材料科学基础上海交大

合集下载

材料科学基础 (上海交通大学)

材料科学基础 (上海交通大学)
物)的概念 2.固溶体、中间相的分类、特点和用途 一般了解 1. 离子、共价和聚合物的晶态结构及相对
应的性能特点
精选2021版课件
2
重点和难点
(1)固溶体的分类及其结构特点。 (2)影响固溶体固溶度的因素。 (3)超结构的类型和影响有序化的因素。 (4)中间相的分类及其结构特点。
精选2021版课件
精选2021版课件
16
置换固溶体示意图
精选2021版课件
17
置换固溶体大小溶质原子引起的点阵畸变
精选2021版课件
18
3. 间隙固溶体
➢ 间隙固溶体的的溶质原子是一些原子半径小于 0.1nm的非金属元素(如C、N、O、、H、B)。
➢ 其形成条件是 △r>41% 或 r质/r剂<0.59 ➢ 间隙固溶体只能是有限固溶体,一般溶解度较小。
注:计算时过渡族元素时价电子数视为0。
电子浓度、相、结构对应关系如下:
C电子==7/4(即21/12) ε 密排六方结构
C电子==21/13
γ 复杂立方结构
C电子==3/2(即21/14) β 体心立方结构
β-Mn 复杂立方或密排六方结构
电子价化合物具有金属特性,具有高熔点、高硬度但塑性低,与固 溶体适当搭配使合金得到强精化选2,作021为版课非件 Fe合金中重要组成相。 28
般认为热力学上平衡状态的无序固溶体溶质原子分 布在宏观上是均匀的,在微观上是不均匀的。
在一定条件下,溶质原子和溶剂原子在整个晶体中按 一定的顺序排列起来,形成有序固溶体。有序固溶体 中溶质原子和溶剂原子之比是固定的,可以用化学分 子式来表示,因此把有序固溶体结构称为超点阵。例 如:在Cu-Al合金中,Cu:Al原子比是1:1或3: 1时从液态缓冷条件下可形成有序的超点阵结构,用 CuAl或Cu3Al来表示。

