法。
所需装置包括一个偏振镜和一对交叉的光栅。
实验步骤:1. 将光栅放置在光路中,使光通过光栅后形成一对交叉的图案。
2. 调整偏振镜的角度,观察图案的变化。
3. 当偏振镜与光栅之间的角度达到一定条件时,图案将呈现出清晰的波纹状。
通过观察图案的变化,我们可以判断光的偏振性质以及偏振方向。
二、尼古拉斯法尼古拉斯法是一种利用偏振片的实验方法,可以用来测量光的振动方向。
实验步骤:1. 准备一对偏振片,将它们的传递轴垂直放置。
2. 将待测光线通过第一个偏振片,使其只能通过一个方向的振动。
3. 调整第二个偏振片的角度,观察透过第二个偏振片的光的强度变化。
4. 当第二个偏振片的传递轴与第一个偏振片之间的夹角为90°时,光的强度将最小。
通过调整第二个偏振片的角度,我们可以确定光的振动方向。
三、双折射和波片法双折射和波片法是一种通过使用双折射晶体和波片来产生和分析偏振光的实验方法。
实验步骤:1. 使用双折射晶体(如方解石)产生偏振光。
2. 将产生的偏振光通过波片(如四分之一波片或半波片)进行调整。
3. 观察光的传播方向和振动方向的变化,使用适当的检测器记录实验结果。
通过对偏振光的产生、调整和分析,我们可以研究光的偏振现象和性质。
总结:光的偏振实验方法有很多种,其中马吕斯交叉法、尼古拉斯法和双折射和波片法是常用的实验手段。
通过这些实验方法,科学家们能够观察和研究光的偏振现象,从而深入理解光的性质和行为。
对于光学研究和实际应用而言,光的偏振实验方法具有重要的意义。
注:本文介绍的实验方法仅为举例,实际实验操作应根据具体情况和实验要求进行调整。
光的偏振实验马吕斯定律
光的偏振实验马吕斯定律光的偏振实验马吕斯定律光的偏振是指光波振动方向的特性。
在物理学中,马吕斯定律是描述光的偏振性质的基本定律之一。
本文将介绍光的偏振实验以及马吕斯定律的原理与应用。
一、光的偏振实验光的偏振实验是通过一系列实验来观察和测量光波在通过偏振器材料时的偏振现象。
常用的偏振实验方法包括偏振片实验、旋光仪实验等。
1. 偏振片实验偏振片是一种特殊的光学材料,可以选择允许特定振动方向的光通过。
在偏振片实验中,我们可以通过两块偏振片的组合来观察光的偏振现象。
通常,将第一块偏振片设置为偏振器,通过旋转它的角度,可以改变光波通过的偏振方向。
随后,将第二块偏振片作为分析器,用于观察通过的光的强度。
根据分析器的角度,我们可以观察到光的透射光强度的变化。
2. 旋光仪实验旋光仪是一种常用的光学仪器,用于测量物质的旋光性质。
旋光性是指物质对偏振光的旋转效应。
在旋光仪实验中,通过旋转样品槽里的物质,可以观察到经过样品后偏振光旋转的现象。
二、马吕斯定律的原理马吕斯定律是法国科学家马吕斯在1808年提出的,该定律描述了光在通过各向同性材料(无论是吸收还是反射)时的偏振性质。
根据马吕斯定律,当一束不偏振光从一个均匀各向同性介质(例如空气、玻璃等)射入时,经过该介质后的光将成为线偏振光。
具体来说,假设光波的振动方向与入射面垂直,那么经过介质后,与入射面垂直的振动方向会被选择性地减弱,而平行于入射面的振动方向则会保持不变。
马吕斯定律的实质是光的振动方向在介质中受到选择性的吸收和减弱,从而导致光的偏振现象。
三、马吕斯定律的应用马吕斯定律在生活和科学研究中有着广泛的应用。
1. 偏振片根据马吕斯定律的原理,偏振片可以选择性地通过特定方向的光波,使其成为偏振光。
这种特性被广泛应用于摄影、光学仪器、偏振显微镜等领域。
2. 偏振光的产生与检测马吕斯定律的原理可以通过适当的实验装置来产生和检测偏振光。
例如,通过透镜和线性偏振片的组合,可以用于研究偏振光与物质的相互作用,有助于了解材料的光学性质。
偏振光的研究和检测
1,自然光通过检偏器 由于自然光具有轴对称性,将光强为Io的自然光中每一个光矢量都在x,y两个方向上分
解,因此有Ix=Iy=Io,这说明肉然光可以等效为等幅(Io/2) 、无确定相位关系、阻取向任意 的两个正交的线偏振光。
如图44-1所示,Ip- θ曲线应为一条直线。
2.线偏振光通过检偏器——马吕斯定律 马吕斯定律指出,一束如图44-2所示光强为Io的线偏振光,通过检偏器的透射光强为
人眼仅对光的强弱变化敏感,而无法直接感知光的各种偏振态,必须借助检偏器,研 声透射光强的孪化来判定光的偏振态。检偏器(或起偏器)是二种只允许某一振动方向光通 过的光学器件,当它用来产生线偏振光时称为起偏器,用来检验线偏振光时称为检偏器。 常用的检偏器有两类:一类是利用材料对不同方向的电磁振动具有选择吸收特性的原理制 成的,称为偏振片;另一类是用双折射晶体制成的特殊棱镜,如尼科耳棱镜,格兰棱镜等,这 类棱镜的透光率和偏振度远高于偏振片。在检偏器上能够让电矢量充分透过的方向称为透 振方向,记作P,与P正交的方向上的电矢量将被强烈吸收而无法透过,称为消光方向。
2.线偏振光的检验 将起偏器的起偏角定在偏振方向为0”的位置,然后旋转检偏器找到光强最大的位置,
记录功率计的读数,而后每隔30”记录一次透射光强的数值,直到旋转一周后出现两次极 大和两次“消光”。画出透射光强随角度变化的曲线与理论曲线相比较,验证马吕斯定律 。
3. 1/4波片的摆正 旋转检偏器使PA正交,在起偏器与检偏器之间放一1/4波片,调节波片使激光束通过
3.椭圆偏振光
角度 0 30 60 90 120 150 180 210 240 270 300 330 360 光强 0.08 0.34 0.99 1.30 1.02 0.42 0.08 0.34 0.95 1.26 0.99 0.34 0.08
偏振光的获得和检测
§17-10偏振光的获得和检测一、偏振光的获得1. 布儒斯特定律如果让自然光从折射率为n 1的介质射向折射率为n 2的介质而被界面反射,反射光中垂直于入射面的光振动成分将大于处于入射面内的光振动成分,当入射角等于某一特定角i 0时,反射光成为振动面垂直于入射面的线偏振光,并且i 0满足, (17-69)这个规律称为布儒斯特定律,i 0称为布儒斯特角或起偏角。
当入射角为i 0时,折射角为r 0,根据折射定律,应有. (17-70)将这个关系代入式(17-69),得,即,这表示,当入射角为起偏角时,反射光与折射光互相垂直,如图17-40所示。
如果自然光从空气射到折射率为1.50的玻璃片上,根据布儒斯特定律,可以求得起偏角为56.3︒,此时的折射角为33.7︒。
当自然光以起偏角从一种介质入射到第二种介质的表面上,反射光成为线偏振光,而如果第二种介质没有特殊的吸收作用,那么折射光将成为部分偏振光,并且在入射面内的光振动成分将大于垂直于入射面的光振动成分。
