(完整版)555振荡器工作原理

合集下载

555振荡电路的工作原理

555振荡电路的工作原理

555振荡电路的工作原理
555振荡电路主要由比较器、RS触发器、输出级、电源等组成,其工作原理如下:
1. 稳态初始:引脚RESET为高电平,将RS触发器复位,输出Q为低电平,输出Q为高电平。

2. 充电过程:由于电容C1放电时电压较低,触发电压(VTH)较高,此时引脚THRES为低电平。

电阻R1和电阻R2的分压作用使比较器引脚TRIG为高电平。

由于RESET引脚为高电平,RS触发器复位,Q输出为低电平,Q输出为高电平。

因此,电容C1开始充电,直到电压上升到比较器引脚THRES 的触发电压。

3. 变化过程:当电容C1充电至比较器引脚THRES的触发电压时,比较器引脚THRES变为高电平,触发比较器,使RS 触发器置位。

Q输出为高电平,Q输出为低电平。

4. 放电过程:当RS触发器置位后,引脚THRES为高电平,比较器引脚TRIG变为低电平,RS触发器保持置位状态。

电容C1开始放电,直到电压下降到比较器引脚TRIG的触发电压。

5. 变化过程:当电容C1放电至比较器引脚TRIG的触发电压时,比较器引脚TRIG变为低电平,触发比较器,使RS触发器复位。

Q输出为低电平,Q输出为高电平。

通过充放电过程的反复循环,555振荡电路产生稳定的方波或
单稳态脉冲输出。

可通过调整电阻和电容的值来改变振荡频率。

由555定时器构成的多谐振荡器

由555定时器构成的多谐振荡器

由555定时器构成的多谐振荡器介绍多谐振荡器是一种能够产生多种频率输出的电路。

555定时器是一种经典的集成电路,它被广泛应用于定时、脉冲和振荡等电路中。

本文将介绍由555定时器构成的多谐振荡器的原理和工作方式。

原理多谐振荡器利用了555定时器的特殊功能和结构。

555定时器是一种8引脚的集成电路,通过控制引脚的电压来实现不同的功能。

其中,引脚1(GND)和引脚8(Vcc)分别是地(Ground)和电源(Power)引脚,引脚4(Reset)是重置引脚,引脚5(Control)是控制引脚,引脚6(Threshold)和引脚2(Trigger)是比较器的输入引脚,引脚3(Out)是输出引脚。

在多谐振荡器中,我们使用555定时器的比较器和比较器的输入引脚来实现不同频率的输出。

具体来说,我们通过控制电压在引脚5(Control)上的变化来改变555定时器的工作方式和输出频率。

通过调整控制引脚的电压,我们可以改变比较器的输出电平,从而控制555定时器的触发和重置行为,进而改变输出波形的频率。

构成由555定时器构成的多谐振荡器一般包括以下几个基本组成部分: 1. 555定时器:作为核心部件,控制多谐振荡器的工作以及输出频率的调节。

2. 电容器:用于控制振荡器的时间常数,进而影响输出频率。

3. 电阻器:用于控制电容器充电和放电的速度,从而进一步调节输出频率。

4. 比较器的输入引脚:通过改变引脚6(Threshold)和引脚2(Trigger)的电压,控制555定时器的触发和重置行为,改变输出频率。

5. 输出引脚:通过连接外部电路或元件,实现多种不同频率的输出。

工作方式多谐振荡器的工作方式如下: 1. 当电源接通时,555定时器的引脚5(Control)和引脚6(Threshold)的电压均为高电平。

2. 由于引脚5上的高电平,555定时器工作于稳态触发器模式,输出引脚保持低电平。

3. 当输出引脚为低电平时,通过电容器和电阻器进行充电。

555 振荡器 工作原理

555 振荡器 工作原理

555多谐振荡器工作原理FROM维库集成555定时器多谐振荡器1.多谐振荡器的工作原理多谐振荡器是能产生矩形波的一种自激振荡器电路,由于矩形波中除基波外还含有丰富的高次谐波,故称为多谐振荡器。

多谐振荡器没有稳态,只有两个暂稳态,在自身因素的作用下,电路就在两个暂稳态之间来回转换,故又称它为无稳态电路。

由555定时器构成的多谐振荡器如图1所示,R1,R2和C是外接定时元件,电路中将高电平触发端(6脚)和低电平触发端(2脚)并接后接到R2和C的连接处,将放电端(7脚)接到R1,R2的连接处。

由于接通电源瞬间,电容C来不及充电,电容器两端电压uc为低电平,小于(1/3)Vcc,故高电平触发端与低电平触发端均为低电平,输出uo为高电平,放电管VT截止。

这时,电源经R1,R2对电容C充电,使电压uc按指数规律上升,当uc上升到(2/3)Vcc 时,输出uo为低电平,放电管VT导通,把uc从(1/3)Vcc 上升到(2/3)Vcc这段时间内电路的状态称为第一暂稳态,其维持时间TPH的长短与电容的充电时间有关。

充电时间常数T充=(R1+R2)C。

由于放电管VT导通,电容C通过电阻R2和放电管放电,电路进人第二暂稳态.其维持时间TPL的长短与电容的放电时间有关,放电时间常数T 放=R2C0随着C的放电,uc下降,当uc下降到(1/3)Vcc时,输出uo。

