中考数学压轴题达标专题强化试卷检测试卷

中考数学压轴题达标专题强化试卷检测试卷
中考数学压轴题达标专题强化试卷检测试卷

一、中考数学压轴题

1.在平面直角坐标系中,点O 为坐标原点,抛物线(2)()y a x x m =++与x 轴交于点

A C 、(点A 在点C 的左侧),与y 轴正半轴交于点

B ,24O

C OB ==. (1)如图1,求a m 、的值;

(2)如图2,抛物线的顶点坐标是M ,点D 是第一象限抛物线上的一点,连接AD 交抛物线的对称轴于点N ,设点D 的横坐标是t ,线段MN 的长为d ,求d 与t 的函数关系式;

(3)如图3,在(2)的条件下,当15

4

d =时,过点D 作DE x 轴交抛物线于点E ,点

P 是x 轴下方抛物线上的一个动点,连接PE 交x 轴于点F ,直线2

11

y x b =+经过点D 交EF 于点G ,连接CG ,过点E 作EH CG 交DG 于点H ,若3CFG EGH S S =△△,求点

P 的坐标.

2.如图,已知抛物线y =2ax bx c ++与x 轴交于A 3,0-(),B 33,0()两点,与y 轴交于点C 0,3().

(1)求抛物线的解析式及顶点M 坐标;

(2)在抛物线的对称轴上找到点P ,使得PAC 的周长最小,并求出点P 的坐标; (3)在(2)的条件下,若点D 是线段OC 上的一个动点(不与点O 、C 重合).过点

D 作D

E //PC 交x 轴于点E .设CD 的长为m ,问当m 取何值时,

PDE

ABMC 1

S

S 9

=四边形.

3.我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P作坐标轴的平行线PM和PN,分别交x轴和y轴于点M,N.点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y)

(1)如图2,ω=45°,矩形OABC中的一边OA在x轴上,BC与y轴交于点D,

OA=2,OC=1.

①点A、B、C在此斜坐标系内的坐标分别为A,B,C.

②设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为.

③设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为.

(2)若ω=120°,O为坐标原点.

①如图3,圆M与y轴相切原点O,被x轴截得的弦长OA=23,求圆M的半径及圆心M的斜坐标.

②如图4,圆M的圆心斜坐标为M(23,23),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是.

4.如图,在梯形ABCD中,AD//BC,AB=CD=AD=5,cos

4

5

B ,点O是边BC上的动点,

以OB为半径的O与射线BA和边BC分别交于点E和点M,联结AM,作∠CMN=∠BAM,射线MN与边AD、射线CD分别交于点F、N.

(1)当点E为边AB的中点时,求DF的长;

(2)分别联结AN、MD,当AN//MD时,求MN的长;

(3)将

O 绕着点M 旋转180°得到'O ,如果以点N 为圆心的N 与'O 都内切,求

O 的半径长.

5.如图,在四边形ABCD 中,∠B=90°,AD//BC ,AD=16,BC=21,CD=13. (1)求直线AD 和BC 之间的距离;

(2)动点P 从点B 出发,沿射线BC 以每秒2个单位长度的速度运动,动点Q 从点A 出发,在线段AD 上以每秒1个单位长度的速度运动,点P 、Q 同时出发,当点Q 运动到点D 时,两点同时停止运动,设运动时间为t 秒.试求当t 为何值时,以P 、Q 、D 、C 为顶点的四边形为平行四边形?

(3)在(2)的条件下,是否存在点P ,使△PQD 为等腰三角形?若存在,请直接写出相应的t 值,若不存在,请说明理由.

6.如图1,正方形CEFG 绕正方形ABCD 的顶点C 旋转,连接AF ,点M 是AF 中点. (1)当点G 在BC 上时,如图2,连接BM 、MG ,求证:BM =MG ; (2)在旋转过程中,当点B 、G 、F 三点在同一直线上,若AB =5,CE =3,则MF = ;

(3)在旋转过程中,当点G 在对角线AC 上时,连接DG 、MG ,请你画出图形,探究DG 、MG 的数量关系,并说明理由.

7.如图1,已知,⊙O 是△ABC 的外接圆,AB=AC=10,BC=12,连接AO 并延长交BC 于点H .

(1)求外接圆⊙O 的半径;

(2)如图2,点D 是AH 上(不与点A ,H 重合)的动点,以CD ,CB 为边,作平行四边形CDEB ,DE 分别交⊙O 于点N ,交AB 边于点M . ①连接BN ,当BN ⊥DE 时,求AM 的值;

②如图3,延长ED 交AC 于点F ,求证:NM ·NF=AM ·MB ; ③设AM=x ,要使2ND -22DM <0成立,求x 的取值范围.

8.如图,在菱形ABCD 中,AB a ,60ABC ∠=?,过点A 作AE BC ⊥,垂足为E ,

AF CD ⊥,垂足为F .

(1)连接EF ,用等式表示线段EF 与EC 的数量关系,并说明理由;

(2)连接BF ,过点A 作AK BF ⊥,垂足为K ,求BK 的长(用含a 的代数式表示); (3)延长线段CB 到G ,延长线段DC 到H ,且BG CH =,连接AG ,GH ,AH . ①判断AGH 的形状,并说明理由;

②若1

2,(33)2

ADH

a S

==

+,求sin GAB ∠的值.

9.如图,抛物线2

y x bx c =-++与x 轴相交于A 、B 两点,与y 轴相交于点C ,且点B

与点C 的坐标分别为()3,0B ,()0,3C ,点M 是抛物线的顶点.

(1)求二次函数的关系式.

(2)点P 为线段MB 上一个动点,过点P 作PD x ⊥轴于点D .若OD m =,PCD 的面积为S .

①求S 与m 的函数关系式,写出自变量m 的取值范围. ②当S 取得最值时,求点P 的坐标.

(3)在MB 上是否存在点P ,使PCD 为直角三角形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.

10.如图,在ABC 中,90ABC ∠=?,AB BC <,O 为AC 中点,点D 在BO 延长线上,CD BC =,AE BC ∥,CE CA =,AE 交BD 于点G .

(1)若28DCE ∠=?,求AOB ∠的度数; (2)求证:AG GE =; (3)设DC 交GE 于点M .

①若3AB =,4BC =,求::AG GM ME 的值;

②连结DE ,分别记ABG ,DGM ,DME 的面积为1S ,2S ,3S ,当AC DE 时,123::S S S = .(直接写出答案)

11.如图,在平面直角坐标系中,点(1,2)A ,(5,0)B ,抛物线2

2(0)y ax ax a =->交x

轴正半轴于点C ,连结AO ,AB . (1)求点C 的坐标; (2)求直线AB 的表达式;

(3)设抛物线2

2(0)y ax ax a =->分别交边BA ,BA 延长线于点D ,E .

①若2AE AO =,求抛物线表达式;

②若CDB △与BOA △相似,则a 的值为 .(直接写出答案)

12.如图1,已知抛物线218

33

y x x c =-

-+与x 轴相交于A 、B 两点(B 点在A 点的左侧),与y 轴相交于C 点,且10AB =.

