活性焦同时脱硫脱硝技术(AC)

合集下载

活性焦烟气联合脱硫脱硝技术

活性焦烟气联合脱硫脱硝技术

H2 SO4 3
(5)
H2 SO4 3 + n H2 O 3
H2 SO4 ·n H2 O 3
(6)
式中 , 3 代表吸附态 。前 3 个反应是物理吸
37
© 1994-2009 China Academic Journal Electronic Publishing House. All rights reserved.
130 MW (66 万 m3 /h) 2 台机组上安装了该工艺 。 1989 年 在 德 国 的 Hoechs t 燃 煤 电 厂 的 77 MW (321 3 万 m3 /h) 机组上也安装了该工艺 。
日本电力能源公司 ( EPDC) 的 350 MW 空气 流化床 燃烧 (AFBC) 锅 炉中 安 装 了 活 性 焦 脱 除 NOx 工艺 , 并于 1995 年开始运行。该工艺仅采用了 一个移动床吸附塔 , 处理的烟气量为 1161 3 万 m3 /h , 在 140 ℃的烟气操作温度下 , 活性焦循环速率为 14 600 kg /h 。通过稳定运行 2 200 h 以上的结果来 看 , 在 N H3 /NOx 摩尔比为 01 85 时 , NOx 脱除率可 达到 80 % 。由于从 A FBC 锅炉出来的 SO2 排放浓 度很低 , 所以在 SO2 被活性焦吸附的同时 , 在第 一吸附塔中 NOx 也能得到有效的脱除[5 ] 。
第1期
煤 化 工
煤质技术
2009 年 1 月
活性焦烟气联合脱硫脱硝技术
李 艳 芳
(煤炭科学研究总院 北京煤化工研究分院 , 北京 100013)
摘 要 : 概述了活性焦烟气联合脱硫脱硝技术的工程应用及研究现状 , 介绍了该技术的工艺特点及

活性焦一体化脱硫脱硝烟气净化技术

活性焦一体化脱硫脱硝烟气净化技术

活性焦一体化脱硫脱硝烟气净化技术作者:罗志强来源:《E动时尚·科学工程技术》2019年第05期摘要:为了解决城市垃圾焚烧污染问题,本文选取活性焦作为主要材料,通过设置活性炭循环传输通道,搭建烟气输送口,对活性炭采取再生处理,利用脱硫脱硝吸附装置及氨气蒸发装置,构建脱硫脱硝烟气净化吸附系统。

测试结果表明,本系统的应用使得单台锅炉烟气处理量增加了3万m3/h,并且HCL、SO2、NOX、粉尘排放量均有所改善。

各项材料指标在净化条件允许范围之内,此系统的设计有助于我国解决燃煤污染问题。

关键词:活性焦;垃圾焚烧;一体化大部分城市以焚烧作为垃圾处理主要方式,生成大量重金属、NOX颗粒物、SO2等污染物,对环境造成严重污染[1]。

当前采用常规焚烧污染物处理工艺均未达到焚烧污染控制标准,其中,NOX颗粒物、SO2含量较高,如何脱硫脱硝成为当前研究难点。

本文将根据活性焦性质,提出一体化脱硫脱硝净化处理方案,通过实践应用验证方案可靠性。

一、活性焦性质活性焦是1种以煤炭为原料制作的吸附材料,成本較低,化学性质稳定,具有较好的还原性和热稳定性,通常情况下,作为还原剂使用。

1、物理特性活性焦内部含有较多微孔,使得该材料具有较好的吸附性。

按照国际标准,按照孔径大小不同,可以将其划分为大孔、中孔、小孔3种孔径,用于不同催化需求的化学处理[2]。

其中,大孔孔径在50nm以上,中孔孔径范围2-50nm,小孔孔径为2nm。

2、化学特性该材料表面附着大量含氮官能团和含氧官能团,容易吸附酸性及碱性物质,与活性炭相比,此材料脱硫性能更强一些。

3、再生特性材料净化烟气时,表面吸附大量物质,采用水洗法或者加热法等,可生成硫酸、单质硫、液态二氧化硫等[3]。

通过分析活性焦特性可知,此材料适合净化焚烧烟气。

因此,本文将选取此材料作为焚烧烟气净化处理主要材料,对净化吸附系统进行设计研究。

二、活性焦一体化脱硫脱硝烟气净化吸附系统1、系统组成本系统以活性焦为核心材料,设计烟气净化吸附系统。

活性炭纤维联合脱硫脱硝的机理分析

活性炭纤维联合脱硫脱硝的机理分析

活性炭纤维联合脱硫脱硝的机理分析发表时间:2020-11-27T06:56:03.410Z 来源:《防护工程》2020年23期作者:程丽英王龙[导读] 纤维状活性炭在N2中,吸附SO2和NO是因为纤维状活性炭表面的有氧成分,使官能团发生氧化。

陕西龙门钢铁有限责任公司陕西韩城 715405摘要:活性炭纤维(ACF)作为一种新型炭质吸附催化材料,具有较大的比表面积,较快的吸附速率和优越的脱附再生性能。

由于ACF具有脱硫脱氮联合的特点,且在脱氮过程中不产生二次污染,大大降低了生产成本,因此在脱硫脱氮联合应用中受到了广泛关注。

关键词:活性炭纤维(ACF);脱硫脱硝;傅里叶变换红外光谱分析(FTIR);程序升温脱附试验(TPD);纤维状活性炭是一种高效活性吸附材料和环保工程材料,其性能远优于活性炭。

