传感器及工作原理

合集下载

传感器及其工作原理

传感器及其工作原理

传感器及其工作原理传感器是一种可以感知和测量环境中物理量的装置。

它通过获取并转化环境中的物理量为电信号或其他可读取的形式,从而实现对环境信息的检测、分析和控制。

传感器广泛应用于工业生产、环境监测、医疗健康、安全防护等领域。

传感器的工作原理主要包括以下几个方面:1.电阻型传感器:电阻型传感器是利用物体对电流的阻力变化来实现测量的。

它由感应元件、改变元件和信号处理电路组成。

当物体与感应部分接触时,感应元件的电阻发生变化,进而改变电流通过改变元件的阻值,从而在电阻上产生电压变化。

信号处理电路通过测量这个电压变化来获得物体的信息。

2.电容型传感器:电容型传感器是利用物体之间的电容变化来实现测量的。

它由两个电极或电容板组成,当物体靠近电容板时,物体之间的电容变化会导致电容器中储存的电荷量和电压发生变化。

通过测量这个电荷量或电压变化,可以得到物体与电容器之间的距离或其他信息。

3.磁感应型传感器:磁感应型传感器是利用磁场的变化来实现测量的。

它由感应元件和信号处理电路组成。

感应元件可以是磁致伸缩材料、霍尔元件、磁电阻元件等,当磁场的强度发生变化时,感应元件的电磁特性也会发生变化,进而变化了其电阻、电感或电容等物理量。

信号处理电路通过测量这个电磁特性的变化来获取物体的信息。

4.光电型传感器:光电型传感器是利用光的特性来实现测量的。

它由光源、光敏元件和信号处理电路组成。

光源发出的光线照射到光敏元件上,当光线受到物体的遮挡或反射时,光敏元件会发生电流或电压的变化,信号处理电路通过测量这个电流或电压的变化来获取物体的信息。

除了以上几种常见的传感器工作原理外,还有一些其他类型的传感器,如压力传感器、温度传感器、湿度传感器、加速度传感器等。

它们的工作原理各不相同,但都是基于物理量的变化来实现测量的。

总之,传感器是一种将物理量转化为电信号或其他可读取形式的装置,不同类型的传感器有着不同的工作原理,但都能够通过测量和分析环境中的物理量来获取相关信息。

常见传感器及工作原理

常见传感器及工作原理

常见传感器及工作原理传感器是现代科技中不可或缺的一部分,它们负责将物理量转换成电信号或其他可以被处理的形式,从而实现对环境变化的感知和监测。

以下是一些常见传感器及其工作原理的介绍。

1. 温度传感器温度传感器是用来测量环境温度的设备。

它们可以基于不同的工作原理来实现。

其中一种常见的工作原理是热敏电阻。

热敏电阻的电阻值随温度的变化而变化,通过测量电阻值的变化来确定温度。

还有一种常见的工作原理是热电偶。

热电偶利用两种不同金属的热电效应产生电势差,通过测量电势差来确定温度。

2. 湿度传感器湿度传感器用于测量环境的湿度水分含量。

一种常见的湿度传感器是电容式湿度传感器。

它利用物质在不同湿度下的电容变化来测量湿度。

当空气中的湿度增加时,电容值也会增加。

另一种常见的湿度传感器是电阻式湿度传感器。

它利用湿度对电阻值的影响来测量湿度。

3. 光照传感器光照传感器用于测量环境中的光照强度。

一种常见的光照传感器是光敏电阻。

光敏电阻的电阻值随光照强度的变化而变化,通过测量电阻值的变化来确定光照强度。

另一种常见的光照传感器是光电二极管。

光电二极管利用光的能量来产生电流,通过测量电流的变化来确定光照强度。

4. 气体传感器气体传感器用于检测环境中的气体浓度。

一种常见的气体传感器是电化学传感器。

电化学传感器利用气体与电极之间的化学反应来测量气体浓度。

不同的气体会引起不同的化学反应,从而产生不同的电流信号。

另一种常见的气体传感器是光学传感器。

光学传感器利用气体对特定波长的光的吸收程度来测量气体浓度。

5. 压力传感器压力传感器用于测量环境中的压力变化。

一种常见的压力传感器是压阻式传感器。

压阻式传感器利用压力对电阻值的影响来测量压力变化。

当受到压力时,电阻值会发生变化。

另一种常见的压力传感器是压电传感器。

压电传感器利用压力对压电材料的形变产生电荷来测量压力变化。

以上是一些常见传感器及其工作原理的简介。

传感器的应用范围非常广泛,从工业生产到家庭生活都离不开它们。

传感器的工作原理

传感器的工作原理

传感器的工作原理传感器是一种能够感知和测量外部环境特征或物体状态的器件或装置。

它们广泛应用于各个领域,如工业自动化、汽车、医疗设备、家电等。

传感器的工作原理可以分为多种类型,包括电学原理、光学原理、磁学原理、压力原理等。

一、电学原理电学原理传感器利用被测量物理量和电学信号之间的关系,通过将物理量转换为电信号来进行测量。

这类传感器包括压力传感器、温度传感器、湿度传感器等。

以压力传感器为例,它的工作原理是通过被测量物体施加在传感器上的压力,使得传感器内部发生应变。

当应变达到一定程度时,传感器内部的电阻会发生变化。

通过测量电阻的变化,可以确定被测物体的压力值。

二、光学原理光学原理传感器利用光的特性进行测量。

这类传感器包括光电传感器、红外传感器、光纤传感器等。

以光电传感器为例,它的工作原理是通过光源发出光线,当光线遇到被测物体时,会产生反射或透射。

传感器内部的光敏元件可以接收到这些反射或透射的光,并将其转化为电信号。

通过测量电信号的强度,可以确定被测物体的特征,如距离、颜色等。

三、磁学原理磁学原理传感器利用磁场的变化来进行测量。

这类传感器包括磁感应传感器、地磁传感器等。

以磁感应传感器为例,它的工作原理是通过检测磁场的强弱或方向的变化,来确定被测磁物体的位置、运动状态等。

传感器内部通常包含磁敏材料和磁电元件,它们能够感受到磁场的变化并将其转化为电信号。

四、压力原理压力原理传感器通过测量压力的变化来进行测量。

这类传感器包括气压传感器、液压传感器等。

以气压传感器为例,它的工作原理是通过感受气体施加在传感器上的压力,将压力转化为电信号。

传感器内部通常包含有弹性元件和变电容器。

当气压改变时,弹性元件会发生形变,引起变电容器中电容的变化,从而产生相应的电信号。

总结传感器的工作原理可以根据不同的应用领域和被测量物理量而有所不同。

除了电学原理、光学原理、磁学原理和压力原理,还有许多其他类型的传感器,如声学传感器、化学传感器等。

传感器及其工作原理

传感器及其工作原理

传感器及其工作原理传感器1 传感器及其工作原理一、什么是传感器(1)什么是传感器?传感器是指这样一类元件:它能够感知诸如力、温度、光、声、化学成分等非电学量,并把它们按照一定的规律转化成电压、电流等电学量,或转化为电路的通断(2)传感器的作用是什么?传感器的作用是把非电学量转化为电学量或电路的通断,从而实现很方便地测量、传输、处理和控制实验:小盒子A 的侧面露出一个小灯泡,盒外没有开关,但是把磁铁B 放到盒子上面灯泡就发光,把磁铁移走,灯泡熄灭。