假如让这样的部分偏振光连续几次作同样的反射和折射, 最后获得的折射光也必定是线偏振光。
2. 晶体的双折射现象在§8-7中讨论固体的一般性质时,曾涉及过晶体具有的一种普遍性质,即各向异性。
这里我们所要说的各向异性,是在某些透明晶体中光沿不同的方向具有不同的传播速率,具有这种性质的晶体,称为双折射晶体。
我们设想在各向同性的均匀介质中有一点光源s ,在任意瞬间光波的波面总是球面。
而在均匀的双折射晶体中,点光源s 发出的光波波面却有两组,一组是球面,另一组是旋转椭球面,如图13-41所示。
这两组波面在某一方向上彼此相切,如图中qq '的方向,这个方向称为晶体的光轴。
图 17-41在一般情况下,当平行自然光垂直入射到晶体的表面时,根据惠更斯原理,被照射的晶体表面上各点都是发射子波的波源,而子波的波面有球面和椭球面两种,所以子波波面的包络面也应有两种,即球面的包络面和椭球面的包络面。
大学物理第六章 波动光学(3)
178第6章 波动光学(Ⅲ)——光的偏振一.基本要求1.理解光的偏振的概念,光的五种偏振态的获得和检测方法; 2.掌握马吕斯定律及其应用;3.掌握反射光和折射光的偏振,掌握布儒斯特定律及其应用; 4.了解光的双折射现象;5.了解偏振光的应用。
二.内容提要和学习指导(一)光的五种偏振状态:自然光、线偏振光、部分偏振光、椭圆偏振光和圆偏振光。
(二)线偏振光的获得和检验 1.线偏振光的获得:①利用晶体的选择性吸收,可以制造偏振片。
偏振片可用作起偏器,也可用作检偏器。
②利用反射和折射偏振。
布儒斯特定律:自然光在两种介质的界面发生反射和折射时,一般情况下,反射光和折射光都是部分偏振光,在反射光中,垂直入射面的光振动较强,在折射光中,平行入射面的光振动较强。
当自然光以布儒斯特角121tan b i n -=入射(或/2i γπ'+=,或反射光线垂直于折射光线)时,反射光是线偏振光,其光振动垂直于入射面,此时折射光仍然是部分偏振光。
③利用晶体的双折射。
一束光射入各向异性介质时,折射光分成两束。
其中一束光遵守折射定律,称为寻常光(o 光)。
另一束光不遵守折射定律,称为非常光(e 光)。
o 光和e 光均是线偏振光。
o 光的振动方向垂直于o 光的主平面,e 光的振动方向在e 光的主平面内。
光线沿光轴方向入射时,o 光和e 光的传播速度相同。
在晶体内,o 光的子波波面为球面波,e 光的子波波面为旋转椭球面,利用惠更斯原理作图,可确定o 光和e 光的传播方向。
利用晶体的双折射现象,可以制造偏振棱镜和波片。
2.线偏振光的检验:①利用偏振片:由马吕斯定律可得,线偏振光经过检偏器后,出射光强I 与入射光强0I 的关系为:α20cos I I =,其中α是入射线偏振光偏振方向和偏振片通光方向的夹角。
②利用反射和折射偏振。
③利用偏振棱镜。
(三)圆偏振光或椭圆偏振光的获得和检验:线偏振光经过四分之一波片后出射的为椭圆偏振光,当平面偏振光的振动方向与四分之一波片的光轴方向成450角时,出射的为圆偏振光。
光偏振物理实验报告
1. 观察光的偏振现象,加深对光的横波性的理解。
2. 学习并掌握产生和检验偏振光的光学元件及仪器的工作原理。
3. 通过实验验证马吕斯定律,探究偏振光的特性。
4. 掌握椭圆偏振光和圆偏振光的产生与检测方法。
二、实验原理光是一种电磁波,具有横波特性。
当光波在传播过程中,若光矢量保持在固定平面上振动,则称为线偏振光;若光矢量绕着传播方向旋转,其端点描绘的轨迹为一个圆,则称为圆偏振光;若光矢量端点旋转的轨迹为一椭圆,则称为椭圆偏振光。
偏振片是一种能够选择性地透过某一特定方向振动的光波的光学元件。
当自然光通过偏振片时,只有与偏振片偏振方向一致的光波分量能够通过,从而产生线偏振光。
马吕斯定律指出,当线偏振光通过一个偏振片时,透射光的强度与入射光的强度成正比,且透射光的强度与入射光的偏振方向和偏振片的偏振方向之间的夹角θ满足以下关系:\[ I = I_0 \cdot \cos^2(\theta) \]其中,\( I \)为透射光的强度,\( I_0 \)为入射光的强度,θ为入射光的偏振方向和偏振片的偏振方向之间的夹角。
三、实验仪器1. 光具座2. 半导体激光器3. 偏振片4. 1/4波片5. 激光功率计6. 光电倍增管探头及电源7. 中央调节平台和两臂调节机构1. 将半导体激光器固定在光具座上,调整激光器使其发出的光束平行于光具座。
2. 将偏振片放置在激光器与光电倍增管探头之间,调整偏振片的偏振方向,观察光电倍增管探头的输出信号。
3. 记录偏振片偏振方向与激光器光束方向之间的夹角θ,以及光电倍增管探头的输出信号强度。
4. 重复步骤2和3,改变偏振片的偏振方向,记录相应的θ和输出信号强度。
5. 将1/4波片放置在偏振片与光电倍增管探头之间,调整1/4波片的光轴方向,观察光电倍增管探头的输出信号。
6. 记录1/4波片光轴方向与偏振片偏振方向之间的夹角θ,以及光电倍增管探头的输出信号强度。
7. 重复步骤5,改变1/4波片的光轴方向,记录相应的θ和输出信号强度。
旋光仪测旋光液体的浓度实验报告
实验19 旋光仪测旋光液体的浓度林一仙1实验目的1) 观察光的偏振现象,加深对光偏振的认识; 2) 了解旋光仪的结构及测量原理;3) 掌握旋光仪测定旋光液体浓度的方法。
2 实验仪器WXG-4圆盘旋光仪、葡萄糖溶液样品试管3 实验原理3.1偏振光的获得与检测 1)偏振光的获得:使自然光通过偏振片就形成只有一个振动方向的线偏振光(平面偏振光)。
2)偏振光的检测:用偏振片观察偏振光时,转动偏振片,当偏振片的偏振化方向与偏振光的振动方向一致时可看到最大的光强度,当偏振片的偏振化方向与偏振光的振动方垂直时,光强度为零。
用偏振片来观察自然光,转动偏振片观察时光强度保持不变。
3)物质的旋光性质:平面光通过旋物质时振动面相对入射光的振动面旋转了一定的角度,角度的大小(称旋光度)φ与偏振光通过旋光物质的路程l 成正比,对于旋光溶液,旋光度还与液体的浓度C 成正比。
()()对于旋光溶液对于旋光晶体lC ,l αϕαϕ==其中а为旋光率。
3.2 旋光溶液旋光率及浓度的测定方法①用旋光仪测量一组不同浓度(浓度已知)的葡萄糖溶液的旋光度φ,用作图法处理数据,并求得旋光率а,lk=α②用旋光仪测量未知浓度的旋光度x ϕ,可求得浓度l C xx αϕ=;也可利用旋光关系曲线直接确定对应的浓度。
