一次函数图像与性质练习题10154
一次函数的图像和性质练习题及答案
一次函数的图像和性质练习题及答案一、填空题),) 1.正比例函数y?kx一定经过点,经过经过点.点,的图象过原点,则m的值为.4.如果函数y?x?b的图象经过点P,,则它经过x轴上的点的坐标为.一次函数y??x?3的图象经过点和它的图象是经过原点的一条直线;y随x的增大而减小.请你写出一个满足上述条件的函数7.在同一坐标系内函数y=2x与y=2x+6的图象的位置关系是.. 若直线y=2x+6与直线y=mx+5平行,则m=____________.9.在同一坐标系内函数y=ax+b与y=3x+2平行,则a, b的取值范围是10.将直线y= -2x向上平移3个单位得到的直线解析式是将直线y= -2x向下移3个单得到的直线解析式是.将直线y= -2x+3向下移2个单得到的直线解析式是. 11.直线y?kx?b经过一、二、三象限,则k0,bk,b,经过一、二、四象限,则有k0,b0.12.一次函数y?x?4?k的图象经过一、三、四象限,则k的取值范围是 13.如果直线y?3x?b与y轴交点的纵坐标为?2,那么这条直线一定不经过第象限. 14.已知点A,B都在一次函数y=a____b15.一次函数y=kx+b的图象如图所示,看图填空:当x=0时,y=____________;当x=____________时,y=0. k=__________,b=____________.当x=5时,y=__________;当y=30时,x=___________.二、选择题1.已知函数y?x?2,要使函数值y随自变量x的增大而减小,则m的取值范围是A.m≥?3B.m??3C.m≤?3D.m??31x+k的图像上,则a与b的大小关系是22.一次函数y?x?5中,y的值随x的减小而减小,则m的取值范围是A.m??1B.m??1C.m??1D.m?13.已知直线y?kx?b,经过点A和点B,若k?0,且x1?x2,则y1与y2的大小关系是A.y1?y2B.y1?y2C.y1?y2D.不能确定4.若直线y?mx?2m?3经过第二、三、四象限,则m 的取值范围是A.m?2B.?3m0C.m?D.m?05.一次函数y?3x?1的图象不经过A.第一象限B.第二象限C.第三象限,D.第四象限6. 如果点P关于x轴的对称点p在第三象限,那么直线y=ax+b的图像不经过A.第一象限B.第二象限C.第三象限D.第四象限7. 若一次函数y=kx+b的图像经过和点,则这个函数的图像不经过A.第一象限B.第二象限C.第三象限D.第四象限8.下列图象中不可能是一次函数y?mx?的图象的是A.B.C.D.9.两个一次函数y1?ax?b与y2?bx?a,它们在同一直角坐标系中的图象可能是 11 x2A. B.C.三、解答题1.已知一次函数y=x-2k+18,k为何值时,它的图像经过原点;k为何值时,它的图像经过点;k为何值时,它的图像与y轴的交点在x轴的上方; k为何值时,它的图像平行于直线y=-x;k为何值时,y随x的增大而减小.2.已知一次函数y=xD.231x+m和y=-x+n的图像都经过点A, 且与y轴分别交于B,C两点,2求△ABC的面积。
(完整版)一次函数的图像和性质练习题
一次函数的图像和性质练习题一、填空题1.正比例函数y kx(k 0) 一定经过点,经过(1,), 一次函数y kx b(k 0)经过(0,)点,(,0)点.2.直线y 2x 6与x轴的交点坐标是 ,与y轴的交点坐标是。
与坐标轴围成的三角形的面积是。
3.若一次函数y mx (4m 4)的图象过原点,则m的值为.4.如果函数y x b的图象经过点P(0,1),则它经过x轴上的点的坐标为 .5. 一次函数y x 3的图象经过点(, 5)和(2, )6.某函数具有下面两条性质:(1)它的图象是经过原点的一条直线;(2) y随x的增大而减小.请你写出一个满足上述条件的函数7.在同一坐标系内函数y=2x与y=2x+6的图象的位置关系是 .8.若直线y=2x+6与直线y=mx+5平行,则m=.9.在同一坐标系内函数y=ax+b与y=3x+2平行,则a, b的取值范围是.10.将直线y= — 2x向上平移3个单位得到的直线解析式是 ,将直线y= — 2x向下移3个单得到的直线解析式是 .将直线y= - 2x+3向下移2个单得到的直线解析式是.11.直线y kx b经过一、二、三象限,则k 0, b 0,经过二、三、四象限,则有k 0, b 0,经过一、二、四象限,则有k 0, b 0.12. 一次函数y (k 2)x 4 k的图象经过一、三、四象限,则k的取值范围是.13.如果直线y 3x b与y轴交点的纵坐标为 2 ,那么这条直线一定不经过第象限.14.已知点A(-4, a),B(-2,b) 都在一次函数y=-x+k(k为常数)的图像上,则a与b的大小 2关系是a—b(填" <““=”或“ >")15. 一次函数y=kx+b的图象如图所示,看图填空:(1)当x=0 时,y=; 当x=p寸,y=0.(2)k=, b=.(3)当x=5 时,y=;当y=30 时,x=.二、选择题1.已知函数y (m 3)x 2,要使函数值y随自变量x的增大而减小,则m的取值范围是2 .已知直线y kx b ,经过点A(x i, y 1)和点B(x 2, y 2),若k 0,且x 1 X 2,则y 1与y 2的大5.如果点P(a,b)关于x 轴的对称点p ,在第三象限,那么直线y=ax+b 的图像不经过()两个一次函数y ax b 与y 2 bx a ,它们在同一直角坐标系中的图象可能是三、解答题1,已知一次函数 y=(3-k)x-2k+18,(1) k 为何值时,它的图像经过原点;(2) k 为何值时,它的图像经过点(0,-2);(3) k 为何值时,它的图像与y 轴的交点在x 轴的上方;(4) k 为何值时,它的图像平行于直线y=-x;(5) k 为何值时,y 随x 的增大而减小.2 . 设一次函数y kx b(k 0),当x 2时,y 3,当x 1时,y 4。
一次函数图像和性质习题
一次函数图像和性质1.已知一次函数(1)y a x b =-+的图象如图1所示,那么a 的取值范围是( )A A .1a >B .1a <C .0a >D .0a <2.如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( ) A .0k >,0b > B .0k >,0b <C .0k <,0b >D .0k <,0b <3. 如图2,一次函数图象经过点A ,且与正比例函数y x =-的 图象交于点B ,则该一次函数的表达式为( ) A .2y x =-+ B .2y x =+C .2y x =-D .2y x =--4.如图,是一次函数y=kx+b 与反比例函数y=2x的图像,则关于x 的方程kx+b=2x的解为( ) (A)x l =1,x 2=2 (B)x l =-2,x 2=-1 (C)x l =1,x 2=-2 (D)x l =2,x 2=-15.已知一次函数y kx b =+的图象如图(6)所示,当1x <时,y 的取值范围是( )C A.20y -<< B.40y -<<C.2y <-D.4y <-图1图26.如果0,0ab bc >>,那么函数()1y ax c b=-的图像不经过第_____象限。
7.一次函数()121y m x m =--+-,函数y 随x 的增大而减小,且函数图像过二、三、四 象限,则m 的取值范围是_____。
8.如果一次函数y kx b =+的图像经过点(),1m 和点()1,m ,其中1m >,那么k b 、应满足的条件是_____。
9.一次函数1y mx =+与2y nx =-的图像相交于x 轴上一点,那么:m n =_____。
10.若k b 、是一元二次方程20x px q +-=的两个实数根()0kb ≠,在一次函数y kx b=+中,y 随x 的增大而减小,则一次函数的图像一定经过_____象限。
一次函数的图像和性质练习题
一次函数的图像和性质练习题一、填空题1.正比例函数一定经过 点,经过,一次函数(0)y kx k =≠(1), 经过点,点. (0)y kx b k =+≠(0), (0) ,2.直线与轴的交点坐标是 ,与y 轴的交点26y x =-+x 坐标是。
与坐标轴围成的三角形的面积是。
3.若一次函数的图象过原点,则的值为 .(44)y mx m =--m4.如果函数的图象经过点,则它经过轴上的点的坐标为 y x b =-(01)P ,x .5.一次函数的图象经过点( ,5)和(2,)3+-=x y 6.已知一次函数y=x+m 和y=-x+n 的图像都经过点A(-2,0), 且与y 轴分别2321交于B,C 两点,求△ABC 的面积。
