广义相对论

合集下载

广义相对论简介

广义相对论简介

四、黑洞(black hole)
设一飞船自无限远,由静止向星球自由降落。
M
dt , dr
dt , dr
r
0
v
r m
2 1 v 2GM 2 mv 2 GMm , 2 2 r 2 c c r
dt 2GM dt , dr 1 2 dl cr 2GM 1 2 cr
8.11 广义相对论(引力的时空理论)简介 一、等效原理和局域惯性系 1、严格的惯性系 自由粒子总保持静止或匀速直线运动状态的 参考系,是严格的惯性系。 无引力场的区域,才是严格的惯性系! 例如,太空中远离任何物体的区域。 但参考系由其他物体群构成。这样,自由粒 子将不复存在,惯性系的定义出现了问题! 在引力场中,存在严格的惯性系吗?
―黑洞”不“黑”:1974年,霍金结合量子 力学和相对论,指出黑洞并非全黑 — 黑洞能 够辐射,这就是著名的霍金辐射。黑洞在辐 射过程中,将能量辐射出去,这意味着黑洞 将逐渐缩小,最后在爆炸中结束生命。
19
天文学家还发现,黑洞吸引其他恒星的物质 ,不是一下子就吸引过去,而是在看不见的周 围形成一个会转的物质盘 ( 叫做吸积盘 ) 。另外 一个恒星的物质是先打到这个盘上去,盘上的 物质才像螺旋一样进入黑洞。
为验证时空弯曲和惯 性系拖曳效应 (大质量 物体旋转拖动周围时空 发生扭曲), 2004 年 4 月 20 日美国发射“引力探 测器B”卫星。证实了爱 因斯坦的理论预言的误 差低于1%。
黑洞视频:
21
此时rs 10 km 。
17
黑洞拉伸、撕裂并吞噬一小部分恒星,最终将恒星大部 18 分质量抛向宇宙空间的模拟过程图。
恒星演化的晚期,其核心部分经过核反应 T ∼ 6109K,各类中微子过程都能够发生, 中微子将核心区的能量迅速带走 引力坍缩 强冲击波 外层物质抛射或超新星爆发 致密天体(白矮星、中子星、黑洞)

《广义相对论》课件

《广义相对论》课件

1915年,爱因斯坦发表了广义相对论 ,描述了引力是由物质引起的时空弯 曲所产生。
爱因斯坦的灵感来源
爱因斯坦受到马赫原理、麦克斯韦电 磁理论和黎曼几何的启发,开始思考 引力与几何之间的关系。
广义相对论的基本假设
1 2
等效原理
在小区域内,不能通过任何实验区分均匀引力场 和加速参照系。
广义协变原理
物理定律在任何参照系中都保持形式不变,即具 有广义协变性。
研究暗物质与暗能量的性质有助于深入理 解宇宙的演化历史和终极命运。
05
广义相对论的未来发展
超弦理论与量子引力
超弦理论
超弦理论是一种尝试将引力与量子力学统一的理论框架,它认为基本粒子是一 维的弦,而不是传统的点粒子。超弦理论在数学上非常优美,但目前还没有被 实验证实。
量子引力
量子引力理论试图用量子力学的方法描述引力,解决广义相对论与量子力学之 间的不兼容问题。目前,量子引力理论仍在发展阶段,尚未有成熟的理论框架 。
广义相对论为宇宙学提供了重 要的理论基础,用于描述宇宙
的起源、演化和终极命运。
大爆炸理论
广义相对论解释了大爆炸理论 ,即宇宙从一个极度高温和高 密度的状态开始膨胀和冷却的 过程。
黑洞理论
广义相对论预测了黑洞的存在 ,这是一种极度引力集中的天 体,能够吞噬一切周围的物质 和光线。
宇宙常数
广义相对论引入了宇宙常数来 描述空间中均匀分布的真空能
宇宙加速膨胀与暗能量研究
宇宙加速膨胀
通过对宇宙微波背景辐射和星系分布的研究,科学家发现宇 宙正在加速膨胀。这需要进一步研究以理解其中的原因,以 及暗能量的性质和作用。
暗能量
暗能量是一种假设的物质,被认为是宇宙加速膨胀的原因。 需要进一步研究暗能量的性质和作用机制,以更好地理解宇 宙的演化。