(1)求这条抛物线的解析式;

(2)如图2,D 点在x 轴上,且在A 点的右侧,E 点为抛物线上第二象限内的点,连接

ED 交抛物线于第二象限内的另外一点F ,点E 到y 轴的距离与点F 到y 轴的距离之比为

3:1,已知4

tan 3

BDE ∠=,求点E 的坐标;

(3)如图3,在(2)的条件下,点G 由B 出发,沿x 轴负方向运动,连接EG ,点H 在

线段EG 上,连接DH ,EDH

EGB ∠=∠,过点E 作EK DH ⊥,与抛物线相交于点

K ,若EK EG =,求点K 的坐标.

13.(1)如图①,在Rt ABC 中,90C ∠=?,13AB =,5BC =,则tan A 的值是_______.

(2)如图②,在正方形ABCD 中,5AB =,点E 是平面上一动点,且2BE =,连接

CE ,在CE 上方作正方形EFGC ,求线段CF 的最大值.

问题解决:(3)如图③,O 半径为6,在Rt ABC 中,90B ∠=?,点, A B 在O

上,点C 在

O 内,且3tan 4

A =.当点A 在圆上运动时,求线段OC 的最小值.

14.(1)(发现)如图1,在ABC 中,//DE BC 分别交AB 于D ,交AC 于E .已知

CD BE ⊥,3CD =,5BE =,求BC DE +的值.

思考发现,过点E 作//EF DC ,交BC 延长线于点F ,构造BEF ,经过推理和计算能够使问题得到解决(如图2).

请回答:BC DE +的值为______.

(2)(应用)如图3,在四边形ABCD 中,//AB CD ,AD 与BC 不平行且

AD BC =,对角线AC BD ⊥,垂足为O .若3CD =,5AB =,DAB CBA ∠=∠,

求AC 的长.

(3)(拓展)如图4,已知平行四边形ABCD 和矩形ABEF ,AC 与DF 交于点G ,

FD FB =,且30BFD ∠=?,60EBF ∠=?,判断AC 与DF 的数量关系并证明.

15.已知:在平面直角坐标系中,抛物线2

23y ax ax a =--与x 轴交于点A ,B (点B

在点A 的右侧),点C 为抛物线的顶点,点C 的纵坐标为-2. (1)如图1,求此抛物线的解析式;

(2)如图2,点P 是第一象限抛物线上一点,连接AP ,过点C 作//CD y 轴交AP 于点

D ,设点P 的横坐标为t ,CD 的长为m ,求m 与t 的函数关系式(不要求写出自变量t

的取值范围);

(3)如图3,在(2)的条件下,点E 在DP 上,且ED AD =,点F 的横坐标大于3,连接EF ,BF ,PF ,且EP EF BF ==,过点C 作//CG PF 交DP 于点G ,若

72

8

CG AG =

,求点P 的坐标.

16.已知AM //CN ,点B 为平面内一点,AB ⊥BC 于B . (1)如图1,直接写出∠A 和∠C 之间的数量关系; (2)如图2,过点B 作BD ⊥AM 于点D ,求证:∠ABD =∠C ;

(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,BF 平分∠DBC ,BE 平分∠ABD ,若∠FCB +∠NCF =180°,∠BFC =5∠DBE ,求∠EBC 的度数.

17.(1)如图1,A 是⊙O 上一动点,P 是⊙O 外一点,在图中作出PA 最小时的点A . (2)如图2,Rt △ABC 中,∠C =90°,AC =8,BC =6,以点C 为圆心的⊙C 的半径是3.6,Q 是⊙C 上一动点,在线段AB 上确定点P 的位置,使PQ 的长最小,并求出其最小值. (3)如图3,矩形ABCD 中,AB =6,BC =9,以D 为圆心,3为半径作⊙D ,E 为⊙D 上一动点,连接AE ,以AE 为直角边作Rt △AEF ,∠EAF =90°,tan ∠AEF =

1

3

,试探究四边形ADCF 的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由.

18.如图,在矩形ABCD 中,6AB cm =,8AD cm =,连接BD ,将ABD △绕B 点作顺时针方向旋转得到A B D '''△(B ′与B 重合),且点D '刚好落在BC 的延长上,A D ''与

CD 相交于点E .

(1)求矩形ABCD 与A B D '''△重叠部分(如图1中阴影部分A B CE '')的面积; (2)将A B D '''△以每秒2cm 的速度沿直线BC 向右平移,如图2,当B ′移动到C 点时停止移动.设矩形ABCD 与A B D '''△重叠部分的面积为y ,移动的时间为x ,请你直接写出y 关于x 的函数关系式,并指出自变量x 的取值范围;

(3)在(2)的平移过程中,是否存在这样的时间x ,使得AA B ''△成为等腰三角形?若存在,请你直接写出对应的x 的值,若不存在,请你说明理由.

19.我们知道,在等腰直角三角形中,底边与一边腰长比为2:1.如图1,90A ∠=?,

AB AC =,则

2BC

AB

=.

知识应用:

(1)如图2,ADE ?和ABC ?均为等腰直角三角形,90DAE BAC ∠=∠=?,D ,E ,C 三点共线,若2AD =2BD =,求CD 的长.

知识外延:

(2)如图3,正方形ABCD 中,BE 和BC 关于BG 对称,C 点的对应点为E 点,AE 交

BG 的延长线于F 点,连接CF . ①求证:GF EC =;

②若2AE =,2CE =,求BF 的长.

20.如图,在平面直角坐标系xOy 中,已知Rt ABC 的直角顶点()0,12C ,斜边AB 在

x 轴上,且点A 的坐标为()9,0-,点D 是AC 的中点,点E 是BC 边上的一个动点,抛

物线2

12y ax bx =++过D ,C ,E 三点.

(1)当//DE AB 时, ①求抛物线的解析式;

②平行于对称轴的直线x m =与x 轴,DE ,BC 分别交于点F ,H ,G ,若以点D ,

H ,F 为顶点的三角形与GHE △相似,求点m 的值.

(2)以E 为等腰三角形顶角顶点,ED 为腰构造等腰EDG △,且G 点落在x 轴上.若在

x 轴上满足条件的G 点有且只有一个时,请直接写出....

点E 的坐标. 21.如图所示,在直角梯形ABCD 中,AD ∥BC ,∠A=90°,AB=12,BC=21,AD=16.动点P 从点B 出发,沿射线BC 的方向以每秒2个单位长的速度运动,动点Q 同时从点A 出发,在线段AD 上以每秒1个单位长的速度向点D 运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为t (秒). (1)设△DPQ 的面积为S ,求S 与t 之间的关系式; (2)当t 为何值时,四边形PCDQ 是平行四边形? (3)分别求出当t 为何值时,①PD=PQ ;②DQ=PQ .

22.在平面直角坐标系xOy 中,点A 、B 为反比例函数()4

x 0x

y =>的图像上两点,A 点的横坐标与B 点的纵坐标均为1,将()4

x 0x

y =>的图像绕原点O 顺时针旋转90°,A 点的对应点为A’,B 点的对应点为B’.