7.某函数具有下面两条性质:(1)它的图象是经过原点的一条直线;(2)随的增大而减小.请你写出一个满足上述条件的函数 y x 8.在同一坐标系内函数y=2x 与y=2x+6的图象的位置关系是 .9.若直线y=2x+6与直线y=mx+5平行,则m=____________.10.在同一坐标系内函数y=ax+b 与y=3x+2平行,则a, b 的取值范围是 .11.将直线y= -- 2x 向上平移3个单位得到的直线解析式是 ,将直线y= -- 2x 向下移3个单得到的直线解析式是 .将直线y= -- 2x+3向下移2个单得到的直线解析式是 .12.一次函数的图象经过一、三、四象限,则的取值范围是 (2)4y k x k =-+-k .13.已知点A(-4, a),B(-2,b)都在一次函数y=x+k(k 为常数)的图像上,则a21与b 的大小关系是a____b(填”<””=”或”>”)14.直线经过一、二、三象限,则 0, 0,经过二、三、四象y kx b =+k b 限,则有 0, 0,经过一、二、四象限,则有 0, 0.k b k b 15.如果直线与轴交点的纵坐标为,那么这条直线一定不经过第 3y x b =+y 2-------------象限.16、直线与轴的交点坐标是_______,与轴的交点坐标是_______.152y x =-17、直线可以由直线沿轴_______而得到;直线可以23y x =-2y x =32y x =-+由直线轴_______而得到.3y x =-18、已知一次函数.()()634y m x n =++-(1)当m______时,y 随x 的增大而减小;(2)当m______,n______时,函数图象与y 轴的交点在x 轴的下方;(3)当m______,n______时,函数图象过原点.二、选择题1.已知函数,要使函数值随自变量的增大而减小,则的取(3)2y m x =+-y x m 值范围是( )A.B.C.D.3m -≥3m >-3m -≤3m <-2.一次函数中,的值随的减小而减小,则的取值范围是( (1)5y m x =++y x m )A.B.C.D.1m >-1m <-1m =-1m <3.已知直线,经过点和点,若,且,y kx b =+11()A x y ,22()B x y ,0k <12x x <则与的大小关系是( )1y 2y A.B.C.D.不能确定12y y >12y y <12y y =4. 若直线经过第二、三、四象限,则的取值范围是( )23y mx m =--m A.B.C.D.32m <32m -<<32m >0m >5.一次函数的图象不经过( )31y x =-A.第一象限B.第二象限 C.第三象限D.第四象限6.如果点P(a,b)关于x 轴的对称点p ,在第三象限,那么直线y=ax+b 的图像不经过 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限7.若一次函数y=kx+b 的图像经过(-2,-1)和点(1,2),则这个函数的图像不经过 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限 8.(m 9.两个一次函数与,它们在同一直角坐标系中的图象可能1y ax b =+2y bx a =+D.C.B .A .是( )10、下列一次函数中,y 的值随x 值的增大而减小的是( )A 、y=x -8 B 、y=-x+3 C 、y=2x+5D 、y=7x -63211、在一次函数中,的值随值的增大而减小,则的取值范围是( ()15y m x =++)A 、B 、C 、D 、1m <-1m >-1m =-1m <12、若一次函数的图象经过一、二、三象限,则应满足的条件是:( b kx y +=b k ,)A.B.C.D.0,0>>b k 0,0<>b k 0,0><b k 0,0<<b k 13、将直线y=2x 向上平移两个单位,所得的直线是 ( )A 、y=2x+2B 、y=2x -2C 、y=2(x -2)D 、y=2(x+2)14.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )15.李老师骑自行车上班,最初以某一速度匀速行进, 中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y (千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )三、解答题1、在同一个直角坐标系中,画出函数与的图象,并判断点21y x =-34y x =-+A (1,1)、B (-2,10)是否在所画的图象上?在哪一个图象上?2.已知一次函数y=(3-k)x-2k+18,(1) k 为何值时,它的图像经过原点; (2) k 为何值时,它的图像经过点(0,-2);(3) k 为何值时,它的图像与y 轴的交点在x 轴的上方;(4) k 为何值时,它的图像平行于直线y=-x;(5) k 为何值时,y 随x 的增大而减小.3、已知一次函数y=kx+b (k 、b 为常数且k≠0)的图象经过点A (0,﹣2)和点B (1,0),求此函数的解析式4、求函数与x 轴、y 轴的交点坐标,并求这条直线与两坐标轴围成323-=x y 的三角形的面积.5、根据下列条件,确定函数关系式:(1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).6、某摩托车的油箱最多可存油5升,行驶时油箱内的余油量y (升)与行驶的路程x(km)成一次函数关系,其图象如图。
一次函数图像与性质习题
小结
应用
应 用 线
图象与现 实生活的 联系
方 法 线
三个关系 : (1)概念与 k, b
(2)图象与 k, b
(3)面积与交点坐 标
练一练:1 根据图象,求出相应的函数解析式:
y
4
x
02
2 小明根据某个一次函数关系式填写了下表:
x
-2 -1 0
1
y
3
1
0
其中有一格不慎被墨汁遮住了,想想看,该空格里原来填的数是 多少?解释你的理由。
三角形的面积
1、已知直线y= -2x+4,它与x轴的交点为A, 与y轴的交点为B. (1).求A, B两点的坐标. (2).求∆AOB的面积. (O为坐标原点)
y
P
o
A
x
如图1,在矩形中,动点R从点N出发,沿N→P→Q→M 方向运动至点M处停止.设点R运动的路程为x, △MRN的面积为y,如果y关于x的函数图象如图2所示, 则当x=9时,点R应运动到( ) C
A.N处 B.P处 C.Q处 D.M处
Q
M (图1)
P
y
R
N
O
4
9
x
(图2)
知 识 线
一次函数 的概念、 图象、性 质
2.一次函数的图象过点(0,3) ,且与两坐标轴围成的三角形面 积为 9/4,一次函数的解析式为___y_=_±__2_x_+_3_______。
3.如图,将直线OA向上平移1个单位, 得到一个一次函数的图像,那么这个一次 函数的解析式是______y_=__2_x_+_1________
三、能力提升1
住几个关键点来解决问题;
O2
一次函数图像及性质专项总结练习
一次函数的图像和性质考生1、以下函数(1)y=πx(2)y=2x-1(3)y=(4)y=2-1-3x(5)y=x2-1中,是一次函数的有()(A)4个(B)3个(C)2个(D)1个2、假如函数y=(m+2)x|m|-1是正比率函数,求m的值。
3、y+1与x-2成正比率,且当x=1时,y=1,求y与x的函数关系式。