物理学中的广义相对论

物理学中的广义相对论

物理学中的广义相对论是一门深奥的学科,它被认为是爱因斯坦最伟大的贡献之一。

广义相对论是现代物理学的基础,它解释了大量的天文现象,也是现代技术和工程领域中最成功的实验室验证理论之一。

广义相对论是对爱因斯坦狭义相对论的一次完善,也是量子力学相对独立的基础。

与狭义相对论相比,广义相对论更加完整,范围更广。

广义相对论认为,引力是一种由物质引起的时空的扭曲现象,物体之间的引力作用是由于物体所在时空的曲率引起的。

广义相对论最初的想法可以追溯到19世纪末,当时物理学家开始探讨光的速度是否是恒定不变的,在这个过程中,现代相对论的雏形产生了。

1905年,爱因斯坦出版了《狭义相对论》一书,其中他提出了质量和能量是等价的概念,这导致了不同类型的基本粒子之间的联系,这也引入了著名的等价原理,即质量和重力是等价的,因为观测到重力的物理现象实际上是物体在曲率的时空中沿直线运动所呈现出来的结果。

广义相对论在其形成初期经常被称为爱因斯坦场论,这个理论提出了一个基本的假设,即重力是因为广义相对论规定的物质和能量间产生的时空弯曲而产生的,而这种弯曲可以通过狄拉克极限的方程来定义。

这个假设可以通过重力波的检测来验证。

广义相对论的最重要的创新之一,是对于从形而上学角度来讲的时间和空间的相对性的重新定义,它的思想是:时空的形成是通过物体质量的弯曲而形成的,也就是说,时空并不是一个静态的概念,而是随物体质量所引起弯曲的变化而不断变化的。

至今为止,广义相对论已被运用于许多实验探索和应用领域中。

其中最有名的包括 GPS导航系统的运行、天文学的研究等。

物理学家们也在尝试直接观测重力波,这将是一个极其重要的突破,有助于加深我们对于宇宙万物的理解。

广义相对论的推断并不是站在推论和实验的结晶之间,它可以看做是一种最基本的规律,是理解星系和星体本质的必备法则。

广义相对论的理论基础正在被科学家不断推陈出新,这些新的发现或将发挥巨大的作用,帮助科学家更好地认知宇宙。

广义相对论

广义相对论

广义相对论广义相对论(General Relativity‎),是爱因斯坦于1915年以几何语言建立而成的引力理论,统合了狭义相对论和牛顿的万有引力定律,将引力改描述成因时空中的物质与能量而弯曲的时空,以取代传统对于引力是一种力的看法。

这也就解释了为什么水星的轨道飘忽不定.广义相对论是阿尔伯特·爱因斯坦于1915年发表的用几何语言描述的引力理论,它代表了现代物理学中引力广义相对论理论研究的最高水平。

广义相对论将经典的牛顿万有引力定律包含在狭义相对论的框架中,并在此基础上应用等效原理而建立的。

在广义相对论中,引力被描述为时空的一种几何属性(曲率);而这种时空曲率与处于时空中的物质与辐射的能量-动量张量直接相关系,其关系方式即是爱因斯坦的引力场方程(一个二阶非线性偏微分方程组)。

从广义相对论得到的有关预言和经典物理中的对应预言非常不相同,尤其是有关时间流逝、空间几何、自由落体的运动以及光的传播等问题,例如引力场内的时间膨胀、光的引力红移和引力时间延迟效应。