(1)点A’的坐标是 ,点B’的坐标是 ;

(2)在x 轴上取一点P ,使得PA+PB 的值最小,直接写出点P 的坐标. 此时在反比例函数()4

x 0x

y =

>的图像上是否存在一点Q ,使△A’B’Q 的面积与△PAB 的面积相等,若存在,求出点Q 的横坐标;若不存在,请说明理由;

(3)连接AB’,动点M 从A 点出发沿线段AB’以每秒1个单位长度的速度向终点B’运动;

动点N 同时从B’点出发沿线段B’A’以每秒1个单位长度的速度向终点A’运动.当其中一个点停止运动时,另一个点也随之停止运动.设运动的时间为t 秒,试探究:是否存在使△MNB’为等腰直角三角形的t 值.若存在,求出t 的值;若不存在,说明理由.

23.问题一:如图①,已知AC =160km ,甲,乙两人分别从相距30km 的A ,B 两地同时出发到C 地.若甲的速度为80km /h ,乙的速度为60km /h ,设乙行驶时间为x (h ),两车之间距离为y (km ).

(1)当甲追上乙时,x = . (2)请用x 的代数式表示y .

问题二:如图②,若将上述线段AC 弯曲后视作钟表外围的一部分,线段AB 正好对应钟表上的弧AB (1小时的间隔),易知∠AOB =30°.

(3)分针OD 指向圆周上的点的速度为每分钟转动 km ,时针OE 指向圆周上的点的速度为每分钟转动 °;

(4)若从2:00起计时,求几分钟后分针与时针第一次重合?

24.综合与探究:

如图1,抛物线24832

999

y x x =-

++与x 轴交于,A B 两点(点A 在点B 的左侧),顶点为D ,P 为对称轴右侧抛物线的一个动点,直线AD 与y 轴于点C ,过点P 作

//PF AD ,交x 轴于点F .

(1)求直线AD 的函数表达式及点C 的坐标;

(2)如图2,当//PC x 轴时,将AOC ?以每秒1个单位长度的速度沿x 轴的正方向平移,当点C 与点P 重合时停止平移.设平移t 秒时,在平移过程中AOC ?与四边形AFPC 重叠部分的面积为S ,求S 关于t 的函数关系式,并写出自变量t 的取值范围; (3)如图3,过点P 作x 轴的平行线,交直线AD 于点E ,直线DF 与PE 交于点M ,设点P 的横坐标为m .

①当3DM MF =时,求m 的值;

②试探究点P 在运动过程中,是否存在值m ,使四边形AFPE 是菱形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.

25.如图,一张半径为3cm 的圆形纸片,点O 为圆心,将该圆形纸片沿直线l 折叠,直线

l 交O 于A

B 、两点.

(1)若折叠后的圆弧恰好经过点O ,利用直尺和圆规在图中作出满足条件的一条直线l (不写作法,保留作图痕迹),并求此时线段AB 的长度. (2)已知M 是

O 一点,1cm OM =.

①若折叠后的圆弧经过点M ,则线段AB 长度的取值范围是________. ②若折叠后的圆弧与直线OM 相切于点M ,则线段AB 的长度为_________cm .

【参考答案】***试卷处理标记,请不要删除

一、中考数学压轴题 1.B

解析:(1)14a =

,4m =-;(2)3344d t =-;(3)220,39P ??

- ???

【解析】 【分析】

(1)根据24OC OB ==得出B,C 的坐标,令(2)()0y a x x m =++=即可求出m 的值,将B 的坐标代入抛物线的解析式中即可求出a 的值;

(2)过点D 作DI AC ⊥于点I ,设MN 与x 轴的交点为J ,先利用抛物线的解析式求出M 的坐标,然后利用平行线分线段成比例有AF NF

AE DE

=,代入相应的值计算即可得出答案; (3)先根据154d =

求出此时D,E 的坐标,然后将点D 的坐标代入2

11

y x b =

+中求出直线的解析式,设G 点的坐标为232

(,)1111

m m +,利用待定系数法求出直线GE 的解析式,进而求出F 的坐标及CFG

S ,然后利用待定系数法求出GC,EH 的解析式,进而求出H 点的

坐标,然后表示出EGH

S ,然后利用3CFG EGH S S =△△求出m的值,进而求出直线GE 的解

析式,通过直线GE 的解析式与抛物线解析式联立即可求出P 点的坐标.

【详解】 (1)

24OC OB ==

(0,2),(4,0)B C ∴- .

令(2)()0y a x x m =++=, 解得2,x x m =-=-,

4m ∴-= ,

4m ∴=- ,

∴抛物线的解析式为(2)(4)y a x x =+- , 将点(0,2)B -代入得,82a -=-, 解得14

a =

; (2)如图,过点D 作DI AC ⊥于点I ,设MN 与x 轴的交点为J ,

∵1

,44

a m =

=- , 2119(2)(4)(1)444

y x x x ∴=

+-=--,

9

(1,)4

M ∴- .

∵点D 的横坐标是

t ,

∴2

11

(,2)42

D t t t -

-, 211

242

DI t t ∴=

--. MN x ⊥轴,DI x ⊥轴,

//NM DI ∴ ,

AJ NJ

AI DI

= . NM d = ,

29

1(2)4112242d t t t -

--∴=+--,

解得33

44

d t =- ;

(3)如图,

当154

d =

时,3315444d t =-=,解得6t = ,

此时D 的坐标为(6,4) .

// DE x 轴,

∴点E 的纵坐标也是4, 令1

(2)(4)44

y x x =

+-=, 解得4x =-或6x =, ∴(4,4)E - . ∵直线2

11

y x b =

+经过点D ,

2

6411

b ?+=, 解得 3211

b = , ∴2321111

y x =

+ . 设点G 的坐标为232

(,

)1111

m m + , 设直线EG 的解析式为y kx b =+ , 将232

(4,4),(,

)1111

E G m m -+代入解析式中得 442321111k b mk b m -+=???+=+?? 解得2121144

521281144m k m m b m -?

=??+?

+?=?+?

∴直线EG 解析式为21252128

11441144

m m y x m m -+=+++ ,

令0y = ,即

21252128011441144m m x m m -++=++,解得26646m x m

+=- ,

2664

(

,0)6m F m

+∴- ,

∴26643040

466m m CF m m ++=-=--,

113040232(3040)(16)

()226111111(6)

CFG G m m m S CF y m m m +++∴=?=??+=-- .

设直线GC 的解析式为y ax c =+ ,

将232

(4,0),(,

)1111

C G m m +代入解析式中得 40232

1111a c ma c m +=???+=+?? 解得2321144

81281144m a m m c m +?

=??-?+?=-?-?

∴直线GC 解析式为232812811441144

m m y x m m ++=--- .

∵EH

CG ,

∴设直线EH 解析式为232

1144

m y x n m +=+-,

将点(4,4)E -代入得

232

(4)41144

m n m +?-+=-,

解得5248

1144

m n m -=

- ,

∴直线EH 解析式为2325248

11441144

m m y x m m +-=

+--.