4、m的值为多少时,函数y=(m+2)x|m|-2+m-3.(1)函数是正比率函数(2)函数是一次函数5、如图,火车匀速经过地道(地道长大于火车长)时,火车进入地道的时间x与火车在地道内的长度y之间的关系用图象描绘大概是()火车地道yyyyoxooxxxoA.B.C.D.6、若把一次函数y=2x-3,向上平移3个单位长度,获得图象分析式是()(A)y=2x(B)y=2x-6(C)y=5x-3(D)y=-x-37、函数yx1,14y2x.当y1y2时,x的范围是()33A..x<-1B.-1<x<2C.x<-1或x>2D.x>28、如图,一次函数1yx2的图像上有两点A、B,A点的横坐标为2,B点的横坐标为a(0a4且a2),过点A、B 2分别作x的垂线,垂足为C、D,AOC、BOD的面积分别为S、S,则S1、S2的大小关系是12A.SSB.S1S2C.S1S2D.没法确立129、已知点(-4,y1),(2,y2)都在直线y=(-k 2-1)x+2上,则y1y1y2大小关系是()(A)y1>y2(B)y1=y2(C)y1<y2(D)不可以比较10、一次函数y=-5x+3的图象经过的象限是()A.一、二、三B.二、三、四C.一、二、四D.一、三、四11、一次函数y=kx+b知足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限12.若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3B.0<k≤3C.0≤k<3D.0<k<313.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的分析式为()A.y=-x-2B.y=-x-6C.y=-x+10D.y=-x-114、如图,直线1:y3x3与x轴、y轴分别订交于点A、B,△AOB与△ACB对于直线l对称,则点C的坐标为15、若直线x2y2m与直线2xy2m3(m为常数)的交点在第四象限,则整数m的值为()A.—3,—2,—1,0B.—2,—1,0,1C.—1,0,1,2D.0,1,2,316、一次函数ykxb(k为常数且k0)的图象如下图,则使y0建立的x的取值范围为.LyBCxOA图14一次函数图像及性质专项总结练习图17图1817、如图,直线y1=kx+b过点A(0《2),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx-2的解集是.18、一次函数y=(m+3)x+2-m当x=-2时,y=1,那么这个以次函数的分析式为_______________变式(1):一次函数y=(m+3)x+2-m与y轴的交点在x轴的上方,则m=____________变式(2):一次函数y=(m+3)x+2-m经过二、三、四象限,则m=_________变式(3):一次函数y=(m+3)x+2-m不经过第三象限,则m=___________变式(4):一次函数y=(m+3)x+2-m的函数值y跟着x值的增大而减小,那么m=_____________变式(5):一次函数y=(m+3)x+2-m与y=2x+1的图像平行,则直线方程为________________变式(6):一次函数y=(m+3)x+2-m向上平移一个单位与y=x+1重合,则m=_______________19、已知一次函数y=kx+b的图象经过点(-1,-5),且与正比率函数y=x的图象订交于点(2,a),求(1)a的值(2)k,b的值(3)这两个函数图象与x轴所围成的三角形面积.20、如图,直线PA是一次函数y=x+n(n>0)的图象,直线PB是一次函数y=–2x+m(m>0)的图象。
一次函数图象及其性质专题练习
一次函数图象及其性质专题练习(一)一次函数的定义1、判断正误:(1)一次函数是正比例函数; ( ) (2)正比例函数是一次函数; ( ) (3)x +2y =5是一次函数; ( ) (4)2y -x=0是正比例函数. ( ) 2、选择题(1)下列说法不正确的是( )A .一次函数不一定是正比例函数B .不是一次函数就不一定是正比例函数。
C .正比例函数是特殊的一次函数D .不是正比例函数就一定不是一次函数。
(2)下列函数中一次函数的个数为( )①y=2x ;②y=3+4x ;③y=0.5;④y=ax (a ≠0的常数);⑤xy=3;⑥2x+3y-1=0; A .3个 B 4个 C 5个 D 6个 3、填空题(1)若函数y=(m-2)x+5是一次函数,则m 满足的条件是____________。
(2)当m=__________时,函数y=3x2m+1+3是一次函数。
(3)关于x 的一次函数y=x+5m-5,若使其成为正比例函数,则m 应取_________。
4、已知函数y=()()112-++m x m (1)当m 取什么值时,y 是x 的一次函数?(2)当m 取什么值是,y 是x 的正比例函数。
5、函数:①y=-2x+3;②x+y=1;③xy=1;④y=1+x ;⑤y=221x+1;⑥y=0.5x 中,属一次函数的有 ,属正比例函数的有 (只填序号) 6、设圆的面积为s ,半径为R,那么下列说法正确的是( ) A S 是R 的一次函数 B S 是R 的正比例函数 C S 是2R 的正比例函数 D 以上说法都不正确7、曾子伟叔叔的庄园里已有50棵树,,他决定今后每年栽2棵树,则曾叔叔庄园树木的总数y (棵)与年数x 的函数关系式为 ,它是 函数。
一次函数图象及其性质专题练习(一)一次函数的定义1、判断正误:(1)一次函数是正比例函数; ( ) (2)正比例函数是一次函数; ( ) (3)x +2y =5是一次函数; ( ) (4)2y -x=0是正比例函数. ( ) 2、选择题(1)下列说法不正确的是( )A .一次函数不一定是正比例函数B .不是一次函数就不一定是正比例函数。
一次函数的图像和性质练习题
一次函数的图像和性质练习题一、填空题1.正比例函数(0)y kx k =≠一定经过 点,经过(1), ,一次函数(0)y kx b k =+≠经过(0), 点,(0) ,点.2.直线26y x =-+与x 轴的交点坐标是 ,与y 轴的交点坐标是 。
与坐标轴围成的三角形的面积是 。
3.若一次函数(44)y mx m =--的图象过原点,则m 的值为 .4.如果函数y x b =-的图象经过点(01)P ,,则它经过x 轴上的点的坐标为 .5.一次函数3+-=x y 的图象经过点( ,5)和(2, )6.已知一次函数y=23x+m 和y=-21x+n 的图像都经过点A(-2,0), 且与y 轴分别交于B,C 两点,求△ABC 的面积。
7.某函数具有下面两条性质:(1)它的图象是经过原点的一条直线;(2)y 随x 的增大而减小.请你写出一个满足上述条件的函数8.在同一坐标系内函数y=2x 与y=2x+6的图象的位置关系是 . 9.若直线y=2x+6与直线y=mx+5平行,则m=____________.10.在同一坐标系内函数y=ax+b 与y=3x+2平行,则a, b 的取值范围是 . 11.将直线y= -- 2x 向上平移3个单位得到的直线解析式是 ,将直线y= -- 2x 向下移3个单得到的直线解析式是 .将直线y= -- 2x+3向下移2个单得到的直线解析式是 .12.一次函数(2)4y k x k =-+-的图象经过一、三、四象限,则k 的取值范围是 . 13.已知点A(-4, a),B(-2,b)都在一次函数y=21x+k(k 为常数)的图像上,则a 与b 的大小关系是a____b(填”<””=”或”>”)14.直线y kx b =+经过一、二、三象限,则k 0,b 0,经过二、三、四象限,则有k 0,b 0,经过一、二、四象限,则有k 0,b 0.15.如果直线3y x b =+与y 轴交点的纵坐标为2-,那么这条直线一定不经过第------------象限. 16、直线152y x =-与轴的交点坐标是_______,与轴的交点坐标是_______. 17、直线23y x =-可以由直线2y x =沿轴_______而得到;直线32y x =-+可以由直线3y x=-轴_______而得到.18、已知一次函数()()634y m x n =++-. (1)当m______时,y 随x 的增大而减小;(2)当m______,n______时,函数图象与y 轴的交点在x 轴的下方; (3)当m______,n______时,函数图象过原点. 二、选择题1.已知函数(3)2y m x =+-,要使函数值y 随自变量x 的增大而减小,则m 的取值范围是( ) A.3m -≥B.3m >-C.3m -≤D.3m <-2.一次函数(1)5y m x =++中,y 的值随x 的减小而减小,则m 的取值范围是( ) A.1m >-B.1m <-C.1m =-D.1m <3.已知直线y kx b =+,经过点11()A x y ,和点22()B x y ,,若0k <,且12x x <,则1y 与2y 的大小关系是( ) A.12y y >B.12y y <C.12y y =D.不能确定4. 若直线23y mx m =--经过第二、三、四象限,则m 的取值范围是( ) A.32m <B.302m -<<C.32m >D.0m >5.一次函数31y x =-的图象不经过( ) A.第一象限B.第二象限 C.第三象限D.第四象限6.如果点P(a,b)关于x 轴的对称点p ,在第三象限,那么直线y=ax+b 的图像不经过 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限7.