【热点】上海交大考研材料科学基础总结

【热点】上海交大考研材料科学基础总结

第1章原子结构和键合1.1原子结构1.1.1物质的组成(Substance Construction )物质由无数微粒(Particles )聚集而成分子(Molecule ):单独存在 保存物质化学特性dH2O=0.2nm M(H2)为2 M (protein )为百万原子(Atom ): 化学变化中最小微粒1.1.2原子的结构1.1.3原子的电子结构核外电子排布遵循以下3个原则:1.1.4元素周期表⎧⎧⎪⎪⎨⎪⎪⎩⎪⎨⎪⨯⎪⎪⎩-27-27-31(proton)(neutron)质子:正电荷m=1.6726×10kg 原子核(nucleus):位于原子中心、带正电中子:电中性m=1.6748×10kg 电子(electron):核外高速旋转,带负电,按能量高低排列,如电子云(ele ctron cloud ) m =9.109510kg,约为质子的1/1836i i n K L M N l (the orbital quantum number)主量子数(the principal quantum number): 决定原子中电子能量和核间距离(the energy of the electron), 即量子壳层,取正整数1、2、3、4、5?…, 用、、、……表示轨道动量量子数: 给出电子在同一量子壳层内所处的能级, 与电子运动的角动量有i n 1, s p d f m the inner quantum number)(spatial orientation of an electron cloud)1),1,0,⋅⋅⋅⋅⋅⋅--⋅⋅⋅⋅⋅⋅-i i 关(shape of the electron subshell), 取值为0,1,2,用,,,……表示磁量子数( :决定原子轨道或电子云在空间的伸展方向, 取值为-l ,-(l i 1,s the spin quantum number)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⋅⋅⋅⋅⋅⋅⎪⎪⎪⎪⎪⎪⎪⎩i l 自旋角动量量子数( : 表示电子自旋(spin moment )的方向,11取值为+或-22不可能有运动状态完全相同的电子, 同一亚层中电子尽量分占不同能级,2能量最低原理(Minimum Energy principle)电子总是占据能量最低的壳层 1s -2s -2p -3s -3p -4s -3d -4p -5s -4d -5p -Pauli 不相容原理(Pauli Exclusion principle): 2n Hund 原则(Hund' Rule)自⎧⎪⎪⎪⎪⎪⎨⎪⎪⎧⎪⎪⎪⎨⎪⎪⎩⎩全充满半充满 全空旋方向相同 −−−−−−−−−−−→−−−−−−−−−−−−→电离核电荷↑,原子半径↓能↑,失电子能力↓,得电子能力↑最外层电子数相同,电子层数↑,原子半径↑电离能↓,失电子能力↑,得电子能力↓同周期元素:左右,金属性↓,非金属性↑同主族元素:上下,金属性↑,非金属性↓1.2原子间的键合1.2.1金属键(Metallic bonding )典型金属原子结构:最外层电子数很少,即价电子(valence electron )极易 挣脱原子核之束缚而成为自由电子(Free electron ),形成电子云(electron cloud )金属中自由电子与金属正离子之间构成键合称为金属键特点:电子共有化,既无饱和性又无方向性,形成低能量密堆结构性质:良好导电、导热性能,延展性好1.2.2离子键(Ionic bonding)实质: 金属原子 带正电的正离子(Cation )非金属原子 带负电的负离子(anion )特点:以离子而不是以原子为结合单元,要求正负离子相间排列,且无方向性,无饱和性性质:熔点和硬度均较高,良好电绝缘体1.2.3共价键(covalent bonding )亚金属(C 、Si 、Sn 、 Ge ),聚合物和无机非金属材料实质:由二个或多个电负性差不大的原子间通过共用电子对而成特点:饱和性 配位数较小 ,方向性(s 电子除外)性质:熔点高、质硬脆、导电能力差1.2.4范德华力(Van der waals bonding)包括:静电力(electrostatic)、诱导力(induction)和色散力(dispersive force) 属物理键 ,系次价键,不如化学键强大,但能很大程度改变材料性质1.2.5氢键(Hydrogen bonding )极性分子键 存在于HF 、H2O 、NH3中 ,在高分子中占重要地位,氢 原子中唯一的电子被其它原子所共有(共价键结合),裸露原子核将与近邻分子的负端相互吸引——氢桥介于化学键与物理键之间,具有饱和性1.3高分子链(High polymer Chain)⎧⎨⎩键电对键键两键间极性(Polar bonding):共用子偏于某成原子非极性(Nonpolar bonding): 位于成原子中⎧⎨⎩链结构(Chain Structure)高分子结构聚集态结构(Structure of aggregation state)1.3.1高分子链的近程结构1.结构单元的化学组成(the Chemistry of mer units)2.高分子链的几何形态(structure )热塑性:具有线性和支化高分子链结构,加热后会变软,可反复加工再成型热固性:具有体型(立体网状)高分子链结构,不溶于任何溶剂,也不能熔融,一旦受热固化后不能再改变形状,无法再生3.高分子链的键接方式4.高分子链的构型(Molecular configurations )o 线热变软动热链联线胶联变强韧状性高分子(linear polymers): 加后,甚至流,可反复加工- 塑性(therm plastic)支高分子(branched polymers):交高分子(crosslinked polymer):性天然橡用S交后耐磨体型(立体网)高分子(network on three -dimensional poly ⎧⎪⎪⎪⎨⎪⎪⎪⎩mer)1.3.2高分子链的远程结构1.高分子的大小2.高分子链的内旋转构象主链以共价键联结,有一定键长 d 和键角θ,每个单键都能内旋转(Chain twisting )故高分子在空间形态有mn-1( m 为每个单键内旋转可取的位置数,n 为单键数目)※ 键的内旋转使得高分子存在多种构象统计学角度高分子链取 伸直(straight )构象几率极小,呈卷曲(zigzag )构象几率极大3.影响高分子链柔性的主要因素(the main influencing factors on the molecular flexibility )高分子链能改变其构象的性质称为柔性(Flexibility )处链两侧两单处链边体间无规(syndisotactic configurations): (isotactic configurations):(atactic configuration R取代基交替地在主平面, 即旋光异构元交替R取代基全在主平面一, 即全部由一种旋光异构同立构全同立构立构⎧⎪⎪⎪⎨⎪⎪⎪⎩链两侧规则s):R取代基在主平面不排列⎧⎪⎪⎨⎪⎪⎩链结响决内势垒从酰响链链对称积响联响联单键内转碍联时主构的影:起定性作用,C -O,C -N,Si-O 旋的比C -C低,而使聚酯, 聚胺、聚胺酯,聚二甲基硅氧烷等柔性好取代基的影:取代基的极性,沿分子排布距离,在主上性,体均有影交的影:因交附近的旋受阻,交度大,柔性↓↓第2章固体结构2.1晶体学基础(Basis Fundamentals of crystallography)晶体结构的基本特征:原子(或分子、离子)在三维空间呈周期性重复排列(periodic repeated array),即存在长程有序(long-range order)性能上两大特点:1.固定的熔点(melting point),2.各向异性(anisotropy)2.1.1空间点阵和晶胞※空间点阵的概念将晶体中原子或原子团抽象为纯几何点(阵点 lattice point),即可得到一个由无数几何点在三维空间排列成规则的阵列—空间点阵(space lattice)特征:每个阵点在空间分布必须具有完全相同的周围环境(surrounding)※晶胞(Unite cells)代表性的基本单元(最小平行六面体)small repeat entities选取晶胞的原则:Ⅰ)选取的平行六面体应与宏观晶体具有同样的对称性;Ⅱ)平行六面体内的棱和角相等的数目应最多;Ⅲ)当平行六面体的棱角存在直角时,直角的数目应最多;Ⅳ)在满足上条件,晶胞应具有最小的体积。

上海交通大学材料科学基础

上海交通大学材料科学基础

上海交通大学材料科学基础上海交通大学(Shanghai Jiao Tong University)是中国著名的高等学府之一,位于中国上海市徐汇区。

该校在材料科学领域备受瞩目,拥有一流的材料科学基础教育和研究实力。

1. 简介材料科学是一门研究新材料的结构、性能、制备和应用的学科。

它在各个领域都有广泛的应用,包括电子、能源、航空航天、汽车、医疗器械等。

上海交通大学的材料科学基础课程旨在培养学生对材料科学的理论和实践的综合能力,为学生未来的学术研究和工程实践打下坚实的基础。

2. 课程设置上海交通大学的材料科学基础课程涵盖了材料科学的各个方面,包括材料结构、材料性能、材料制备和材料应用等。

下面是课程的一些主要内容:2.1 材料结构该课程主要介绍材料的结晶、非晶和晶界结构等方面的知识。

学生将学习晶体结构的基本原理,如晶体晶格、晶体面和晶体缺陷等。

还将介绍非晶材料的特点和应用,以及晶界对材料性能的影响。

2.2 材料性能这门课程将重点研究材料的力学性能、热学性能和电学性能等方面的知识。

学生将学习材料的强度、硬度、韧性等力学性能参数的计算和测试方法。

还将介绍材料的导热性、热膨胀性和导电性等热学和电学性能参数的测试方法。

2.3 材料制备该课程将介绍材料的各种制备方法,包括熔融法、溶液法、气相法和固相法等。

学生将学习材料制备的基本原理和常用的制备工艺。

还将介绍材料的组织性能与制备工艺之间的关系,以及如何选择合适的制备方法。

2.4 材料应用这门课程将介绍材料在各个领域的应用,包括电子材料、能源材料、光电材料等。

学生将学习材料应用的基本原理和常见的应用技术。

还将介绍材料设计的基本思路和方法,以及面向特定应用的材料选取和优化的策略。

3. 实验教学上海交通大学的材料科学基础课程注重实践教学的环节,为学生提供了丰富的实验机会。

学生将在实验室中亲自进行各种材料制备和性能测试的实验,例如制备单晶材料、测量材料硬度和强度等。

通过实验的步骤,学生可以加深对理论知识的理解,并掌握实验技能。

上海交大材料科学基础知识点总结

上海交大材料科学基础知识点总结

第一章材料中的原子排列第一节原子的结合方式1 原子结构2 原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。