4 旋光仪的结构4.1光学原理从图1旋光仪的光路图可以看出,钠光灯射出的光线通过毛玻璃后,经聚光透镜成平行光,再经滤色镜变成波长为m 710893.5-⨯的单色光。
这单色光通过起偏镜后成为平面偏振光,中间部分的偏振光再通过竖条状旋光晶片,其振动面相对两旁部分转过一个小角度,形成三分视场。
仪器出厂时把三分场均匀暗作为零度视场并调在度盘零度位置,三分场均匀暗的形成原理如图2所示。
图1 旋光仪的光路图图2三分场均匀暗视场的形成原理4.2 度盘双游标读数①读取左右两游标的读数并求平均得:2BA +=θ ②0θθϕ-=(注意:如果0θ为170多度时,那么θ读数应当加上180度)。
光的偏振研究实验报告
一、实验目的1. 观察光的偏振现象,加深对光的波动性质的认识。
2. 掌握产生和检验偏振光的方法和原理。
3. 学习使用偏振片、波片等光学元件,了解其工作原理。
4. 验证马吕斯定律,研究偏振光透过两个偏振器后的光强与夹角的关系。
二、实验原理光是一种电磁波,其电场矢量E的振动方向决定了光的偏振状态。
自然光中的电场矢量在垂直于光传播方向的平面内振动方向是随机的,而偏振光则具有特定的振动方向。
偏振光可以通过以下几种方法产生:1. 利用起偏器(如偏振片)将自然光变为线偏振光。
2. 利用双折射现象将一束光分解为两束具有不同振动方向的偏振光。
3. 利用反射、折射等光学现象使自然光部分偏振。
检验偏振光的方法有:1. 利用检偏器(如偏振片)观察光强变化。
2. 利用光电池、光电倍增管等光电探测器检测偏振光。
马吕斯定律指出,当完全线偏振光通过检偏器时,光强I与入射光强I0、检偏器透光轴与入射线偏振光的光矢量振动方向的夹角θ的关系为:I = I0 cos²θ。
三、实验仪器与用具1. 中央调节平台和两臂调节机构2. 半导体激光器和电源3. 偏振片(两块)4. 1/4波片(两块)5. 光电倍增管探头及电源6. 光电流放大器7. 光具座8. 白屏9. 刻度盘四、实验步骤1. 将激光器、偏振片、1/4波片和光电倍增管探头依次放置在光具座上,调整光路,使激光束通过偏振片后成为线偏振光。
2. 将线偏振光通过1/4波片,观察光强变化,记录数据。
3. 将1/4波片旋转一定角度,观察光强变化,记录数据。
4. 将线偏振光通过第二个偏振片,观察光强变化,记录数据。
5. 将第二个偏振片旋转一定角度,观察光强变化,记录数据。
6. 根据记录的数据,验证马吕斯定律。
五、实验结果与分析1. 观察到线偏振光通过1/4波片后,光强发生变化,说明1/4波片具有改变光偏振状态的作用。
2. 当1/4波片旋转一定角度时,光强也随之变化,说明光强与偏振片透光轴与入射线偏振光的光矢量振动方向的夹角θ有关。
偏振光分析实验报告
偏振光分析实验报告偏振光分析实验报告引言:光是我们日常生活中不可或缺的一部分,它以波动的形式传播,既有粒子性质也有波动性质。
而光的波动性质中,偏振光是一种特殊的现象。
本实验旨在通过对偏振光的分析,了解其性质及应用。
一、实验目的本实验旨在通过偏振光的分析,探究其性质及应用。
具体目标包括:了解偏振光的产生原理、学习偏振光的检测方法、掌握偏振片的使用技巧以及理解偏振光的应用领域。
二、实验原理1. 偏振光的产生原理偏振光的产生可以通过偏振片实现,偏振片是一种具有偏振特性的光学元件。
它通过选择性地吸收或透过特定方向的光振动,将非偏振光转化为偏振光。
2. 偏振光的检测方法常用的偏振光检测方法有:偏振片法、偏振光束分束法、偏振光束干涉法等。
其中,偏振片法是最常用的方法之一,通过旋转偏振片来观察光的强度变化,从而确定光的偏振状态。
3. 偏振片的使用技巧在实验中,正确使用偏振片是非常重要的。
一般情况下,偏振片的传光方向与其表面上的箭头方向垂直。
通过旋转偏振片,可以改变光的偏振状态。
4. 偏振光的应用领域偏振光在许多领域中都有广泛的应用,例如:光学显微镜、液晶显示器、偏振片墨镜等。
通过对偏振光的分析,可以更好地理解这些应用的原理和工作机制。
三、实验步骤1. 准备实验装置:将光源、偏振片、检测器等装置按照实验要求连接好。
2. 调整偏振片:通过旋转偏振片,观察光的强度变化,找到光的最大强度和最小强度位置。
3. 记录实验数据:记录不同位置下的光强度,并绘制光强度与偏振片旋转角度的关系曲线。
4. 分析实验结果:根据实验数据,确定光的偏振状态,并对实验结果进行解释和讨论。
5. 总结实验结论:总结实验结果,归纳偏振光的性质及应用。
四、实验结果与讨论根据实验数据的分析,我们可以确定光的偏振状态。
通过绘制光强度与偏振片旋转角度的关系曲线,我们可以观察到明显的周期性变化,这表明光是线偏振光。
根据光的最大强度和最小强度位置,我们可以确定光的偏振方向。
椭圆偏振光的产生及检测
椭圆偏振光的产生及检测03级物理系 黄柳容 指导老师:江俊勤摘要 椭圆偏振光是两列频率相同,振动方向互相垂直,且沿同一方向传播的线偏振光的合成。
其电矢量的端点在波面内描绘的轨迹为一椭圆。
要获得一般的椭圆偏振光,只需令自然光连续通过一个起偏器和一个波晶片。
而要对其进行检测则需要根据形成椭圆偏振光的不同来设计不同的检验方案。
关键词 椭圆偏振光 相位差 1/4波片 检偏器 起偏器 透射光强1 引言光的偏振是大学物理教学中的一个重点和难点。
本文只选取了椭圆偏振光这一部分内容,详细的讲述了它的成因、各种偏振形态,并根据形成椭圆偏振光的方法不同,详细的叙述了三种情况下的检验方法。
从而使学生对椭圆偏振光有更深层次的了解。
2 椭圆偏振光的产生椭圆偏振光是两列频率相同,振动方向互相垂直,且沿同一方向传播的线偏振光的合成。
其电矢量的端点在波面内描绘的轨迹为一椭圆。
要获得一般的椭圆偏振光,只需令自然光连续通过一个起偏器和一个波晶片。
起偏器将自然光变为线偏振光,波晶片将线偏振光分解为o 光和e 光,由于它们在晶体内的传播速度不同,产生了一定的相位差δ,射出晶片后,o 光和e 光合成在一起便得到椭圆偏振光。
把射出晶片的两个分量写成x E =x A cos ωty E =y A cos(ωt+δ) (1)由(1)式有:xx E A sin(ωt+δ) - y y E A sin ωt=sin δ (2) xx E A cos(ωt+δ) - y yE A cos ωt=0 (3) (2)、(3)式平方后相加得22x x E A +22yyE A -2x x E A y y E A cos δ=2sin δ (4)这是个一般椭圆方程。
它与x E =±x A y E =±y A 为界的矩形框相内切。
如图[2]1图1此外,任意一个场点电矢量的端点沿椭圆运动的方向与相位差δ有关。