盒子里有什么装置?(干簧管)(1)干簧管一、什么是传感器非电学量→ 传感器→ 电学量角度位移速度压力温度湿度声强光照电压电流传感器电阻电容酒精测试仪自动门自动干手机火灾报警器自动水龙头二、光敏电阻(1)光敏电阻的电阻率与什么有关?光敏电阻的电阻率与光照强度有关。

(2)光敏电阻受到光照时会发生什么变化?怎样解释?光敏电阻受到光照时电阻会变小.是一种半导体材料,无光照时,载流子极少,导电性能不好;随着光照增强,载流子增多,导电性能变好(3)光敏电阻能够将什么量转化为什么量?光敏电阻能够将光学量转化为电阻这个电学量三.热敏电阻和金属热电阻(1)金属导体与半导体材料的导电性能与温度的变化关系是否相同?不相同半导体材料的导电性能随温度升高而变小金属导体的导电性能随温度升高而降低(2)热敏电阻和金属热电阻各有哪些优缺点?热敏电阻灵敏度高,但化学稳定性较差,测量范围较小;金属热电阻的化学稳定性较好,测量范围较大,但灵敏度较差(3)热敏电阻和金属热电阻能够将什么量转化为什么量?将热学量(温度)转化为电阻这个电学量金属热电阻金属的电阻率随温度的升高而增大,用金属丝可以制作温度传感器。