如氧化物陶瓷。

(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。

如高分子材料。

(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。

如金属。

金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。

(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。

分子晶体:熔点低,硬度低。

如高分子材料。

氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O(4)混合键。

如复合材料。

3 结合键分类(1)一次键(化学键):金属键、共价键、离子键。

(2)二次键(物理键):分子键和氢键。

4 原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。

长程有序,各向异性。

(2)非晶体:――――――――――不规则排列。

长程无序,各向同性。

第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。

图1-5特征:a 原子的理想排列;b 有14种。

其中:空间点阵中的点-阵点。

它是纯粹的几何点,各点周围环境相同。

描述晶体中原子排列规律的空间格架称之为晶格。

空间点阵中最小的几何单元称之为晶胞。

(2)晶体结构:原子、离子或原子团按照空间点阵的实际排列。

特征:a 可能存在局部缺陷;b 可有无限多种。

2 晶胞图1-6(1)――-:构成空间点阵的最基本单元。

(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。

(3)形状和大小有三个棱边的长度a,b,c及其夹角α,β,γ表示。

材料科学基础上海交大第三版

材料科学基础上海交大第三版

材料科学基础上海交大第三版介绍材料科学是研究材料结构、组成、性能和制备方法的学科,具有重要的理论基础和实际应用。

本文将探讨《材料科学基础上海交大第三版》这本教材的内容和意义。

教材概述《材料科学基础上海交大第三版》是由上海交通大学材料科学与工程学院编写的教材。

该教材系统地介绍了材料科学的基本概念、原理和技术。

它以全面、详细和深入的方式讲解了各种材料的结构、性能、制备和应用。

该教材的第三版相对于前两版进行了进一步的修订和更新,新增了一些最新的科研成果和实践经验。

重要章节第一章:材料科学基础该章介绍了材料科学的基本概念、发展历史和研究方法。

它讲解了材料的分类、性能评价和性能调控等内容。

通过学习该章,读者可以对材料科学有一个整体的认识。

第二章:金属材料该章主要讲解了金属材料的结构和性能。

它详细介绍了金属晶体结构、缺陷和相变等基本概念,以及金属的力学、热学和电学性能。

同时,该章还介绍了金属材料的制备方法和应用领域。

第三章:陶瓷材料该章介绍了陶瓷材料的结构和性能。

它详细讲解了陶瓷的晶体结构、缺陷和相变等基本概念,以及陶瓷的力学、热学和电学性能。

此外,该章还介绍了陶瓷材料的制备方法和应用领域。

第四章:高分子材料该章主要介绍了高分子材料的结构和性能。

它详细阐述了高分子的聚合反应、分子构象和玻璃化转变等基本概念,以及高分子的力学、热学和电学性能。

同时,该章还介绍了高分子材料的制备方法和应用领域。

第五章:复合材料该章介绍了复合材料的结构和性能。

它详细讲解了复合材料的基体材料、增强材料和界面等基本概念,以及复合材料的力学、热学和电学性能。

此外,该章还介绍了复合材料的制备方法和应用领域。

重要实验实验一:金属的晶体结构研究该实验旨在通过实际操作,观察金属的晶体结构,并了解金属的晶体缺陷。

通过该实验,学生可以进一步理解金属的结构与性能之间的关系。

实验二:陶瓷材料的力学性能测定该实验旨在通过实验测定方法,了解陶瓷材料的力学性能。

材料科学基础(上海交大)--绪论

材料科学基础(上海交大)--绪论

第一次产业革命的突破口是推广应用蒸汽 但只有在开发了铁和铜等新材料以后, 机 , 但只有在开发了铁和铜等新材料以后 , 蒸汽机才得以使用并逐步推广。 蒸汽机才得以使用并逐步推广。 第二次产业革命一直延续到20世纪中叶 , 第二次产业革命一直延续到 20世纪中叶 20 世纪中叶, 以石油开发和新能源广泛使用为突破口,大力 以石油开发和新能源广泛使用为突破口, 发展飞机、汽车和其他工业, 发展飞机、汽车和其他工业,支持这个时期产 业革命的仍然是新材料开发。如合金钢、 业革命的仍然是新材料开发。如合金钢、铝合 金以及各种非金属材料的发展。 金以及各种非金属材料的发展。
先进(或新型)无机非金属材料是用氧化物、 先进(或新型)无机非金属材料是用氧化物、 是用氧化物 氮化物、碳化物、硼化物、硫化物、 氮化物、碳化物、硼化物、硫化物、硅化物以 及各种无机非金属化合物经特殊的先进工艺制 成的材料。主要包括先进陶瓷、非晶态材料、 成的材料。主要包括先进陶瓷、非晶态材料、 人工晶体、无机涂层、无机纤维等。 人工晶体、无机涂层、无机纤维等。
材料科学基础课程的教学内容
材料科学基础课程是材料科学与工程专业的重要 的学科基础课之一,主要介绍材料科学中的共性规律, 的学科基础课之一,主要介绍材料科学中的共性规律, 即材料的组成-形成(工艺)条件-结构-性能-材料用 即材料的组成-形成(工艺)条件-结构-性能途之间相互关系及制约规律。内容主要包括: 途之间相互关系及制约规律。内容主要包括:材料种 类、晶体结构、缺陷化学、非晶体结构、材料的表面 晶体结构、缺陷化学、非晶体结构、 与界面、相图、扩散、相变、 与界面、相图、扩散、相变、固相反应及烧结等基础 知识。 知识。
传统的无机非金属材料之二: 传统的无机非金属材料之二:玻璃
玻璃是由熔体过冷所制得的非晶态材料。 玻璃是由熔体过冷所制得的非晶态材料。根据其形成 网络的组分不同可分为硅酸盐玻璃、硼酸盐玻璃、 网络的组分不同可分为硅酸盐玻璃、硼酸盐玻璃、磷酸盐 玻璃等,其网络形成剂分为SiO2、B2O3和P2O5。习惯上玻 玻璃等,其网络形成剂分为SiO 璃态材料可分为普通玻璃和特种玻璃两大类。 璃态材料可分为普通玻璃和特种玻璃两大类。 普通玻璃 两大类 普通玻璃是指采用天然原料,能够大规模生产的玻璃。 普通玻璃是指采用天然原料,能够大规模生产的玻璃。 普通玻璃包括日用玻璃、建筑玻璃、微晶玻璃、 普通玻璃包括日用玻璃、建筑玻璃、微晶玻璃、光学玻璃 和玻璃纤维等。 和玻璃纤维等。