将直线GD 的解析式与直线EH 的解析式联立,

23211232524811441144y x x m m y x m m ?=+???

+-?=+

?--?

解得42

2811m x m y +?

=-???-?=?? ∴428(,)211m m

H +--

, 11341520

()10()221111

EGH

EDG EDH H G m m S

S

S

ED y y ++∴=-=

?-=??-=- . ∵3CFG EGH S S =△△, ∴

(3040)(16)11(6)m m m ++-15203()11

m +=?-,

解得154m =-或4

3

m =-. 当154m =-

时,GE 的解析式为4433

y x =--, 将直线GE 的解析式与抛物线的解析式联立,

24433

11242y x y x x ?

=--????=--??解得23209x y ?=????=-

??

或44x y =-??=?(点E 的坐标,舍去), ∴2

20

(,)39

P - ; 当43m =-

时,GE 的解析式为1

22

y x =-+, 将直线GE 的解析式与抛物线的解析式联立

2122

11242y x y x x ?=-+????=--??

解得40x y =??

=?(点C 的坐标,舍去) 或44x y =-??=?(点E 的坐标,舍去), ∴综上所述,点P 的坐标为2

20

(,)39

P - . 【点睛】

本题主要考查二次函数,一次函数与几何综合,难度较大,尤其是计算量太大,容易出错,掌握待定系数法,平行线分线段成比例,合理的设出点的坐标并准确的计算是解题的

关键.

2.C

解析:(1

)2

1

y x 43

=-+(,顶点M

4;(2

)P 2);(3)1m =2,

2m =1

【解析】 【分析】

(1)由点C 的坐标,可求出c

的值,再把()

A

、()

B 代入解析式,即可求出a 、b 的值,即可求出抛物线的解析式,将解析式化为顶点式,即可求出顶点M 的坐标;

(2)因为A 、B 关于抛物线的对称轴对称,连接BC 与抛物线对称轴交于一点,即为所求点P ,设对称轴与x 轴交于点H ,证明PHB COB ∽,即可求出PH 的长,从而求出点P 的 坐标;

(3)根据点A 、B 、M 、C 的坐标,可求出ABMC S 四边形

,从而求出PDE

S

=OC =

3,OB

=OCB ∠=60,因为DE //PC ,推出 ODE ∠=60,从而得到

OD =3m -

,)OE 3m =-,根据PDE

DOE PDOE S

S S

=-四边形,列出关于

m 的方程,

解方程即可. 【详解】

(1)∵抛物线y =2ax bx c a 0++≠()

过()A

、()

B ,()

C 0,3三点, ∴c =3,

∴3a 3027a 30

?-+=??++=??,

解得1a 3b 3?=-????=??

故抛物线的解析式为(2

211

y x 3x 433

=-++=--+,

故顶点M

)

4.

(2)如图1,

∵点A 、B 关于抛物线的对称轴对称,

∴连接BC 与抛物线对称轴交于一点,即为所求点P . 设对称轴与x 轴交于点H , ∵PH //y 轴, ∴PHB COB ∽. ∴

PH BH

CO BO

=. 由题意得BH =23,CO =3,BO =33,

PH 23

333

=

, ∴PH =2. ∴(

)

P

3,2.

(3)如图2,∵()

A 3,0-、()

B 33,0,()

C 0,3,(

)

M

3,4,

∴ABMC S 四边形=

()AOC MHB

COHM 111

S

S S

3334342393222

++=

??++??=梯形. ∵ABMC S 四边形=PDE

9S ,

∴PDE

S

3=

∵OC =3,OB =33

∴OCB ∠=60. ∵DE //PC , ∴ODE ∠=60.

∴OD =3m -,)OE 33m =-.

∵PDOE S 四边形=()()COE

133S 333m 3m 22

=

??-=-, ∴PDE

S

=()()2

DOE

PDOE 333S S

3m 3m -=

---=四边形 2333

m m 0m 33-

+<<()

. ∴2333

m m 3-

+=, 解得1m =2,2m =1. 【点睛】

此题主要考查了待定系数法求二次函数解析式以及相似三角形的判定与性质和四边形面积求法等知识,熟练运用方程思想方法和转化思想是解题关键.

3.B

解析:(1)①(2,0),(1,2),(﹣1,2);②y =2x ;③y =﹣

2

2

x +2; (2)①半径为2,M (4323

,

);②2<r <4 【解析】 【分析】

(1)①如图2?1中,作BE ∥OD 交OA 于E ,CF ∥OD 交x 轴于F .求出OE 、OF 、CF 、OD 、BE 即可解决问题;

②如图2?2中,作BE ∥OD 交OA 于E ,作PM ∥OD 交OA 于M .利用平行线分线段成比例定理即可解决问题;

③如图3?3中,作QM ∥OA 交OD 于M .利用平行线分线段成比例定理即可解决问题; (2)①如图3中,作MF ⊥OA 于F ,作MN ∥y 轴交OA 于N .解直角三角形即可解决问题;

②如图4中,连接OM ,作MK ∥x 轴交y 轴于K ,作MN ⊥OK 于N 交⊙M 于E 、F .求出FN =NE =1时,⊙M 的半径即可解决问题; 【详解】

解:(1)①如图2﹣1中,作BE ∥OD 交OA 于E ,CF ∥OD 交x 轴于F .

由题意OC =CD =1,OA =BC =2,

∴BD =OE =1,OD =CF =BE

=2, ∴A(2,0),

B(1,2),C(﹣1,2), 故答案为:A(2,0),B(1,2),C(﹣1,2).

②如图2﹣2中,作BE ∥OD 交OA 于E ,作PM ∥OD 交OA 于M .

∵OD ∥BE ,OD ∥PM , ∴BE ∥PM , ∴

BE OE

PM OM

=, ∴

21y x

=, ∴y =2x . 故答案为:y =2x .

③如图2﹣3中,作QM ∥OA 交OD 于M .

222

MQ DM OA DO

x ∴

=∴=

∴2

2y x =+故答案为:y 2

2. (2)①如图3中,作MF ⊥OA 于F ,作MN ∥y 轴交OA 于N .

∵ω=120°,OM⊥y轴,∴∠MOA=30°,

∵MF⊥OA,OA=23,∴OF=FA=3,

∴FM=1,OM=2FM=2,∴圆M的半径为2

∵MN∥y轴,

∴MN⊥OM,

∴MN=2

3

3

,ON=2MN=

4

3

3

∴M

4323

,

??

? ???

②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.

∵MK∥x轴,ω=120°,

∴∠MKO=60°,

∵MK=OK=3

∴△MKO是等边三角形,

∴MN=3,

当FN=1时,MF=3﹣1=2,

当EN=1时,ME=3+1=4,

观察图象可知当⊙M的半径r的取值范围为2<r<4.

故答案为:2<r<4.