广义相对论的预言至今为止已经通过了所有观测和实验的验证——虽说广义相对论并非当今描述引力的唯一理论,它却是能够与实验数据相符合的最简洁的理论。

不过,仍然有一些问题至今未能解决,典型的即是如何将广义相对论和量子物理的定律统一起来,从而建立一个完备并且自洽的量子引力理论。

爱因斯坦的广义相对论理论在天体物理学中有着非常重要的应用:它直接推导出某些大质量恒星会终结为一个黑洞——时空中的某些区域发生极度的扭曲以至于连光都无法逸出。

有证据表明恒星质量黑洞以及超大质量黑洞是某些天体例如活动星系核和微类星体发射高强度辐射的直接成因。

光线在引力场中的偏折会形成引力透镜现象,这使得人们能够观察到处于遥远位置的同一个天体的多个成像。

广义相对论还预言了引力波的存在。

北京时间2015年9月14日17点50分45秒,激光干涉仪引力波天文台(以下简称LIGO)分别位于美国路易斯安那州的利文斯顿(Livingston)和华盛顿州的汉福德(Hanford )的两个的探测器,观测到了一次置信度高达5.1倍标准差的引力波事件:GW150914。

广义相对论简介

广义相对论简介

爱因斯坦提出:引力不同于其它种类的力, 爱因斯坦提出:引力不同于其它种类的力, 事实的后果。 它只不过是时空不平坦的这一 事实的后果。 物体并非由于称为引力的力而沿弯曲轨道运动, 物体并非由于称为引力的力而沿弯曲轨道运动, 而是沿着弯曲空间中最接近直线的称之为测地线 而是沿着弯曲空间中最接近直线的称之为测地线 的轨迹运动。 的轨迹运动。
才可能形成黑洞, 质量 M > (2 ∼ 3) M⊙时,才可能形成黑洞, 此时rs ∼ 10 km 。
9
地球的 rs
恒星演化的晚期, 恒星演化的晚期,其核心部分经过核反应 T ∼ 6×109K, 各类中微子过程都能够发生, × , 各类中微子过程都能够发生, 中微子将核心区的能量迅速带走→ 中微子将核心区的能量迅速带走 →引力坍缩 → 强冲击波 → 外层物质抛射或超新星爆发 白矮星、中子星、黑洞) → 致密天体(白矮星、中子星、黑洞) 4.引力波 引力波 广义相对论预言了引力波的存在。 广义相对论预言了引力波的存在。 加速的物体系,会引起周围时空性质变化, 加速的物体系,会引起周围时空性质变化, 并以波动(引力波)的形式向外传播。 并以波动(引力波)的形式向外传播。
太阳
ห้องสมุดไป่ตู้

·
水 若再考虑空间弯曲,得到: 星 若再考虑空间弯曲,得到:
附加
= 5557.62′′ / 100年 , 实测 = 5600.73′′ / 100年

= 43 .0 3′′ / 100 年 ,
Ω 牛+ Ω 附加=5600.65′′ ′′/100年 ′′ 年
相符得非常好。 理论值Ω 牛+ Ω 附加和观测值 Ω 相符得非常好。 这是对广义相对论的重大验证之一。 这是对广义相对论的重大验证之一。