材料科学基础课件上海交大

材料科学基础课件上海交大

材料科学基础课件上海交大材料科学基础课件上海交大篇一:上海交大材料科学基础课件教学大纲课程名称:材料科学基础/Fundamentals of Materials Science课堂学时:90实验学时:36适用专业:材料科学与工程类专业、冶金类专业和机电类专业一、课程的性质、地位、任务《材料科学基础》是材料类和冶金类专业的一门主干课,也是该专业的主要技术基础课。

通过讲课、实验、课堂讨论和课外实践等各个教学环节,将金属学、陶瓷学和高分子物理的基础理论融合为一体,以研究材料共性规律,即研究材料的成分、组织结构、制备工艺和性能之间的相互关系,指导材料的设计和应用,并为学习后继专业课程、从事材料科学研究和工程技术工作打下坚实的理论基础。

二、课程的教学内容和基本要求绪论(1学时)了解材料的发展史、材料科学的研究对象和内容以及学习本课程的目的意义和要求。

第一章原子结构和键合(4学时)了解物质由原子组成,而组成材料的各元素的原子结构和原子间的键合是决定材料性能的重要因素。

1 原子结构(一)、原子结构; (二)、原子间的键合; (三)、高分子链。

2 原子间的键合(一)、金属键 (二)、离子键(三)、共价键(四)、范德华力(五)、氢键3 高分子链(一)、结构单元的化学组成1.碳链高分子 2.杂链分子 3.元素有机高分子 4.无机高分子(二)、高分子链结构单元的键合方式1.均聚物结构单元顺序2.共聚物的序列结构(三)、高分子链的几何形状(四)、高分子链的构型第二章固体结构(8学时)固态原子按其原子(或分子)聚集的状态,可划分为晶体与非晶体两大类。

晶体中的原子在空间呈有规则的周期性重复排列;而非晶体中的原子则是无规则排列的。

材料的性能与材料各元素的原子结构和键合密切相关,也与固态材料中原子或分子在空间的分布排列和运动规律以及原子集合体的形貌特征密切相关。

1 晶体学基础(一)、晶体的空间点阵1.空间点阵概念2.晶胞3.晶系与布拉菲点阵4.晶体结构与空间点阵的关系(二)、晶向指数和晶面指数1.阵点坐标2.晶向指数3.晶面指数4.六方晶系指数5.晶带 6.晶面间距2 金属的晶体结构(一)、面心立方晶体结构的晶体学特征(二)、体心立方晶体结构的晶体学特征(三)、密排六方晶体结构的晶体学特征3 金属的相结构(一)、固溶体1.置换固溶体 2.间隙固溶体 3.有序固溶体 4.固溶体的性质(二)、中间相1.正常价化合物 2.电子化合物3.原子尺寸因素化合物(ⅰ)间隙相和间隙化合物(ⅱ)拓扑密堆相 4 离子晶体结构(一)、NaCl型结构 (二)、萤石型结构 (三)、CsCl型结构 (四)、a-Al2O3型结构5 共价晶体结构(一)、金刚石结构 (二)、SiO2结构(三)、VA、VIA族亚金属结构6 聚合物晶态结构(一)、晶胞结构(二)、晶态结构模型 (三)、聚合物结晶形态7 非晶态结构第三章晶体缺陷(12学时)实际晶体常存在各种偏离理想结构的区域晶体缺陷。

材料科学基础-上海交大第二版

材料科学基础-上海交大第二版

1.固相烧结:固态粉末在适当的温度,压力,气氛和时间条件下,通过物质与气孔之间的传质,变为坚硬、致密烧结体的过程。

液相烧结:有液相参加的烧结过程。

2.金属键:自由电子与原子核之间静电作用产生的键合力。

3.离子键:金属原子自己最外层的价电子给予非金属原子,使自己成为带正电的正离子,而非金属得到价电子后使自己成为带负电的负离子,这样正负离子靠它们之间的静电引力结合在一起。