若一次函数y=kx+b 的图像经过(-2,-1)和点(1,2),则这个函数的图像不经过 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 8.(m9.两个一次函数1y ax b =+与2y bx a =+,它们在同一直角坐标系中的图象可能是( )10、下列一次函数中,y 的值随x 值的增大而减小的是( )A 、y=32x -8 B 、y=-x+3 C 、y=2x+5 D 、y=7x -611、在一次函数()15y m x =++中,的值随值的增大而减小,则的取值范围是( )A 、1m <-B 、1m >-C 、1m =-D 、1m <12、若一次函数b kx y +=的图象经过一、二、三象限,则b k ,应满足的条件是:( )A.0,0>>b kB.0,0<>b kC.0,0><b kD.0,0<<b k 13、将直线y=2x 向上平移两个单位,所得的直线是 ( )A 、y=2x+2B 、y=2x -2C 、y=2(x -2)D 、y=2(x+2)14.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )15.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )Oyx 12y Oy x1y y Oy1y 2y Oy x1y 2y D.C.B .A .三、解答题1、在同一个直角坐标系中,画出函数21y x =-与34y x =-+的图象,并判断点A (1,1)、B(-2,10)是否在所画的图象上在哪一个图象上2.已知一次函数y=(3-k)x-2k+18, (1) k 为何值时,它的图像经过原点; (2) k 为何值时,它的图像经过点(0,-2);(3) k 为何值时,它的图像与y 轴的交点在x 轴的上方; (4) k 为何值时,它的图像平行于直线y=-x; (5) k 为何值时,y 随x 的增大而减小.3、已知一次函数y=kx+b (k 、b 为常数且k≠0)的图象经过点A (0,﹣2)和点B (1,0), 求此函数的解析式4、求函数323-=x y 与x 轴、y 轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积.5、根据下列条件,确定函数关系式:(1)y与x成正比,且当x=9时,y=16;(2)y=kx+b的图象经过点(3,2)和点(-2,1).6、某摩托车的油箱最多可存油5升,行驶时油箱内的余油量y(升)与行驶的路程x(km)成一次函数关系,其图象如图。
一次函数性质及图像练习题
一次函数性质及图象练习题1. 下列说法正确的是( )A 、函数y=kx+b 是一次函数B 、函数y=kx+b (b 不为0)的图象是一条与x 轴相交的直线C 、函数y=kx+b 的图象是一条与x 轴相交的直线D 、函数y=kx+b(k 不为0)是一次函数2. 函数的解析式为270x y -+=,则其对应直线的斜率与在y 轴上的截距分别为( ) A. 12, 72 B 1, 7- C 1, 72 D 17,22- 3. 若332)1(+--=m m x m y 是一次函数,则( )A 、1=mB 、2=mC 、1>mD 、1=m 或2=m4. 若函数(23)(31)y m x n =-++的图象经过第一、二、三象限,则m 与n 的取值范围分别是( ) A 31,23m n >>- B 3,3m n >>- C m<31,23n <- D 31,23m n >< 5、如果,0,0<>bc ab 那么一次函数0=++c by ax 的图象的大致形状是( )6.函数)3(--=m mx y 的图象不可能是( )7.过点)2,1(-A 作直线l ,使它在x 轴,y 轴上的截距相等,则这样的直线有( )A 、 1B 、2C 、3D 、48. 函数y=kx+b(1≤x ≤3)的值域为5≤y ≤7则k=,b=。
9.函数y=(2k+1)x+b 在实数上是减函数,则k 的范围是。
10.一次函数y=(1-m)x+(2m+3)在-2≤x ≤2上总取正值,则m 的取值范围是。
11.已知直线l 的斜率k 为61,且和两坐标轴围成面积为3的三角形,求直线的方程。
12.如图,已知A (4,a ),B (-2,-4)是一次函数y =kx +b 的图象和反比例函数的图象的交点.(1)求反比例函数和一次函数的解析式;(2)求△AOB 的面积.x m y =。
第2讲一次函数的图像及性质(练习)原卷版
第2讲 一次函数的图像及性质(练习)夯实基础一、单选题1.直线y =2x ﹣1在y 轴上的截距是( )A .1B .﹣1C .2D .﹣22.一次函数图像如图所示,当2y >时,x 的取值范围是( )A .0x >B .0x <C .2x >D .2x <3.一次函数51y x =-的图像经过的象限是( )A .一、二、三B .一、三、四C .二、三、四D .一、二、四 4.一次函数()32y k x =-+的图像不经过第四象限,那么k 的取值范围是( )A .3k >B .3k <C .3k ≥D .3k ≤5.在同一真角坐标平面中表示两个一次函数y 1=kx +b ,y 2=−bx +k ,正确的图像为( )A .B .C .D .6.点A (﹣1,y 1)、点B (1,y 2)在直线y =﹣3x 上,则( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .无法比较y 1、y 2大小7.已知点A (﹣1,y 1),点B (2,y 2)在函数y =﹣3x +2的图象上,那么y 1与y 2的大小关系是( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .不能确定 8.一次函数y=kx=k(k=0)的图象大致是( )A .B .C .D .二、填空题9.如图,直线I I :1y x =+与直线2I :y mx n =+相交于点(,2)P a ,则关于x 的不等式1x mx n +≥+的解集为______.10.如果将直线12y x =沿y 轴向下平移2个单位,那么平移后所得直线的表达式是______. 11.一次函数4y x =--的截距是_________.12.如果一次函数()21y k x =+-中,y 随x 的增大而减小,那么k 的取值范围是___________.13.一次函数5y x b =-+的图象不经过第一象限,则b 的取值范围是_________. 14.一次函数y kx b =+的图像经过点(3,0)与(0,3),那么关于x 的不等式0kx b +>的解集是________.三、解答题15.已知:一次函数y kx b =+的图像经过点(1,3)A 且与直线32y x =-+平行. (1)求这个一次函数的解析式;(2)求在这个一次函数的图像上且位于x 轴上方的所有点的横坐标的取值范围.能力提升一、单选题1.如果点()11,P x y 和点()22,Q x y 是直线()0y kx k =≠上两点,当12x x <时,12y y <,那么直线()0y kx k =≠和函数()0k y k x=≠在同一直角坐标系内的大致图像可能是( ) A . B .C .D .2.若一次函数y =kx +b 的图象经过第一、二、四象限,则一次函数y =bx +k 的图象大致是( )A .B .C .D . 3.已知点()1,A m -和点()1,B n 在函数13y x k =+的图像上,则下列结论中正确的() A .m n > B .m n <C .0k >D .k 0< 4.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内的余油量Q (升)与行驶时间t (小时)之间的函数关系的图象是( )A .B .C .D .5.一次函数1y x =--不经过的象限是()A .第一象限B .第二象限C .第三象限D .第四象限 6.如图,直线y kx b =+交坐标轴于A (a ,0),B (0,b )两点.则不等式0kx b +<的解集为( )A .x b >B .x a >C .x b <D .x a <7.若正比例函数的图象经过点(1-,2),则这个图象必经过点( ).A .(1,2)B .(1-,2-)C .(2,1-)D .(1,2-)二、填空题8.若直线y =kx+b 平行直线y =5x+3,且过点(2,﹣1),则b =_____.9.如图,一次函数y =f (x )的图象经过点(2,0),如果y >0,那么对应的x 的取值范围是_____.10.如果在一次函数y =(k +y 随自变量x 的增大而增大,那么k 的范围为_____.11.如图,已知一次函数y kx b =+的图像经过点A (5,0)与B (0,-4),那么关于x 的不等式+kx b ﹤0的解集是_______.12.