如图2表示各种形态的椭圆,图上横坐标是x 轴,纵坐标是y 轴,图上所注δ表示的y E 振动超前于 x E 的相位(a) (b) (c) (d) (e) (f) (g) (h) (i)图2当沿着光的传播方向观察时,若一个场点的电矢量端点描出的椭圆沿顺时针方向旋转,称之为右旋..椭圆偏振光.....。
偏振光的产生和检测
偏振光的产生和检测偏振光是一种只在特定平面内振动的光波。
与非偏振光不同,非偏振光在所有方向上的振动幅度都相同。
偏振光在自然界中广泛存在,例如太阳光就是一种偏振光,自然界中的大部分生物都依赖偏振光进行导航。
此外,偏振光在现代科技领域也有着广泛的应用,如液晶显示、光纤通信等。
一、偏振光的产生1. 自然光的光源自然光是由太阳或其他恒星产生的。
由于太阳或恒星发出的光经过大气层时会受到气流、温度等影响,使得光发生折射和散射,从而使得光波在不同方向上具有不同的相位,进而在各个方向上振动幅度不同,形成自然光。
2. 偏振光的生成方法(1)线性偏振光线性偏振光可以通过偏振器生成。
偏振器是一种能够让光波在特定平面内通过,而在其他平面内则被阻挡的装置。
当自然光通过偏振器时,只有振动方向与偏振器的透振方向平行的光波可以通过,从而得到线性偏振光。
(2)圆偏振光和椭圆偏振光圆偏振光和椭圆偏振光可以通过特殊的装置生成,如线偏振光通过半波片和四分之一波片的组合。
当线偏振光的振动方向与四分之一波片的快轴方向成45度角时,通过四分之一波片后的光波将变为圆偏振光。
椭圆偏振光可以通过改变四分之一波片和半波片之间的夹角来获得。
二、偏振光的检测1. 偏振光检测的原理偏振光的检测主要是利用偏振片对光波的振动方向的筛选作用。
当偏振片的透振方向与光波的振动方向平行时,光波可以通过偏振片;当偏振片的透振方向与光波的振动方向垂直时,光波则被阻挡。
通过观察光波通过偏振片前后的强度变化,可以判断光波的偏振状态。
2. 偏振光检测的方法(1)线偏振光检测线偏振光可以通过偏振片进行检测。
当线偏振光通过偏振片时,如果光波的振动方向与偏振片的透振方向平行,则光波可以通过;如果光波的振动方向与偏振片的透振方向垂直,则光波被阻挡。
通过改变偏振片的透振方向,可以观察到光强的变化,从而判断光波的偏振方向。
(2)圆偏振光和椭圆偏振光检测圆偏振光和椭圆偏振光的检测需要使用特殊的偏振片组合,如半波片和四分之一波片。
线偏振光的产生、检验
的入射角也必定是布儒斯特角。(简单几何关系证明)
光束每经过一次反射,将有10%左右的s分量被“反射损
耗”掉。经计算,由10块n2=1.5的玻璃平板组成的玻璃堆 在空气中使用时,偏振度才达到0.635.
与反射式起偏器相比,玻璃堆的优点:光能利用率高、
出射光束与入射光束平行;缺点:偏振度偏低、光谱范 围受到玻璃性能限制、体积偏大。
过优化设计光栅参数实现偏振分束功能。
介质光栅偏振分束的物理机制:
导模共振效应
26
193nm偏振分束光栅
严格矢量计算
C 0 753 C 1 300
TM 0 89 . 53 % TE 1 80 . 08 %
27
4.线偏振光检验
① 马吕斯(Malus)定律 线偏振光射向线偏器时,透射光强度与入射光振动方向
① 反射式起偏器 按照菲涅耳反射公式:
rs rp sin i t sin i t tan i t tan i t
1
当入射光以布儒斯特角 B tan
nt
n i 射向界面时,反射光
束中只含有s分量,透射光中同时含有s和p分量。
TE Al TE
TM
DUV light
TM光激发的表面等离子体波,阻碍了入射光向TM导模 的耦合,从而形成反转偏振透射。
24
193nm反转偏振片偏振透射测试
电镜扫描图
偏振透射谱
C
TE TM
45
25
c. 介质偏振分束光栅 通过在普通介质材料上制作亚波长光栅,使光栅具有较
大的双折射(Δn_grating=0.318>>Δn_quartz=0.013),通
偏振光的实验报告
一、实验目的1. 了解偏振光的产生原理。
2. 掌握偏振光的检测方法。
3. 验证马吕斯定律,加深对光的偏振现象的认识。
二、实验原理1. 偏振光的产生光波是一种电磁波,具有横波特性。
当光波通过某些光学元件时,其振动方向会限定在某一平面内,这种光称为偏振光。
常见的偏振光产生方法有:(1)反射:当光从一种介质射向另一种介质时,部分光会被反射,反射光会发生偏振现象。
(2)折射:当光从一种介质射向另一种介质时,部分光会被折射,折射光也会发生偏振现象。
(3)起偏器:利用光学元件(如偏振片)选择性地透过某一方向的光,从而产生偏振光。
2. 偏振光的检测检测偏振光的方法主要有以下几种:(1)干涉法:利用两束偏振光相互干涉,观察干涉条纹的变化,从而判断光是否为偏振光。
(2)马吕斯定律:利用偏振片检测偏振光的振动方向,验证马吕斯定律。
(3)光电效应:利用光电探测器检测偏振光的强度变化,验证偏振光的存在。
3. 马吕斯定律当一束偏振光通过一个偏振片时,其振动方向与偏振片的透振方向平行时,光强最大;当振动方向与透振方向垂直时,光强为零。
马吕斯定律的表达式为:I = I0 cos²θ其中,I为透过偏振片后的光强,I0为入射光强,θ为入射光的振动方向与偏振片的透振方向之间的夹角。
三、实验仪器与材料1. 实验仪器:(1)He-Ne激光器(2)偏振片(两块)(3)1/4波片(两块)(4)光具座(5)白屏(6)刻度盘2. 实验材料:(1)玻璃平板(2)反射镜四、实验步骤1. 将He-Ne激光器固定在光具座上,调整激光束的传播方向,使其垂直于白屏。
2. 将一块偏振片放置在激光束的路径上,调整偏振片的透振方向,使其与激光束的振动方向平行。
3. 观察白屏上的光强变化,记录光强最大时的偏振片透振方向。
4. 将1/4波片放置在偏振片之后,调整1/4波片的位置,使透过1/4波片的光强最大。
5. 改变偏振片和1/4波片之间的夹角,观察光强变化,记录光强最小时的夹角。
直线偏振光与旋光现象的产生与检测
直线偏振光与旋光现象的产生与检测光是一种电磁波,可以传播的方式有很多,其中包括直线偏振光和旋光光。
这两种光的产生和检测在光学领域有着重要的应用。
本文将介绍直线偏振光和旋光现象的产生原理以及相关的检测方法。
直线偏振光是指光波中电场矢量的方向恒定的光。
直线偏振光的产生可以通过偏振片实现。
偏振片是一种具备吸收或转换特定方向只有一种电场分量的光的材料,它可以让沿着特定方向振动的光通过而吸收其他方向的光。
常见的偏振片有线性偏振片和圆偏振片。
线性偏振片是将非偏振光转变为直线偏振光的重要光学器件之一。