【点睛】

2020-2021备战中考数学压轴题专题初中数学 旋转的经典综合题附详细答案

2020-2021备战中考数学压轴题专题初中数学旋转的经典综合题附详细答案 一、旋转 1.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN. (1)连接AE,求证:△AEF是等腰三角形; 猜想与发现: (2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论. 结论1:DM、MN的数量关系是; 结论2:DM、MN的位置关系是; 拓展与探究: (3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由. 【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析. 【解析】 试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出 MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直. 试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF, ∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM, AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,

中考数学压轴题专题

中考数学压轴题专题 一、函数与几何综合的压轴题 1.如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交于E ′点, 如图②,求△AE ′C 的面积S 关于k 的函数解析式. [解] (1)(本小题介绍二种方法,供参考) 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴ ,EO DO EO BO AB DB CD DB '''' == 又∵DO ′+BO ′=DB ∴ 1EO EO AB DC '' += ∵AB =6,DC =3,∴EO ′=2 又∵DO EO DB AB ''=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2① 再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ② 联立①②得02x y =??=-? ∴E 点坐标(0,-2),即E 点在y 轴上 (2)设抛物线的方程y =ax 2 +bx +c (a ≠0)过A (-2,-6),C (1,-3) 图① 图②

E (0,-2)三点,得方程组42632a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2 -2 (3)(本小题给出三种方法,供参考) 由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同(1)可得: 1E F E F AB DC ''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB DB '?= ,∴1 3DF DB = S △AE ′C = S △ADC - S △E ′DC =1112 2223 DC DB DC DF DC DB ?-?=? =1 3 DC DB ?=DB=3+k S=3+k 为所求函数解析式 方法二:∵ BA ∥DC ,∴S △BCA =S △BDA ∴S △AE ′C = S △BDE ′()11 32322 BD E F k k '= ?=+?=+ ∴S =3+k 为所求函数解析式. 证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2 同理:S △DE ′C ∶S △DE ′B =1∶2,又∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2 =1∶4 ∴()221 3992 AE C ABCD S S AB CD BD k '?= =?+?=+梯形 ∴S =3+k 为所求函数解析式. 2.已知:如图,在直线坐标系中,以点M (1,0)为圆心、直径AC 为22的圆与y 轴交于A 、D 两点. (1)求点A 的坐标; (2)设过点A 的直线y =x +b 与x 轴交于点B.探究:直线AB 是否⊙M 的切线?并对你的结论加以证明; (3)连接BC ,记△ABC 的外接圆面积为S 1、⊙M 面积为S 2,若 4 21h S S =,抛物线 y =ax 2 +bx +c 经过B 、M 两点,且它的顶点到x 轴的距离为h .求这条抛物线的解析式. [解](1)解:由已知AM =2,OM =1, 在Rt△AOM 中,AO = 122=-OM AM , ∴点A 的坐标为A (0,1) (2)证:∵直线y =x +b 过点A (0,1)∴1=0+b 即b =1 ∴y=x +1 令y =0则x =-1 ∴B(—1,0),

中考数学复习几何压轴题

中考数学复习几何压轴题 1.在△ABC 中,点D 在AC 上,点E 在BC 上,且DE ∥AB ,将△CDE 绕点C 按顺时针方向旋转得到△E D C ''(使E BC '∠<180°),连接D A '、E B ',设直线E B '与AC 交于点O . (1)如图①,当AC =BC 时,D A ':E B '的值为 ; (2)如图②,当AC =5,BC =4时,求D A ':E B '的值; (3)在(2)的条件下,若∠ACB =60°,且E 为BC 的中点,求△OAB 面积的最小值. 图① 图② 答 案 : 1;……………………………………………………………………………………………1分 (2)解:∵DE ∥AB ,∴△CDE ∽△CAB .∴AC DC BC EC =. 由旋转图形的性质得,C D DC C E EC '='=,,∴AC C D BC C E '='. ∵ D C E ECD ' '∠=∠,∴ , E AC D C E E AC ECD '∠+''∠='∠+∠即 D AC E BC '∠='∠. ∴E BC '?∽D AC '?.∴4 5 ==''BC AC E B D A .……………………………………………………4分 (3)解:作BM ⊥AC 于点M ,则BM =BC ·sin 60°=23. ∵E 为BC 中点,∴CE = 2 1 BC =2. △CDE 旋转时,点E '在以点C 为圆心、CE 长为半径的圆上运动. ∵CO 随着E CB '∠的增大而增大, ∴当E B '与⊙C 相切时,即C E B '∠=90°时E CB '∠最大,则CO 最大. O D E'O E' A D

中考数学压轴题100题精选【含答案】

中考数学压轴题100题精选【含答案】 【001 】如图,已知抛物线 2 (1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为 ()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若O C O B =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长. 【002】如图16,在Rt △ABC 中,∠C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1 个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围) (3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由;

中考数学压轴题专集二一次函数

中考数学压轴题专集二:一次函数 1、如图,在平面直角坐标中,点A 的坐标为(4,0),直线AB ⊥x 轴,直线y =- 1 4 x +3经过点B ,与y 轴交于点C . (1)求点B 的坐标; (2)直线l 经过点C ,与直线AB 交于点D ,E 是直线AB 上一点,且∠ECD =∠OCD ,CE =5,求直线l 的解析式. 解:(1)∵A (4,0),AB ⊥x 轴,∴点B 的横坐标为4 把x =4代入y =- 1 4 x +3,得y =2 ∴B (4,2) (2)∵AB ⊥x 轴,∴∠EDC =∠OCD ∵∠ECD =∠OCD ,∴∠EDC =∠ECD ∴ED =EC =5 在y =- 1 4 x +3中,当x =0时,y =3 ∴C (0,3),OC =3 过C 作CF ⊥AB 于F ,则CF =OA =4 ∴EF = EC 2 -CF 2 = 5 2 -4 2 =3 ∴FD =5-3=2,∴DA =1 ∴D (4,1) 设直线l 的解析式y =kx +b ,把C (0,3),D (4,1)代入 得:?????b =3 4k +b =1 解得 ?????k =- 1 2 b =3 ∴直线l 的解析式为y =- 1 2 x +3

2、如图,直线y=2x+4交坐标轴于A、B两点,点C为直线y=kx(k>0)上一点,且△ABC是以C为直角顶点的等腰直角三角形. (1)求点C的坐标和k的值; (2)若在直线y=kx(k>0)上存在点P,使得S△PBC=1 2S△ABC,求点P的坐标. (1)过点C分别作坐标轴的垂线,垂足为G、H 则∠HCG=90° ∵∠ACB=90°,∴∠ACG=∠BCH 又∠AGC=∠BHC=90°,AC=BC ∴△ACG≌△BCH,∴CG=CH 在y=2x+4中,令y=0,得x=-2;令x=0,得y=4 ∴A(-2,0),B(0,4),OA=2,OB=4 设CG=CH=x,则2+x=4-x 解得x=1,∴C(1,1) ∴k=1 (2)由(1)知,CG=1,AG=3 ∴AC2=BC2=12+32=10 ∴S△ABC=1 2AC 2=5,S △PBC = 1 2S△ABC= 5 2 当点P在点G左侧时 S△PBC=S△PBO+S△BOC-S△PCO ∴1 2OP×4+ 1 2×4×1- 1 2OP×1= 5 2 解得OP=1 3,∴P1(- 1 3,0) 当点P在点G右侧时 S△PBC=S△PBO-S△BOC-S△PCO ∴1 2OP×4- 1 2×4×1- 1 2OP×1= 5 2 解得OP=3,∴P2(3,0)