共价键:由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。

氢键:由氢原子同时与两个电负性相差很大而原子半径较小的原子(O,F,N等)相结合而产生的具有比一般次价键大的键力。

弗兰克缺陷:间隙空位对缺陷肖脱基缺陷:正负离子空位对的奥氏体:γ铁内固溶有碳和(或)其他元素的、晶体结构为面心立方的固溶体。

布拉菲点阵:除考虑晶胞外形外,还考虑阵点位置所构成的点阵。

不全位错:柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。

玻璃化转变温度:过冷液体随着温度的继续下降,过冷液体的黏度迅速增大,原子间的相互运动变得更加困难,所以当温度降至某一临界温度以下时,即固化成玻璃。

这个临界温度称为玻璃化温度Tg。

表面能:表面原子处于不均匀的力场之中,所以其能量大大升高,高出的能量称为表面自由能(或表面能)。

半共格相界:若两相邻晶体在相界面处的晶面间距相差较大,则在相界面上不可能做到完全的一一对应,于是在界面上将产生一些位错,以降低界面的弹性应变能,这时界面上两相原子部分地保持匹配,这样的界面称为半共格界面或部分共格界面。

柏氏矢量:描述位错特征的一个重要矢量,它集中反映了位错区域内畸变总量的大小和方向,也使位错扫过后晶体相对滑动的量。

柏氏矢量物理意义:①从位错的存在使得晶体中局部区域产生点阵畸变来说:一个反映位错性质以及由位错引起的晶格畸变大小的物理量。

②从位错运动引起晶体宏观变形来说:表示该位错运动后能够在晶体中引起的相对位移。

部分位错:柏氏矢量小于点阵矢量的位错包晶转变:在二元相图中,包晶转变就是已结晶的固相与剩余液相反应形成另一固相的恒温转变。

上交材料科学基础习题与解答

上交材料科学基础习题与解答

各章例题、习题以及解答第1章原子结构与键合1.何谓同位素?为什么元素的相对原子质量不总为正整数?答案:在元素周期表中占据同一位置,尽管它们的质量不同,然它们的化学性质相同的物质称为同位素。

由于各同位素的含中子量不同(质子数相同),故具有不同含量同位素的元素总的相对原子质量不为正整数。

2.已知Si的相对原子质量为28.09,若100g的Si中有5×1010个电子能自由运动,试计算:(a)能自由运动的电子占价电子总数的比例为多少?(b)必须破坏的共价键之比例为多少?答案:原子数=个价电子数=4×原子数=4×2.144×1024=8.576×1024个a)b) 共价键,共有2.144×1024个;需破坏之共价键数为5×1010/2=2.5×1010个;所以3.有一共聚物ABS(A-丙烯腈,B-丁二烯,S-苯乙烯),每一种单体的质量分数均相同,求各单体的摩尔分数。

答案:丙烯腈(-C2H3CN-)单体相对分子质量为53;丁二烯(-C2H3C2H3-) 单体相对分子质量为54;苯乙烯(-C2H3C6H5-) 单体相对分子质量为104;设三者各为1g,则丙烯腈有1/53mol,丁二烯有1/54mol,苯乙烯有1/104mol。

故各单体的摩尔分数为1. 原子中一个电子的空间位置和能量可用哪四个量子数来决定?答案2. 在多电子的原子中,核外电子的排布应遵循哪些原则?答案3.在元素周期表中,同一周期或同一主族元素原子结构有什么共同特点?从左到右或从上到下元素结构有什么区别?性质如何递变?答案 4. 何谓同位素?为什么元素的相对原子质量不总为正整数?答案5.铬的原子序数为24,它共有四种同位素:4.31%的Cr 原子含有26个中子,83.76%含有28个中子,9.55%含有29个中子,且2.38%含有30个中子。

试求铬的相对原子质量。

答案 6.铜的原子序数为29,相对原子质量为63.54,它共有两种同位素Cu 63和Cu 65,试求两种铜的同位素之含量百分比。

上海交通大学材料科学基础专业考试大纲

上海交通大学材料科学基础专业考试大纲

上海交通大学材料科学基础专业考试大纲一、专业科目与代码:827材料科学基础二、指定参考书《材料科学基础》(第3版)徐祖耀等上海交通大学出版社《材料科学基础辅导与习题》(第3版)蔡珣等上海交通大学出版社三、827材料科学基础考试大纲一、复习要求:要求考生掌握金属材料的结构、组织、性能方面的基本概念、基本原理;理解金属材料的结构、组织、性能之间的相互关系和基本变化规律。

二、主要复习内容:(一)晶体学基础理解晶体与非晶体、晶体结构与空间点阵的差异;掌握晶面指数和晶向指数的标注方法和画法;掌握立方晶系晶面与晶向平行或垂直的判断;掌握立方晶系晶面族和晶向族的展开;掌握面心立方、体心立方、密排六方晶胞中原子数、配位数、紧密系数的计算方法;掌握面心立方和密排六方的堆垛方式的描述及其它们之间的差异。