为高电平,放电管VT截止,Vcc再次对电容c充电,电路又翻转到第一暂稳态。

不难理解,接通电源后,电路就在两个暂稳态之间来回翻转,则输出可得矩形波。

电路一旦起振后,uc电压总是在(1/3~2/3)Vcc 之间变化。

图1(b)所示为工作波形。

图1 555定时器构成的多谐振荡器电路及工作波形2.叮咚门铃如图2所示是一种能发出“叮、咚”声门铃的电路原理图。

它的音质优美逼真,装调简单容易、成本较低,图中的IC便是集成555定时器,它构成多谐振荡器。

按下按钮SB(装在门上),振荡器振荡,扬声器发出“口丁”的声音。

ne555振荡器工作原理

ne555振荡器工作原理

ne555振荡器工作原理
NE555振荡器工作的原理是利用555定时器的内部结构和外部元件的连接方式,产生一个稳定的方波信号。

NE555在振荡器电路中的主要连接是将电容C和电阻R与
555定时器的引脚2(TRIG)和6(THR)连接。

当电源电压
上升时,电容开始充电,引脚2的电压上升。

当电压达到比较器1的Vcc/3时,引脚3(OUT)输出低电平,比较器2的引
脚7(DISCH)也同样输出低电平。

这导致电容通过电阻R放电,并使引脚6的电压降低。

当电压下降到比较器2的Vcc/3时,引脚7的输出电平变为高
电平,电容开始充电,引脚6的电压上升。

同时,引脚3的输出电平也变为高电平。

这样,NE555振荡器就形成了一个周期性的方波信号,高电
平的时间和低电平的时间由电容C和电阻R的值决定。

可通
过调整电容和电阻的数值来改变产生的方波信号的频率。

总结起来,NE555振荡器的工作原理是利用555定时器的内部比较器和外部元件的连接方式,通过电容和电阻的充放电过程,产生稳定的方波信号。

555多谐振荡器电路原理

555多谐振荡器电路原理

555多谐振荡器电路原理
555多谐振荡器电路原理主要是指由一个555定时器晶体管组成的电路,它可以按照其固定的频率和振幅来产生一个谐波振荡电压。

该电路也称为霍尔-罗伯逊振荡器电路,它包括一个555定时器晶体管,两个电容,一个电阻和一个振荡器电路。

从电路上看,它可以用来给电路提供一个定时脉冲电压输出,这个脉冲输出电压可以根据振荡器电路的频率和振幅来改变。

该电路主要由四部分组成,主要包括:
(1) 555定时器芯片:该芯片包括一个触发输入和一个重置输入,这两个输入可以控制电路的启动和停止。

(2) 两个电容:这两个电容可以用来累计负载的电荷,调节输出的振幅。

(3) 一个电阻:该电阻用来控制电路的触发频率。

(4) 振荡器电路:该电路可以用来控制输出的频率和振幅。

该电路的工作原理如下:
1、首先,触发输入端的电压比重置输入端的电压高,555定时器晶体管就会被触发,开始工作;
2、电路中的两个电容会累积电荷,引起电压升高,达到一定水平后,555的输出端就会被重置;
3、重置后,电容就释放到电阻中,电路就会再次从头开始工作;
4、这样一个循环,一直持续下去,可以产生出一个定时的谐波振荡电压,供给其他电路使用。