为研究纤维状活性炭的机理,对粘胶基活性炭纤维表面吸附空气中的SO2和NO进行了实验研究,并与傅里叶变换红外光谱分析相联系,采用程序升温脱附实验进行观察,研究了纤维状活性炭表面决定其性质的官能团的变化和吸附能力。

研究发现,亚硝基基团向SO2提供了吸附位置;纤维状活性炭在N2中,吸附SO2和NO是因为纤维状活性炭表面的有氧成分,使官能团发生氧化。

一、NOx的来源及危害氮氧化物是我国大气污染中最主要的物质。

其主要来源于燃煤电站排放烟气,汽车尾气及冶金工业中燃烧排放烟气。

氮氧化物(简称为NOx)对生态环境具有很大的破坏作用。

其能够引起酸雨并引发水体的富营养化;NOx在阳光照射条件下可以产生光化学烟雾;同时NOx对人体呼吸道会产生刺激作用,引起呼吸系统疾病。

空气中的氮氧化物最主要的来源是燃煤电厂排放的烟气。

我国燃煤电站氮氧化物的排放总量逐年增加,且增长速率不断加大。

燃煤电站燃烧产生的烟气中氮氧化物约95%左右为NO,余下的为NO2,可见NO2在烟气中的比重较少,燃煤电站氮氧化物的排放控制主要集中在NO的脱除。

二、活性炭纤维与活性炭的特点与区别1.物理孔结构区别。

新型活性焦脱硫脱硝

新型活性焦脱硫脱硝

新型活性焦脱硫脱硝性能研究汇 报 内 容1.研究背景2.新型活性焦脱硫性能研究3.新型活性焦脱硝性能研究我国PM2.5中硫酸盐和硝酸盐的贡献分别可达35%和18%,主要源于烟气/工业尾气的SO 2和NOx挑战:实现同步脱硫脱硝且SO 2资源化我国部分城市PM 2.5组分分布Sci Total Environ, 2017, 584-585: 435《2016年中国硫磺市场统计及分析》我国硫磺生产、进口量SCR 燃煤电厂水泥厂等SNCR> 300 ︒C > 800 ︒C 钢铁行业烟气的温度通常低于200℃,传统的SCR 技术不适用。

活性焦脱硫脱硝技术是一种干法烟气脱硫脱硝技术。

☐能够同时脱硫、脱硝、脱重金属和有毒有机物等,☐适应钢铁行业烟气的温度,☐脱除效率能满足任何严格的环保标准要求。

活性焦脱硫原理图稀H活性焦脱硫低浓度SO2硫磺炭表面反应界面活性点位少,硫回收经济性差脱硫制硫思路如何提高脱硫反应界面活性点位关键问题:硫资源化SAMSIS官能团SA MS H2SO3ISSO2SO2SO2O O2O水膜e-e--SA SA硫酸MO MO MOMOIOIOFGFG FGFGComposite Carbon SO 2A ds o r p t i o n O 2MO FG C a t a l y t i c o x i d a t i o nMetal OxidationFG MO Functional GroupsNO xNH 3N 2MS MS Metal SulfateDesulfurizationDenitrification SA SAC a t a l y t ic o x id a t i o n SA Sulfate AcidC a t a l y t i c o x id a t i o n Water filmFGMOC a t a l y t i c o x id a t i o n制约因素解决途径投资和运行成本高负载金属及其氧化物,存在问题再生性能差关键技术新型低成本、高活性技术核心为解决思路:汇 报 内 容1.研究背景2.新型活性焦脱硫性能研究3.新型活性焦脱硝性能研究新型活性焦脱硫性能研究制备工艺粉末共混活性焦炭化活化一步法改性剂•AC-P4: MnO , MnO 2, Fe 2O 3构建了具有高反应活性位点密度的天然矿物/活性焦脱硫新技术软锰矿/活性焦的XRD 分析图谱1020304050607080▼▼AC-Mn4AC-Fe6AC-P4★●●◆▼▽▼▽★▽▽■▽★★★★★●◇◇◇▼●▽◇▼▼●■2 Theta (o )■ C ● SiO 2 ▼◇ MnO MnO 2◆▽★ Fe FeO Fe 2O 3 * Fe 3O 4促进活性焦孔隙结构的发展氧化锰矿改性活性焦硫平衡AC AC-Mn4AC-Fe6AC-P4S-SO2(ads)S-H2SO3 S-H2SO4S-MSO4 Others●氧化锰矿能将更多的SO2催化氧化为H2SO4。

活性炭联合脱硫脱硝技术探讨

活性炭联合脱硫脱硝技术探讨

活性炭联合脱硫脱硝技术探讨活性炭联合脱硫脱硝技术是一种新型的烟气处理技术,它采用活性炭吸附脱除烟气中的二氧化硫和氮氧化物,有效地减少了烟气中有害气体的排放,保护了环境。