常用的一种热电阻是用铂制作的。

RT热敏电阻有些半导体在温度上升时导电能力增强,因此可以用半导体材料制作热敏电阻。

有一种热敏电阻是用氧化锰和氧化铜混合烧结而成的。

热敏电阻或金属热电阻能够将热学量转化为电阻这个电学量4、霍尔元件在一个很小的矩形半导体(例如砷化铟)薄片上,制作4个电极,就成了一个霍尔元件。

传感器及其工作原理

传感器及其工作原理

传感器及其工作原理传感器是一种将物理量转换为可测量的电信号的装置。

它们在各种领域中发挥着关键的作用,如工业自动化、环境监测、医疗诊断和智能手机等。

传感器的工作原理基于物质与物质相互作用的基本原理,通过使用不同的物理效应来测量和检测所感兴趣的物理量。

下面将介绍几种常见的传感器及其工作原理。

1.温度传感器温度传感器是用于测量温度变化的设备,常见的温度传感器有热敏电阻、热电偶和红外测温传感器等。

其中,热敏电阻是最常见的温度传感器之一,它的工作原理基于材料的电阻随着温度的变化而变化。

当温度升高时,传感器中的电阻值降低,反之亦然。

2.压力传感器压力传感器用于测量气体或液体的压力。

电阻式压力传感器是最常见的一种,它借助于物理量与电阻值的线性关系来测量压力。

压力传感器具有薄膜或弹性元件,其电阻值会随着外部压力的变化而发生变化。

通过测量电阻值的变化,可以确定外部压力的大小。

3.光传感器光传感器用于检测光线的强度和频率。

最常见的光传感器是光敏电阻和光电二极管。

光敏电阻基于光线的照射产生电阻的变化,光电二极管则利用光线照射在半导体材料上产生的电流来测量光强度。

光传感器在自动照明、光电开关和光学通信等领域有广泛的应用。

4.加速度传感器加速度传感器用于测量物体的加速度或振动。

其中,最常见的是MEMS加速度传感器。

它利用微机电系统技术制造出微小的机械加速度计件,通过测量件的微小位移或电容的变化来判断物体的加速度。

MEMS加速度传感器在汽车安全系统、智能手机和运动监测等领域中得到广泛应用。

5.湿度传感器湿度传感器用于测量空气中的湿度或水分含量。

热电阻湿度传感器是一种常见的湿度传感器,它利用湿度的变化导致传感器加热元件温度的变化来测量湿度。

传感器中的温度变化将与湿度成正比。

总结起来,传感器通过利用不同的物理效应来测量感兴趣的物理量,如温度、压力、光强度、加速度和湿度等。

它们在各个领域中发挥着关键作用,实现了自动控制、环境监测和数据采集等功能。

传感器工作原理

传感器工作原理

传感器工作原理一、引言传感器是现代科技中不可或者缺的重要组成部份,广泛应用于各个领域。

本文将详细介绍传感器的工作原理,包括传感器的定义、分类、工作原理、应用等方面的内容。

二、传感器的定义与分类传感器是一种能够将被测量物理量转换为可供测量或者处理的信号的装置。

根据被测量的物理量不同,传感器可以分为多种类型,如温度传感器、压力传感器、湿度传感器、光传感器等。

三、传感器的工作原理1. 温度传感器工作原理温度传感器是用于测量环境或者物体的温度的传感器。

常见的温度传感器有热电偶和热敏电阻。

热电偶利用两种不同金属的导线连接处产生的热电势来测量温度,而热敏电阻则是利用电阻值随温度变化而变化的特性来测量温度。

2. 压力传感器工作原理压力传感器用于测量气体或者液体的压力。

常见的压力传感器有压阻式传感器和压电式传感器。

压阻式传感器利用电阻值随压力变化而变化的特性来测量压力,而压电式传感器则是利用压电效应将压力转换为电荷或者电压信号来测量压力。

3. 湿度传感器工作原理湿度传感器用于测量环境中的湿度。

常见的湿度传感器有电容式传感器和电阻式传感器。

电容式传感器利用湿度对电容值的影响来测量湿度,而电阻式传感器则是利用湿度对电阻值的影响来测量湿度。

4. 光传感器工作原理光传感器用于测量光的强度或者光的特性。

常见的光传感器有光敏电阻和光电二极管。

光敏电阻是利用光照射时电阻值随之变化的特性来测量光的强度,而光电二极管则是利用光照射时产生的电流来测量光的强度。

四、传感器的应用传感器广泛应用于各个领域,如工业自动化、环境监测、医疗设备、汽车工业等。

在工业自动化中,传感器可以用于测量温度、压力、湿度等参数,实现对生产过程的控制和监测。

在环境监测中,传感器可以用于测量大气中的温度、湿度、气体浓度等,匡助人们了解环境状况并采取相应的措施。

在医疗设备中,传感器可以用于测量患者的体温、心率、血压等,为医生提供准确的数据。

在汽车工业中,传感器可以用于测量车辆的速度、转向角度、轮胎压力等,提高行车安全性。

传感器工作原理及应用实例

传感器工作原理及应用实例

传感器工作原理及应用实例传感器是一种能够将环境中的物理量、化学量、生物量等转化为可量化的电信号或其他形式信号的装置,以实现对环境信息的感知和获取。

传感器广泛应用于工业控制、医疗健康、环境监测、智能家居等领域。

下面将介绍传感器的工作原理及应用实例。

一、传感器的工作原理传感器的工作原理主要包括两个方面:感知原理和信号转换原理。

1.感知原理传感器的感知原理是指传感器利用特定的感应机制感知环境中的物理量、化学量、生物量等。

常见的感知机制包括光电效应、热敏效应、压电效应、磁敏效应、电化学效应等。

例如,利用热敏电阻作为温度传感器时,测量温度的原理就是根据材料在不同温度下的热敏特性,将温度转化为电阻值的变化。

2.信号转换原理传感器的信号转换原理是指传感器将感知到的物理量、化学量、生物量等转化为可量化的电信号或其他形式信号。

常见的信号转换方式包括电阻变化、电荷变化、电压变化、电流变化等。

例如,利用应变计作为力传感器时,原理就是根据应变导致的电阻或电容的变化,将受力转化为电阻或电容值的变化。

二、传感器的应用实例传感器在各个领域都有广泛的应用。

下面介绍几个常见的传感器应用实例。

1.温度传感器温度传感器广泛应用于工业控制、农业、气象、医疗等领域。

例如,工业中的温度传感器可以用于监测物体的温度,控制生产过程的温度;农业中的温度传感器可以用于监测土壤和空气的温度,为农作物的生长提供参考;医疗中的温度传感器可以用于测量人体的体温,判断患者的健康状态。

2.湿度传感器湿度传感器主要用于测量环境中的湿度。

在农业领域,湿度传感器可以用于监测土壤的湿度,为灌溉提供参考;在气象领域,湿度传感器可以用于测量大气中的湿度,预测天气变化;在建筑物内部,湿度传感器可以用于监测室内的湿度,控制空调系统的运行。

3.光照传感器光照传感器可以用于测量环境中的光照强度。

在智能家居领域,光照传感器可以用于感知室内的光照情况,调节灯光的亮度和色温;在养殖业中,光照传感器可以用于监测光照强度,为动植物的生长提供合适的光照环境;在交通领域,光照传感器可以用于监测路面的光照情况,控制道路照明系统的开关。