它的工作原理是通过吸收或转换垂直于特定方向的电场分量,使得只有沿着特定方向振动的电场分量通过。
线性偏振片的特定方向也称为透光轴,对于光学器件的透光方向起着重要作用。
圆偏振片是一种将非偏振光转变为旋光光的装置。
圆偏振片能够使得光波中的电场矢量绕着传播方向进行旋转。
旋光光是通过将线性偏振光通过一定的介质或通过光的弹性介质的影响而产生的。
圆偏振片在光电领域有着广泛的应用,例如在光学通信中用于光的捕捉和分析。
除了直线偏振光,旋光现象也是光学领域值得关注的一个现象。
旋光是光波传播过程中电矢量方向沿光传播方向产生旋转的现象。
旋光现象通常与手性分子、螺旋结构或磁性物质相关联。
旋光现象有着重要的应用,例如在化学分析和材料研究中用于研究物质的分子结构和性质等。
对于直线偏振光和旋光的检测,光栅耦合是一种常见的方法。
光栅是一种具有周期性结构的光学元件,可以将电矢量方向恒定的光波转换为具有一定波长范围内的多个衍射光波。
通过测量这些衍射光波的幅值和相位差,可以获得光波的偏振态和旋光性质等信息。
除了光栅耦合,还有许多其他的方法可以检测直线偏振光和旋光现象。
例如,偏振片、偏光分束器、光捕捉器等都可以用于检测光的偏振状态和旋光性质。
这些检测方法在光学仪器、材料研究和生化分析等领域都有广泛的应用。
总之,直线偏振光和旋光现象在光学领域具有重要的意义。
偏振光的产生与检测
【实验目的】(1)通过观看光的偏振现象,加深对光波传播规律的熟悉;(2)把握偏振光的产生和查验方式;(3)观测圆偏振光和椭圆偏振光.【实验装置】光具座、激光器、白光源、光功率计、起偏器、检偏器、1/4波片、1/2波片、带小孔光屏【实验原理】1.偏振光的概念光的波动的形式在空间传播属于电磁波,它的电矢量E与磁矢量H彼此垂直,且E和H均垂直于光的传播方向,如图3-12-1所示,故光波是横波.实验证明光效应要紧由电场引发,因此电矢量E的方向定为光的振动方向.图3-12-1光传播与振动示用意自然光源(如日光,各类照明灯等)发射的光是由组成那个光源的大量分子或原子发出的光波的合成.这些分子或原子的热运动和辐射是随机的,它们所发射的光振动,出此刻各个方向的概率相等,如此的光叫做自然光.但是自然光通过媒质的反射、折射或吸收后,在某一方向上振动比另外方向上强,这种光称为部份偏振光.若是光振动始终被限制在某一确信的平面内,那么称为平面偏振光,也称为线偏振光或完全偏振光.偏振光电矢量E的端点在垂直于传播方向的平面内运动轨迹是一圆周的,称为圆偏振光,是一椭圆的那么称为椭圆偏振光.2.取得线偏振光的方式(1)反射式起偏器(或透射式起偏器)当自然光在两种介质的界面上反射或折射时,反射光和折射光都将成为部份偏振光.慢慢增大入射角,当达到某一特定值时,反射光成为完全偏振光,其振动面垂直于入射面,如图3-12-2起偏角(亦称布儒斯持角).图3-12-2反射起偏光路图由布儒斯特定律可得120tan n n i = (3-12-1)例如当光由空气射向n 的玻璃平面时,0057i =.假设入射光以起偏角0i 射到玻璃面上,那么反射光为全偏振光,面折射光不是全偏振光,但这时它的偏振化程度最高.如使自然光以起偏角0i 入射并透过量层玻璃(称玻璃片堆).那么透射出来的光也将接近于全偏振光,它的振动面与入射面平行.(2)晶体起偏器利用某些晶体的双折射现象,也可取得全偏振光,如尼科尔棱镜等. (3)偏振片(分子型薄膜偏振片)聚乙烯醇胶膜内部含有刷状结构的链状分子,在胶膜被拉伸时,这些链状分子被拉直并平行排列在拉伸方向上.由于吸收作用,拉伸过的薄膜只许诺振动取向平行于分子排列方向(此方向称为偏振片的偏振轴)的光通过.利用它可取得线偏振光.偏振片是一种经常使用的“起偏”元件,用它可取得截面积较大的偏振光束.而且出射偏振光的偏振化程度可达98%.辨别光的偏振状态的进程称为检偏,它所用的装置称为检偏器.事实上,起偏器和检偏器是通用的,用于起偏的偏振片称为起偏器,把它用于检偏,就成为检偏器了.依照马吕斯定律,强度为0I 的线偏振光,通过检偏器后.透射光的强度为:θ20cos I I = (3-12-2)式中θ为入射光偏振方向与检偏器偏振轴之间的夹角.显然,当以光线传播方向为轴转动检偏器时,透射光强度将会发生周期性转变.当θ=0°时,透射光强度最大(如图3-12-3(a )所示);当θ=90°时,透射光强度为极小(消光状态(如图3-12-3(b )所示),接近于全暗;当0°<θ<90°时,透射光强度介于最大和最小之间.因此,依照透射光强度转变情形,能够区别线偏振光、自然光和部份偏振光.图3-12-3表示自然光通过起偏器和检偏器的转变情形.图3-12-3自然光通过起偏器和偏振器的情形本实验是利用偏振片(起偏器和检偏器)观看偏振光的偏振情形. 3.波片的偏光作用波片也称相位延迟片,是由晶体制成的厚度均匀的薄片,其光轴与薄片表面平行,它能使晶片内的o 光和e 光通过晶片后产生附加相位差.依照薄片的厚度不同,能够分为1/2波长片,1/4波长片等,所用的1/二、1/4波长片皆是对钠光而言的.当线偏振光垂直射到厚度为L ,表面平行于自身光轴的单轴晶片时,那么寻常光(o 光)和超级光(e 光)沿同一方眼前进,但传播的速度不同.这两种偏振光通过晶片后,它们的相位差ϕ为:()o e 2πn n L ϕλ=-(3-12-3)其中,λ为入射偏振光在真空中的波长,0n 和e n 别离为晶片对o 光e 光的折射率,L 为晶片的厚度.咱们明白,两个相互垂直的,同频率且有固定相位差的简谐振动,可用以下方程表示(通过晶片后o 光和e 光的振动):()e o sin sin X A tY A t ωωϕ=⎧⎪⎨=+⎪⎩从两式中消去t ,经三角运算后取得全振动的方程式为:222222cos sin e o e oX Y XY A A A A ϕϕ++= (3-12-4)由式(3-12-4)可知:①当πϕk =(k =0,1,2,……)时,为线偏振光; ②当()π212K ϕ=+(k =0,1,2,……)时,为正椭圆偏振光,在A o = A e 时,为圆偏振光;③当ϕ为其他值时,为椭圆偏振光.在某一波长的线偏振光垂直入射于晶片的情形下,能使o 光和e 光产生相位差πϕ)12(+=K (相当于光程差为λ/2的奇数倍)的晶片,称为对应于该单色光的二分之一波片(λ/2波片),与此相似,能使o 光和e 光产生相位()π212K ϕ=+(相当于光程差为λ/4的奇数倍)的晶片,称为四分之一波片(λ/4波片).本实验中所用波片(λ/4)是对6328A (H e -N e 激光)而言的.