将直线32y x =+沿y 轴向下平移4个单位,那么平移后直线的表达式是_______ 13.如图,直角三角形的斜边AB 在y 轴的正半轴上,点A 与原点重合,点B 的坐标是()0,4,且30BAC ∠=︒,若将ABC 绕着点O 旋转后30°,点B 和C 点分别落在点E 和点F 处,那么直线EF 的解析式是__________.14.直线123y x =-与两根坐标轴围成的三角形的面积是_______________________. 15.在平面直角坐标系中,已知点(52,4)A m m --在第二象限,且m 为整数,则过点A 的正比例函数的解析式为___________.三、解答题16.若y+1与2x 成正比例,且当3x =-时,y=1.求y 与x 的函数解析式.17.小明和爷爷元旦登山,小明走较陡峭的山路,爷爷走较平缓的步道,相约在山顶会合.已知步道的路程比山路多700米,小明比爷爷晚出发半个小时,小明的平均速度为每分钟50米.图中的折线反映了爷爷行走的路程y (米)与时间x (分钟)之间的函数关系.(1)爷爷行走的总路程是_____米,他在途中休息了_____分钟,爷爷休息后行走的速度是每分钟_____米;(2)当0≤x≤25时,y与x的函数关系式是___;(3)两人谁先到达终点?这时另一个人离山顶还有多少米?18.在平面直角坐标系xOy中,点A(0,3),点B(m,0),以AB为腰作等腰Rt ABC,如图所示.(1)若ABC S 的值为5平方单位,求m 的值;(2)记BC 交y 轴于点D ,CE ⊥y 轴于点E ,当y 轴平分∠BAC 时,求AD CE 的值 (3)连接OC ,当OC +AC 最小时,求点C 的坐标.19.如图,在平面直角坐标系中,直线y=2x与反比例函数y=kx在第一象限内的图像交于点A(m,2),将直线y=2x向下平移后与反比例函数y=kx在第一象限内的图像交于点P,且=POA的面积为2.(1)求k的值;(2)求平移后的直线的函数解析式.20.如图,已知直线:l y x =x 轴于点A ,y 轴于点B ,将AOB ∆沿直线l 翻折,点O 的对应点C 恰好落在双曲线()0k y k x=>上.(1)求k 的值;(2)将ABC ∆绕AC 的中点旋转180︒得到PCA ∆,请判断点P 是否在双曲线k y x=上,并说明理由.。
一次函数的图像和性质练习题
一次函数的图像和性质练习题一次函数(linear function)是数学中的基础函数之一,也被称为线性函数。
它的图像是一条直线,具有特殊的性质和规律。
本文将为您提供一些关于一次函数的图像与性质的练习题,通过解答这些题目,您将更深入地理解一次函数的图像和性质。
1. 练习题一已知一次函数f(x)的图像经过点A(2, 3)和点B(4, 7),求f(x)的解析式及函数图像。
解析:由题意可知,函数f(x)过点A(2, 3)和点B(4, 7)。
我们可以利用两点间的斜率公式求解析式。
首先,计算斜率k:k = (7 - 3)/(4 - 2) = 2然后,我们可以使用点斜式求得解析式:f(x) - 3 = 2(x - 2)f(x) = 2x - 1因此,一次函数f(x)的解析式为f(x) = 2x - 1。
其函数图像为一条斜率为2的直线,经过点A(2, 3)和点B(4, 7)。
2. 练习题二已知一次函数g(x)的图像经过点C(1, 2),且g(3) = 4,求g(x)的解析式及函数图像。
解析:根据题意,函数g(x)过点C(1, 2),且g(3) = 4。
我们可以利用点斜式和函数的性质求解析式。
首先,由点斜式可得:g(x) - 2 = k(x - 1)然后,我们利用g(3) = 4,代入得到的解析式中:4 - 2 = k(3 - 1)2 = 2kk = 1因此,一次函数g(x)的解析式为g(x) = x + 1。
其函数图像为一条斜率为1的直线,经过点C(1, 2)。
3. 练习题三已知一次函数h(x)的图像经过点D(0, 1),且在x轴上的截距为5,求h(x)的解析式及函数图像。
解析:根据题意,函数h(x)过点D(0, 1),且在x轴上的截距为5。
我们可以利用截距式求解析式。
由截距式可得:h(x) = kx + b其中,b表示函数在y轴上的截距,即h(x)在x=0时对应的值,b = 1。
将截距b和点D(0, 1)代入解析式中,可求得斜率k:1 = k * 0 + 1k = 0因此,一次函数h(x)的解析式为h(x) = x + 1。
(完整版)一次函数的图像和性质练习题
一次函数的图像和性质练习题一、填空题1.正比例函数(0)y kx k =≠一定经过 点,经过(1), ,一次函数(0)y kx b k =+≠经过(0),点,(0) ,点. 2.直线26y x =-+与x 轴的交点坐标是 ,与y 轴的交点坐标是 。
与坐标轴围成的三角形的面积是 。
3.若一次函数(44)y mx m =--的图象过原点,则m 的值为 .4.如果函数y x b =-的图象经过点(01)P ,,则它经过x 轴上的点的坐标为 . 5.一次函数3+-=x y 的图象经过点( ,5)和(2, )6.某函数具有下面两条性质:(1)它的图象是经过原点的一条直线;(2)y 随x 的增大而减小.请你写出一个满足上述条件的函数 7.在同一坐标系内函数y=2x 与y=2x+6的图象的位置关系是 . 8. 若直线y=2x+6与直线y=mx+5平行,则m=____________.9.在同一坐标系内函数y=ax+b 与y=3x+2平行,则a, b 的取值范围是 . 10.将直线y= -2x 向上平移3个单位得到的直线解析式是 ,将直线y= -2x 向下移3个单得到的直线解析式是 .将直线y= -2x+3向下移2个单得到的直线解析式是 .11.直线y kx b =+经过一、二、三象限,则k 0,b 0,经过二、三、四象限,则有k 0,b 0,经过一、二、四象限,则有k 0,b 0.12.一次函数(2)4y k x k =-+-的图象经过一、三、四象限,则k 的取值范围是 . 13.如果直线3y x b =+与y 轴交点的纵坐标为2-,那么这条直线一定不经过第 象限. 14. 已知点A(-4, a),B(-2,b)都在一次函数y=21x+k(k 为常数)的图像上,则a 与b 的大小关系是a____b(填”<””=”或”>”) 15.一次函数y=kx+b 的图象如图所示,看图填空:(1)当x=0时,y=____________;当x=____________时,y=0. (2)k=__________,b=____________.(3)当x=5时,y=__________;当y=30时,x=___________. 二、选择题1.已知函数(3)2y m x =+-,要使函数值y 随自变量x 的增大而减小,则m 的取值范围是( )A.3m -≥B.3m >-C.3m -≤D.3m <-2.已知直线y kx b =+,经过点11()A x y ,和点22()B x y ,,若0k <,且12x x <,则1y 与2y 的大小关系是( ) A.12y y >B.12y y <C.12y y =D.不能确定3.若直线23y mx m =--经过第二、三、四象限,则m 的取值范围是( )A.32m <B.302m -<<C.32m >D.0m >4.一次函数31y x =-的图象不经过( )A.第一象限B.第二象限 C.第三象限D.第四象限5. 如果点P(a,b)关于x 轴的对称点p ,在第三象限,那么直线y=ax+b 的图像不经过 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限 6. 若一次函数y=kx+b 的图像经过(-2,-1)和点(1,2),则这个函数的图像不经过 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限 7.下列图象中不可能是一次函数(3)y mx m =--的图象的是( )8.两个一次函数1y ax b =+与2y bx a =+,它们在同一直角坐标系中的图象可能是( )三、解答题1.已知一次函数y=(3-k)x-2k+18, (1) k 为何值时,它的图像经过原点; (2) k 为何值时,它的图像经过点(0,-2);(3) k 为何值时,它的图像与y 轴的交点在x 轴的上方; (4) k 为何值时,它的图像平行于直线y=-x; (5) k 为何值时,y 随x 的增大而减小.2. 设一次函数)0(≠+=k b kx y ,当2=x 时,3-=y ,当1-=x 时,4=y 。
一次函数图像与性质习题全文