重点:晶体中原子结构的空间概念及其解析描述(晶面和晶向指数)。

(二)固体材料的结构掌握波尔理论和波动力学理论对原子核外电子的运动轨道的描述。

掌握波粒两相性的基本方程。

掌握离子键、共价键、金属键、分子键和氢键的结构差异。

了解结合键与电子分布的关系和键合作用力的来源。

掌握影响相结构的因素。

了解不同固溶体的结构差异。

重点:一些重要类型固体材料的结构特点及其与性能的关系。

三、晶体中的缺陷掌握缺陷的类型;掌握点缺陷存在的必然性;掌握点缺陷对晶体性能的影响及其应用。

理解位错的几何结构特点;掌握柏矢量的求法;掌握用位错的应变能进行位错运动趋势分析的方法。

掌握位错与溶质原子的交互作用,掌握位错与位错的交互作用。

掌握位错的运动形式。

掌握位错反应的判断;了解弗兰克不全位错和肖克莱不全位错的形成。

重点:位错的基本概念和基本性质。

四、固态中的扩散理解固体中的扩散现象及其与原子运动的关系,掌握扩散第一定律和第二定律适用的场合及其对相应的扩散过程进行分析的方法。

掌握几种重要的扩散机制适用的对象,了解柯肯达尔效应的意义。

掌握温度和晶体结构对扩散的影响。

材料科学基础教程及习题_上海交通大学

材料科学基础教程及习题_上海交通大学

目录第1章原子结构与键合 (1)1.1 原子结构 (1)1.2 原子间的键合 (2)1.3 高分子链 (2)本章重点复习 (3)第2章固体结构 (4)2.1 晶体学基础 (4)2.2 金属的晶体结构 (5)2.3 合金相结构 (7)2.4 离子晶体结构 (9)2.5 共价晶体结构 (10)2.6 聚合物的晶体结构 (11)2.7 非晶态结构 (13)本章重点复习 (13)第3章晶体缺陷 (15)3.1 点缺陷 (15)3.2 位错 (16)3.3 表面及界面 (18)本章重点复习 (20)第4章固体中原子及分子的运动 (23)4.1 表象理论 (23)4.2 扩散的热力学分析 (23)4.3 扩散的原子理论 (24)4.4 扩散激活能 (25)4.5 无规则行走与扩散距离 (25)本章重点复习 (25)第5章材料的形变和再结晶 (27)5.1 弹性和粘弹性 (28)5.2 晶体的塑性变形 (29)5.3 回复和再结晶 (33)5.4 高聚物的塑性变形 (36)本章重点复习 (36)第6章单组元相图及纯晶体凝固 (38)6.1 单元系相变的热力学及相平衡 (38)6.2 纯晶体的凝固 (39)本章重点复习 (40)第7章二元系相图及合金的凝固 (42)7.1 相图的表示和测定方法 (42)7.2 相图热力学的基本要点 (43)7.3 二元相图分析 (44)7.4 二元合金的凝固理论 (45)7.5 高分子合金概述 (47)本章重点复习 (48)第8章三元相图 (52)8.1 三元相图基础 (52)8.2 固态互不溶解的三元共晶相图 (55)8.3 固态有限互溶的三元共晶相图 (57)8.4 两个共晶型二元系和一个匀晶二元系构成的三元相图 (58)8.5 包共晶型三元系相图 (59)8.6 具有四相平衡包晶转变的三元系相图 (60)8.7 形成稳定化合物的三元系相图 (60)8.8 三元相图举例 (61)8.9 三元相图小结 (63)本章重点复习 (64)第9章材料的亚稳态 (66)9.1纳米晶材料 (66)9.2 准晶态 (69)9.3 非晶态材料 (70)9.4 固态相变形成的亚稳相 (71)本章重点复习 (72)上海交通大学材料科学基础网络课程整理73材料是国民经济的物质基础。

上海交大材料科学基础知识点总结

上海交大材料科学基础知识点总结

第一章材料中的原子排列第一节原子的结合方式1 原子结构2 原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。

如氧化物陶瓷。

(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。

如高分子材料。

(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。

如金属。

金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。

(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。

分子晶体:熔点低,硬度低。

如高分子材料。

氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O(4)混合键。

如复合材料。

3 结合键分类(1)一次键(化学键):金属键、共价键、离子键。

(2)二次键(物理键):分子键和氢键。

4 原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。

长程有序,各向异性。

(2)非晶体:――――――――――不规则排列。

长程无序,各向同性。

第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。

图1-5特征:a 原子的理想排列;b 有14种。

其中:空间点阵中的点-阵点。

它是纯粹的几何点,各点周围环境相同。

描述晶体中原子排列规律的空间格架称之为晶格。

空间点阵中最小的几何单元称之为晶胞。

(2)晶体结构:原子、离子或原子团按照空间点阵的实际排列。

特征:a 可能存在局部缺陷;b 可有无限多种。

2 晶胞图1-6(1)――-:构成空间点阵的最基本单元。

(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。

(3)形状和大小有三个棱边的长度a,b,c及其夹角α,β,γ表示。

材料科学基础上海交大版讲义绪论PPT课件

材料科学基础上海交大版讲义绪论PPT课件

玻璃纤维增强高分子复合材料
• 现代航空发动机燃烧室 温度最高的材料就是通 过粉末冶金法制备的氧 化物粒子弥散强化的镍 基合金复合材料。很多 高级游艇、赛艇及体育 器械等是由碳纤维复合 材料制成的,它们具有 重量轻,弹性好,强度 高等优点。
航空发动机
Processing, Synthesis, And phase transformation
举例1 金刚石(钻石)和石墨,都是由碳原子组成,但前 者是自然界中最坚硬的固体,而后者却很软(因晶体结构 不同)。
举例2 同样长的一段铁丝和钢丝,经弯曲后发现铁丝易弯 曲,而钢丝不易弯曲,即塑性不同(因两者成分不同)。
举例3 两根锯条,同时加热(800℃),然后一根水冷,一 根空冷,用手折时,发现前者很脆,后者很韧(因组织不 同)。
4000年前的夏朝我们的祖先已经能够炼铜,到殷、商 时期,我国的青铜冶炼和铸造技术已达到很高水平。
司母戊鼎
河南安阳晚商遗址出土 青铜铸造 高133厘米 重875kg 饰纹优美
越王勾践剑
春秋晚期越国青铜兵器 出土于湖北江陵楚墓 长55.7厘米 剑锷锋芒犀利 锋能割断头发
古代剑刃制造中的特殊技术

Titanic的沉没是必然还是偶然?
建造中的Titanic 号,可以看到船身上长长的焊缝
Titanic的沉没是必然还是偶然?
Titanic 号钢板(左图)和近代船用钢板(右图)的冲击试验结果
光学显微镜
人类对材料的认识是逐步深入的。
• 1863年,光学显微镜首次应用于 金属研究,诞生了金相学,使人 们能够将材料的宏观性能与微观 组织联系起来。