本文将探讨活性炭联合脱硫脱硝技术的原理、应用及其优势。

一、技术原理活性炭联合脱硫脱硝技术利用活性炭的吸附特性,将烟气中的有害气体吸附到活性炭表面上,从而达到脱硫脱硝的目的。

具体而言,该技术分为三个步骤:吸附脱硫、吸附脱硝和再生吸附剂。

1. 吸附脱硫烟气中的二氧化硫经过烟气净化设备的处理后,进入活性炭吸附器内。

在吸附器内,烟气与活性炭接触时,活性炭表面的微孔会对二氧化硫进行吸附作用,将其从烟气中去除。

此过程中,活性炭的表面积越大,其脱硫效果就越好。

烟气中的氮氧化物主要包括氮氧化物和一氧化氮等有害物质。

这些物质通常是通过液态还原剂在还原反应器内还原为氨,再通过吸附剂进行吸附,形成固体颗粒物质,从而达到去除氮氧化物的目的。

通常活性炭的吸附剂是一种具有高表面积、孔径适中、催化活性好、吸附能力强的物质。

3. 再生吸附剂吸附后的活性炭会逐渐失去吸附能力,需要进行再生处理。

一般情况下,对活性炭在吸附过程中脱除的二氧化硫和氮氧化物,再度进行煅烧和氧化处理,使其脱离吸附剂表面,从而使吸附剂恢复正常的吸附性能。

同时,煅烧后的二氧化硫和氮氧化物会形成氧化物排放,需要采用其他烟气净化设备进行处理。

二、技术应用活性炭联合脱硫脱硝技术已经在国内外得到了广泛的应用,尤其是在火力发电厂、钢铁厂等大型企业中的烟气治理中。

通过该技术,可以有效地去除燃煤烟气中的二氧化硫和氮氧化物等有害气体,使环保达到国家标准,并且对环境污染减少,净化作用良好。

与此同时,由于原料和制造成本的不断降低,活性炭的市场需求也越来越大。

在烟气治理中广泛应用活性炭的同时,如何降低其制造成本,提高其利用效率也是分析的方向。

三、技术优势相对于其他烟气净化技术,活性炭联合脱硫脱硝技术具有许多优势。

其中最突出的几点包括:1. 高效性:活性炭联合脱硫脱硝技术能够有效地去除烟气中的二氧化硫和氮氧化物等有害气体,同时净化率高。

活性焦联合脱硫脱硝工艺试验研究

活性焦联合脱硫脱硝工艺试验研究

活性焦联合脱硫脱硝工艺试验研究熊银伍【摘要】为了开发活性焦联合脱硫脱硝工艺,选取一种商用活性焦在微型反应器上进行NH3对NO、SO2脱除影响及NO和SO2脱除交互影响试验,提出了活性焦联合脱硫脱硝工艺路线,并在实验室搭建的模拟装置上进行了工艺路线的模拟试验验证。

结果表明,活性焦脱硝是低温SCR反应,NH3的存在使SO2吸附量提高约18%,说明NH3与SO2发生化学反应,有利于SO2脱除,但生成的硫铵会降低工业装置的稳定性;当活性焦无吸附NH3时,NO对SO2脱除无影响,当活性焦吸附NH3时,通入NO前后,SO2出口体积分数由0.15%降至0.13%左右,说明NO对SO2脱除有促进作用;通入SO2气体后,NO出口体积分数由0.045%迅速增至0.065%,说明SO2与NO争抢NH3,不利于脱硝。

通过工艺路线模拟试验发现,当联合脱硫脱硝空速为400 h-1时,脱硫效率≥95%,脱硝效率≥70%,验证了活性焦联合脱硫脱硝工艺的可行性。

%In order to develop combined removal of SO2/NO process by activated coke,a commercial activated coke was chosen as research object,the influence of NH3 on desulfurization and denitrification as well as the interactive effects of NO and SO2 removal was investigated on micro reactor. The route of combined removal of SO2/NO process was obtained and the simulated experiment was conducted in the lab. The results showed that the denitrification was low-temperature SCR reaction. The participation of NH3 increased SO2 adsorption by 18%which indicated that the reaction of NH3 and SO2 was helpful to remove SO2 ,while the generated ammonium sulfate reduced the stability of industrial device. When the activated cokedidnˊt adsorb NH3 ,the presence of NO had no effects on SO2 removal. When the activated coke adsorbed NH3 ,the concentration of SO2 at outlet decreased from 0. 15% to 0. 13% after piping NO. The concentration of NO at outlet in-creased from 0. 045% to 0. 065% after piping SO2 . The results indicated that the NO benefited desulfurization,while the reaction of SO2 and NH3 hindered denitrification. The combined removal ofSO2/NO process was feasible by simulation experiment. The desulfurization ef-ficiency was equal or more than 95% and the denitration efficiency was equal or more than 70% when the space velocity was 400 h-1 .【期刊名称】《洁净煤技术》【年(卷),期】2015(000)002【总页数】6页(P14-19)【关键词】活性焦;脱硫;脱硝;烟气【作者】熊银伍【作者单位】煤炭科学技术研究院有限公司煤化工分院,北京 100013; 煤基节能环保炭材料北京市重点实验室,北京 100013; 煤炭资源高效开采与洁净利用国家重点实验室,北京 100013【正文语种】中文【中图分类】X701;TD849我国60%以上的燃煤被火电站和燃煤工业锅炉消耗,同时我国也是世界上少数几个以煤炭为主要能源的国家之一。