传感器工作原理

传感器工作原理

传感器工作原理标题:传感器工作原理引言概述:传感器是现代科技中不可或者缺的重要组成部份,它可以将各种物理量转换为电信号,从而实现对环境、设备等的监测和控制。

传感器的工作原理是其能够感知外部环境的物理量,并将这些信息转化为电信号输出。

本文将详细介绍传感器的工作原理及其应用。

一、传感器的基本原理1.1 传感器的感知机制:传感器通过感知器件感知外部环境的物理量,如温度、压力、光线等。

1.2 信号转换:传感器将感知到的物理量转换为电信号,通常通过放大、滤波等处理。

1.3 输出信号:经过处理后的电信号被传感器输出,可以是摹拟信号或者数字信号。

二、传感器的分类及工作原理2.1 电阻传感器:基于电阻值的变化来感知物理量,如温度传感器。

2.2 光电传感器:利用光的特性来感知物体的接近或者远离。

2.3 压力传感器:通过测量介质对传感器施加的压力来感知压力变化。

三、传感器的应用领域3.1 工业自动化:传感器在工业生产中广泛应用,如温度传感器用于控制生产过程。

3.2 智能家居:传感器在智能家居中起着重要作用,如光感应传感器用于智能灯控制。

3.3 医疗领域:传感器在医疗设备中被广泛使用,如心率传感器用于监测患者的心跳。

四、传感器的发展趋势4.1 小型化:传感器越来越小巧精密,可以被应用于更多领域。

4.2 智能化:传感器集成为了更多智能功能,如自动校准、数据存储等。

4.3 网络化:传感器可以通过网络连接,实现远程监测和控制。

五、传感器的未来展望5.1 智能传感器:未来传感器将更加智能化,能够自动学习和适应环境。

5.2 多功能传感器:传感器将会集成多种功能,实现多种物理量的感知。

5.3 生物传感器:未来传感器可能会摹仿生物系统,实现更高效的感知和响应。

结语:传感器作为现代科技的重要组成部份,其工作原理决定了其在各个领域的应用。

随着技术的不断发展,传感器将会变得更加智能化、多功能化,为人类生活带来更多便利和可能性。

传感器的主要作用及工作原理

传感器的主要作用及工作原理

传感器的主要作用及工作原理传感器是一种能够感知并测量外部环境信号的设备,主要用于从物理、化学、光学、电磁、声音、地质等领域中提取信息。

传感器主要作用是将外部现象转化为可量化的电信号,并通过与之连接的系统进行处理和分析。

它们在许多领域中发挥着重要作用,包括工业生产、农业、医疗保健、环境监测、安全等。

传感器的工作原理根据不同的传感器类型有所不同,下面将详细介绍一些常见的传感器及其工作原理。

1.位移传感器:位移传感器用于测量物体的位移或位置变化。

最常见的位移传感器是电阻式、电容式和感应式传感器。

电阻式传感器利用导电材料的电阻随着位移的变化而改变的特性。

电容式传感器是通过测量电容随着位移的变化而改变的原理。

感应式传感器则利用感应线圈中感应的电压或电流随着位移的变化而改变。

2.压力传感器:压力传感器用于测量气体或液体的压力变化。

常见的压力传感器有压阻式传感器和压电式传感器。

压阻式传感器通过测量导电材料的电阻随着压力的变化而改变的原理工作。

压电式传感器则是利用压电材料在加压条件下产生电荷的特性来测量。

3.温度传感器:温度传感器用于测量物体的温度变化。

常见的温度传感器有热敏电阻传感器和热电偶传感器。

热敏电阻传感器通过测量电阻随着温度的变化而改变的原理工作。

热电偶传感器是利用两种不同金属连接在一起产生温差时产生电压的特性来测量温度。

4.光传感器:光传感器用于测量光线的强度或光线的变化。

常见的光传感器有光电二极管传感器和光敏电阻传感器。

光电二极管传感器通过测量光照射到二极管上产生的电流大小来测量光线的强度。

光敏电阻传感器是利用光敏材料的电阻随着光照强度的变化而改变的原理。

5.加速度传感器:加速度传感器用于测量物体的加速度变化。

常见的加速度传感器有压电式传感器和运动传感器。

压电式传感器是通过测量压电材料在加速度作用下产生的电荷大小来测量加速度。

运动传感器则是通过测量物体的位移或速度的变化来计算加速度。

传感器的工作原理多种多样,但总体来说,它们都是将外部信号转化为电信号,并通过与之连接的系统进行处理和分析。

传感器的工作原理是什么?

传感器的工作原理是什么?