通过以上对555多谐振荡器电路原理的介绍,我们可以知道,该电路可以用来产生一个定时的谐波振荡电压,为其他电路提供电源。

555多谐振荡器电路原理

555多谐振荡器电路原理

555多谐振荡器电路原理555多谐振荡器电路原理555多谐振荡器电路是一种常用的电子元件,它可以产生多种频率的信号,广泛应用于电子设备中。

其原理是基于555定时器的工作原理,通过改变电容和电阻的值来改变输出信号的频率。

555定时器是一种非常常见的集成电路,它由比较器、RS触发器和输出级组成。

当输入端有高电平信号时,比较器输出为低电平,RS触发器将Q输出为高电平。

当输入端有低电平信号时,比较器输出为高电平,RS触发器将Q输出为低电平。

通过这种方式可以实现定时功能。

在555多谐振荡器中,我们需要使用其中的两个比较器来实现正弦波形和方波形的产生。

具体实现方法如下:1. 正弦波形产生正弦波形产生需要使用RC积分环路来实现。

在此过程中,通过改变RC积分环路中的R和C值可以改变正弦波形的频率。

当555定时器输出为高电平时,C1充放一次,并且通过R2和R3使得C1充放时间相等。

当定时器输出为低电平时,C1通过R2和R3放电,此时RC积分环路中的电压下降,当电压降至1/3Vcc时,比较器2的输出变为低电平,RS触发器将Q输出为低电平。

此时C1开始充放,当电压升至2/3Vcc时,比较器1的输出变为高电平,RS触发器将Q输出为高电平。

这样就完成了一个完整的正弦波形周期。

2. 方波形产生方波形产生需要使用比较器和反相器来实现。

在此过程中,通过改变R和C值可以改变方波形的频率。

当555定时器输出为高电平时,比较器1输出为高电平,反相器输出为低电平。

当定时器输出为低电平时,比较器2输出为低电平,反相器输出为高电平。

这样就完成了一个完整的方波形周期。

总结555多谐振荡器是一种常用的信号发生器,在工业、医疗、军事等领域都有广泛应用。

其原理是基于555定时器的工作原理,并通过改变RC积分环路和反相器中的元件值来改变信号频率和波形类型。

熟练掌握555多谐振荡器原理和实现方法,对于电子工程师来说是非常重要的技能。

ne555震荡器工作原理

ne555震荡器工作原理

ne555震荡器工作原理
555震荡器是一种集成电路,常用于产生高精度的方波震荡信号。

它的工作原理如下:
1. 外部电容C1和C2被连接到555芯片的控制引脚(pin 2和pin 6),并通过它们控制电压的变化。

2. 外部电阻R1和R2被连接到控制引脚(pin 2和pin 6)和电源
引脚VCC,通过它们控制电荷和放电的速率。

3. 引脚pin 4(复位引脚)通过外部电阻或电容连接到电源引
脚VCC,用于复位电路。

4. 引脚pin 8(电源引脚)连接到正电源,为芯片提供电源。

5. 引脚pin 5(控制电压引脚)通过外部电阻或电容与地连接,用于控制芯片的运行状态。

6. 当电源打开时,引脚3(输出引脚)的电平为低电平,并且
电容C1开始通过电阻R1充电。

7. 当电容C1的电压达到1/3的控制电压时,芯片内部的比较
器将引脚3的电平改为高电平,并且电容C1开始通过电阻R2放电。

8. 当电容C1的电压降到2/3的控制电压时,比较器将引脚3
的电平再次改为低电平,重复上述过程。

9. 通过调整电容C1、C2和电阻R1、R2的数值,可以控制震荡频率和占空比。

总结起来,555震荡器的工作原理就是通过控制电容的充放电过程,产生稳定的方波震荡信号。

555多谐振荡器工作原理

555多谐振荡器工作原理

555多谐振荡器工作原理555多谐振荡器是一种常用的多谐振荡器,由于其简单稳定的特点,在各种电路中得到了广泛的应用。

本文将介绍555多谐振荡器的工作原理和实现方法。

1. 555多谐振荡器的工作原理555多谐振荡器是一种基于555定时器的多谐振荡器,其工作原理可以分为以下几个步骤:1) 在555定时器的第一、第二引脚之间连接一个电阻网络,通过改变电阻值可以调节振荡器的频率。

2) 在555定时器的第二、第三引脚之间连接一个电容,通过改变电容值可以调节振荡器的频率。

3) 当电容器充电到2/3 Vcc时,555定时器的输出为低电平,电容器开始放电,直到电容器电压降到1/3 Vcc时,555定时器的输出变为高电平,电容器开始充电。

这个过程不断重复,从而产生了振荡信号。

4) 通过改变电阻值和电容值,可以调节振荡器的频率和波形。

2. 555多谐振荡器的实现方法555多谐振荡器的实现方法比较简单,只需要按照下面的步骤进行即可:1) 连接555定时器的第一、第二引脚,接入电阻网络。

2) 连接555定时器的第二、第三引脚,接入电容。

3) 连接555定时器的第六引脚,接入电源正极。

4) 连接555定时器的第一引脚,接入电源负极。

5) 连接555定时器的第五引脚,接入输出负载,如LED等。

6) 通过改变电阻值和电容值,可以调节振荡器的频率和波形。

3. 555多谐振荡器的应用555多谐振荡器在各种电路中都有广泛的应用,下面列举几个常见的应用:1) 闪光灯电路:通过连接一个放电管和一个电容,可以实现闪光灯的效果。