广义相对论的主要内容

广义相对论的主要内容

广义相对论的主要内容广义相对论是阐述了引力的起源和性质的理论,由爱因斯坦在1915年提出。

它是现代物理学中的基本理论之一,对于我们理解宇宙的结构和演化有着重要的意义。

广义相对论的主要内容可以总结为以下几个方面:1. 引力是时空的弯曲:广义相对论的最重要的发现是引力不再是牛顿力学中的吸引力,而是由于物体所在的时空弯曲所产生的。

按照广义相对论的观点,物体的质量和能量会使周围的时空弯曲,而其他物体就会沿着这个弯曲的路径运动。

这种弯曲可以用类似于放在弹性膜上的物体引起的凹陷的比喻来理解。

2. 引力的传播速度:广义相对论认为引力传播的速度是光速,与爱因斯坦提出的狭义相对论的观点一致。

这一点也得到了后来的实验证实,进一步证明了广义相对论的正确性。

3. 引力会影响物体的时钟和尺度:由于时空的弯曲,物体所经历的时间和空间也会发生变化。

在强引力场中,时间会变得更慢,而尺度会变得更小。

这是由于时空的弯曲导致了物体所处的引力场强度的差异。

4. 引力透镜效应:广义相对论预言了引力透镜效应,即当光线经过强引力场时,会发生偏折。

这一效应在1919年的日食观测中得到了证实,为广义相对论的成功提供了重要的实验证据。

5. 引力波:广义相对论还预言了引力波的存在。

引力波是由于物质运动而产生的时空弯曲的波动,类似于水波的传播。

直到2015年,引力波的直接探测才得以实现,这一重大突破再次证实了广义相对论的正确性。

6. 黑洞:广义相对论对黑洞的存在和性质给出了详细的描述。

黑洞是由于引力场强度极大而导致的物质坍塌形成的天体,它具有极强的引力,连光也无法逃离。

广义相对论成功地解释了黑洞的形成、结构和性质,并且黑洞的存在也得到了多个实证观测的证实。

广义相对论的提出使我们对于宇宙的理解有了质的飞跃。

它不仅解释了引力的本质和性质,还为宇宙学提供了坚实的理论基础。

广义相对论的成功也激发了后续研究的热情,推动了许多重要的科学发现和突破。

尽管广义相对论在极端条件下可能需要与量子力学相结合,但它仍然被视为现代物理学的重要里程碑,对于我们理解宇宙的深层结构和演化有着重要的意义。

广义相对论术语

广义相对论术语

广义相对论术语
广义相对论(General Relativity)是描述物质间引力相互作用的物理理论,这一理论是狭义相对论的推广,也是牛顿引力理论的进一步发展。

在广义相对论中,引力作用被表现为一种几何效应,即时空的弯曲。

广义相对论包含的两大核心思想为等效原理与广义相对性原理,并以此为基础发展出了爱因斯坦场方程,该方程描述了物质如何弯曲时空,时空如何反作用于物质。

方程的左侧描述了时空的弯曲程度,方程右侧与物质能动张量成正比,即这代表着时空的曲率与存在的任何物质和辐射的能量和动量直接相关。

广义相对论与量子理论作为现代物理大厦的两大基石,无论是在理论层面或是在实验观测上都得到了极好的验证。

水星近日点进动、光线在引力场中的弯曲、雷达回波延迟等现象验证了低速下、弱引力场的广义相对论理论;2015年9月14日,LIGO探测到了第一例引力波信号,验证了强引力场下的广义相对论理论。

广义相对论在黑洞、中子星、致密双星系统、宇宙学、量子引力等领域有着广泛的应用。

然而,广义相对论仍然有一些问题至今未能解决,其中最为基础的即是广义相对论和量子物理的定律应如何统一以形成完备并且自洽的量子引力理论。

《广义相对论》课件

《广义相对论》课件
详细描述
等效原理表明,在任何小的时空区域内,我们无法通过任何可预见的实验区分均匀引力场和加速参照系。这意味 着在局部范围内,我们无法区分引力和加速参照系引起的效应。这一原理在广义相对论中扮演着重要的角色,为 引力场的描述和性质提供了基础。
广义协变原理
总结词
广义协变原理是广义相对论的另一个基本原理,它要求物理定律在任何参照系中 都保持形式不变。
05
广义相对论的应用
黑洞与宇宙学
黑洞的形成与演化
广义相对论预测了黑洞的存在,并描 述了其形成和演化的过程,如恒星坍 缩、吸积盘等。
宇宙学模型
广义相对论为宇宙学提供了理论基础 ,如大爆炸理论、宇宙膨胀等,解释 了宇宙起源和演化的过程。
Байду номын сангаас 宇宙的起源与演化
宇宙起源
广义相对论提供了宇宙起源的理论框 架,解释了宇宙从大爆炸开始的一系 列演化过程。
牛顿力学与狭义相对 论无法同时成立,需 要一种新的理论来统 一。
狭义相对论解决了牛 顿力学在高速领域的 矛盾,但无法解释引 力问题。
爱因斯坦与广义相对论的创立
爱因斯坦受到物理学家马赫的 启发,开始探索引力问题。
爱因斯坦提出了等效原理和光 速不变原理,作为广义相对论 的基本假设。
广义相对论成功地解释了引力 作用,并将其与空间-时间结构 联系起来。
暗物质与暗能量的研究
深入探索暗物质和暗能量的本质,揭示它们在宇宙中的 作用和相互关系,进一步完善宇宙学模型。
预测了更为精确的进动值。
光线在引力场中的弯曲
要点一
总结词
光线在引力场中的弯曲是广义相对论的另一个重要实验验 证,它证实了爱因斯坦关于引力透镜的预测。
要点二
详细描述