活性炭联合脱硫脱硝技术探讨

活性炭联合脱硫脱硝技术探讨

活性炭联合脱硫脱硝技术探讨活性炭联合脱硫脱硝技术是一种利用活性炭对废气中的硫氧化物和氮氧化物进行吸附还原处理的技术。

本文将对活性炭联合脱硫脱硝技术进行探讨。

活性炭联合脱硫脱硝技术通过将活性炭作为吸附剂,吸附废气中的硫氧化物和氮氧化物,再经过还原反应,将其转化为无害的氮气和二氧化硫。

该技术具有处理效果好、投资成本低、运行成本低等优点,因此受到了广泛的关注和应用。

活性炭联合脱硫脱硝技术主要包括吸附和还原两个阶段。

在吸附阶段,活性炭用于吸附废气中的硫氧化物和氮氧化物。

活性炭具有大比表面积和孔径分布,可以有效地吸附废气中的有害气体。

在还原阶段,通过加热或加入还原剂,将活性炭吸附的气体进行还原反应,将其转化为无害气体。

活性炭联合脱硫脱硝技术的具体操作参数有吸附剂种类、床层高度、空气速度、反应温度等。

吸附剂的选择对于技术的效果具有重要影响。

一般来说,活性炭具有较好的吸附性能,可以选择合适的活性炭作为吸附剂。

床层高度和空气速度影响吸附物质在床层中的停留时间,需要根据实际情况进行调整。

反应温度会影响吸附剂的吸附和还原性能,需要控制在适宜的范围内。

活性炭联合脱硫脱硝技术的应用领域主要包括石油化工、电力、冶金等工业领域。

石油化工行业废气中的硫氧化物和氮氧化物含量较高,采用活性炭联合脱硫脱硝技术可以有效地减少废气对环境的污染。

电力行业燃煤发电过程中会产生大量的硫氧化物,采用该技术可以降低二氧化硫的排放量。

冶金行业烧结烟气中也含有大量的氮氧化物,采用活性炭联合脱硫脱硝技术可以降低废气对大气的污染。

活性炭联合脱硫脱硝技术是一种有效处理废气中硫氧化物和氮氧化物的技术。

该技术具有处理效果好、投资成本低、运行成本低等优点,适用于石油化工、电力、冶金等工业领域。

在实际应用中,需要合理选择吸附剂、调整操作参数,以达到最佳的处理效果。

活性参考资料焦同时脱硫脱硝技术(AC)

活性参考资料焦同时脱硫脱硝技术(AC)

活性焦同时脱硫脱硝技术(AC)活性焦具有较大的比面积,从19世纪起就已广泛的用作空气清洁剂和废水处理剂。

人们很早就知道活性焦吸收SO2、氧和水产生硫酸。

到了20世纪70年代后期,已有数种工艺在日本、德国、美国得到工业应用。

其典型方法有:日立法、住友法、鲁奇法、BF法等。

目前已由电厂应用扩展到石油化工、硫酸及肥料工业领域。

在活性焦吸收脱硫系统中加入氨,即可同时脱除NO x。

图1 活性焦吸收法同时脱硫脱硝工艺系统示意图该工艺主要由吸附、解吸和硫回收三部分组成,见图1。

烟气进入含有活性焦的移动床吸收塔,通常从空气预热器中出来的烟气温度为120~160℃,该温度是此工艺的最佳温度,能达到最高的脱除效率。

吸收塔由两段组成,活性焦在垂直吸收塔内由重力从第二段的顶部下降至第一段的底部。

烟气水平通过吸收塔的第一段,在此SO2被脱除,烟气进入第二段后,在此通过喷入氨除去NO x。

其中脱硫的主要反应是:SO2 +1/2O2→SO3 (1)SO3+H2O→H2 SO4 (2)在吸收塔的第二段中,活性焦又充当了SCR工艺中的催化剂,在100~200℃时向烟气中加入氨就可脱除NOx。

脱硝的主要反应是:4NH3+6NO→5N2+6H2O (3)8NH3+6NO2→7N2+12H2O (4)2NH3+2NO+1/2O2→2N2+3H2O (5)同时有以下副反应:SO2+2NH3+H2O +1/2O2→(NH4)2SO4(6)在再生阶段,饱和态的吸附剂被送到再生器加热到400℃,解吸出浓缩后的SO2气体,每摩尔的再生活性焦可以解吸出2摩尔的SO2。

再生后的活性焦又通过循环送到反应器。

活性焦脱硫脱硝技术具有如下优点:①能够在同一温度区域,100~200℃,同时进行脱硫和脱硝。

②活性焦脱硫技术为干法脱硫技术,与湿法相比,不需要烟气再加热和排水设备,占地面积小,不腐蚀,运行管理容易。

③具有高的脱硫和脱硝效率,脱硫效率几乎达到100%,脱硝效率在80%以上。

活性焦同时脱硫脱硝工艺在我国火电厂烟气治理中的应用前景分析

活性焦同时脱硫脱硝工艺在我国火电厂烟气治理中的应用前景分析

活性焦同时脱硫脱硝工艺在我国火电厂烟气治理中的应用前景分析摘要:将烟气脱硫脱硝过程合并在同一套工艺流程中进行,将是今后火电厂烟气污染物治理技术的发展趋势。

本文对国内目前火电厂大气污染物排放标准的现状、各种研发中的烟气脱硫脱硝一体化技术的特点、活性焦同时脱硫脱硝技术的机理和发展状况进行论述,对各种技术优缺点进行分析,阐述活性焦同时脱硫脱硝技术在我国火电厂烟气治理中的应用前景。