2) 蜂鸣器电路:通过连接一个压电陶瓷蜂鸣器,可以实现声音的输出。

3) LED闪烁电路:通过连接一个LED和一个电容,可以实现LED 的闪烁效果。

4) 电子钟电路:通过连接数个555多谐振荡器,可以实现电子钟的功能。

555多谐振荡器是一种简单稳定的多谐振荡器,具有广泛的应用前景。

希望本文能够对读者理解555多谐振荡器的工作原理和实现方法有所帮助。

555电路构成的多谐振荡器的工作原理

555电路构成的多谐振荡器的工作原理

555电路构成的多谐振荡器的工作原理1. 介绍多谐振荡器是一种能够在多个频率下产生高质量波形的电路,它在电子工程领域中有着广泛的应用。

其中,555电路构成的多谐振荡器因为其简单稳定的特点,被广泛应用于实际工程中。

2. 555电路的基本工作原理555电路是一种集成电路,在各种振荡器电路中有着广泛的应用。

它主要由一个比较器和一个SR触发器组成。

当电路的输入达到一定的电平以后,触发器的状态就会发生改变,产生一个输出脉冲。

此时,比较器会对此脉冲进行比较,并且产生相应的电平改变。

3. 多谐振荡器的构成多谐振荡器是通过改变电路中的电容值和电阻值来调整振荡频率的。

其实现过程主要涉及到一个RC环路和一个比较器。

555电路的基本工作原理决定了其具有可调节频率的功能,因此我们只需要加入适当的RC组合即可实现多谐振荡器的构造。

4. 555电路构成的多谐振荡器的工作原理在555电路构成的多谐振荡器中,通过改变电容C和电阻R的数值,可以调整振荡的频率。

当输入信号达到一定的电平以后,触发器的状态会发生改变,此时,比较器会产生一个输出信号,这个信号的频率与C和R的数值有关。

因此,通过改变C和R的数值即可改变输出信号的频率,从而实现多谐振荡器的调节。

5. 多谐振荡器的应用多谐振荡器在实际工程中具有广泛的应用,例如在调音台、通信设备中就有着应用。

通过调整多谐振荡器的参数,可以控制电路的振荡频率。

这种特性使得多谐振荡器可以用于电子设备的数字信号处理、模拟信号产生等方面。

总结:555电路构成的多谐振荡器的工作原理是通过改变RC组合的数值来控制电路的振荡频率。

555电路本身就拥有经典的可调频功能,这使得555电路构成的多谐振荡器具有了更好的调节性和应用性,适合在通信、音频、电视、测量仪器等领域中得到广泛的应用。

555电路构成的多谐振荡器的工作原理

555电路构成的多谐振荡器的工作原理

555电路构成的多谐振荡器的工作原理多谐振荡器是一种电子设备,能够产生多个不同频率的正弦波振荡信号。

其工作原理是基于RC(电阻-电容)网络和滤波电路的共同作用。

一个基本的多谐振荡器电路由以下几个关键组成部分构成:1. 比较器:一个用于产生矩形波的比较器负责驱动多谐振荡器电路,通常使用集成运算放大器来实现。

比较器会产生高低电平不断切换的矩形波信号,作为振荡电路的驱动信号。

2. RC网络:一个由电阻和电容构成的RC网络将矩形波信号转换为正弦波信号。

RC网络中电容起到存储电荷的作用,电荷的变化导致电容器两端电压的变化,从而产生正弦波振荡信号。

电阻和电容的取值决定了振荡信号的频率。

3. 反馈网络:一个反馈网络将一部分振荡电路的输出信号回馈到比较器,以使振荡电路得到稳定振荡。

反馈网络由电感、电容、电阻等元件构成,可以形成一个封闭的回路。

4. 滤波电路:一个滤波电路用于选择振荡信号的特定频率成分,滤除其他频率成分。

常见的滤波电路包括低通、高通、带通和带阻滤波器等。

滤波电路的作用是选择特定频率(多个)或频带的振荡信号输出。

综上所述,多谐振荡器的工作原理可以总结为以下几个步骤:1. 比较器产生矩形波:比较器接收外部驱动信号,并根据设定的阈值产生高低电平不断切换的矩形波信号。

2. RC网络将矩形波转换为正弦波:矩形波信号进入RC网络,电容器会根据矩形波信号的变化进行充放电,从而产生正弦波振荡信号。

3. 反馈网络产生稳定振荡:一部分振荡信号经过反馈网络回馈到比较器,使得振荡电路得到稳定的振荡。

4. 滤波电路选择特定频率成分:振荡信号通过滤波电路进行频率选择,滤除非目标频率成分。

根据滤波电路的不同,可以选择特定频率、频带或者滤除特定频率。

通过以上步骤,多谐振荡器可以产生多个不同频率的正弦波振荡信号。

振荡器的频率主要由RC网络的电阻和电容决定,通过调整这些参数可以改变振荡器的频率范围。

此外,滤波电路的种类和参数也会影响到振荡信号的频率特性。

555电路构成的多谐振荡器的工作原理

555电路构成的多谐振荡器的工作原理

555电路构成的多谐振荡器的工作原理多谐振荡器是一种能够产生多个谐振频率的振荡器。

它由一个555定时器电路和一个RC网络组成。

555定时器是一种常用的集成电路,具有精确的定时和脉冲控制功能,可以广泛应用于计时、频率测量、脉冲调制和振荡等领域。

多谐振荡器的工作原理如下:1. RC网络起振:在多谐振荡器中,RC网络起到自激振荡的作用。

该网络由电阻R和电容C组成,通过改变RC的数值可以调节谐振频率。

假设初始电压为0V,当电源开始供电时,电容C开始充电,电压慢慢增加。

2. 555定时器触发:在电容C充电过程中,当电压达到555定时器的触发电压时,555定时器的输出端产生高电平信号。

这个电压阈值是通过555定时器的控制电压(Vth)和电源电压(Vcc)比较得出的。

一般情况下,当电容C电压达到2/3的Vcc 时,触发电压被激活。