传感器的工作原理是什么?一、传感器的定义与分类传感器是一种用于测量、检测和监控其所处环境的物理量或化学量的装置。

根据测量的物理量的不同,传感器可以分为光学传感器、温度传感器、压力传感器、湿度传感器等各种类型。

不同类型的传感器在原理和应用范围上有所区别,下面将逐一介绍几种常见的传感器工作原理。

二、光学传感器的工作原理光学传感器是利用光的电磁波特性来进行测量的一种传感器。

它利用光的反射、透射、吸收等现象来测量物体的距离、颜色、形状等信息。

光学传感器通常由光源、光电器件和信号处理器组成。

光源发射光线,经过物体后被光电器件接收,然后信号处理器对接收到的光信号进行处理,最终得到所需信息。

三、温度传感器的工作原理温度传感器是测量物体温度的一种传感器。

常见的温度传感器有热电偶和热电阻两种。

热电偶利用两种不同金属的热电势差与温度之间的关系来测量温度,而热电阻则是根据电阻与温度之间的线性关系来测量温度。

温度传感器具有精度高、响应快的特点,在工业、医疗等领域得到广泛应用。

四、压力传感器的工作原理压力传感器是测量压力的一种传感器。

它可以利用压阻效应、电容效应、电感效应等原理来测量压力。

其中,压阻式传感器是利用外力作用下导电材料电阻发生变化的原理来测量压力的;电容式传感器则是根据电容变化与压力之间的关系来测量压力的。

压力传感器广泛应用于工业自动化、汽车、航空等领域,实现对压力的实时监测和控制。

五、湿度传感器的工作原理湿度传感器是用于测量空气湿度的一种传感器。

它主要应用于气象观测、农业、室内环境监测等领域。

湿度传感器可以采用电湿度传感器、电容式湿度传感器、表面声波湿度传感器等不同原理来测量湿度。

其中,电湿度传感器是根据电容变化与湿度变化之间的关系来测量湿度的;电容式湿度传感器是利用介电常数与湿度之间的关系来测量湿度的。

通过以上介绍,我们可以了解到传感器的工作原理和应用范围。

不同类型的传感器在原理和测量方式上存在一定的差异,但都在不同领域中发挥着重要的作用。

传感器工作原理

传感器工作原理

传感器工作原理一、引言传感器是一种能够将各种物理量转换为可测量的电信号的装置。

它们在各个领域中发挥着重要的作用,例如工业自动化、环境监测、医疗设备等。

本文将详细介绍传感器的工作原理及其分类。

二、传感器的工作原理传感器的工作原理基于物理效应或者化学反应,通过将被测量的物理量转换为电信号,实现对该物理量的测量。

以下是几种常见的传感器工作原理:1. 电阻传感器电阻传感器是最简单的一种传感器,它利用物体的电阻变化来测量物理量。

例如,温度传感器中的热敏电阻会随着温度的变化而改变电阻值,从而实现温度的测量。

2. 压力传感器压力传感器利用压力对传感器内部的电阻、电容或者电感的变化进行测量。

例如,压阻式压力传感器中,压力作用在薄膜上,使其发生形变,从而改变电阻值,进而测量压力。

3. 光电传感器光电传感器利用光的特性进行测量。

例如,光电二极管传感器中,当光照射到二极管上时,会产生电流,该电流的大小与光的强度成正比,从而实现对光强度的测量。

4. 加速度传感器加速度传感器测量物体的加速度或者振动。

例如,压电式加速度传感器中,当物体发生加速度或者振动时,压电材料会产生电荷,从而测量加速度或者振动的大小。

5. 温湿度传感器温湿度传感器用于测量环境中的温度和湿度。

例如,电容式温湿度传感器中,当环境温度和湿度变化时,电容值也会发生变化,从而实现对温度和湿度的测量。

三、传感器的分类传感器根据其测量物理量的不同,可以分为以下几类:1. 温度传感器:用于测量物体或者环境的温度,常见的有热敏电阻、热电偶等。

2. 压力传感器:用于测量气体或者液体的压力,常见的有压阻式传感器、电容式传感器等。

3. 光电传感器:用于测量光的强度或者光的特性,常见的有光电二极管、光敏电阻等。

4. 气体传感器:用于测量气体的浓度或者种类,常见的有气敏电阻、气体浓度传感器等。

5. 加速度传感器:用于测量物体的加速度或者振动,常见的有压电式传感器、微机械式传感器等。

传感器的主要工作原理及应用

传感器的主要工作原理及应用

传感器的主要工作原理及应用引言传感器是现代科技中不可缺少的元件,它们可以将周围环境中的变化转换为电信号,从而提供给系统进行分析和控制。

本文将介绍传感器的主要工作原理及常见应用领域。

一、传感器的工作原理传感器的工作原理基于不同的物理效应或原理。

以下是一些常见的传感器工作原理:1.压力传感器–压电效应:当外力作用于压电材料上时,会产生电荷。

压力传感器利用这种效应来测量压力变化。

–滑动变阻器:利用材料的阻值随压力变化而变化的原理,来测量压力的变化程度。

2.温度传感器–热敏电阻:温度变化会导致热敏电阻的电阻值发生变化,利用这个原理可以测量温度。

–热电偶:不同金属导体的接触形成的电流与温度之间存在线性关系,可以通过测量热电势来确定温度。

3.光传感器–光敏电阻:光照强度增加时,光敏电阻的电阻值减小,可以利用这个原理来测量光照强度。

–光电二极管:当光照射到光电二极管上时,会产生电流,通过测量电流的变化可以确定光照强度。

4.加速度传感器–振动效应:加速度传感器利用质量随加速度变化而发生振动的原理来测量加速度。

–压电效应:加速度传感器利用压电材料在加速度作用下产生电荷的原理来测量加速度。

二、传感器的应用传感器在各个领域中都有广泛的应用,以下是一些常见的应用领域:1.工业自动化–温度传感器用于监测和控制生产过程中的温度变化,确保工艺的稳定性。

–压力传感器用于测量液体或气体的压力,以确保系统的安全运行。

2.环境监测–光传感器广泛用于光照强度的测量,可用于室内和室外照明控制、植物生长监测等。

–湿度传感器用于测量空气中的湿度,可应用于气象预报、农业和温室控制等领域。

3.智能家居–温度传感器和湿度传感器可用于智能恒温和湿度控制系统,提供舒适的居住环境。

–门窗传感器可检测门窗的开关状态,实现智能防盗和节能控制。

4.医疗设备–心率传感器和血氧传感器用于监测患者的心率和血氧饱和度,可用于健康管理和疾病诊断。

5.汽车工业–车速传感器用于测量汽车的速度,提供给车辆控制系统进行调整。

传感器的主要作用及工作原理

传感器的主要作用及工作原理

传感器的主要作用及工作原理传感器是一种用于感知和测量环境中特定物理量的装置。

它们在各个领域中广泛应用,包括工业自动化、环境监测、医疗诊断、交通运输、军事、生物科学等。

传感器的主要作用是将物理量转换为可读取的电信号,以便进一步处理和分析。

它们可以测量的物理量包括温度、湿度、压力、光照强度、速度、位移、加速度、力量等。

传感器通过感知环境中的物理量,可以提供实时的数据,帮助决策者做出准确的判断和合理的决策。

传感器的工作原理基本上是根据特定的物理效应进行的。

以下是一些常见传感器的工作原理:1.温度传感器:温度传感器使用热敏元件来测量温度。

其中常见的一种是热敏电阻,它的电阻值会随温度的变化而改变。

2.压力传感器:压力传感器使用压敏元件,如压电晶体,测量压力。

当外加压力变化时,压电晶体会产生电荷,通过测量电荷的大小可以确定压力的大小。

3.光敏传感器:光敏传感器使用光敏元件,如光电二极管或光敏电阻,测量光照强度。

当光敏元件受到光照时,其电阻或电流值会发生变化,通过测量这些变化可以确定光照的强弱。

4.位移传感器:位移传感器使用霍尔元件或光电编码器等技术来测量物体的位置或位移。

霍尔元件通过测量磁场的变化来确定物体的位置,而光电编码器则通过光源和光敏器件之间的光学信号测量物体的位置。

5.加速度传感器:加速度传感器使用加速度感应元件,如压电晶体或微机械系统,测量物体的加速度。

当物体受到加速度时,感应元件会产生电信号,通过测量信号的大小和变化可以确定加速度的大小。

6.气体传感器:气体传感器使用化学感应原理来测量环境中特定气体的浓度。

这些传感器通常包含特定的气体感应材料,当待测气体与感应材料发生化学反应时,会产生电信号,通过测量信号的强度可以确定气体的浓度。

总之,传感器的主要作用是将物理量转换为电信号,其中的工作原理基于特定的物理效应。

不同类型的传感器根据不同的应用需求选择适当的工作原理,以实现准确和可靠的测量。

这些传感器在各行各业中发挥着关键的作用,推动了技术的不断发展和应用的广泛扩展。

传感器及其工作原理

传感器及其工作原理

传感器及其工作原理传感器是一种用来将物理量转换为可读取或可处理数字信号的设备。

传感器在现代工业、农业、医疗和科研等领域扮演着非常重要的角色,它们能够实时监测和记录各种参数,如温度、压力、光强度、湿度、位移等,使得生产、管理和科研过程更加高效和精确。