关键词:火电厂活性焦脱硫脱硝一体化0 前言目前国内火力发电厂广泛采用的烟气脱硫脱硝方式是传统的烟气脱硫技术(FGD)和选择性催化还原技术(SCR)各自独立工作,分别脱除烟气中的SO2和NOx的脱硫脱硝技术。

不但占地面积大,设备阻力大,而且投资、运行费用高。

目前国际上已经把开发技术简单,运行成本低,具有更好的运行性能的多污染物协同治理技术(包括除尘、脱硫、脱硝、脱汞等)作为燃煤烟气治理技术发展的方向之一,将脱硫脱硝技术合并在同一套工艺流程中进行,不仅能实现同时脱硫脱硝的目的,还可节省操作费用、节约占地、降低投资成本并减少废物产生,这也将是今后烟气污染物治理技术的发展趋势。

1 我国火电厂烟气脱硫脱硝一体化的选型原则国标《火电厂大气污染物排放标准》(GB 13223-2011)对新建火电厂大气污染物排放限值SO2和NOx为100mg/Nm3,根据《煤电节能减排升级与改造行动计划(2014-2020年)》的要求,为实现超低排放的标准,SO2和NOx排放浓度需要分别达到35mg/Nm3和50mg/Nm3。

因此,根据我国目前的国情,具有发展潜力、适用于大容量机组、能适应将来更加严格的环境控制标准的烟气脱硫脱硝一体化技术至少应能满足以下要求:1)脱硫、脱硝效率能够达到目前湿法脱硫和SCR脱硝工艺能达到的水平,即脱硫效率能达到95%以上,脱硝效率至少能达到80%以上,具有达到更高脱除效率的发展潜力;2)具备一定的脱除汞等其它污染物的能力;3)不能产生或尽量少产生难以处理又不具备综合利用价值的副产物;4)系统工艺、设备制造、运行维护相对简单,符合中国国情;5)设备投资、运行维护费用在可接受的水平以内。

活性焦脱硫脱硝技术在烧结烟气中的应用

活性焦脱硫脱硝技术在烧结烟气中的应用

活性焦脱硫脱硝技术在烧结烟气中的应用【摘要】国家法律法规对钢铁行业烧结烟气的排放要求日趋严格,根据烧结烟气的特性,分析活性焦脱硫脱硝技术的技术特点,并与其它脱硫脱硝技术在技术、初投资和运行费用相比较,值得大规模推广。

【关键词】活性焦;脱硫脱硝;运行费用随着我国大气环境形势日益严峻,大气污染物控制的环保标准液不断提高,我国的控制标准已经与欧美发达国家标准看齐,且有部分标准已经高于欧美要求,根据国家环保相关规定,新建烧结厂2012年10月1日起,现有烧结厂2015年1月1日起需执行《钢铁烧结、球团工业大气污染排放标准》,其烧结烟气的治理刻不容缓。

一、烧结烟气的特点钢铁行业烧结过程是一个高温燃烧条件下的复杂物理化学过程,在高温烧结过程中产生含有SO2、NOx、HCL、CO2、二噁英等多种污染物和粉尘的废气。

由于烧结工艺及原料成分和配比的不稳定性,致使烟气成分复杂,烟气流量、温度及污染物浓度大幅度波动,主要有以下几个特点【1】:(1)烟气温度较低,一般为120℃-180℃;(2)烟气量波动大,幅度可高达40%以上;(3)SO2浓度变化大,范围一般在800-1500 mg/Nm3,高的可达2000-4000 mg/Nm3;(4)NOX浓度变化大,范围在200-450 mg/Nm3;(5)烟气的含湿量大且不稳定,一般为10%-13%,露点温度高(65-80℃);(6)烟气含氧量高,一般为15%-18%;(7)含有多种污染物,除含有SO2、NOx、粉尘外,还含有二噁英和重金属。

中科院闫晓淼【2】等人对我国数十台烧结机烟气污染物的排放特征进行统计研究,几乎所有的烧结机都需要安装90%以上脱硫设备,大约16%的烧结机需要安装脱硝效率在50%以上的脱硝设备,目前NOx的平均排放浓度224mg/ m3,随着国家对排放标准的进一步严格,大多数的烧结机都将需要安装脱硝装置;根据笔者了解,目前不少地方政府和烧结厂已经意识到这个问题的紧迫性,因此对新建的脱硫系统或者脱硫改造工程中已经对NOx排放有相应的规定,要求脱硫脱硝装置同步建设,且可在满足NOx排放要求时,只运行脱硫系统。