解析式. 解:直线y=kx+b与y轴交于点(0,b)
y
B (0,4)
∵直线y=kx+b与x轴交于点(4,0) ∴OA=|4|=4, OB=|b|
A
∵S△AOB=1/2×OA×OB=
0 4 x 1/2×4×|b|=8
∴|b|=4
∴b=±4
C
∴直线为:y=kx+4,y=kx-4;
∵直线y=kx+b过点(4,0)
.1、柴油机在工作时油箱中的余油量Q(千克)与工作时间t(小时) 成一次函数关系,当工作开始时油箱中有油40千克,工作3.5小时后, 油箱中余油22.5千克 (1)写出余油量Q与时间t的函数关系式;(2)画出这个函数的图象。
解:(1)设Q=kt+b。把t=0,Q=40;t=3.5,Q=22.5
分别代入上式,得 b 40
(D)
不平行
6.下列图形中,表示一次函数y=mx+n与正比例函数 y=mnx (m,n为常数,且mn≠0)在同一坐标系内的图 象可能是( A)
(A)
(B)
(C)
(D)
m<0,n>0 m<0,n>0 m>0,n>0 m>0,n<0
mn<0 mn<0 mn>0 mn<0
7.一次函数y=(4m+1)x-(m+1)
练一练:1 根据图象,求出相应的函数解析式:
y
4
x
02
2 小明根据某个一次函数关系式填写了下表:
x
-2 -1 0
1
y
3
1
0
其中有一格不慎被墨汁遮住了,想想看,该空格里原来填的数是 多少?解释你的理由。
一次函数图像测试题(经典)精选全文
精选全文完整版(可编辑修改)一次函数的图像和性质测试题 一、选择题(每小题3分,共30分)1.关于x 的一次函数21y kx k =++的图象可能正确的是( )2.已知函数y kx b =+的图象如图,则2y kx b =+的图象可能是( )3、一次函数y=kx+b,y 随着x 的增大而减小,且kb<0,则在直角坐标系内它的大致图象是( )4、下列图形中,表示一次函数y=mx+n 与正比例函数y=mnx(m 、 n 是常数且mn ≠0),图象是( )O xy AO xy BO xy COxyD5.一次函数y kx b =+的图象只经过第一、二、三象限,则( ) A .00k b <>,B .00k b >>,C .00k b ><,D .00k b <<,6.若一次函数y kx b =+的函数值y 随x 的增大而减小,且图象与y 轴的正半轴相交,那么对k 和b 的符号判断正确的是( )A .00k b >>,B .00k b ><,C .00k b <>,D .00k b <<,7 若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1﹤x 2时,y 1>y 2,则m 的取值范围是( ) A .m ﹤OB .m >0C .m ﹤21D .m >M8.若函数是一次函数,则应满足的条件是( ) A.且B.且C.且D.且9.函数y =x -2+31-x 中自变量x 的取值范围是( ) A .x ≤2 B .x =3 C . x <2且x ≠3 D .x ≤2且x ≠3 10.直线y =-x +2和直线y =x -2的交点P 的坐标是( ) A .(2,0) B .(-2,0) C .(0,2) D .(0,-2) 二、填空题(每小题3分,共30分) 11.如图,直线为一次函数的图象,则,.12.一次函数的图象与轴的交点坐标是 ,与轴的交点坐标是 .13.已知地在地正南方3千米处,甲乙两人同时分别从、两地向正北方向匀速直行,他们与地的距离(千米)与所行的时间(时)之间的函数图象如图所示,当行走3时后,他们之间的距离为_________千米. 14.若一次函数与一次函数的图象的交点坐标为(,8),则y xO y xO y xO y xO D.1 O x y -1 1 O x y -1 1 O x y -1 1 O x y -1 1 O x y 1 第2题图 A B C DS tO 4 2B A C_________.15.已知点都在一次函数为常数)的图象上,则与的大小关系是________;若,则___________.16.已知点(,4)在连接点(0,8)和点(,0)的线段上,则______.17.已知一次函数与的图象交于轴上原点外的一点,则=+b a a________. 18.已知一次函数与两个坐标轴围成的三角形面积为4,则________.19、已知正比例函数的图象过点(,5),则的值为________20、若函数和有相等的函数值,则的值为________三、解答题(共60分)21、若函数y=3x+b 经过点(2,-6),求函数的解析式。
一次函数的图象与性质学生练习 含答案
一次函数的图象与性质考点·方法·破译1.一次函数及图象:⑴形如y =kx +b (k ,b 为常数,且k ≠0),则y 叫做x 的一次函数,当b =0,k ≠0时,y 叫做x 的正比例函数.⑵正比例函数y =kx (k ≠0)的图象是经过(0,0),(1,k )两点的直线,一次函数y =kx +b (k ≠0)是经过(0,b )、(-kb ,0)两点的直线. 2.一次函数的性质:当k >0时,y 随自变量x 的增大而增大;当k <0时,y 随x 的增大而减小.3.函数y =kx +b 中的系数符号,决定图象的大致位置的增减性.经典·考题·赏析【1】(山东)函数y =ax +b ①和y =bx +a ②(ab ≠0)在同一坐标系中的图象可能是( )【2】如图,已知正方形ABCD 的顶点坐标为A (1,1)、B (3,1)、C (3,3)、D (1,3),直线y =2x +b 交AB 于点E ,交CD 于点F .直线与y 轴的交点为(0,b ),则b 的变化范围是_____.【3】已知一次函数y =kx +b ,当自变量取值范围是2≤x ≤6时,函数值的取值范围5≤y ≤9.求此函数的解析式.【4】如图,直线y=-5x-5与x轴交于A,与y轴交于B,直线y=kx+b与x轴交于C,与y轴交于B点,CD⊥AB交y轴于E.若CE=AB,求直线BC的解析式.【5】如图,已知直线y=-x+2与x轴、y轴分别交于点A和点B.另一条直线y=kx+b(k≠0)经过(1,0),且把△AOB分成两部分.⑴若△AOB被分成的两部分面积相等,求k和b的值;⑵若△AOB 被分成的两部分的面积比为1:5,求k和b的值.一次函数的图象与性质答案考点·方法·破译1.一次函数及图象:⑴形如y =kx +b (k ,b 为常数,且k ≠0),则y 叫做x 的一次函数,当b =0,k ≠0时,y 叫做x 的正比例函数.⑵正比例函数y =kx (k ≠0)的图象是经过(0,0),(1,k )两点的直线,一次函数y =kx +b (k ≠0)是经过(0,b )、(-kb ,0)两点的直线. 2.一次函数的性质:当k >0时,y 随自变量x 的增大而增大;当k <0时,y 随x 的增大而减小.3.函数y =kx +b 中的系数符号,决定图象的大致位置的增减性.经典·考题·赏析【例1】(山东)函数y =ax +b ①和y =bx +a ②(ab ≠0)在同一坐标系中的图象可能是( )【解法指导】A 中①a >0,b >0,②b <0,a <0矛盾.B 中①a <0,b <0,矛盾.C 中①a >0,b >0②b >0,a =0矛盾.D 中①a >0,b <0②b <0,a >0,故选D .【例2】如图,已知正方形ABCD 的顶点坐标为A (1,1)、B (3,1)、C (3,3)、D (1,3),直线y =2x +b 交AB 于点E ,交CD 于点F .直线与y 轴的交点为(0,b ),则b 的变化范围是_____.【解法指导】直线y =2x +b 是平行于直线y =2x 的直线,当直线经过B 点时,b 最小,当x =3时,y=1∴1=2×3+b , b =-5当直线经过D 点时,b 最大,所以当x =1时,y =3∴3=2×1+b , b =1∴-5≤b ≤1【例3】已知一次函数y =kx +b ,当自变量取值范围是2≤x ≤6时,函数值的取值范围5≤y ≤9.求此函数的解析式.【解法指导】⑴当k >0,y 随x 的增大而增大,∴y =kx +b 经过(2,5),(6,9)两点∴⎩⎨⎧=+=+9652b k b k ∴⎩⎨⎧=-=31b k ,∴y =x +3 ⑵当k <0,y 随x 的增大而减小,∴y =kx +b 经过(2,9),(6,5)两点∴⎩⎨⎧=+=+5692b k b k ∴⎩⎨⎧-=-=111b k ,∴y =-x +11∴所求解析式为y =x +3或y =-x +11【例4】如图,直线y =-5x -5与x 轴交于A ,与y 轴交于B ,直线y =kx +b 与x 轴交于 C ,与y 轴交于B 点,CD ⊥AB 交y 轴于E .若CE =AB ,求直线BC 的解析式.