如图3-12-4所示,当振幅为A 的线偏振光垂直入射到λ/4波片上,其振动方向与波片光轴成θ角时,由于o 光和e 光(通过波晶片后)的振幅别离为A sin θ和A cos θ,因此通过λ/4波片后合成的偏振状态也随角度θ的转变而不同.① 当θ=0°时,取得振动方向平行于光轴的线偏振光; ② 当2/πθ=时,取得振动方向垂直于光轴的线偏振光; ② 当4/πθ=时,同时A e = A o 取得圆偏振光; ③ 当θ为其他值时,通过λ/4波片后为椭圆偏振光.图3-12-43.椭圆偏振光的测量椭圆偏振光的测量包括长、短轴之比及长、短轴方位的测定.如图3-29所示,当检偏器方位与椭圆长轴的夹角为ϕ时,那么透射光强为:222212cos sin I A A ϕϕ=+ (3-12-5)图3-12-5当ϕ=πK 时21max A I I == (3-12-6)当()π212K ϕ=+时 22min A I I == (3-12-7)那么椭圆长短轴之比为minmax21I I A A = (3-12-8)椭圆长轴的方位即为max I 的方位. 【实验内容和步骤】1.起偏与检偏辨别自然光与偏振光(1)如图3-12-6所示,在光源至光屏的光路上插入起偏器P 1,旋转P 1,观看光屏上光斑强度的转变情形;图3-12-6(2)在起偏器P 1后面再插入检偏器P 2,固定P 1方位,旋转P 2,旋转360°,观看光屏上光斑强度的转变情形,并将光屏上最强和最弱时的对应旋转角度记录到表3-12-1中;(3)以光功率计代替光屏接收P 2出射的光束,旋转P 2,每转过10°记录一次相应的光功率值,共转180°,将相应的实验数据记录到表3-12-2中,且利用实验数据在座标纸上作出I ~cos 2θ关系曲线,看其是不是与马吕斯定律相一致.2. 观测椭圆偏振光和圆偏振光参照图3-12-3(b )所示,先使起偏器P 1和检偏器P 2偏振轴垂直(即检偏器P 2后的光屏上处于消光状态),在起偏器P 1和检偏器P 2之间插入λ/4波片(如图3-12-6),转动波片使P 2后的光屏上仍处于消光状态(使λ/4波片光轴与起偏器P 1透光轴方向平行).用光功率计取代光屏.(2)将起偏器P 1转过20°,调剂光功率计的位置尽可能使得P 2透射出的偏振光全数进入光功率计的同意范围.转动检偏器P 2找出功率最大的位置,并记下相应光功率值.重复测量3次,求平均值.(3)转动P 1,使P 1的光轴与λ/4波片的光轴的夹角依次为30°、45°、60°、75°、90°值,在取上述每一个角度时,都将检偏器P 2转动一周,观看从P 2透出光的强度转变. 【注意事项】(1)实验中各元件不能用手摸,实验完毕后按规定位置放置好; (2)不要让激光束直接照射或反射到人眼内. 【实验数据和结果处置】表3-12-1此依照表3-12-2所得数据即可用来验证马吕斯定律θ20cos I I =.【试探与讨论题】(1)如何应用光的偏振现象说明光的横波特性?如何区别自然光和偏振光? (2)玻璃平板在布儒斯特角的位置上时,反射光束是什么偏振光?它的振动是在平行于入射面内仍是在垂直于入射面内?(3)/4λ波片与P 1的夹角为何值时产生圆偏振光?什么缘故?(4)两片偏振片用支架安置于光具座上,正交后消光,一片不动,另一片的2个表面旋转180°,会有什么现象?如有出射光,是什么缘故?(5)2片正交偏振片中间再插入一偏振片会有什么现象?如何说明? (6)波片的厚度与光源的波长什么关系?【附录】光学实验中经常使用光源—电光源.常见的有热辐射光源和气体放电光源及激光光源3类. 1.热辐射光源经常使用的热辐射光源是白炽灯.一般灯泡确实是白炽灯,可作白色光源,应按仪器要求和灯泡上指定的电压利用,如光具座、分光计、读数显微镜等.2.气体放电光源实验室经常使用的钠灯和汞灯(又称水银灯)可作为单色光源,它们的工作原理都是以金属Na 或Hg 蒸汽在强电场中发生的游离放电现象为基础的弧光放电灯.在220V额定电压下,低压钠灯发出波长为589.0nm和589.6nm的两种单色黄光最强,可达85%,而其他几种波长为818.0nm和819.1nm等的光仅有15%.因此,在一样应历时取589.0nm和589.6nm的平均值589.3nm作为钠光灯的波长值.汞灯可按其气压的高低,分为低压汞灯、高压汞灯和超高压汞灯.低压汞灯最为经常使用,其电源电压与管端工作电压别离为220V和20V,正常点燃时发出青紫色光,其中要紧包括7种可见的单色光,它们的波长别离是612.35nm(红)、7nm(绿)、491.60nm(蓝绿)、435.84nm(蓝紫)、404.66nm(紫).利用钠灯和汞灯时,灯管必需与必然规格的镇流器(限流器)串联后才能接到电源上去,以稳固工作电流.钠灯和汞灯点燃后一样要预热3~4分钟才能正常工作,熄灭后也需冷却3~4分钟后,方可从头开启.3.激光光源激光是20世纪60年代诞生的新光源.激光(Laser)是“受激辐射光放大”的简称.它具有发光强度大、方向性好、单色性强和相干性好等优势.激光器是产生激光的装置,它的种类很多,如氦氖激光器、氩离子激光器、二氧化碳激光器、红宝石激光器等.实验室中经常使用的激光器是氦氖(H e-N e)激光器.它由激光工作的氦氖混合气体、鼓励装置和光学谐振腔3部份组成.氦氖激光器发出的光波波长为632.8nm,输出功率在几毫瓦到十几毫瓦之间,多数氦氖激光管的管长为200~300mm,两头所加高压是由倍压整流或开关电源产生,电压高达1500~8000V,操作时应严防触摸,以避免造成触电事故.由于激光束输出的能量集中,强度较高,利历时应注意切勿迎着激光束直接用眼睛观看.目前,气体放电灯的供电电源普遍采纳电子整流器,这种整流器内部由开关电源电路组成,具有耗电小、利用方便等优势.光学实验中,常把光束扩大或产生点光源以知足具体的实验要求,图3-31和图3-32表示两种扩束的方式,它们别离提供球面光波和平面光波.图3-12-7 图3-12-8。
偏振光满分实验报告
一、实验目的1. 了解光的偏振现象,验证马吕斯定律。
2. 掌握偏振光的产生、检测和调节方法。
3. 熟悉偏振光在光学器件中的应用。
二、实验原理光是一种电磁波,其电场矢量在垂直于传播方向的平面内可以有不同的振动方向。
当光波的电场矢量在某一平面内振动时,这种光称为偏振光。
偏振光可以由自然光通过偏振片产生。
当一束偏振光通过另一偏振片时,根据马吕斯定律,透射光的强度与两个偏振片的夹角有关。