活性焦联合脱硫脱硝技术及其在我国的适用性分析

活性焦联合脱硫脱硝技术及其在我国的适用性分析
收稿 日期 :2 1 -40 0 00 .5 - 作者简介 :解 炜 ( 95 ) 18一 ,男 ,安徽 淮南人 ,中国矿 业
分 为 2大类 ,即同时脱硫 脱 硝 (iut eu O/ Sm lnos : a S
大学( 北京) 化学与环境 工程学院 20 0 8级在读硕士研究 生,研 究
方 向 洁 净 煤 技术 。
( .中国矿业 大学 ( 1 北京 )化 学与环境 工程学 院 ,北 京 10 8 ; 0 0 3 2 .煤炭科 学研究 总院 北 京煤化 工研究 分院 ,北 京 10 1 ) 0 0 3 摘 要 :介 绍 了国 内外脱硫 脱硝 工艺技 术的发 展情 况 ;重点分 析 了活 性 焦联合 脱 硫脱 硝技
关键词 :烟 气 ;活 性焦 ;脱硫 ;脱 硝 ;适用 性
中图分类 号 :X 0 . 7 13
文 献标 识码 :A
文章 编号 :10 —3 7 2 1 ) 30 3 - 0 58 9 (0 0 0 -0 4 4 0 中使 用 最 多 的 是 石 灰 石/ 灰一石 膏 湿 法 工 艺 。 石
和 2. J O 2 6 Mtl 。S ,和 N 是 大 气 的 主 要 污 染 J O 物 ,它 们 产 生 酸 雨 、形 成 光 化 学 烟 雾 、破 坏 臭
这是 目前脱 硫效 率 最 高 的 烟 气脱 硫 ( G 技术 , F D) 在钙 硫摩尔 比值 为 11~25时 ,脱 硫 效 率 可达 . . 9 % ~ 。我 国对 此工艺 主要 是在 引进 国外技 术 的 8 基础上 进行 消化吸 收 ,但 在一些 关键 设备 的制造









No 3, 2 0 . 01

活性焦一体化脱硫脱硝烟气净化技术相关思考与论述

活性焦一体化脱硫脱硝烟气净化技术相关思考与论述

一、活性焦的性质活性焦是这些年新研究出的一种新型吸附材料,煤炭是活性焦的制作原料。

活性焦的性质表现上分为三个方面,在表面构成物理特征中呈现出孔隙结构的特点;在化学特征中则是由表面种基团种类作为吸附中心发生作用。

这两种性质就决定了活性焦比活性炭的化学性更加稳定,并且具有较为明显的还原性,负载性能也更突出。

由此,在应用时,可以发挥其高分散催化的效果,并将其作为还原剂应用。

活性焦和活性炭相比较来说,具有比较低的成本。

鉴于以上,活性焦比活性炭具有更多的优势。

当中加热法以及水洗法是比较常用的两种再生措施,在对这两种方法应用的过程当中会将不同的副产物产生,其具体情况如表1所示。

表1 活性焦的性质1.活性焦的表面物理性质表面积及孔结构是活性焦两个主要的物理特性。

在活性焦的结构方面,因为结构不是有规律排列的微晶炭,在活性焦当中有一些地方会存在空隙,所以就会有很多的微孔存在,内比表面积就会比较大,可以让活性焦的吸附功能加强。

而且,在这种材料当中,孔结构的表面和数量越多,其物理分析的扩散效果就会更突出。

现阶段,对活性焦表面物理特性的分类,是从孔结构大小进行区分,包括微孔、中孔、大孔三种孔径,其半径的不同,在对催化方面产生吸附作用的过程当中,也会有一定的差别存在。

2.活性焦的表面化学性质分析活性焦的表面化学性质,离不开对其表面物质的分析。

一般而言,活性焦的表面是由氮、氧等成分的官能团组成,其作为活性焦吸附作用的活性中心,不同性质的材料也将影响其应用效果。

通常利用弱极性的活性焦材料,可以提升其吸附的催化效果,避免活性焦对无机物或有机物的选择性吸附。

一般情况下,在活性焦材料表面产生碱性官能团时,更容易吸附酸性物质;而当其产生酸性官能团,则对碱性物质则的吸附效果更好。

3.活性焦的再生性质根据活性焦的表面化学性质,其在利用自身物理特性进行吸附时,会在表面形成一种吸附物质层,从而覆盖活性焦的表面,并抑制活性焦的活性和吸附性,从而降低活性焦所具有的脱除效果,减少其吸附性能的发挥。

活性焦联合脱硫脱硝技术在烟气治理中的应用

活性焦联合脱硫脱硝技术在烟气治理中的应用

活性焦联合脱硫脱硝技术在烟气治理中的应用发布时间:2023-07-05T01:42:15.601Z 来源:《科技潮》2023年9期作者:翁淑容[导读] 活性焦脱硫脱硝技术是一种新型烟气治理方法。