中考数学几何压轴题

1.(1)操作发现· 如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,且点G 在矩形ABCD 内部.小明将BG 延长交DC 于点F ,认为GF =DF ,你同意吗?说明理由. (2)问题解决 保持(1)中的条件不变,若DC =2DF ,求AB AD 的值; (3)类比探究 保持(1)中的条件不变,若DC =n ·DF ,求 AB AD 的值. 2.如图1所示,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,∠DCB =75o,以CD 为一边的

等边△DCE 的另一顶点E 在腰AB 上. (1)求∠AED 的度数; (2)求证:AB =BC ; (3)如图2所示,若F 为线段CD 上一点,∠FBC =30o. 求 DF FC 的值. 3.如图①,在等腰梯形ABCD 中,AD ∥BC ,AE ⊥BC 于点E ,DF ⊥BC 于点F .AD =2cm ,BC =6cm ,AE =4cm .点P 、Q 分别在线段AE 、DF 上,顺次连接B 、P 、Q 、C ,线段BP 、PQ 、QC 、CB 所围成的封闭图形记为M .若点P 在线段AE 上运动时,点Q 也随之在线段DF 上运动,使图形M 的形状发生改变,但面积始终.. 为10cm 2.设EP =x cm ,FQ =y cm ,A B C D E 图1 A B C D E 图2 F

解答下列问题: (1)直接写出当x =3时y 的值; (2)求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)当x 取何值时,图形M 成为等腰梯形?图形M 成为三角形? (4)直接写出线段PQ 在运动过程中所能扫过的区域的面积. 4.如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC ,△A 1B 1C 1. A B C D E F (备用图) A B C D E F Q P 图① 图 ① A C A 1 B 1 C 1

2020中考数学压轴题100题精选(附答案解析)

2020中考数学压轴题100题精选 (附答案解析) 【001 】如图,已知抛物线2(1)y a x =-+(a ≠0)经过点 (2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结 BC . (1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.

【002】如图16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A 出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B 时停止运动,点P也随之停止.设点P、Q运动的时间是t 秒(t>0). (1)当t = 2时,AP = ,点Q到AC的距离是; (2)在点P从C向A运动的过程中,求△APQ的面积S 与 t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C 成 为直角梯形?若能,求t (4)当DE经过点C 时,请直接 图16 【003】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点. (1)直接写出点A的坐标,并求出抛物线的解析式;

2017上海历年中考数学压轴题专项训练

24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分) 如图,已知抛物线2y x bx c =++经过()01A -, 、()43B -,两点. (1)求抛物线的解析式; (2 求tan ABO ∠的值; (3)过点B 作BC ⊥x 轴,垂足为点C ,点M 是抛物线上一点,直线MN 平行于y 轴交直线AB 于点N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点N 的坐标. 24.解:(1)将A (0,-1)、B (4,-3)分别代入2 y x bx c =++ 得1, 1643c b c =-?? ++=-? , ………………………………………………………………(1分) 解,得9 ,12 b c =-=-…………………………………………………………………(1分) 所以抛物线的解析式为29 12 y x x =- -……………………………………………(1分) (2)过点B 作BC ⊥x 轴,垂足为C ,过点A 作AH ⊥OB ,垂足为点H ………(1分) 在Rt AOH ?中,OA =1,4 sin sin ,5 AOH OBC ∠=∠=……………………………(1分) ∴4sin 5AH OA AOH =∠= g ,∴322,55 OH BH OB OH ==-=, ………………(1分) 在Rt ABH ?中,4222 tan 5511 AH ABO BH ∠==÷=………………………………(1分) (3)直线AB 的解析式为1 12y x =- -, ……………………………………………(1分) 设点M 的坐标为29(,1)2m m m --,点N 坐标为1 (,1)2 m m -- 那么MN =2 291 (1)(1)422 m m m m m - ----=-; …………………………(1分) ∵M 、N 、B 、C 为顶点的四边形是平行四边形,∴MN =BC =3 解方程2 4m m -=3 得2m =± ……………………………………………(1分) 解方程2 43m m -+=得1m =或3m =; ………………………………………(1分)

2018年度中考数学压轴题

1、如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC的长; (2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围; (3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC 是否相似,请说明理由; (4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由. 解:(1)设AC=4x,BC=3x,在Rt△ABC中,AC2+BC2=AB2, 即:(4x)2+(3x)2=102,解得:x=2,∴AC=8cm,BC=6cm; (2)①当点Q在边BC上运动时,过点Q作QH⊥AB于H,

∵AP=x ,∴BP=10﹣x ,BQ=2x ,∵△QHB ∽△ACB , ∴ QH QB AC AB = ,∴QH=错误!未找到引用源。x ,y=错误!未找到引用源。BP ?QH=1 2 (10﹣x )?错误!未找到引用源。x=﹣4 5 x 2+8x (0<x ≤3), ②当点Q 在边CA 上运动时,过点Q 作QH ′⊥AB 于H ′, ∵AP=x , ∴BP=10﹣x ,AQ=14﹣2x ,∵△AQH ′∽△ABC , ∴'AQ QH AB BC =,即:' 14106 x QH -=错误!未找到引用源。,解得:QH ′=错误!未找到引用源。(14﹣x ), ∴y= 12PB ?QH ′=12(10﹣x )?35(14﹣x )=310x 2﹣36 5 x+42(3<x <7); ∴y 与x 的函数关系式为:y=2 248(03)5 33642(37)10 5x x x x x x ?-+<≤????-+<

2020年贵州省中考数学压轴题汇编解析:几何综合

2020年全国各地中考数学压轴题汇编(贵州专版) 几何综合 参考答案与试题解析 一.选择题(共6小题) 1.(2020?贵阳)如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为() A.24 B.18 C.12 D.9 解:∵E是AC中点, ∵EF∥BC,交AB于点F, ∴EF是△ABC的中位线, ∴EF=BC, ∴BC=6, ∴菱形ABCD的周长是4×6=24. 故选:A. 2.(2020?遵义)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为() A.10 B.12 C.16 D.18 解:作PM⊥AD于M,交BC于N.