3. 输出反转:当555定时器的输出端产生高电平时,输出引脚Q会产生低电平。

这个低电平信号会经过一个反相器,然后再返回RC网络。

4. RC网络放电:当反向信号返回RC网络时,电容C开始放电,电压开始降低。

5. 555定时器复位:当电容C电压降低到1/3的Vcc时,555定时器的复位电压(Rst)被激活,输出引脚Q产生高电平信号,使RC网络重新开始充电过程。

通过不断充电和放电的过程,RC网络和555定时器相互作用,使电路达到自激振荡的状态。

通过调节RC网络的数值,可以改变振荡频率,从而产生不同的谐振频率。

总结起来,多谐振荡器的工作原理核心在于RC网络和555定时器的相互作用。

RC网络起到谐振和放电的作用,而555定时器则根据RC网络的状态产生相应的触发信号,并控制输出信号的状态。

通过不断的充电和放电过程,实现了多谐振荡器的稳定振荡。

这种电路结构简单、可靠性高,非常适合用于产生多个谐振频率的应用场景。

(完整版)555震荡电路

(完整版)555震荡电路

(完整版)555震荡电路555振荡电路一、实验目的1.熟悉集成定时器555的工作原理及功能;2.了解555定时器的使用方法。

二、实验原理555集成定时器是一种模拟和数字电路相混合的集成电路。

它结构简单,使用灵活,用途十分广泛,可以组成多种波形发生器、多谐振荡器、定时延时电路、双稳触发电路、报警电路、检测电路、频率变换电路等。

555定时器的电路原理图及管脚排列图分别如图27-1和27-2所示。

555含有两个比较器A 1、A 2。

A 1参考电压为CC U 32,A 2参考电压为CC U 31。

当CCTL U 31U >时,A 2输出为1;当CC TL U U 31<时,A 2输出为0,则使R-S 触发器置1。

当CC TH U 32U <时,A 1输出为1;CC TH U U 32>时,A 1输出为0,使R-S 触发器置0。

5端为电压控制端,通过外接一个参考电源,可以改变上、下触发电位值,不用时,可通过一个0.01μF 旁路电容接地。

4端为触发器复位端,不用时应接高电平。

总之,555相当于一个可用模拟电压来控制翻转的R-S 触发器。

555电路有无稳态、单稳态和双稳态三种基本工作方式。

用这三种方式中的一种或多种组合起来可以组成各种实用电子电路(用得最多的是前两种方式)。

用555定时器组成的多谐振荡器的原理图如图27-3所示。

R 1、R 2、C 是外接元件。

当u c 因电源接通对C 充电而上升到CC U 32时,比较器A 1输出为低电平,使R-S 触发器输出置0,T 导通,电容C 通过T 放电;当u c 因电容放电而减小到略低于CC U 31时,比较器A 2输出为低电图27-2 555定时器的引脚图WR 5 6图27-1 555定时器的原理电路DIS TL THVC 复位端高触发端放电端低触发端电压控制端电源端平,使R-S 触发器输出置1,T 截止,电容C 继续充电直到u c 略高于CC U 32时,触发器又翻转到0,从而完成一个周期振荡。

555定时器构成的多谐振荡器(1)

555定时器构成的多谐振荡器(1)

555定时器构成的多谐振荡器简介555定时器是一种常用的IC芯片,常用于实现定时器和振荡器等功能。

本文将介绍使用555定时器构成的多谐振荡器电路及其基本原理。

多谐振荡器电路图多谐振荡器是一种能够同时产生多个频率的振荡器。

使用555定时器可以构成多谐振荡器电路,其电路图如下:+---------+| || 7 |<-- C1 --+| --- | |Vin ---|1 | |\\ || | 555 | | R1 || | |/ || --- | |Vout1 ---|3 | |<-- C2 --+| |Vout2 ---|2 | || --- || | | R2| | 555 || --- || || 6 || |+---------+其中,Vin为输入电压,C1和C2为两个电容器,R1和R2为两个电阻。

Vout1和Vout2为输出电压,可以产生多个不同频率的信号。

基本原理555定时器在555定时器中,有三个引脚被定义为控制引脚,分别是引脚2(TRIG),引脚4(Reset),和引脚5(Control Voltage)。

在振荡电路中一般不用到引脚4和5,因此本文不再介绍。

当555定时器的Trigger引脚接收到低电平时,输出电压将由高电平瞬间变为低电平。

当Threshold引脚接收到高电平时,输出电压由低电平变为高电平。

当Output引脚处于高电平时,内部集成电路中的Transistor处于开启状态;当Output引脚处于低电平时,Transistor处于关闭状态。

多谐振荡器多谐振荡器是一种同时产生多个不同频率的振荡器。

在555定时器构成的多谐振荡器中,电容器C1和C2的作用是限制电阻R1和R2的充放电时间,从而产生不同频率的输出信号。

当输入电压高于一定电平时,电容器开始充电,直到Trigger引脚接收到低电平时,输出电压由高变为低。

随着时间的增加,电容器重新开始充电,直到Threshold引脚接收到高电平,输出电压又由低变为高。

(完整版)555振荡器工作原理

(完整版)555振荡器工作原理

555 多谐振荡器 工作原理原理1、555定时器内部结构555定时器是一种模拟电路和数字电路相结合的中规模集成电路,其内部结构如图(A ) 及管脚排列如图(B )所示。