上海克硫环保科技股份有限公司南京分公司摘要:烟气污染是全球面临的一项重大环境问题,尤其在工业化程度较高的地区更为严重。

烟气中主要包含二氧化碳、二氧化硫、氮氧化物、颗粒物以及各种有害的重金属颗粒等,这些污染物不仅对环境产生负面影响,还对人类健康构成威胁。

二氧化硫和氮氧化物等在大气中会生成酸雨,影响土壤和水质,对生物多样性和生态系统功能产生破坏性影响。

颗粒物和重金属等则能进入人体肺部,引发各种呼吸系统疾病,甚至导致生命危险。

因此,有效地治理烟气污染,减少有害物质的排放,已经成为当前环保事业的重要任务,同时也是全球工业发展面临的重大挑战。

关键词:活性焦;脱硫脱硝;烟气治理活性焦脱硫脱硝技术是一种新型烟气治理方法。

活性焦是一种具有极高吸附能力的物质,其独特的微孔结构使其能够有效吸附烟气中的有害物质。

在脱硫脱硝过程中,活性焦的表面产生一系列复杂的化学反应,如硫的吸附和氮的吸附,有效地去除烟气中的二氧化硫和氮氧化物等有害物质。

此技术具有工艺简单,脱除效率高、协同脱除多种污染物、副产物可资源化利用、节水等优点。

因此,活性焦脱硫脱硝技术被视为一种有效、绿色友好的烟气治理方式。

1.活性焦脱硫脱硝技术详述1.1活性焦制备及其特性活性焦是一种独特的碳素材料,具有良好的吸附性能和催化活性。

其制备过程主要包括原料预处理、炭化和活化三个步骤。

原料预处理主要是将生物质或煤等碳源经过破碎、干燥等预处理操作,以提高其碳化和活化效果。

炭化过程是将预处理后的原料在一定的温度条件下进行加热,使其脱去非碳元素,生成富含碳元素的半焦或焦炭。

活化过程则是将炭化后的产品在800-900℃的高温下,与活化剂(如蒸汽、二氧化碳等)接触,进行氧化反应,从而在焦炭中生成大量的微孔和中孔,形成独特的孔道结构。

钢铁行业采用活性焦干法脱硫脱硝一体化技术需注意的六个问题

钢铁行业采用活性焦干法脱硫脱硝一体化技术需注意的六个问题

钢铁行业采用活性焦干法脱硫脱硝一体化技术需注意的六个问题5月29日,国际中国环境基金会会长何平博士在河北邯郸/武安“2018走进钢铁行业技术交流会、钢铁行业大气污染综合治理排放达标专题会议” 上发表演讲。

根据生态环境部发布的《钢铁企业超低排放改造工作方案(征求意见稿)》,鼓励钢铁企业采用活性碳(焦)等多污染物协同处置技术。

活性焦干法脱硫脱硝一体化技术(以下简称“活性焦干法技术”)是一项成熟的工业烟气污染治理技术,在日本、韩国和中国都有大型化应用,具有耗水少、副产物综合利用、排烟透明度好等优点。

但活性焦干法技术目前并没有在我国大规模推广应用,很多用户对该技术依然比较陌生。

同时,我国钢铁企业球团烧结工况条件不稳定,尤其是前级除尘效果普遍不佳,同时技术力量普遍欠缺,在采用对工况条件稳定性和技术力量要求较高的活性焦干法技术过程中,势必会遇到各种问题。

本文作者对活性焦干法技术具体应用过程中存在的六类问题进行了梳理,并提出针对性解决方案,以期对钢铁企业用户在项目工艺选择和建设过程中有所帮助。

一、可靠性问题活性焦干法技术已经被国内外的案例实践证明是一项成熟、稳定、可靠、高效的工业烟气污染治理技术。

但是作为一项工程技术,其可靠性只针对在一定条件具备下而言,并非毫无条件的。

这意味着,其治理效果可靠性很大程度上取决于具体项目中活性焦干法装置设计处理容量的大小,对应的烟气量、流速、污染物浓度等等因素。

而如果实际烟气量、流速和污染物浓度超过了系统设计的参数,那么系统的可靠性就会大大折扣。

比如说,烟气及污染物在系统内所需要的停留时间,如果系统设计偏小,系统内烟气流速过快,则污染来不及被活性焦吸附和反应,最终导致污染物排放超标。

因此说,在中国这样一个以低价竞争和偷工减料为惯性的特殊国情环境下,遴选建设总包单位和审查设计方案的过程中需要非常注意系统选型问题。

此其一。

其二,影响活性焦干法技术效果可靠性的因素是污染物初始浓度,即进入到活性焦干法处理装置的主要三项污染物的浓度。

活性焦脱硫脱硝原理

活性焦脱硫脱硝原理

反应器空速:规定的条件下,单位时间单位体积催化剂处理的气体量,单位为m3/(m3催化剂·h),可简化为时间h-1。

反应器中催化剂的装填数量的多少取决于设计原料的数量和质量以及所要求达到的转化率。

通常将催化剂数量和应处理原料数量进行关联的参数是液体时空速度。

空速是指单位时间里通过单位催化剂的原料油的量,它反应了装置的处理能力。

空速有两种表达形式,一种是体积空速,另一种是质量空速。

体积空速=原料油体积流量(20℃,m3.h-1)/催化剂体积(m3)质量空速=原料油质量流量(㎏.h-1)/催化剂质量(kg)空速是根据催化剂性能、原料油性质及要求的反应深度而变化的。

活性焦脱硫脱硝原理活性焦内具有较多的大孔(>50nm)、中孔(2.0~50nm),较少的微孔(<2nm),孔隙已连贯的形态存在与活性焦内。

活性焦吸附污染物时有二种作用机理,一种为物理吸附,一种为化学吸附。

物理吸附作用依赖于活性焦多孔比表面积大的特性,将烟气中的污染物截流在活性焦内,利用微孔与分子半径大小相当的特征,将污染物分子限制在活性焦内。

化学吸附依靠的是活性焦表面的晶格有缺陷的C原子、含氧官能团和极性表面氧化物,利用它们所带的化学特征,有针对性的固定污染物在活性焦内表面上。

活性焦脱硫脱硝工艺流程120~160℃的烟气通过增压风机加压进入脱硫岛烟气以一定气速进入吸附塔,烟气均匀的穿过活性焦吸附层,在吸附层内二氧化硫、汞、砷等重金属、HF、HCL 和二噁瑛等大分子氧化物被脱除,脱除后的净烟气经净烟道汇集通过烟囱排放。