则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形, ∴S △ADC =S △ABC ,S △AMP =S △AEP ,S △PBE =S △PBN ,S △PFD =S △PDM ,S △PFC =S △PCN , ∴S △DFP =S△PBE=×2×8=8, ∴S 阴=8+ 8=16, 故选:C. 3.(2020?贵阳)如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为() A.B.1 C.D. 解:连接BC, 由网格可得AB=BC=,AC=,即AB2+BC2=AC2, ∴△ABC为等腰直角三角形, ∴∠BAC=45°, 则tan∠BAC=1, 故选:B. 4.(2020?遵义)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()

最新全国各地中考数学解答题压轴题解析2

全国各地中考数学解答题压轴题解析2

2011年全国各地中考数学解答题压轴题解析(2) 1.(湖南长沙10分)如图,在平面直角坐标系中,已知 点A(0,2),点P是x轴上一动点,以线段AP为一边, 在其一侧作等边三角线APQ。当点P运动到原点O处时, 记Q得位置为B。 (1)求点B的坐标; (2)求证:当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值; (3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由。 【答案】解:(1)过点B作BC⊥y轴于点C, ∵A(0,2),△AOB为等边三角形, ∴AB=OB=2,∠BAO=60°, ∴BC=3,OC=AC=1。即B( 3 1,)。 (2)不失一般性,当点P在x轴上运动(P不与O重合)时, ∵∠PAQ==∠OAB=60°,∴∠PAO=∠QAB, 在△APO和△AQB中,∵AP=AQ,∠PAO=∠QAB,AO=AB,∴△APO≌△AQB总成立。 ∴∠ABQ=∠AOP=90°总成立。 ∴当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值90°。 (3)由(2)可知,点Q总在过点B且与AB垂直的直线上, ∴AO与BQ不平行。

①当点P 在x 轴负半轴上时,点Q 在点B 的下方, 此时,若AB∥OQ ,四边形AOQB 即是梯形, 当AB∥OQ 时,∠BQO=90°,∠BOQ=∠ABO=60°。 又OB=OA=2,可求得BQ=3。 由(2)可知,△APO≌△AQB ,∴OP=BQ=3, ∴此时P 的坐标为(3 0-, )。 ②当点P 在x 轴正半轴上时,点Q 在点B 的上方, 此时,若AQ∥OB ,四边形AOQB 即是梯形, 当AQ∥OB 时,∠ABQ=90°,∠QAB=∠ABO=60°。 又AB= 2,可求得BQ=23, 由(2)可知,△APO≌△AQB ,∴OP=BQ=23, ∴此时P 的坐标为(23 0, )。 综上所述,P 的坐标为(3 0-, )或(23 0,)。 【考点】等边三角形的性质,坐标与图形性质;全等三角形的判定和性质,勾股定理,梯形的判定。 【分析】(1)根据题意作辅助线过点B 作BC⊥y 轴于点C ,根据等边三角形的性质即可求出点B 的坐标。 (2)根据∠PAQ═∠OAB=60°,可知∠PAO=∠QAB ,得出△APO≌△AQB 总成立,得出当点P 在x 轴上运动(P 不与Q 重合)时,∠ABQ 为定值90°。 (3)根据点P 在x 的正半轴还是负半轴两种情况讨论,再根据全等三角形的性质即可得出结果。 2.(湖南永州10分)探究问题:

中考数学压轴题专题

中考数学压轴题专题 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

专题1:抛物线中的等腰三角形 基本题型:已知AB,抛物线()0 2≠ bx y,点P在抛物线上(或坐 c ax =a + + 标轴上,或抛物线的对称轴上),若ABP ?为等腰三角形,求点P坐标。 分两大类进行讨论: =):点P在AB的垂直平分线上。 (1)AB为底时(即PA PB 利用中点公式求出AB的中点M; k,因为两直线垂直斜率乘积为1-,进利用两点的斜率公式求出AB 而求出AB的垂直平分线的斜率k; 利用中点M与斜率k求出AB的垂直平分线的解析式; 将AB的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对 称轴)的解析式联立即可求出点P坐标。 (2)AB为腰时,分两类讨论: =):点P在以A为圆心以AB为半径的圆 ①以A ∠为顶角时(即AP AB 上。 =):点P在以B为圆心以AB为半径的圆 ②以B ∠为顶角时(即BP BA 上。 利用圆的一般方程列出A(或B)的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P坐标。 专题2:抛物线中的直角三角形

基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标 轴上,或抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐 标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M 的方程,与抛物线(或坐标轴,或抛物线的对 称 轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出 PA (或PB )的斜率k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解 析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()221221y y x x PQ -+-= 。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-=22,得到方程☆:()()22 2R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。

中考数学几何选择填空压轴题精选配答案

中考数学几何选择填空压轴题精选配答案 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

2016中考数学几何选择填空压轴题精选(配答案)一.选择题(共13小题) 1.(2013蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC 于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为() ①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HEHB. A .1个B . 2个C . 3个D . 4个 2.(2013连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作 D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为() A .B . C . D . 3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论: ①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有() A .1个B . 2个C . 3个D . 4个 4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:

中考数学《压轴题》专题训练含答案解析

压轴题 1、已知,在平行四边形O ABC 中,O A=5,AB =4,∠OCA=90°,动点P 从O 点出发沿射线OA 方向以每秒2个单位的速度移动,同时动点Q从A 点出发沿射线AB 方向以每秒1个单位的速度移动.设移动的时间为t秒. (1)求直线AC 的解析式; (2)试求出当t 为何值时,△O AC 与△PAQ 相似; (3)若⊙P 的半径为 58,⊙Q 的半径为2 3 ;当⊙P 与对角线AC 相切时,判断⊙Q 与直线AC 、B C的位置关系,并求出Q 点坐标。 解:(1)42033 y x =- + (2)①当0≤t≤2.5时,P在O A上,若∠OAQ =90°时, 故此时△OA C与△PAQ 不可能相似. 当t>2.5时,①若∠APQ=90°,则△A PQ ∽△OCA , ∵t>2.5,∴ 符合条件. ②若∠A QP=90°,则△APQ ∽△∠OA C, ∵t>2.5,∴ 符合条件.

综上可知,当 时,△O AC 与△APQ 相似. (3)⊙Q 与直线AC、B C均相切,Q 点坐标为( 10 9 ,5 31) 。 2、如图,以矩形OABC 的顶点O 为原点,OA 所在的直线为x轴,OC 所在的直线为y轴,建立平面直角坐标系.已知OA =3,OC =2,点E 是AB 的中点,在OA 上取一点D ,将△BD A沿BD 翻折,使点A 落在BC 边上的点F 处. (1)直接写出点E 、F 的坐标; (2)设顶点为F 的抛物线交y 轴正半轴...于点P ,且以点E 、F 、P 为顶点的三角形是等腰三角形,求该抛物线的解析式; (3)在x 轴、y轴上是否分别存在点M 、N ,使得四边形MNF E的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由. 解:(1)(31)E ,;(12)F ,.(2)在Rt EBF △中,90B ∠=, 2222125EF EB BF ∴=+=+=. 设点P 的坐标为(0)n ,,其中0n >, 顶点(1 2)F ,, ∴设抛物线解析式为2 (1)2(0)y a x a =-+≠. ①如图①,当EF PF =时,22 EF PF =,2 2 1(2)5n ∴+-=. 解得10n =(舍去);24n =.(04)P ∴,.24(01)2a ∴=-+.解得2a =. ∴抛物线的解析式为22(1)2y x =-+ (第2题)