它由分压器、比较器、基本R--S 触发器和放电三极管等部分组成。

分压器由三个5K 的等值电阻串联而成。

分压器为比较器1A 、2A 提供参考电压,比较器1A 的参考电压为23cc V ,加在同相输入端,比较器2A 的参考电压为13cc V ,加在反相输入端。

比较器由两个结构相同的集成运放1A 、2A 组成。

高电平触发信号加在1A 的反相输入端,与同相输入端的参考电压比较后,其结果作为基本R--S 触发器_D R 端的输入信号;低电平触发信号加在2A 的同相输入端,与反相输入端的参考电压比较后,其结果作为基本R —S 触发器_D S 端的输入信号。

基本R--S 触发器的输出状态受比较器1A 、2A 的输出端控制。

多谐振荡器工作原理由555定时器组成的多谐振荡器如图(C)所示,其中R 1、R 2和电容C 为外接元件。

其工作波如图(D)所示。

设电容的初始电压c U =0,t =0时接通电源,由于电容电压不能突变,所以高、低触发端TH V =TL V =0<13VCC,比较器A1输出为高电平,A2输出为低电平,即_1D R =,_0D S =(1表示高电位,0表示低电位),R S -触发器置1,定时器输出01u =此时_0Q =,定时器内部放电三极管截止,电源cc V 经1R ,2R 向电容C充电,c u 逐渐升高。

当c u 上升到13cc V 时,2A 输出由0翻转为1,这时__1D D R S ==,R S -触发顺保持状态不变。

所以0<t<1t 期间,定时器输出0u 为高电平1。

1t t =时刻,c u 上升到23cc V ,比较器1A 的输出由1变为0,这时_0D R =,_1D S =,R S -触发器复0,定时器输出00u =。

用555定时器组成多谐振荡器

用555定时器组成多谐振荡器

用555定时器组成多谐振荡器一、电路结构多谐振荡器是无稳态电路,两个暂稳态不断地交替。

图1为用SG555组成的多谐振荡器电路图。

利用放电管V作为一个受控电子开关,使电容充电、放电而转变UC 上升或下降。

令UC=TH=TR ,则交替置0,置1。

R1,R2和C为定时元件。

图1 用555定时器组成多谐振荡器二、工作原理1,接通电源Vcc后,Vcc经电阻R1,R2对电容C充电,其电压UC 由0按指数规律上升,当UC≥2/3Vcc时,电压比较器C1和C2的输出分别为:UC1=0,UC2=1基本RS触发器被置0,Q=0,Q=1,输出U0跃到低电平UOL于此同时,放电管V导通,电容C经电阻R2、放电管V 放电电路进入暂稳态。

2,随着电容C的放电,UC随之下降。

当UC下降到UC ≤2/3Vcc ,则电压比较器C1和C2的输出为UC1=1,UC2=0基本RS触发器被置1,Q=1,Q=0,输出U0由低电平UOL跃到高电平UOH同时,因Q=0,放电管V截止,电源Vcc又经电阻R1,R2对电容C充电。

电路又返回到前一个暂稳态。

3,这样,电容C上的电压UC将在2/3 Vcc 和1/3Vcc之间来回放电和充电,从而使电路产生了振荡,输出矩形脉冲。

三、输出波形图2 多谐振荡器的工作波形多谐振荡器的振荡周期T为:T=tw1+tw2tww1为电容C上的电压由1/3 Vcc下降到2/3 Vcc 所需要的时间,充电回路的时间常数为(R1+R2)Ctww1可用下式估算tw1=(R1+R2)CLn2≈0.7(R1+R2)Ctw2 为电容C上的电压由2/3 Vcc下降到1/3 Vcc所需的时间,放电回路的时间常数为R2C,tw2可用下式估算tw2=R2CLn2=0.7R2C所以,多谐振荡的振荡周期T为T=tw1+tw2≈0.7(R1+R2)C振荡频率为:f=1/T=1/0.7(R1+2R2)C四、占空比可调的多谐振荡器图3 用555定时器组成占空比可调的多谐振荡器在放电管V截止时,电源Vcc经R1和VD1对电容C充电;当V导通时,C经VD2 ,R2和放电管V放电。