吸附SO2达到饱和的活性焦从吸附塔底部排出,通过输送系统运至解析塔进行加热再生;再生的活性焦经筛分后会同补充的新鲜活性焦再送入吸附系统进行循环吸附使用。

经筛分破损活性焦从活性焦循环系统分离出来可以进入锅炉燃烧或再加工成其他产品。

再生回收的高浓度SO2混合气体送入硫回收系统作为生产浓硫酸的原料。

活性焦脱硫系统组成活性焦脱硫系统由烟气系统、吸附系统、解析系统、活性焦储存及输送系统、硫回收系统等组成。

活性焦联合脱硫脱硝技术

活性焦联合脱硫脱硝技术

活性焦联合脱硫脱硝技术宋丹(中国人民大学环境学院,北京 100872)摘要:本文介绍了活性焦联合脱硫脱硝技术的含义,重点分析了其脱除机理、工艺流程、优缺点、应用情况与发展前景,指出该技术可以有效地脱除烟气中的SO2与NO X,工艺简单,活性焦可以再生,脱除过程基本不耗水,无须对烟气进行加热,还实现了对硫的资源化利用,是适合我国国情的烟气脱硫脱硝技术,但仍需进一步的开发与研究。

关键词:活性焦;脱硫;脱硝;烟气Activated Coke Combined Desulfurationand Denitration TecnologyAbstract: This article described the meaning of activated coke combined desulfuration and denitration tecnology,and selectively analysed the reaction mechanism of the removal of SO2/NO X,the technological process,the advantages and disadvantages,the situation of application and the develpment of this tecnology.Pointed out that the activated coke combined desulfuration and denitration tecnology achieved effective removal of SO2/NO X with simple process,regenration of activated coke,no-water procudure and without any extra gas heating step.Besides,it accomplished the re-utilization of sulfur resources,which is in line with China’s national conditions and has broad application prospects.However,further research and develpment work is still needed.Keywords: activated coke;desulfuration;denitration;flue gas我国的能源结构以煤炭为主,是世界上最大的煤炭生产国与消费国。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

活性焦同时脱硫脱硝技术(AC)
活性焦具有较大的比面积,从19世纪起就已广泛的用作空气清洁剂和废水处理剂。

人们很早就知道活性焦吸收SO2、氧和水产生硫酸。

到了20世纪70年代后期,已有数种工艺在日本、德国、美国得到工业应用。

其典型方法有:日立法、住友法、鲁奇法、BF法等。

目前已由电厂应用扩展到石油化工、硫酸及肥料工业领域。

在活性焦吸收脱硫系统中加入氨,即可同时脱除NO x。

图1 活性焦吸收法同时脱硫脱硝工艺系统示意图
该工艺主要由吸附、解吸和硫回收三部分组成,见图1。

烟气进入含有活性焦的移动床吸收塔,通常从空气预热器中出来的烟气温度为120~160℃,该温度是此工艺的最佳温度,能达到最高的脱除效率。

吸收塔由两段组成,活性焦在垂直吸收塔内由重力从第二段的顶部下降至第一段的底部。

烟气水平通过吸收塔的第一段,在此SO2
被脱除,烟气进入第二段后,在此通过喷入氨除去NO x。

其中脱硫的主要反应是:
SO2 +1/2O2→SO3 (1)
SO3+H2O→H2 SO4 (2)
在吸收塔的第二段中,活性焦又充当了SCR工艺中的催化剂,在100~200℃时向烟气中加入氨就可脱除NOx。

脱硝的主要反应是:
4NH3+6NO→5N2+6H2O (3)
8NH3+6NO2→7N2+12H2O (4)
2NH3+2NO+1/2O2→2N2+3H2O (5)
同时有以下副反应:
SO2+2NH3+H2O +1/2O2→(NH4)2SO4(6)
在再生阶段,饱和态的吸附剂被送到再生器加热到400℃,解吸出浓缩后的SO2气体,每摩尔的再生活性焦可以解吸出2摩尔的SO2。

再生后的活性焦又通过循环送到反应器。

活性焦脱硫脱硝技术具有如下优点:
①能够在同一温度区域,100~200℃,同时进行脱硫和脱硝。

②活性焦脱硫技术为干法脱硫技术,与湿法相比,不需要烟气再加热和排水设备,占地面积小,不腐蚀,运行管理容易。

③具有高的脱硫和脱硝效率,脱硫效率几乎达到100%,脱硝效率在80%以上。

重金属等有害物质可以同时被除去。

活性
焦层的除尘作用可使排烟粉尘浓度小于10mg/Nm3。

④再生产生的硫磺或硫酸可作为副产品销售,而且,用过废弃的活性焦可作为燃料处理。

⑤吸收塔压力损失稳定,不会发生堵塞现象,因而运行可靠。

目前在发达国家采用活性焦脱硝工艺的电厂数量不多,该技术未被广泛应用的主要原因是初投资费用都比较高,另外,该系统内部设备多,所需场地比较大;活性焦吸收法脱硫能否得到应用的另一关键是解决副产物的应用市场。

相关文档
最新文档