传感器的工作原理通常包括以下五个方面:1. 效应:这是传感器最重要的部分,因为它是利用效应来将物理量转换成电信号的。

传感器的效应可能有多种,如电压、电流、电阻、电容、磁场和压力等。

2. 传感器信号处理电路:传感器将采集信号转换成电信号后,需要经过一段信号处理电路,这段电路负责对于原始信号进行放大、降噪和增益等操作,使得信号达到更好的质量。

3. 传感器电路的供电:为了保证传感器工作正常,需要提供恰当的电压或电流,以供传感器和信号处理电路工作。

常见的供电方式包括直流电源、电池和太阳能等。

4. 传感器信号输出:当传感器的效应被采集转换成电信号后,需要通过适当的接口输出这些信号。

输出方式可以是模拟输出或数字输出,进一步利用接口进行传输和处理,如USB、RS485和RS232等。

5. 对信号进行解算:在信号处理环节中,需要对信号进行解算。

传感器信号输出的是实际的测量值,但常常需要根据特定的公式和专业知识将数据转换成更有价值的数据分析和处理。

在传感器应用的过程中,可能会遇到一些挑战和难题。

其中最常见的问题有以下几点:一、传感器精度和精确度不足。

传感器检测过程可能受到噪声、温度波动和灵敏度限制等原因的干扰,导致精度和精确度下降。

二、传感器使用环境不适宜。

传感器可能会受到进入环境的气体或粉尘等物质的干扰,甚至会造成传感器故障。

三、传感器寿命不够长。

传感器通常需要长时间工作,在长期使用后可能会出现性能或故障问题。

四、传感器安装困难。

传感器针对不同的应用领域和普遍性计提供不同的安装方案,但在实际应用中,由于外部环境条件和安装条件的限制,可能会使传感器的仿真度和效果受到影响。

传感器工作原理

传感器工作原理

传感器工作原理传感器是一种能够感知、感应并转换物理量或化学量的设备,广泛应用于各行各业。

本文将介绍传感器的工作原理,帮助读者更好地理解传感器的运行机制。

一、传感器的基本原理传感器的工作原理基于物理或化学现象的变化,通过转换这种变化来获得相应的电信号输出。

传感器分为许多种类,如温度传感器、压力传感器、光敏传感器等,每种传感器都有其独特的原理。

1. 温度传感器温度传感器利用物体的热膨胀原理进行温度测量。

当物体受热时,温度传感器内部的材料也会随之热膨胀,从而改变其电阻、电容或电压等特性,通过检测这些特性的变化,可以确定物体的温度。

2. 压力传感器压力传感器使用压力对传感器内部材料的压缩或拉伸作用进行测量。

当外部施加压力时,传感器内部的弹性元件会发生形变,从而改变电阻、电容或电压等特性,通过测量这些特性的变化,可以确定压力的大小。

3. 光敏传感器光敏传感器利用光辐射对半导体材料电导率的影响进行测量。

当光照射在光敏传感器上时,光子与半导体材料发生相互作用,导致导电能力的改变,通过测量电阻或电流的变化,可以确定光照强度。

二、传感器的工作流程传感器的工作流程可以分为感知、转换和输出三个阶段。

1. 感知阶段传感器的感知阶段是通过感知元件来感知外部环境的变化。

感知元件对于不同的传感器而言有所不同,它可以是温度敏感材料、倾斜开关、光敏元件等。

感知元件的选择与被测量的物理量相关。

2. 转换阶段当感知元件感知到环境变化后,传感器内部会进行相应的物理或化学转换,将外部的变化转化成可测量的电信号。

转换过程中会利用一定的电路设计和工作原理,使信号的变化得以准确地转化为电信号。

3. 输出阶段传感器输出阶段是将转换后的电信号输出给后续系统进行处理或分析。

输出信号可以是电压、电流或数字信号等形式。

传感器的输出通常需要经过放大、滤波等处理,以确保输出信号的准确性和可靠性。

三、传感器的应用领域传感器广泛应用于各个领域,包括工业、农业、医疗、环境监测等。

传感器工作原理

传感器工作原理

传感器工作原理传感器是一种能够感知和测量环境中物理量或者化学量的设备。

它们在各种应用中起着至关重要的作用,包括自动化系统、医疗设备、汽车工业、环境监测等。

传感器的工作原理可以分为多种类型,包括电阻、电容、电感、压力、温度、光电等。

1. 电阻传感器工作原理:电阻传感器是一种基于电阻变化来测量物理量的传感器。

它们通常由一个可变电阻元件和一个外部电路组成。

当物理量变化时,电阻元件的电阻值也会相应变化。

通过测量电阻的变化,可以间接测量物理量的变化。

例如,温度传感器中的热敏电阻,当温度升高时,电阻值减小,反之亦然。

2. 电容传感器工作原理:电容传感器是一种基于电容变化来测量物理量的传感器。

它们由两个电极和一个介质组成。

当物理量变化时,介质的电容性质也会相应变化。

通过测量电容的变化,可以间接测量物理量的变化。

例如,湿度传感器中的电容传感器,当空气湿度增加时,介质的电容值也会增加。

3. 电感传感器工作原理:电感传感器是一种基于电感变化来测量物理量的传感器。

它们由一个线圈和一个铁芯组成。

当物理量变化时,线圈的电感值也会相应变化。

通过测量电感的变化,可以间接测量物理量的变化。

例如,位移传感器中的电感传感器,当物体的位置改变时,线圈的电感值也会改变。

4. 压力传感器工作原理:压力传感器是一种基于压力变化来测量物理量的传感器。

它们通常由一个弹性元件和一个传感器组成。

当物理量变化时,弹性元件的形变会导致传感器输出信号的变化。

通过测量输出信号的变化,可以间接测量物理量的变化。

例如,汽车轮胎中的压力传感器,当轮胎的压力改变时,传感器会输出相应的电信号。

5. 温度传感器工作原理:温度传感器是一种基于温度变化来测量物理量的传感器。

它们通常由一个热敏元件和一个电路组成。

当物理量变化时,热敏元件的电阻值也会相应变化。

通过测量电阻值的变化,可以间接测量物理量的变化。

例如,温度计中的热敏电阻,当温度升高时,电阻值减小,反之亦然。

6. 光电传感器工作原理:光电传感器是一种基于光强变化来测量物理量的传感器。

传感器及工作原理

传感器及工作原理

传感器及工作原理传感器是一种用来感知周围环境并将感知信息转化为可用电信号的设备。

它们广泛应用于各个领域,如工业制造、医疗仪器、汽车工程等。

本文将介绍不同类型的传感器以及它们的工作原理。

一、压力传感器压力传感器用于测量气体或液体对物体施加的压力。

它们通常由机械变形元件和电子信号转换器组成。

机械变形元件可以是金属弹性体或半导体材料,当受到压力作用时会产生机械变形。

电子信号转换器将机械变形转化为电信号输出,通常是电压或电流信号。

二、温度传感器温度传感器用于测量物体的温度。

最常见的温度传感器是热敏电阻器,它们根据电阻随温度的变化来测量温度。

热敏电阻器通常由金属或半导体材料制成,当温度发生变化时,电阻值也随之变化。

另一种常用的温度传感器是热电偶,它利用两种不同金属的热电效应来测量温度差异。

三、光电传感器光电传感器用于检测光的存在或强度。

它们通常由光源、光敏元件和信号处理电路组成。

光源可以是发光二极管或激光器,用于发射光线。

光敏元件可以是光敏二极管或光敏电阻器,用于感受光的存在或强度。

信号处理电路将光电信号转化为数字或模拟信号输出,以供后续处理或控制。

四、接近传感器接近传感器用于检测物体与传感器之间的距离或接近程度。

它们通常基于不同的工作原理,如电感、电容、超声波等。

电感接近传感器利用变化的电感来检测物体的接近。

电容接近传感器利用物体与传感器之间的电容变化来检测距离。

超声波接近传感器则利用超声波的回波时间来测量距离。

五、加速度传感器加速度传感器用于测量物体的加速度或振动。

它们通常基于质量受力而产生的运动学效应。