555振荡器工作原理

555振荡器工作原理

555振荡器工作原理
振荡器是一种电子电路,可以将直流电能转化为交流电信号。

555振荡器是一种广泛应用的集成电路,由一组电容、电阻和
比较器构成,具有稳定性和可靠性。

555振荡器的工作原理如下:首先,电压Vcc通过供电电源与555芯片相连,将芯片正常工作所需电能提供给它。

然后,通
过连接的RC网络(由电容C和电阻R构成)为555芯片提供稳定的参考电压。

555芯片内部有两个比较器,分别是上比较器和下比较器,它
们通过对输入电压进行比较来确定输出电平。

接下来,通过外部的电阻和电容的组合,555芯片的内部电流被充放电。

当电
压达到上比较器的阈值电平时,输出电平从低电平跃升为高电平。

而当电压达到下比较器的阈值电平时,输出电平从高电平跃升为低电平。

这样,555振荡器就会在上下比较器之间不断切换,从而产生稳定的交流信号。

具体而言,当电压在RC网络上升时,555芯片内部电流开始
充电,当充电电压达到上比较器的阈值电平时,输出电平由低变高。

接着,RC网络开始放电,电压下降,当放电电压达到
下比较器的阈值电平时,输出电平由高变低。

通过这个过程,555振荡器就形成了一个周期性的交流信号。

通过调节RC网络中的电容和电阻值,可以改变振荡器的频率
和波形。

同时,555振荡器还可以通过外部控制信号来调节振荡器的工作状态,以实现不同的应用需求。

总结起来,555振荡器是通过内部的比较器和外部的RC网络来实现电荷充放电的过程,从而产生稳定的交流信号。

通过调节RC网络的参数和外部控制信号,可以实现对振荡器频率和波形的控制。

555多谐振荡器工作原理

555多谐振荡器工作原理

555多谐振荡器工作原理
555多谐振荡器是一种常用的集成电路,也称为555定时器,
它可以产生稳定的多谐振荡信号。

其工作原理如下:
1. 555多谐振荡器有三个比较器(比较器1、比较器2、比较
器3),一个RS触发器和一个放大器组成。

2. 振荡器的时钟信号是由一个RC电路提供的。

通过改变RC
电路的阻值和容值,可以调整振荡器的频率。

3. 当电源上电时,比较器1和比较器2的输出为高电平,比较器3的输出为低电平。

这时,放大器输出高电平,导通放大器旁边的放电二极管,导致电容C1开始充电,电压逐渐升高。

4. 当电容C1的电压上升到比较器1的比较电压时,比较器的
输出由高电平变为低电平,导致放大器输出低电平,关闭放大器旁边的放电二极管。

电容C1开始放电,电压逐渐降低。

5. 当电容C1的电压降低到比较器2的比较电压时,比较器的
输出由低电平变为高电平,重新导通放大器旁边的放电二极管。

电容C1再次开始充电,电压逐渐升高。

6. 重复上述过程,使得电容C1的电压在充放电过程中以一定
的频率多次变化,形成多谐振荡信号。

总结起来,555多谐振荡器的工作原理是通过改变RC电路的
充放电时间来控制电容的充放电过程,从而产生稳定的多谐振荡信号。

不同的RC电路参数可以调整振荡器的频率。

555振荡电路的工作原理

555振荡电路的工作原理

555振荡电路的工作原理555振荡电路是一种常见的集成电路,由比较器、反相器和放大器组成。

其中比较器用于产生方波信号,反相器将方波信号转化为脉冲信号,放大器用于放大脉冲信号。

具体工作原理如下:1. 在555振荡电路中,集成电路的引脚1(GND)和引脚8(VCC)分别连接到电路的地和电源正极,建立电路的基础环境。

2. 引脚4(复位)和引脚8(VCC)通过一个电阻连接,使复位引脚处于高电平,保证电路从初始状态开始。

3. 引脚2(触发)和引脚6(控制电压)通过一个电阻和电容连接,形成一个RC网络。

当控制电压低于触发电压(通常为1/3 VCC)时,触发引脚的电压将高电平。

而当控制电压高于触发电压时,触发引脚的电压将处于低电平。

4. 引脚6(控制电压)和引脚7(放电)通过一个电阻连接,将电容的放电路径通过放电引脚接地。

5. 引脚3(输出)和引脚7(放电)通过一个放大器连接,放大器可以将输出信号放大。

6. 集成电路内部有一组比较器,用于判断电容充电和放电的情况。

当电容电压低于2/3 VCC时,比较器将输出高电平,引脚3(输出)的电压将高电平。

而当电容电压高于1/3 VCC时,比较器将输出低电平,引脚3(输出)的电压将为低电平。

7. 在初始状态下,电容通过RC网络开始充电,直到电压达到2/3 VCC。

此时,比较器将输出高电平,引脚3(输出)的电压也变为高电平。

8. 在电容充电的过程中,当电压达到1/3 VCC时,比较器将输出低电平,引脚3(输出)的电压将变为低电平。

此时,电容开始放电,通过放电引脚和放电电阻的路径,使电容电压下降。

9. 当电容电压降到1/3 VCC时,比较器将输出高电平,引脚3(输出)的电压也变为高电平,电容再次开始充电。

10. 利用电容充电和放电的周期性变化,就可以得到一串脉冲信号。

综上所述,555振荡电路通过控制电容的充放电过程,利用比较器和反相器的协同作用产生一串周期性的脉冲信号。

555定时器构成的多谐振荡器工作原理

555定时器构成的多谐振荡器工作原理

555定时器构成的多谐振荡器工作原理下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、引言多谐振荡器是一种能够产生多种频率的振荡器,它通常是由多个谐振电路组成。