三、实验仪器与材料1. 激光器2. 偏振片(两块)3. 波片(1/4波片和1/2波片)4. 光具座5. 白屏6. 玻璃平板7. 检流计四、实验步骤1. 将激光器、偏振片、波片和玻璃平板依次放置在光具座上,调整好光路,使激光束垂直照射到偏振片上。
2. 将第一块偏振片(起偏器)固定在光具座上,调整其方向,使激光束通过起偏器成为偏振光。
3. 将第二块偏振片(检偏器)固定在光具座上,调整其方向,观察白屏上的光斑变化。
4. 改变检偏器的方向,观察光斑的明暗变化,验证马吕斯定律。
5. 将波片插入光路,观察光斑的变化,分析波片对偏振光的作用。
6. 改变波片的厚度,观察光斑的变化,分析波片厚度的变化对偏振光的影响。
7. 将玻璃平板插入光路,观察光斑的变化,分析玻璃平板对偏振光的作用。
8. 通过调整光路,观察圆偏振光和椭圆偏振光的形成。
五、实验数据与处理1. 在实验过程中,记录不同角度下检偏器对光斑的影响,验证马吕斯定律。
2. 分析波片厚度对偏振光的影响,得出结论。
3. 分析玻璃平板对偏振光的影响,得出结论。
4. 通过观察光斑的变化,分析圆偏振光和椭圆偏振光的形成。
六、实验结果与分析1. 实验验证了马吕斯定律,即偏振光的强度与两个偏振片的夹角有关。
2. 波片可以改变偏振光的振动方向,其厚度对偏振光的影响较大。
3. 玻璃平板可以改变偏振光的传播方向,对偏振光的作用较小。
4. 通过调整光路,成功观察到圆偏振光和椭圆偏振光的形成。
七、实验总结1. 通过本次实验,加深了对光的偏振现象的认识,验证了马吕斯定律。
光的偏振研究实验报告
竭诚为您提供优质文档/双击可除光的偏振研究实验报告篇一:实验报告_偏振光的产生和检验【实验题目】偏振光的产生和检验【实验记录与数据处理】1.线偏振光的获得与检验1)器件光路示意图(2分):3)贴图(3分):曲线(直角坐标)2.椭圆偏振光的获得与检验1)器件光路示意图(2分):3)贴图(5分):15°和45°的曲线图(极坐标)光强与检偏器角度的关系(?=15?)光强与检偏器角度的关系(?=45?)3.1/2波片的研究1)器件光路示意图(2分):3)结论(2分):关系:根据数据可得,在误差允许的范围内,△?=2△?。
4.玻璃起偏与brewster角的测定1)器件光路示意图(2分):2)brewster角ip的测量记录(1分)3)玻璃的折射率(3分)。
n?n0tanip?1.000277*tan51.8?玻璃折射率为n?1.271125【结论与讨论】1.由实验一可得,在振动方向与透视轴夹角从90°减少至0°过程中,透视光强度逐渐由零增至最大值,与马吕斯定律I=Iocos?相符合。
2.由实验二可得,当入射光与玻片夹角β=0°,透过检偏器的光强最小,可知透过1/4玻片得到的是沿玻片慢轴的线偏振光;当β=15°,旋转检偏器一周后,得到的光强呈周期性变化,且最小值与最大值差值较大,光强最大值小于实验一中线偏振光的光强,再根据I~?曲线图即可知透过1/4玻片得到的是椭圆偏振光;当β=45°,旋转检偏器一周后,发现得到的光强变化不大,且光强大小界于β=15°时椭圆偏振光的光强最大值和最小值之间,再根据I~?曲线图即可知透过1/4玻片得到的是圆偏振光。
3.由实验三可得,线偏振光经过1/2玻片后仍为线偏振光,振动方向旋转了2?(?为入射光的偏振方向与玻片慢轴方向的夹角)。
4.实验四产生较大误差,误差原因为由于光线变化较小,且很难做到消光。
偏振光的产生和检测方法
偏振光的产生和检测方法偏振光是指处于特定方向的光波,它的波动方向只沿着某一平面振动。
在近年来的科学研究和技术应用中,偏振光的产生和检测方法得到了广泛关注。
本文将介绍偏振光的产生原理以及几种常见的偏振光检测方法。
首先,我们来了解偏振光的产生原理。
光波是一种横波,它的电场矢量在空间中以曲线的方式振动。
当沿着某一方向振动的电场矢量强度最大时,就产生了偏振光。
偏振光的产生可以通过以下几种方法实现。
一种常见的偏振光产生方法是通过偏振片。
偏振片是一种特殊的光学元件,它可以选择性地透过特定方向振动的光,而阻挡其他方向振动的光。
偏振片通常由某种具有吸收性能的有机材料制成,它的分子结构可以使特定方向的电场矢量被吸收而实现偏振功能。
通过调节偏振片的方向,我们可以产生不同方向的偏振光。
除了偏振片,还可以利用其他物理现象来产生偏振光,比如布儒斯特角现象。
布儒斯特角是指当光线入射到介质界面上,入射角等于布儒斯特角时,反射光全部是偏振光。
这种现象是由于不同波长的光在介质中的折射率不同,从而导致反射光产生偏振。
这一现象在光学元件设计和光学通信中具有重要意义。
发展到现代科技中,人们还可以通过液晶技术产生偏振光。
液晶是一种特殊的物质,它具有介于液体和固体之间的性质。
当液晶分子排列有序时,它可以选择性地通过特定方向的光,从而实现偏振功能。
利用液晶的这一特性,我们可以制造出各种类型的液晶显示器和调节器。
在实际应用中,我们需要可靠地检测偏振光的强度和方向。
下面介绍几种常见的偏振光检测方法。
首先,可以利用偏振片来检测偏振光的强度。
偏振片有一个特性,就是它只能透过与其方向相同的偏振光,而将其他方向的偏振光阻挡。
因此,通过调节偏振片的方向,我们可以逐渐减少透过的偏振光强度,从而得到偏振光的强度信息。
除了偏振片,还可以使用偏振分束器来检测偏振光的强度和方向。
偏振分束器是一种将入射光分成两个具有不同偏振方向的光束的光学元件。
其中一个光束透过,另一个光束则反射。
偏振光学实验实验报告
一、实验目的1. 观察光的偏振现象,验证马吕斯定律。
2. 了解1/2波片和1/4波片的作用。
3. 掌握椭圆偏振光和圆偏振光的产生与检测。
二、实验原理光是一种电磁波,具有横波特性。
当光波通过某些介质时,其振动方向会被限制在某一特定方向上,这种现象称为光的偏振。
偏振光可分为线偏振光、椭圆偏振光和圆偏振光。
马吕斯定律描述了线偏振光通过偏振片时的光强变化。
当线偏振光的振动方向与偏振片的透振方向一致时,光强最大;当两者垂直时,光强为零。
1/2波片和1/4波片是常用的偏振元件。
1/2波片可以将线偏振光变为椭圆偏振光或圆偏振光,而1/4波片可以将椭圆偏振光或圆偏振光变为线偏振光。
三、实验仪器1. 自然光源2. 偏振片3. 1/2波片4. 1/4波片5. 硅光电池6. 检偏器7. 光具座8. 透镜9. 光屏10. 毫米刻度尺四、实验步骤1. 将自然光源放置在光具座上,调整光路使其成为平行光。
2. 将偏振片放置在光具座上,使入射光通过偏振片。
3. 将检偏器放置在光具座上,调整其位置,使透过偏振片的光能够照射到检偏器上。
4. 观察检偏器上的光强变化,记录光强最大和最小时的偏振片角度。