春秋战国时代的
古 已
青铜剑,剑身及

上海交通大学827材料科学基础考研全套资料

上海交通大学827材料科学基础考研全套资料

上海交通大学827材料科学基础考研精品资料一、上海交通大学827材料科学基础考研真题汇编1.上海交通大学827材料科学基础1999-2007、2013-2014、(回忆版)2010-2012年考研真题;其中2000-2004、2006有答案二、上海交通大学827材料科学基础考研资料2.胡赓祥《材料科学基础》考研相关资料(1)胡赓祥《材料科学基础》[笔记+课件+提纲]①上海交通大学827材料科学基础之胡赓祥《材料科学基础》考研复习笔记。

②上海交通大学827材料科学基础之胡赓祥《材料科学基础》本科生课件。

③上海交通大学827材料科学基础之胡赓祥《材料科学基础》复习提纲。

(2)胡赓祥《材料科学基础》考研核心题库(含答案)①上海交通大学827材料科学基础考研核心题库之选择题精编。

②上海交通大学827材料科学基础考研核心题库之综合题精编。

(3)胡赓祥《材料科学基础》考研模拟题[仿真+强化+冲刺]①上海交通大学827材料科学基础考研专业课六套仿真模拟题。

②上海交通大学827材料科学基础考研强化六套模拟题及详细答案解析。

③上海交通大学827材料科学基础考研冲刺六套模拟题及详细答案解析。

三、资料获取方式+VX:ky21985四、研究生入学考试指定/推荐参考书目(资料不包括教材)4.上海交通大学827材料科学基础考研初试参考书《材料科学基础》(第三版)胡赓祥、蔡珣、戎咏华主编上海交通大学出版社2010五、研究生入学适用院系/专业5.上海交通大学827材料科学基础适用院系/专业机械与动力工程学院;生物医学工程学院(含Med~X研究院);电子信息与电气工程学院;材料科学与工程学院(含塑性研究院)。

【上海交大材料科学基础复习要点(原版)】材料科学基础习题及参考答案

【上海交大材料科学基础复习要点(原版)】材料科学基础习题及参考答案

材料科学基础参考答案材料科学基础第一次作业1.举例说明各种结合键的特点。

⑴金属键:电子共有化,无饱和性,无方向性,趋于形成低能量的密堆结构,金属受力变形时不会破坏金属键,良好的延展性,一般具有良好的导电和导热性。

⑵离子键:大多数盐类、碱类和金属氧化物主要以离子键的方式结合,以离子为结合单元,无方向性,无饱和性,正负离子静电引力强,熔点和硬度均较高。

常温时良好的绝缘性,高温熔融状态时,呈现离子导电性。

⑶共价键:有方向性和饱和性,原子共用电子对,配位数比较小,结合牢固,具有结构稳定、熔点高、质硬脆等特点,导电能力差。

⑷范德瓦耳斯力:无方向性,无饱和性,包括静电力、诱导力和色散力。

结合较弱。

⑸氢键:极性分子键,存在于HF,H2O,NF3有方向性和饱和性,键能介于化学键和范德瓦尔斯力之间。

2.在立方晶体系的晶胞图中画出以下晶面和晶向:(1 0 2)、(1 1 -2)、(-2 1 -3),[1 1 0],[1 1 -1],[1 -2 0]和[-3 2 1]。

(213)3. 写出六方晶系的{1 1 -20},{1 0 -1 2}晶面族和<2 -1 -1 0>,<-1 0 1 1>晶向族中各等价晶面及等价晶向的具体指数。

{1120}的等价晶面:(1120)(2110)(1210)(1120)(2110)(1210){1012}的等价晶面:(1012)(1102)(0112)(1012)(1102)(0112) (1012)(1102)(0112)(1012)(1102)(0112)2110<>的等价晶向:[2110][1210][1120][2110][1210][1120]1011<>的等价晶向:[1011][1101][0111][0111][1101][1011] [1011][1101][0111][0111][1101][1011]4立方点阵的某一晶面(hkl )的面间距为M /,其中M 为一正整数,为晶格常数。