常见的加速度传感器包括压电式、电容式和磁电式传感器。

压电式加速度传感器基于压电效应,当受到加速度时产生电荷。

电容式加速度传感器基于电容的变化量。

磁电式加速度传感器则基于磁电效应,当受到加速度时产生电压。

六、气体传感器气体传感器用于检测空气中的气体成分或浓度。

它们通常根据不同气体对特定物质的反应来检测气体的存在。

传感器工作原理及种类

传感器工作原理及种类

传感器工作原理及种类传感器是指能够将被测量的物理量转换成电信号或其他可以识别的形式,并能够对其进行处理和传输的装置。

它们在工业、农业、医疗、能源等领域中起着至关重要的作用。

本文将详细介绍传感器的工作原理和常见的传感器种类。

一、传感器的工作原理传感器的工作原理可以归纳为以下几种方式:1.压阻效应原理:利用被测量物理量对电阻的影响。

例如压力传感器、重量传感器等。

2.压电效应原理:利用被测量物理量对压电体的机械应变引起电荷分离的影响。

例如压力传感器、加速度传感器等。

3.电感效应原理:利用被测量物理量对线圈感应电势的影响。

例如温度传感器、湿度传感器等。

4.光电效应原理:通过光电元件(如光敏电阻、光电二极管)对光信号的检测来实现对其它信息的测量。

例如光照传感器、颜色传感器等。

5.磁电效应原理:利用被测量物理量对磁场的影响。

例如磁力传感器、地磁传感器等。

6.超声波原理:利用超声波在介质中传播的特性进行测量。

例如液位传感器、距离传感器等。

二、传感器的种类根据被测量的物理量不同,传感器可以分为以下几类:1.温度传感器:用于测量物体的温度,常见的有热电偶、热电阻、红外温度传感器等。

2.压力传感器:测量物体的压力,例如压力传感器、压电传感器等。

3.光传感器:用于测量光的强度、颜色和位置,例如光照传感器、光敏电阻、光电二极管等。

4.加速度传感器:测量物体的加速度和振动,广泛应用于汽车、航空航天和运动健康领域等。

5.湿度传感器:测量空气中的湿度,例如湿度传感器、露点传感器等。

6.触摸传感器:通过感应人体接触来触发信号,例如触摸屏、电容触摸传感器等。

7.气体传感器:用于测量空气中的气体浓度,例如气体传感器、CO2传感器等。

8.流量传感器:测量液体或气体的流量,例如流量传感器、涡轮流量传感器等。

总结:传感器是将被测量的物理量转换成电信号或其他可以识别的形式,并对其进行处理和传输的装置。

其工作原理有压阻效应、压电效应、电感效应、光电效应、磁电效应和超声波原理等。

传感器工作原理

传感器工作原理

传感器工作原理传感器是一种能够感知和测量物理量,并将其转化为可供人们理解和利用的电信号或者其他形式的信号的设备。

传感器在各个领域中起着至关重要的作用,如工业生产、医疗设备、环境监测等。

本文将详细介绍传感器的工作原理及其分类。

一、传感器的工作原理传感器的工作原理基于物理效应,通过感知和测量物理量来实现。

常见的传感器工作原理包括:1. 电阻变化原理:利用物质电阻随温度、压力、湿度等物理量的变化而发生变化的特性。

例如,温度传感器利用电阻与温度之间的关系来测量温度。

2. 压电效应原理:利用压电材料在受力时产生电荷的效应。

例如,压力传感器利用压电材料的变形来测量压力。

3. 光电效应原理:利用光电材料在光照射下产生电荷的效应。

例如,光敏电阻利用光照强度的变化来测量光照强度。

4. 磁敏效应原理:利用磁敏材料在磁场作用下产生电荷的效应。

例如,磁感应传感器利用磁敏材料的磁阻变化来测量磁场强度。

5. 声波传播原理:利用声波在介质中传播的特性。

例如,声波传感器利用声波的传播时间来测量距离。

二、传感器的分类传感器按照测量的物理量、工作原理和应用领域可以进行分类。

以下是常见的传感器分类:1. 温度传感器:用于测量温度变化,常见的温度传感器有热电偶、热敏电阻、红外线传感器等。

2. 压力传感器:用于测量气体或者液体的压力变化,常见的压力传感器有压电传感器、电容传感器、压力传感膜等。

3. 湿度传感器:用于测量空气中的湿度变化,常见的湿度传感器有电容式湿度传感器、电阻式湿度传感器等。

4. 光照传感器:用于测量光照强度的变化,常见的光照传感器有光敏电阻、光电二极管、光电三极管等。

5. 加速度传感器:用于测量物体的加速度变化,常见的加速度传感器有压电加速度传感器、电容加速度传感器等。

6. 磁场传感器:用于测量磁场强度的变化,常见的磁场传感器有霍尔传感器、磁敏电阻等。

7. 气体传感器:用于测量气体浓度的变化,常见的气体传感器有气体电化学传感器、气体红外传感器等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012学年高二物理导学案编号____使用时间____
班级:__小组:____姓名:____组内评价:____教师评价:____
《传感器及其工作原理》导学案一
编制人:陈昌林审核人:____领导签字:____
【教学目标】
1.知道什么是传感器
2.了解传感器的常用元件的特征
【重点与难点】
1.传感器的原理
【自主预习】
一.传感器:
1.传感器是指这样一类元件:它能够感受诸如力、温度、光、声、化学成分等_____量,并能把它们按照一定的规律转换为电压、电流等____量,或转换为电路的通断。

把非电学量转换为电学量以后,就可以很方便地进行测量、传输、处理和控制了。

2.传感器一般由敏感元件和输出部分组成,通过敏感元件获取外界信息并转换____信号,通过输出部分输出,然后经控制器分析处理。

3.常见的传感器有:_____、_____、_____、_____、力传感器、气敏传感器、超声波传感器、磁敏传感器等。

二.常见传感器元件:
1.光敏电阻:光敏电阻的材料是一种半导体,无光照时,载流子极少,导电性能不好;随着光照的增强,载流子增多,导电性能变好,光敏电阻能够把_____这个光学量转换为电阻这个电学量。

它就象人的眼睛,可以看到光线的强弱。

2、金属热电阻和热敏电阻:金属热电阻的电阻率随温度的升高而____,用金属丝可以制作____传感器,称为_____。

它能把____这个热学量转换为____这个电学量。

3.热敏电阻的电阻率则可以随温度的升高而____或____。

与热敏电阻相比,金属热电阻的_____好,测温范围___,但____较差。

4.电容式位移传感器能够把物体的____这个力学量转换为___这个电学量。

5.霍尔元件能够把______这个磁学量转换为电压这个电学量。

【典型例题】
【例1】如图所示,将万用表的选择开关置于“欧姆”挡,
再将电表的两支表笔与一热敏电阻R t的两端相连,这时表针
恰好指在刻度盘的正中间。

若往R t上擦一些酒精,表针将向
____(填“左”或“右”)移动;若用吹风机将热风吹向
电阻,表针将向____(填“左”或“右”)移动。

【例2】传感器是一种采集信息的重要器件。

如图所示是一种测定压力的电容式传感器。

当待测压力F作用于可动膜片电极时,可使膜片产生形变,
引起电容的变化,将电容器、灵敏电流计和电源串联成
闭合电路,那么()
A.当F向上压膜片电极时,电容将减小
B.当F向上压膜片电极时,电容将增大
C.若电流计有示数,则压力F发生变化
D.若电流计有示数,则压力F不发生变化
【例4】如图所示,有电流I流过长方体金属块,金属块宽度为d,高为b,有一磁感应强度为B的匀强磁场垂直于纸面向里,金属块单位体积内的自由电子数为n,试问金属块上、下表面哪面电势高?电势差是多少?(此题描述的是著名的霍尔效应现象)
【针对训练】
1.简单的说,光敏电阻就是一个简单的_____传感器,热敏电阻就是一个简单的_____传感器。