相对论的狭义相对论与广义相对论

相对论的狭义相对论与广义相对论

相对论的狭义相对论与广义相对论相对论是一门革命性的物理学理论,由爱因斯坦提出,对我们对于时间、空间和引力的理解产生了深远的影响。

相对论可以分为狭义相对论和广义相对论两个方面,它们分别适用于不同的物理情境,并展示出了截然不同的现象和理论框架。

在本文中,我们将详细探讨相对论的狭义相对论和广义相对论的概念和应用。

首先,我们来讨论狭义相对论。

狭义相对论是相对论的最早阶段,也是相对论最初的基本概念。

在狭义相对论中,爱因斯坦提出了两个重要的理论性假设:光速不变和相对性原理。

光速不变意味着光在任何参考系下都以相同的速度传播,而相对性原理则表明物理定律在一切惯性系中都必须具有相同的形式。

基于这些假设,狭义相对论推导出了一系列重要的结果。

其中最为著名的是时间的相对性。

狭义相对论指出,时间并不是一个普遍的绝对概念,而是相对于观察者的运动状态而言。

具体而言,当物体以接近光速的速度运动时,时间会变得相对于静止观察者而言变慢。

这一现象被称为时间膨胀。

除了时间的相对性外,狭义相对论还探讨了空间的相对性。

相对论中引入了四维时空的概念,即时间和空间被统一在一起,形成一个四维时空的坐标系。

在这个坐标系下,物体的运动将在时空中产生弯曲,存在一个所谓的时空弯曲效应。

这一效应在高速和高引力条件下尤为显著。

接下来,我们转到广义相对论的讨论。

广义相对论是相对论的更为深入和完整的理论框架。

广义相对论建立在狭义相对论的基础上,进一步将引力引入了物理学的框架中,并提出了著名的引力场方程:爱因斯坦场方程。

广义相对论通过引入度规张量来描述时空的弯曲。

这个度规张量可以表示时空的几何性质,而物体的运动轨迹则是由物体在弯曲时空中的自由下落决定的。

换句话说,广义相对论将引力视为时空弯曲的结果,而不再是牛顿力学中的作用力。

广义相对论对于大质量物体的运动和时空的形态提供了深入而准确的描述。

它成功地解释了许多观测现象,例如黑洞的形成和引力波的传播。

广义相对论还为宇宙学提供了一个理论基础,使我们能够更好地理解宇宙的起源、演化和结构。

爱因斯坦广义相对论的主要内容

爱因斯坦广义相对论的主要内容

爱因斯坦广义相对论的主要内容
广义相对论,就是有引力的相对论,其实也就是用相对论来描述引力.其基本内容是说引力和惯性力是同一的,引力的本质是有质量物体使周围的时空弯曲所产生的结果.引力除了产生力,还可以形成和速度一样的效应,也就是长度变小,时间变慢.
1916年,爱因斯坦又经过10年探索,进一步完成了广义相对论创立工作。

广义相对论是一种没有引力的新引力理论,是适用于所有参照系的物理定律。

它与狭义相对论不同,狭义相对论仅仅适用于不存在引力的物理过程。

改造了牛顿力学,抛弃了欧几里德几何学,而采用黎曼几何,证明出物体的质量使得它周围的空间发生了弯曲,物体运动只是眼短程线运动,而并不是由于存在引力,从而解决了水星进动的问题。