上交材料科学基础课件

上交材料科学基础课件

上交材料科学基础课件材料科学基础课程是材料科学与工程专业的一门重要基础课程,它为学生提供了材料科学与工程学科的基本理论和知识体系。

通过学习这门课程,学生可以了解材料的基本性质、结构和性能,掌握材料的制备、加工和表征方法,培养材料科学与工程的基本思维方式和解决问题的能力。

首先,材料科学基础课程的第一部分是材料的基本性质和结构。

在这部分内容中,学生将学习材料的物理、化学和力学性质,包括材料的密度、热膨胀系数、导热性、电导率等。

同时,学生还将学习材料的晶体结构、非晶态结构和晶体缺陷等。

通过学习这些内容,学生可以了解不同材料的性质差异,为材料的选择和设计提供基础。

其次,材料科学基础课程的第二部分是材料的制备和加工。

在这部分内容中,学生将学习材料的制备方法和加工工艺。

制备方法包括物理法、化学法和物理化学法等,加工工艺包括热处理、塑性加工和焊接等。

通过学习这些内容,学生可以了解不同材料的制备和加工过程,掌握材料的制备和加工技术,为材料的制备和加工提供基础。

再次,材料科学基础课程的第三部分是材料的表征方法。

在这部分内容中,学生将学习材料的表征方法和表征技术。

表征方法包括显微镜观察、物理性能测试和化学分析等,表征技术包括X射线衍射、扫描电子显微镜和能谱分析等。

通过学习这些内容,学生可以了解不同材料的表征方法和表征技术,掌握材料的表征技术,为材料的表征提供基础。

最后,材料科学基础课程还包括材料的应用和发展。

在这部分内容中,学生将学习材料的应用领域和发展趋势。

应用领域包括电子材料、光学材料和生物材料等,发展趋势包括新材料的研发和应用等。

通过学习这些内容,学生可以了解材料的应用领域和发展趋势,为材料的应用和发展提供基础。

综上所述,材料科学基础课程是材料科学与工程专业的一门重要基础课程。

通过学习这门课程,学生可以了解材料的基本性质、结构和性能,掌握材料的制备、加工和表征方法,培养材料科学与工程的基本思维方式和解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.0
概述
扩散 (Diffusion) 是物质中原子(分子或离子)
的迁移现象,是物质传输的一种方式。扩散是一 种由热运动引起的物质传递过程。扩散的本质是 原子依靠热运动从一个位置迁移到另一个位置。 扩散是固体中原子迁移的唯一方式。
扩散会造成物质的迁移,会使浓度均匀化, 而且温度越高,扩散进行得越快(图4.1)。
time
图4.1 扩散示意图
water
adding dye partial mixing homogenization
半导体掺杂 固溶体的形成
相变 扩散 烧结 材料表面处理
离子晶体的导电
固相反应
研究扩散一般有两种方法: • 表象理论 — 根据所测量的参数描述物质 传输的速率和数量等; • 原子理论 — 扩散过程中原子是如何迁移 的。 金属、陶瓷和高分子化合物三类固体材料 中的原子结合方式不同,这就导致了三种类型 固体中原子或分子扩散的方式不同。
©2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning™ is a trademark used herein under license.
Figure 4.3 The flux during diffusion is defined as the number of atoms passing through a plane of unit area per unit time
学习方法指导
本章重点阐述了固体中物质扩散过程的规律及其应用, 内容较为抽象,理论性强,概念、公式多。根据这一特点, 在学习方法上应注意以下几点: 充分掌握相关公式建立的前提条件及推导过程,深入理 解公式及各参数的物理意义,掌握各公式的应用范围及必需 条件,切忌死记硬背。 从宏观规律和微观机理两方面深入理解扩散过程的本质, 掌握固体中原子(或分子)因热运动而迁移的规律及影响因 素,建立宏观规律与微观机理之间的有机联系。 学习时注意掌握以下主要内容:菲克第一,第二定律的 物理意义和各参数的量纲,能运用扩散定律求解较简单的扩 散问题;扩散驱动力及扩散机制:间隙扩散、置换扩散、空 位扩散;扩散系数、扩散激活能、影响扩散的因素。
图4.2 Fick的经典实验 浓度为0
饱和溶液
Solid NaCl
4.1.1 菲克第一定律
(1)稳态扩散(Steady State Diffusion):扩散过 程中各处的浓度及浓度梯度(Concentiontration Gradient)不随时间变化(əC/ət=0,əJ/əx=0), 见图4.3,浓度梯度证明见图4.4。

• • • • •
互扩散系数的图解方法。 “下坡扩散”和“上坡扩散”的热力学 因子判别条件。 扩散的几种机制,着重是间隙机制和空 位机制。 间隙原子扩散比置换原子扩散容易的原 因。 计算和求解扩散系数及扩散激活能的方 法。
• • •
• • •
无规则行走的,扩散距离与步长的关系。 响扩散的主要因素。 反应扩散的特点和能应用相图确定反应扩 散出现相类型。 运用电荷中性原理确定不同情况下出现的 缺陷类型。 高分子链柔韧性的表征及其结构影响因素。 线型非晶高分子、结晶高分子和非完全结 晶高分子力学状态的差异和起因。
4.0.1 扩散现象(Diffusion)
当外界提供能量时,固体金属中原子或分子偏离平衡 位置的周期性振动,作或长或短距离的跃迁的现象。 (原子或离子迁移的微观过程以及由此引起的宏观现象。) ( 热激活的原子通过自身的热振动克服束缚而迁移它处的 过程。)
扩散
半导体掺杂 固溶体的形成 离子晶体的导电 固相反应 相变 烧结 材料表面处理
第四章 固体中原子及分子的运动—扩散
4.0 4.1 4.2 4.3 概述 表象理论 扩散的热力学分析 扩散的原子理论
4.4
4.5 4.6 4.7 4.8
扩散激活能
无规则行走与扩散距离 影响扩散的因素 反应扩散 离子晶体中的扩散
重点与难点
• • 菲克第一定律的含义和各参数的量纲。 能根据一些较简单的扩散问题中的初始 条件和边界条件。运用菲克第二定律求 解。 柯肯达耳效应的起因,以及标记面漂移 方向与扩散偶中两组元扩散系数大小的 关系。
4.0.3 固态扩散的条件
1、温度足够高;
2、时间足够长;
3、扩散原子能固溶; 4、具有驱动力: 5、化学位梯度。
4.1 表象理论Βιβλιοθήκη Adolf Fick, a German physiologist and inventor, was born on August 3rd, 1829, in Germany. In 1855, he introduced “Fick’s Law of Diffusion” which described the dispersal of gas as it passes through a fluid membrane. (Figure 4.2) An astigmatism in his eyes led Fick to explore the idea of a contact lens, which he successfully created in 1887. His other research resulted in the development of a technique to measure cardiac output. Adolf Fick’s work served as a vital precursor in the studies of biophysics, cardiology, and vision.
4.0.2 扩散的分类
1. 根据有无浓度变化 自扩散:原子经由自己元素的晶体点阵而迁移的扩散。
(如纯金属或固溶体的晶粒长大-无浓度变化)
互扩散:原子通过进入对方元素晶体点阵而导致的扩
散。(有浓度变化)
2. 根据扩散方向 下坡扩散:原子由高浓度处向低浓度处进行的扩散。 上坡扩散:原子由低浓度处向高浓度处进行的扩散。
相关文档
最新文档