中考数学压轴题专题 动点问题

2012年全国中考数学(续61套)压轴题分类解析汇编 专题01:动点问题 25. (2012吉林长春10分)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到 点B停止.点P在AD的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作 PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s). (1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示).(2)当点N落在AB边上时,求t的值. (3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式. (4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s 的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P 在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围. 【答案】解:(1)t-2。 (2)当点N落在AB边上时,有两种情况: ①如图(2)a,当点N与点D重合时,此时点P在DE上,DP=2=EC,即t-2=2,t=4。 ②如图(2)b,此时点P位于线段EB上. ∵DE=1 2 AC=4,∴点P在DE段的运动时间为4s, ∴PE=t-6,∴PB=BE-PE=8-t,PC=PE+CE=t-4。 ∵PN∥AC,∴△BNP∽△BAC。∴PN:AC = PB:BC=2,∴PN=2PB=16-2t。 由PN=PC,得16-2t=t-4,解得t=20 3 。 综上所述,当点N落在AB边上时,t=4或t=20 3 。 (3)当正方形PQMN与△ABC重叠部分图形为五边形时,有两种情况:

2019年各省市中考数学压轴题合辑5(湖南专辑)

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。】 2019年各省市中考数学压轴题合辑(五) 1.(2019?长沙)如图,抛物线26(y ax ax a =+为常数,0)a >与x 轴交于O ,A 两点,点B 为抛物线的顶点,点D 的坐标为(t ,0)(30)t -<<,连接BD 并延长与过O ,A ,B 三点的P e 相交于点C . (1)求点A 的坐标; (2)过点C 作P e 的切线CE 交x 轴于点E . ①如图1,求证:CE DE =; ②如图2,连接AC ,BE ,BO ,当3a = ,CAE OBE ∠=∠时,求11OD OE -的值.

2.(2019?长沙)已知抛物线22(2)(2020)(y x b x c b =-+-+-,c 为常数). (1)若抛物线的顶点坐标为(1,1),求b ,c 的值; (2)若抛物线上始终存在不重合的两点关于原点对称,求c 的取值范围; (3)在(1)的条件下,存在正实数m ,n (m <n ),当m ≤x ≤n 时,恰好≤≤, 求m ,n 的值.

3.(2019?长沙)根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比. (1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”). ①四条边成比例的两个凸四边形相似;(命题) ②三个角分别相等的两个凸四边形相似;(命题) ③两个大小不同的正方形相似.(命题) (2)如图1,在四边形ABCD和四边形 1111 A B C D中, 111 ABC A B C ∠=∠, 111 BCD B C D ∠=∠,111111 AB BC CD A B B C C D ==.求证:四边形ABCD与四边形 1111 A B C D相似. (3)如图2,四边形ABCD中,// AB CD,AC与BD相交于点O,过点O作// EF AB分 别交AD,BC于点E,F.记四边形ABFE的面积为 1 S,四边形EFCD的面积为 2 S,若 四边形ABFE与四边形EFCD相似,求2 1 S S 的值.

中考数学几何选择填空压轴题精选

中考数学几何选择填空压轴题精选 一.选择题(共13小题) 1.(2013?蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE 的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为() ①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE?HB. A.1个B.2个C.3个D.4个 2.(2013?连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为() A.B.C.D. 3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有() A.1个B.2个C.3个D.4个 4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论: ①EC=2DG;②∠GDH=∠GHD;③S△CDG=S?DHGE;④图中有8个等腰三角形.其中正确的是() A.①③B.②④C.①④D.②③ 5.(2008?荆州)如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为() A.5:3B.3:5C.4:3D.3:4 6.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2009O2009的面积为() A.B.C.D. 7.如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是() A.B.6C.D.3 8.(2013?牡丹江)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是() A.1个B.2个C.3个D.4个 9.(2012?黑河)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论: ①(BE+CF)=BC; ②S△AEF≤S△ABC; ③S四边形AEDF=AD?EF; ④AD≥EF; ⑤AD与EF可能互相平分, 其中正确结论的个数是() A.1个B.2个C.3个D.4个

中考数学压轴题精选含详细答案

目 录 2.1 由比例线段产生的函数关系问题 例1 2012年上海市徐汇区中考模拟第25题 例2 2012年连云港市中考第26题 例3 2010年上海市中考第25题 例1 2012年上海市徐汇区中考模拟第25题 在Rt △ABC 中,∠C =90°,AC =6,53sin B ,⊙B 的半径长为1,⊙B 交边CB 于点P ,点O 是边AB 上的动点. (1)如图1,将⊙B 绕点P 旋转180°得到⊙M ,请判断⊙M 与直线AB 的位置关系; (2)如图2,在(1)的条件下,当△OMP 是等腰三角形时,求OA 的长; (3)如图3,点N 是边BC 上的动点,如果以NB 为半径的⊙N 和以OA 为半径的⊙O 外切,设NB =y ,OA =x ,求y 关于x 的函数关系式及定义域. 图1 图2 图3 动感体验 请打开几何画板文件名“12徐汇25”,拖动点O 在AB 上运动,观察△OMP 的三个顶点与对边的垂直平分线的位置关系,可以体验到,点O 和点P 可以落在对边的垂直平分线上,点M 不能. 请打开超级画板文件名“12徐汇25”, 分别点击“等腰”按钮的左部和中部,观察三个角度的大小,可得两种等腰的情形.点击“相切”按钮,可得y 关于x 的函数关系. 思路点拨 1.∠B 的三角比反复用到,注意对应关系,防止错乱. 2.分三种情况探究等腰△OMP ,各种情况都有各自特殊的位置关系,用几何说理的方法比较简单. 3.探求y 关于x 的函数关系式,作△OBN 的边OB 上的高,把△OBN 分割为两个具有公共直角边的直角三角形. 满分解答

(1) 在Rt △ABC 中,AC =6,53sin =B , 所以AB =10,BC =8. 过点M 作MD ⊥AB ,垂足为D . 在Rt △BMD 中,BM =2,3sin 5MD B BM ==,所以65 MD =. 因此MD >MP ,⊙M 与直线AB 相离. 图4 (2)①如图4,MO ≥MD >MP ,因此不存在MO =MP 的情况. ②如图5,当PM =PO 时,又因为PB =PO ,因此△BOM 是直角三角形. 在Rt △BOM 中,BM =2,4cos 5BO B BM ==,所以85BO =.此时425 OA =. ③如图6,当OM =OP 时,设底边MP 对应的高为OE . 在Rt △BOE 中,BE =32,4cos 5BE B BO ==,所以158BO =.此时658 OA =. 图5 图6 (3)如图7,过点N 作NF ⊥AB ,垂足为F .联结ON . 当两圆外切时,半径和等于圆心距,所以ON =x +y . 在Rt △BNF 中,BN =y ,3sin 5B =,4cos 5B =,所以35NF y =,45 BF y =. 在Rt △ONF 中,4105 OF AB AO BF x y =--=--,由勾股定理得ON 2=OF 2+NF 2. 于是得到22243()(10)()55 x y x y y +=--+. 整理,得2505040 x y x -=+.定义域为0<x <5. 图7 图8 考点伸展 第(2)题也可以这样思考: 如图8,在Rt △BMF 中,BM =2,65MF =,85 BF =.

相关文档
最新文档