同时引入惯性力,将所有的参考系统一起来。

《广义相对论简介》课件

《广义相对论简介》课件
局域性
引力场在局域范围内可近似为牛顿引力,满足线性 叠加原理。
引力场方程的推导与表述
80%
场方程的推导
基于爱因斯坦的场方程,通过数 学推导得到引力场方程。
100%
场方程的表述
引力场方程表述了物质和能量如 何弯曲时空,进而产生引力。
80%
几何意义
引力场方程是时空曲率与物质能 量分布之间的联系。
引力场方程的解与意义
爱因斯坦对物理学基础问题的关注
爱因斯坦对物理学的基础问题产生了浓厚的兴趣,开始探索光速不变和相对性 原理背后的更深层次原理。
爱因斯坦的科研经历与思想转变
从特殊相对论到广义相对论的过渡
爱因斯坦在提出特殊相对论后,意识到其只能解释惯性参考系下的物理现象,因此开始探索引力问题,最终发展 出广义相对论。
对等效原理和最小作用量原理的应用
详细描述
1919年,爱丁顿和戴森带领的探险队在日 全食期间观测到太阳附近的星光发生偏折的 现象,与广义相对论的预测相符,证实了爱
因斯坦的理论。
水星轨道近日点的进动现象
总结词
水星轨道近日点的进动现象观测结果与牛顿经典力学预测不符,而与广义相对论的预测 一致。
详细描述
水星是太阳系中离太阳最近的行星,其轨道近日点会发生进动现象。观测数据显示,水 星轨道的进动速度比牛顿经典力学预测的要快,这一现象只有通过广义相对论才能得到
广义协变原理
总结词
该原理要求所有物理定律在任何参照系中都 保持形式不变,即具有协变性。
详细描述
广义协变原理是广义相对论的另一个重要原 理,它要求所有物理定律在不同的参照系中 保持形式不变,即具有协变性。这意味着物 理定律的形式在任何参照系中都应该是一样 的,不受参照系选择的影响。这一原理进一 步强调了物理定律的普遍性和相对性,是广 义相对论的重要基石之一。