2.为解决楼道的照明,在楼道内安装一个传感器与电灯控制电路的相接。

当楼道内有走动而发出声响时,电灯即与电源接通而发光,这种传感器为____传感器,它输入的是____信号,经传感器转换后,输出的是____信号。

3.如图所示,是一个测定液面高度的传感器,在导线芯的外
面涂上一层绝缘物质,放在导电液体中,导线芯和导电液构成
电容品的两极,把这两极接入外电路中的电流变化说明电容值
增大时,则导电液体的深度h变化为()
A、h增大
B、减小
C、h不变
D、无法确定
4.如图所示,R1为定值电阻,R2为热敏电阻,L为小灯泡,
当温度降低时()
A.R1两端的电压增大B.电流表的示数增大
C.小灯泡的亮度变强D.小灯泡的亮度变弱
5.如图所示,为一种测定角度的传感器,当彼此绝缘的金
属板构成的动片与定片之间的角度 发生变化时,传感器是如何将它的这
种变化转化为电学量的?
6.如图所示,R3是光敏电阻,当开关S闭合后在没有光照射时,
a、b两点等电势,当用光照射电阻R3时,则()
A.R3的电阻变小,a点电势高于b点电势
B.R3的电阻变小,a点电势低于b点电势
C.R3的电阻变小,a点电势等于b点电势
D.R3的电阻变大,a点电势低于b点电势
7.如图是观察电阻值随温度变化情况示意图。

现把杯中的水由冷水变为热水,关于欧姆表的读数变化情况正确的是()
A.如果R为金属热电阻,读数变大,且变化非常明显
B.如果R为金属热电阻,读数变小,且变化不明显
C.如果R为热敏电阻(用半导体材料制作),读数变化非常
明显
D.如果R为热敏电阻(用半导体材料制作),读数变化不明
2012学年高二物理导学案编号____使用时间____
班级:__小组:____姓名:____组内评价:____教师评价:____
《传感器及其工作原理》导学案二
编制人:陈昌林审核人:____领导签字:____
【检测题】
1.有一电学元件,温度升高时电阻却大幅度减小,则这种元件可能是
A.金属导体B.绝缘体C.半导体D.超导体
2.测温仪使用的是()
A、光传感器
B、红外线传感器
C、温度传感器
D、超声波传感器
3.下列器件是应用光传感器的是()
A、鼠标器
B、火灾报警器
C、测温仪
D、电子称
4.鼠标器使用的是()
A、压力传感器
B、温度传感器
C、光传感器
D、红外线传感器
5.关于光敏电阻,下列说法正确的是()
A.光敏电阻能够把光照强弱这个光学量转换为电阻这个电学量
B.硫化镉是一种半导体材料,无光照射时,载流子极少,导电性能不好
C.硫化镉是一种半导体材料,无光照射时,载流子较少,导电性能良好
D.半导体材料的硫化镉,随着光照的增强,载流子增多,导电性能变好
6.霍尔元件能转换哪两个量()
A.把温度这个热学量转换为电阻这个电学量
B.把磁感应强度这个磁学量转换为电压这个电学量
C.把力转换为电压这个电学量
D.把光照强弱这个光学量转换为电阻这个电学量
7.如图所示是测定位移的电容式传感器,其工作原理是哪
个量的变化,造成其电容的变化()
A.电介质进入极板的长度B.两极板间距
C.两极板正对面积D.极板所带电量
8.如图所示,R1、R2为定值电阻,L是小灯泡,R3为光敏电阻,当照射光强度增大时,()
A.电压表的示数增大
B.R2中电流减小
C.小灯泡的功率增大
D.电路的路端电压增大
9.如图所示,R3是光敏电阻,当开关S闭合后在没有光照
射时,a、b两点等电势,当用光照射电阻R3时,则()
A.R3的电阻变小,a点电势高于b点电势
B.R3的电阻变小,a点电势低于b点电势
C.R3的电阻变小,a点电势等于b点电势
D.R3的电阻变大,a点电势低于b点电势
10.有一电学元件,温度升高时电阻却大幅度减小,则这种元件可能是()
A.金属导体B.绝缘体C.半导体D.超导体
11.如图是观察电阻值随温度变化情况示意图。

现把杯中的
水由冷水变为热水,关于欧姆表的读数变化情况正确的是
()
A.如果R为金属热电阻,读数变大,且变化非常明显
B.如果R为金属热电阻,读数变小,且变化不明显
C.如果R为热敏电阻(用半导体材料制作),读数变化非
常明显
D.如果R为热敏电阻(用半导体材料制作),读数变化不明显
12.图是霍尔元件的工作原理示意图,用d表示薄片的厚度,k为霍尔系数,对于一个霍尔元件d、k为定值,如果保持I恒定,则可以验证U H随B的变化情况。

以下说法中正确的是()
A.将永磁体的一个磁极逐渐靠近霍尔元件的工作面,
U H将变大
B.在测定地球两极的磁场强弱时,霍尔元件的工作面应
保持水平
C.在测定地球赤道上的磁场强弱时,霍尔元件的工作面
应保持水平
D.改变磁感线与霍尔元件工作面的夹角,U H将发生变化
13.磁场具有能量,磁场中单位体积所具有的能量叫做能量密度,其值为B2∕2µ.式中B是磁感应强度, µ是磁导率,在空气中µ为一已知常数,为了近似测得条形磁铁磁极端面附近的磁感应强度B,一学生用一根端面面积为A的条形
磁铁吸住一相同面积的铁片P,再用力将铁片与
磁铁拉开一段微小距离ΔL,并测出拉力F,如图
6-2-10所示,因为F所做的功等于间隙中磁场的
能量,所以由此可得此感应强度B与F、 A之间
的关系为B=____.
14.如图所示为在温度为10℃左右的环境中工作的自动恒温箱简图,箱内电阻R1=20kΩ,R2=10kΩ,R3=40 kΩ,R1为热敏电阻,它的电阻随温度变化的图线如图所示。

当a、b端电压U ab﹤0时,电压鉴别器会令开关S接通,恒温箱内的电热丝发热,使箱内温度提高;当U ab﹥0时,电压鉴别器使S断开,停止加热,恒温
箱内的温度恒定在___℃。

相关文档
最新文档