【解法指导】由CE =AB ,CD ⊥AB 可得△AOB ≌△EOC ,因而OB =OC 而y =-5x -5与y 轴交于B∴B (0,-5)∴C (5,0),而直线BC 经过(0,-5),(5,0)可求得解析式y =x -5【例5】如图,已知直线y =-x +2与x 轴、y 轴分别交于点A 和点B .另一条直线y =kx +b (k ≠0)经过(1,0),且把△AOB 分成两部分.⑴若△AOB 被分成的两部分面积相等,求k 和b 的值;⑵若△AOB 被分成的两部分的面积比为1:5,求k 和b 的值.【解法指导】欲求k 和b 的值,需知道直线y =kx +b (k ≠0)经过两已知点,而点C (1,0)在直线上,因而只需求出另一点的坐标即可.解:⑴由题意得(2,0)、B (0,2),∴C 为OA 的中点,因而直线y =kx +b 过OA 中点且平分△AOB 的面积时只可能韦中线BC .∴y =kx +b 经过C (1,0),(0,2)∴⎩⎨⎧=+=b b kx 20∴k =2 b =2 ⑵①设y =kx +b 与OB 交于M (0,t )则有S △OMC =S △CAN ,∴MN ∥x 轴,∴N (34,32) ∴直线y =kx +b 经过34,32),(1,0)∴⎪⎩⎪⎨⎧=+=+03234b k b k ∴⎩⎨⎧-==22b k。
一次函数图像练习题(打印版)
一次函数图像练习题(打印版)### 一次函数图像练习题一、选择题1. 已知直线y=kx+b与y轴交于点(0,2),且过点(1,-3),则此一次函数的解析式为()- A. y=-5x+2- B. y=5x-3- C. y=-5x-1- D. y=5x+22. 一次函数y=kx+b的图象经过第二、四象限,那么k和b的取值应满足()- A. k>0, b>0- B. k<0, b<0- C. k>0, b<0- D. k<0, b>0二、填空题1. 一次函数y=2x-3的图象与x轴交点坐标是________。
2. 若直线y=-2x+b与y轴的交点在x轴上方,则b的取值范围是________。
三、解答题1. 已知直线y=kx+b经过点(-1,2)和(2,-4),求直线的解析式。
2. 已知直线y=kx+b与x轴交于点A(a,0),与y轴交于点B(0,b),且直线过点P(1,1),求k和b的值。
四、应用题1. 某工厂生产一种产品,成本为每件20元。
若每件产品售价为x元,则利润为y元。
已知当售价为30元时,利润为10元。
求利润y与售价x之间的函数关系式。
2. 某城市规定,居民每月用电量在200度以下时,每度电的价格为0.5元;超过200度时,超出部分每度电的价格为0.6元。
某居民某月用电量为300度,求该居民该月的电费。
答案一、选择题1. 解:将点(1,-3)和(0,2)代入y=kx+b,得:- 当x=1时,y=-3,所以k+b=-3;- 当x=0时,y=2,所以b=2。
解得k=-5,b=2,所以y=-5x+2。
答案为A。
2. 解:一次函数y=kx+b的图象经过第二、四象限,说明k<0,b<0。
答案为B。
二、填空题1. 解:令y=0,得2x-3=0,解得x=1.5,所以交点坐标为(1.5,0)。
2. 解:令x=0,得y=b,由于交点在x轴上方,所以b>0。
一次函数图像与性质练习题
一.授课目的与考点分析:函数一、一次函数图像与系数的关系1.函数y = kx + b(k、b为常数,且k W0)的图象是一条直线:当b >0时,直线y = kx + b是由直线y = kx向上平移b个单位长度得到的;当b <0时,直线y = kx + b是由直线y = kx向下平移| b |个单位长度得到的.2.一次函数y = kx + b(k、b为常数,且k W0)的图象与性质:正比例函数的图象是经过原点(0, 0)和点(1, k)的一条直线;一次函数y = kx + b(k丰0)图象和性质如下:3. k、b对一次函数y = kx + b的图象和性质的影响:k决定直线y = kx + b从左向右的趋势,b决定它与y轴交点的位置,k、b一起决定直线y = kx + b 经过的象限.6. (2015•闸北区模拟)如果函数y=3x+m 的图象一定经过第二象限,那么m 的取值范围是()7. (2015•柳江县二模)一次函数丫=卜乂+卜(k<0)的图象大致是( )4.两条直线11: y = k 1x + 4和12: y = k 2x + b 2的位置关系可由其系数确定:(1) k 1 丰 k 2 o 11与12相交; (2) k 1= k 2,且b 产b 2 o 11与12平行;【K 、B 与图像的关系】【例1】1.若bk <0,则直线y=kx +b 一定通过( )A .第一、二象限B .第二、三象限已第三、四象限 D .第一、四象限【变式1】如果一次函数y=kx +b 的图象经过一、二、三象限,那么k 、b 应满足的条件是( A . k >0,且 b >0 B . k <0,且 b <0 C . k >0,且 b <0 D . k <0,且 b >02、 若直线y = kx + b ( k =0)不经过第一象限,则k 、b 的取值范围是()3. A. k >0, b <0 B. k >0, b <0 C. k <0, b <0 D. k <0, b <0(2014•梅州)已知直线y=kx+b,若k+b=—5, kb=6,那么该直线不经过第 象限。
一次函数图象和性质练习题
一次函数的定义1、判断正误: (1)一次函数是正比例函数; ( ) (2)正比例函数是一次函数; ( ) (3)x +2y =5是一次函数; ( )(4)2y -x=0是正比例函数. ( )2、选择题(1)下列说法不正确的是( )A .一次函数不一定是正比例函数。
B .不是一次函数就不一定是正比例函数。
C .正比例函数是特殊的一次函数。
D .不是正比例函数就一定不是一次函数。
(2)下列函数中一次函数的个数为( )①y=2x ;②y=3+4x ;③y=0.5;④y=ax (a ≠0的常数);⑤xy=3;⑥2x+3y-1=0;A .3个B 4个C 5个D 6个3、填空题(1)若函数y=(m-2)x+5是一次函数,则m 满足的条件是____________。
(2)当m=__________时,函数y=3x2m+1 +3 是一次函数。
(3 )关于x 的一次函数y=x+5m-5,若使其成为正比例函数,则m 应取_________。
4、已知函数y=()()112-++m x m 当m 取什么值时,y 是x 的一次函数?当m 取什么值是,y 是x 的正比例函数。
5、函数:①y=-2x+3;②x+y=1;③xy=1;④y=1+x ;⑤y=221x+1;⑥y=0.5x中,属一次函数的有 ,属正比例函数的有(只填序号) (2)当m=时,y=()()m x m x m +-+-1122是一次函数。
(3)请写出一个正比例函数,且x =2时,y= -6请写出一个一次函数,且x=-6时,y=2(4) 我国是一个水资源缺乏的国家,大家要节约用水.据统计,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升.李丽同学在洗手时,没有把水龙头拧紧,当李丽同学离开x 小时后水龙头滴了y 毫升水.则y 与x 之间的函数关系式是 (5)设圆的面积为s ,半径为R,那么下列说法正确的是( ) A S 是R 的一次函数 B S 是R 的正比例函数 C S 是2R 的正比例函数 D 以上说法都不正确8、曾子伟叔叔的庄园里已有50棵树,,他决定今后每年栽2棵树,则曾叔叔庄园树木的总数y (棵)与年数x 的函数关系式为 它是函数9、圆柱底面半径为5cm ,则圆柱的体积V (cm 3)与圆柱的高h (cm )之间的函数关系式为 ,它是 函数10、甲市到乙市的包裹邮资为每千克0.9元,每件另加手续费0.2元,求总邮资y(元)与包裹重量x (千克)之间的函数解读式,并计算5千克重的包裹的邮资。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.授课目的与考点分析:函数一、一次函数图像与系数的关系1.函数y kx b=+(k、b为常数,且k≠0)的图象是一条直线:当b>0时,直线y kx b=+是由直线y kx=向上平移b个单位长度得到的;当b<0时,直线y kx b=+是由直线y kx=向下平移|b|个单位长度得到的.2.一次函数y kx b=+(k、b为常数,且k≠0)的图象与性质:正比例函数的图象是经过原点(0,0)和点(1,k)的一条直线;一次函数(0)=+≠图象和性质如下:y kx b k3. k、b对一次函数y kx b=+的图象和性质的影响:k决定直线y kx b=+从左向右的趋势,b决定它与y轴交点的位置,k、b一起决定直线y kx b=+经过的象限.4. 两条直线1l :11y k x b =+和2l :22y k x b =+的位置关系可由其系数确定:(1)12k k ≠⇔1l 与2l 相交; (2)12k k =,且12b b ≠⇔1l 与2l 平行;一次函数23y x =-的图象不经过 象限。