555电路构成的多谐振荡器的工作原理

555电路构成的多谐振荡器的工作原理

555电路构成的多谐振荡器的工作原理555电路是一种经典的多谐振荡器,其工作原理基于RC充放电过程、比较器的输出及触发器的翻转功能。

本文将从555电路的元件结构、工作原理、多谐振荡器的应用以及相关实例进行论述。

1. 555电路的组成和元件功能555电路由比较器、RS触发器、RS触发器、放大器和输出级等组成。

其中,比较器用于比较电荷电容(C)和外部电位(Vin);RS触发器根据比较器输出来进行翻转;放大器负责缓冲比较器的输出;输出级调节放大器输出并驱动负载。

2. 工作原理当555电路的电源上电后,电容C开始通过R1和R2充电,直到其电压达到2/3的电源电压UVCC。

此时,比较器的正输入端电压大于负输入端电压,比较器输出为低电平,RS触发器的Q输出为高电平。

同时,电容C也通过R2和R1放电,直到电压降至1/3的电源电压LVCC。

此时,比较器的正输入端电压低于负输入端电压,比较器输出为高电平,RS触发器的Q输出为低电平。

在多谐振荡器中,R1和R2的取值决定了振荡器的频率,而电容C则决定了振荡器的频率范围。

可通过调节R1、R2或C的数值来改变振荡器的频率。

3. 多谐振荡器的应用多谐振荡器的应用广泛,特别是在电子产品中。

例如,它可以用作脉冲发生器、时钟发生器、音乐合成器等。

4. 相关实例以555电路为核心的自动灯控制器可以作为一个实例进行讨论。

该电路可通过调整电容C的数值来设置延迟时间,从而实现智能灯控制。

其工作原理如下:当灯的开关关闭时,555电路开始振荡,经过设置的延迟时间后输出高电平,从而驱动继电器吸合,使灯打开。

当灯的开关打开时,555电路停止振荡,继电器断开,灯熄灭。

总结:本文介绍了555电路多谐振荡器的工作原理。

通过比较器、触发器和放大器等元件之间的相互作用,实现多谐振荡器的频率控制并驱动输出。

相关实例展示了555电路在自动灯控制中的应用。

这种多谐振荡器的工作原理使其在电子产品中具有广泛的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

555 多谐振荡器 工作原理
原理
1、555定时器内部结构
555定时器是一种模拟电路和数字电路相结合的中规模集成电路,其内部结构如图(A ) 及管脚排列如图(B )所示。

它由分压器、比较器、基本R--S 触发器和放电三极管等部分组成。

分压器由三个5K 的等值电阻串联而成。

分压器为比较器1A 、2A 提供参考电压,比较器1A 的参考电压为23cc V ,加在同相输入端,比较器2A 的参考电压为13
cc V ,加在反相输入端。

比较器由两个结构相同的集成运放1A 、2A 组成。

高电平触发信号加在1A 的反相输入端,与同相输入端的参考电压比较后,其结果作为基本R--S 触发器_
D R 端的输入信号;低电平触发信号加在2A 的同相输入端,与反相输入端的参考电压比较后,其结果作为基本R —S 触发器_D S 端的输入信号。

基本R--S 触发器的输出状态受比较器1A 、2A 的输出端控制。

多谐振荡器工作原理
由555定时器组成的多谐振荡器如图(C)所示,其中R 1、R 2和电容C 为外接元件。

其工作波如图(D)所示。

设电容的初始电压c U =0,t =0时接通电源,由于电容电压不能突变,所以高、低触
发端TH V =TL V =0<13
VCC,比较器A1输出为高电平,A2输出为低电平,即_1D R =,_0D S =(1表示高电位,
0表示低电位),R S -触发器置1,定时器输出01u =此时_
0Q =,定时器内部放电三极管截止,电源cc V 经1R ,2R 向电容C充电,c u 逐渐升高。

当c u 上升到
13cc V 时,2A 输出由0翻转为1,这时__1D D R S ==,R S -触发顺保持状态不变。

所以0<t<1t 期间,定时器输出0u 为高电平1。

1t t =时刻,c u 上升到23
cc V ,比较器1A 的输出由1变为0,这时_0D R =,_1D S =,R S -触发器复0,定时器输出00u =。

12t t t <<期间,_
1Q =,放电三极管T导通,电容C通过2R 放电。

c u 按指数规律下降,
当c u <23cc V 时比较器1A 输出由0变为1,R-S触发器的_D R =_1D S =,Q的状态不变,0u 的状态仍为低电平。

2t t =时刻,c u 下降到13
cc V ,比较器2A 输出由1变为0,R---S 触发器的_D R =1,_
D S =0,触发器处于1,定时器输出01u =。

此时电源再次向电容C 放电,重复上述过程。

通过上述分析可知,电容充电时,定时器输出01u =,电容放电时,0u =0,电容不断地进行充、放电,输出端便获得矩形波。

多谐振荡器无外部信号输入,却能输出矩形波, 其实质是将直流形式的电能变为矩形波形式的电能。

3、振荡周期
由图(D )可知,振荡周期12T T T =+。

1T 为电容充电时间,2T 为电容放电时间。

充电时间 11212()ln 20.7()T R R C R R C =+≈+
放电时间 222ln 20.7T R C R C =≈
矩形波的振荡周期121212ln 2(2)0.7(2)T T T R R C R R C =+=+≈+
因此改变1R 、2R 和电容C 的值,便可改变矩形波的周期和频率。

对于矩形波,除了用幅度,周期来衡量外,还有一个参数:占空比q ,q=(脉宽w t )/(周期T ),w t
指输出一个周期内高电平所占的时间。

图(C )所示电路输出矩形波的占空比111212122T T R R q T T T R R +===++。

相关文档
最新文档