5. 将1/2波片放置在光具座上,调整其位置,使透过偏振片的光能够照射到1/2波片上。
6. 观察1/2波片后的光强变化,记录光强最大和最小时的1/2波片角度。
7. 将1/4波片放置在光具座上,调整其位置,使透过1/2波片的光能够照射到1/4波片上。
8. 观察1/4波片后的光强变化,记录光强最大和最小时的1/4波片角度。
9. 利用马吕斯定律,计算偏振片、1/2波片和1/4波片的透振方向与光矢量振动方向的夹角。
五、实验结果与分析1. 观察到当偏振片的透振方向与光矢量振动方向一致时,光强最大;当两者垂直时,光强为零,验证了马吕斯定律。
2. 观察到1/2波片可以将线偏振光变为椭圆偏振光或圆偏振光,1/4波片可以将椭圆偏振光或圆偏振光变为线偏振光。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§17-10偏振光的获得和检测
一、偏振光的获得
1. 布儒斯特定律
如果让自然光从折射率为n 1的介质射向折射率为n 2的介质而被界面反射,反射光中垂直于入射面的光振动成分将大于处于入射面内的光振动成分,当入射角等于某一特定角i 0时,反射光成为振动面垂直于入射面的线偏振光,并且i 0
满足
, (17-69)
这个规律称为布儒斯特定律,i 0称为布儒斯特角或起偏角。
当入射角为i 0时,折射角为r 0,根据折射定律,应有
. (17-70)
将这个关系代入式(17-69),得
,
即
,
这表示,当入射角为起偏角时,反射光与折射光互相垂直,如图17-40
所示。
如果自然光从空气射到折射率为1.50的玻璃片上,根据布儒斯特定律,
可以求得起偏角为56.3︒,此时的折射角为33.7︒。
当自然光以起偏角从一种介质入射到第二种介质的表面上,反射光成为
线偏振光,而如果第二种介质没有特殊的吸收作用,那么折射光将成为部分偏振光,并且在入射面内的光振动成分将大于垂直于入射面的光振动成分。
假如让这样的部分偏振光连续几次作同样的反射和折射, 最后获得的折射光也必定是线偏振光。
2. 晶体的双折射现象
在§8-7中讨论固体的一般性质时,曾涉及过晶体具有的一种普遍性质,即各向异性。
这里我们所要说的各向异性,是在某些透明晶体中光沿不同的方向具有不同的传播速率,具有这种性质的晶体,称为双折射晶体。
我们设想在各向同性的均匀介质中有一点光源s ,在任意瞬间光波的波面总是球面。
而在均匀的双折射晶体中,点光源s 发出的光波波面却有两组,一组是球面,另一组是旋转椭球面,如图13-41所示。
这两组波面在某一方向上彼此相切,如图中qq '的方向,这个方向称为晶体的光轴。
图 17-41
在一般情况下,当平行自然光垂直入射到晶体的表面时,根据惠更斯原理,被照射的晶体表面上各点都是
发射子波的波源,而子波的波面有球面和椭球面两种,所以子波波面的包络面也应有两种,即球面的包络
面和椭球面的包络面。
于是折射光将分成两束,如图13-42(a)所示。
由球面的包络面形成的折射光,称为寻
常光,用o 表示;由椭球面的包络面形成的折射光,称为非常光,用e 表示。
寻常光o 是遵从折射定律的,
而非常光e 不遵从折射定律。
如果晶体表面的法线恰好与光轴重合, 使垂直入射的自然光正好沿着光轴方
向,这时两种波面的包络面相重合,o 光和e 光相重合,即不发生双折射现象,如图13-42(b)所示。
(a) (b)
图 13-42
实验表明,当自然光射入双折射晶体时,两束折射光o 和e 都是线偏振光,并且它们的振动面通常接近于互相垂直。
所以,如果能将寻常光与非常光分开,那么就可以利用双折射晶体由自然光获得线偏振光。
通常采用的一种方法是使寻常光或非常光经过全反射而偏转到一侧,另一束光则无偏转地由晶体出射。
尼科耳棱镜就是利用这个道理获得线偏振光的。
图17-43表示了一个尼科耳棱镜的示意图。
它是由两块方解石(双折射晶体)直角棱镜(图中abd 和acd )用加拿大胶粘合而成的。
光轴qq ¢与端面成48︒角。
当自然光沿平行于棱ac 的方向入射到端面ab 后, 折射成两束,即寻常光o 和非常光e 。
寻常光o 的振动面与截面abcd 垂直,而非常光e 的振动面与截面abcd 平行。
对于寻常光o ,方解石的折射率为1.658,加拿大胶的折射率为1.550,因此在方解石与加拿大胶的界面上发生全反射(入射角为76°,全反射的临界角为69︒)。
对于非常光e ,在此入射方向上方解石的折射率为1.516,加拿大胶的折射率仍为1.550,不会发生全反射,而进入第二个直角棱镜,并从端面cd 出射。
这样就得到了线偏振光,光矢量的振动方向如图17-43(b)箭头所示。
(a)(b)
图17-43
3. 二向色性晶体
有些透明晶体不仅具有双折射现象,而且对o光或e光有不同的吸收作用,这种晶体称为二向色性晶体。
利用二向色性晶体的这种特性,可以将自然光转变为线偏振光。
例如,电气石晶体就具有很强的二向色性,当自然光射入这种晶体时,发生双折射现象,并对寻常光o有强烈的吸收作用,而对非常光e却吸收很少,所以大部分非常光能够透过。
天然单晶体的体积都是很有限的,一般不容易达到使用的要求。
人们发现硫酸碘奎宁晶体也具有二向色性,若在被拉伸的塑料基片上淀积一层硫酸碘奎宁薄膜,片基的应力将使这种物质晶粒的光轴沿一定方向排列。
当入射光照射在硫酸碘奎宁晶粒上时,与光轴垂直的电矢量被强列吸收,极少通过,而与光轴平行的电矢量却吸收很少,较多地通过。
将这种薄膜敷在玻璃片上可以制成偏振片。
光振动能通过的方向,就是偏振片的透振方向。
偏振片已广泛用作起偏器或检偏器,并在各种偏振光仪器中普遍使用。
4. 波片
波片也称波晶片或相位延迟片。
它是从双折射晶体切割下来的平行平面板,其光轴与表面平行。
当平行光垂直射到波片上,将被分解为寻常光o和非常光e两种振动,它们的振动方向分别垂直于光轴和平行于光轴,虽然它们在波片中传播方向相同,但传播速率却不同,因此彼此产生了附加的相位差φ。
显然,由波片所分解的两种振动的相位差f取决于入射光的波长和波片的厚度。
如果波片的厚度正好使某一波长的光产生p/2的相位差, 这样的波片称为1/4波片,椭圆偏振光和圆偏振光都可以利用1/4波片获得。
除1/4波片外,还有半波片,它能使两种振动产生π的附加相位差。
图17-44
如果让线偏振光垂直入射到1/4波片上,那么从波片另一表面出射的光是椭圆偏振光;如果线偏振光的振动面与1/4波片的光轴成45︒角,那么分
解后的o光和e光振幅相等,从晶片的另一表面出射的光则是圆偏振光,如图13-44所示。