【K 、B 与图像的关系】【例1】1.若bk <0,则直线y=kx +b 一定通过( )A .第一、二象限B .第二、三象限C .第三、四象限D .第一、四象限【变式1】.如果一次函数y=kx +b 的图象经过一、二、三象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b <0C .k >0,且b <0D .k <0,且b >02、若直线y kx b =+(k ≠0)不经过第一象限,则k 、b 的取值范围是( )A. k >0, b <0B. k >0,b ≤0C. k <0, b <0D. k <0, b ≤03.(2014•梅州)已知直线y=kx+b ,若k+b=-5,kb=6,那么该直线不经过...第 象限。
4.2013•眉山)若实数a ,b ,c 满足a+b+c=0,且a <b <c ,则函数y=cx+a 的图象可能是( )A .B .C .D .5.(2015春•周口期末)已知点(k ,b )为第四象限内的点,则一次函数y=kx+b 的图象大致是( )A .B .C .D .6.(2015•闸北区模拟)如果函数y=3x+m 的图象一定经过第二象限,那么m 的取值范围是( )A .m >0B .m ≥0C .m <0D .m ≤07.(2015•柳江县二模)一次函数y=kx+k (k <0)的图象大致是( )A. B.C.D.7、函数(0)=+≠在直角坐标系中的图象可能是().y kx k k【例题】已知一次函数y=﹣mx+n﹣2的图象如图所示,则m、n的取值范围是()A.m>0,n<2 B.m<0,n<2 C.m<0,n>2 D.m>0,n>2【变式】.已知函数y=kx+b的图象如图所示,则函数y=﹣bx+k的图象大致是()A.B.C. D.2.如图,直线OA是某正比例函数的图象,下列各点在该函数图象上的是()A.(﹣4,16) B.(3,6)C.(﹣1,﹣1)D.(4,6)【例题】(2013•莆田)如图,一次函数y=(m-2)x-1的图象经过二、三、四象限,则m的取值范围是()A.m>0 B.m<0 C.m>2 D.m<2【变式】已知函数y=(2m+1)x+m﹣3,若这个函数的图象不经过第二象限,则m的取值范围是()A.m>﹣B.m<3 C.﹣<m<3 D.﹣<m≤32、已知自变量为x的一次函数()y a x b=-的图象经过第二、三、四象限,则( • )A.a>0,b<0 B.a<0,b>0 C.a<0,b<0 D.a>0,b>0【例3】(2016•安徽模拟)在一次函数y=ax﹣a中,y随x的增大而减小,则其图象可能是()A.B.C. D.【变式】2015春•祁阳县期末)已知一次函数y=kx+b,y随着x的增大而减小,且kb>0,则这个函数的大致图象是()A.B.C.D.2.已知正比例函数y kx=+的图象大致是=(k≠0)的函数值y随x的增大而减小,则一次函数y x k 图中的().【例题】下列函数中,其图象同时满足两个条件①y随着x的增大而增大②与x轴的正半轴相交.则它的解析式为()A.21=- D.21=+y xy x=-+ C.21y xy x=-- B.21【变式】对于函数y=-3x+1,下列结论正确的是()A.它的图象必经过点(-1,3) B.它的图象经过第一、二、三象限C.当x>1时,y<0 D.y的值随x值的增大而增大2.对于函数y=k2x(k是常数,k≠0),下列说法不正确的是()A.该函数是正比例函数B.该函数图象过点(,k)C.该函数图象经过二、四象限 D.y随着x的增大而增大5.(2015春•会宁县校级月考)如图,已知函数y=﹣2x+4,观察图象回答下列问题(1)x 时,y>0;(2)x 时,y<0;(3)x 时,y=0;(4)x 时,y>4.【变式训练】1.函数y=kx+b(k≠0)的图象平行于直线y=2x+3,且交y轴于点(0,-1),•则其解析式是_________ .2.若直线y=-x+k不经过第一象限,则k的取值范围为。
3.若y=kx+(2k-1)的图象经过原点,则k= ;当时k= 时,这个函数的图象与轴交于(0,1)4.已知一次函数.求:(1)m为何值时,y随x的增大而减小;(2)m,n满足什么条件时,函数图像与y轴的交点在x轴下方;(3)m,n分别取何值时,函数图像经过原点;(4)m,n满足什么条件时,函数图像不经过第二象限.4.(2015春•咸丰县期末)已知点A(4,0)及在第一象限的动点P(x,y),且x+y=5,0为坐标原点,设△OPA的面积为S.(1)求S关于x的函数解析式;(2)求x的取值范围;(3)当S=4时,求P点的坐标.5.(2015秋•南京校级期末)已知一次函数y=kx+b的图象经过点A(﹣2,5),并且与y轴相交于点P,直线y=﹣x+3与x轴相交于点B,与y轴相交于点Q,点Q恰与点P关于x轴对称.(1)求这个一次函数的表达式;(2)求△ABP的面积.6.(2015春•高新区期末)已知点A(4,0)及在第一象限的动点P(x,y),且x+y=6,O为坐标原点,设△OPA的面积为S.(1)求S关于x的函数解析式;(2)求x的取值范围;(3)当S=6时,求P点坐标.二、一次函数点的坐标的特征1.若点A(1,a)和点B(4,b)在直线y=﹣2x+m上,则a与b的大小关系是()A.a>b B.a<b C.a=b D.与m的值有关2.已知P1(﹣3,y1),P2(2,y2)是一次函数y=2x﹣b的图象上的两个点,则y1,y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.不能确定3.直线y=kx+b过A(﹣19,),B(0.1,23)两点,则()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<04.己知函数y=4﹣x,当x=时,y的值是()A.3 B.2 C.D.5.已知点P(﹣1,y1)、点Q(3,y2)在一次函数y=(2m﹣1)x+2的图象上,且y1>y2,则m的取值范围是()A.B.C.m≥1 D.m<1三、一次函数与坐标轴围成的三角形面积1.一次函数y=x+3的图象与x轴的交点坐标是()A.(﹣3,0)B.(3,0)C.(0,﹣3)D.(0,3)2.直线y=x+1与两坐标轴围成的三角形面积为()A.B.C.D.13.在平面直角坐标系中,O为原点,直线y=kx+b交x轴于A(﹣3,0),交y轴于B,且三角形AOB的面积为6,则k=()A.B.﹣C.﹣4或4 D.﹣或4.已知直线l是一次函数y=ax+|a﹣1|的图象,l过点(0,2),且与两坐标轴围成的三角形的面积为2,则a的值为()A.﹣1 B.3 C.4 D.﹣1或25.一次函数y=x、y=﹣2x+6、y=7x+6的图象所围成的图形的面积为()A.B.18 C.9 D.126.在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B(3,0)是x轴上的两点,则PA+PB的最小值为()A.3 B.C.D.47.如图所示,直线y=k(x﹣2)+k﹣1与x轴、y轴分别交于B、C两点,且=.则k的值为()A.B.C.1 D.28.在一次函数y=﹣x+3的图象上取一点P,作PA⊥x轴,垂足为A,作PB⊥y轴,垂足为B,且矩形OAPB的面积为,则这样的点P共有()A.4个B.3个C.2个D.1个四、一次函数的几何变换1.把直线l;y=﹣x﹣1向上平移2个单位长度,得到直线l′,则l′的表达式为()A.y=x+1 B.y=x﹣1 C.y=﹣x﹣1 D.y=﹣x+12.将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为.3.正比例函数y=x的图象可由一次函数y=x﹣3的图象()A.向上平移3个单位而得到B.向下平移3个单位而得到C.向左平移3个单位而得到D.向右平移3个单位而得到4.将一次函数y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是()A.x>4 B.x>﹣4 C.x>2 D.x>﹣25.平面直角坐标系中,将直线l向右平移1个单位长度得到的直线解析式是y=2x+2,则原来的直线解析式是()A.y=3x+2 B.y=2x+4 C.y=2x+1 D.y=2x+3。