广义相对论和狭义相对论简单解释

广义相对论和狭义相对论简单解释

广义相对论和狭义相对论简单解释
狭义相对论是爱因斯坦提出的理论,它主要描绘了时间、空间和运动之间的关系,认为时间和空间是相互依存的,都是相对的。

这个理论在高速运动场景下可以解释一些奇怪的现象,比如时间的相对性和长度的变化。

广义相对论是爱因斯坦在狭义相对论基础上发展而来的。

它认为重力是由物体的质量和能量弯曲了时空而产生的。

这个理论重构了我们对引力和物体运动的理解,它解释了黑洞和宇宙大爆炸这些宏观现象,同时它也预测了一些现象,比如光线弯曲和时空扭曲等。

广义相对论的基本概念及研究进展

广义相对论的基本概念及研究进展

广义相对论的基本概念及研究进展广义相对论是研究物体之间相互作用和引力现象的现代物理学分支。

它是物理学发展中的一次重大突破,引领了人类认识宇宙的新时代。

在现代科学的视野中,广义相对论是完善爱因斯坦所提出的相对论的理论基础,是探索全宇宙宏观和微观物理规律的基石。

一、广义相对论的定义广义相对论是描述引力是如何形成的物理学理论。

它是由爱因斯坦于1915年提出的,并受到了全球科学家共同的关注和研究。

广义相对论将能量和动量描述为几何对象,并探究宇宙和时间之间的关系。

它提出了一种集合力学和庞大物体的理论,帮助量化引力重力和时间和物质的关系。

二、广义相对论的基本概念广义相对论的基本概念是由四个元素组成,即弯曲时空、引力场、物体自由运动和最小作用量原理。

其中弯曲时空是相对论的基础概念,指观察者在不同位置或处于不同状态时所得观测结果的差异。

一个相对于另一个参考物体的运动,会导致时间和空间的变化,在时间和空间中产生弯曲,从而影响周围物体的运动轨迹。

引力场指的是物体对空间产生的影响,形成了一种引力场,引力场的强度越大,物体所受到的引力就越大。

物体自由运动是指物体在不受外力干扰的情况下运动的状态,其运动地位对比于不运动地位。

最小作用量原理指的是物理现象的存在都有一定的规律和规范,能量和动量的运动符合这些规则和规范。

三、广义相对论的研究进展广义相对论的研究一直以来都是人们关注的焦点,可谓是物理学家们追求的终极理论。

随着现代技术不断进步,广义相对论的研究也在不断深入。

在这个领域内,人们已经取得了很多重要成果。

1、引力波的探索引力波是广义相对论的重要预言之一,它是由爱因斯坦提出的。

它是指由于重大事件(如黑洞合并、中子星碰撞等)所产生的“波形振动”形成的扰动,以光速传播,最终到达我们的探测器,并被探测器所发现。

2015年2月,欧洲引力波天文台(LIGO)首次成功探测到引力波,这个研究成果在天文学界引起了轰动。

2、黑洞的研究黑洞是引力非常强大的区域,最初由爱因斯坦所预测。

广义相对论的三个结论

广义相对论的三个结论

广义相对论的三个结论
广义相对论是现代物理学的重要理论之一,它由爱因斯坦于1915年提出,并已成为解释宇宙现象和天体演化的基础之一。

本文将简要介绍广义相对论的三个主要结论。

1.等效原理
等效原理是指在弱引力场中,物理规律的形式与惯性参考系中的物理规律相同。

换句话说,在弱引力场中,一个物体的运动规律与它在没有引力的惯性参考系中的运动规律相同。

这个原理在广义相对论中非常重要,因为它为引入引力场提供了基础。

2.广义相对性原理
广义相对性原理是指物理规律在不同的参考系中形式相同,而参考系的选择取决于其时空坐标的变换。

这个原理表明,不同的参考系不会影响物理规律的正确性,而变换坐标系不会改变观察到的物理现象。

在广义相对论中,这个原理被扩展到包括引力场在内的所有物理现象。

3.引力场与几何结构的关联
引力场与几何结构的关联是指引力场对时空结构有影响,而这种影响可以通过几何语言来描述。

在广义相对论中,引力场被描述为时空的弯曲,而这种弯曲可以通过几何结构的变化来解释。

此外,物体的质量也会导致时空的弯曲,因此物体的运动轨迹也会受到引力场的影响。

总之,广义相对论的三个结论包括等效原理、广义相对性原理和
引力场与几何结构的关联。

这些结论在解释宇宙现象和天体演化方面具有重要意义,并为现代物理学的发展奠定了基础。

广义相对论的基础知识

广义相对论的基础知识

广义相对论的基础知识广义相对论是爱因斯坦于1915年提出的一种描述引力的理论,是现代物理学中的基石之一。

它建立在狭义相对论的基础上,描述了引力是时空弯曲的结果,从而揭示了宇宙的结构和演化规律。

在广义相对论中,引力被解释为时空的弯曲,物质和能量决定了时空的几何结构,而物质和能量又受到时空结构的影响,形成了一个统一的动力学系统。

下面将介绍广义相对论的基础知识,包括引力场方程、时空弯曲、黑洞等内容。

引力场方程是广义相对论的核心方程之一,描述了引力场如何影响时空的几何结构。

在爱因斯坦场方程中,引力场由时空的度规张量表示,方程的左边描述了时空的几何性质,右边描述了物质和能量的分布。

具体形式为:\[G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}\]其中,\(G_{\mu\nu}\)是爱因斯坦张量,描述了时空的曲率;\(\Lambda\)是宇宙学常数,描述了宇宙的膨胀;\(g_{\mu\nu}\)是度规张量,描述了时空的几何结构;\(T_{\mu\nu}\)是能动量张量,描述了物质和能量的分布;\(G\)是引力常数;\(c\)是光速。

时空弯曲是广义相对论的核心概念之一,描述了物质和能量如何影响时空的几何结构。

根据广义相对论,物质和能量会使时空产生弯曲,其他物体沿着弯曲的时空轨迹运动。

这种弯曲效应导致了引力的产生,即物体之间的相互吸引。

例如,地球围绕太阳运动是由于太阳在时空中产生了弯曲,地球沿着这个弯曲的轨迹运动。

黑洞是广义相对论的一个重要预言,是一种引力极强的天体,其引力场强大到连光都无法逃逸。

黑洞的形成是由于恒星在耗尽燃料后发生坍缩,形成极高密度的天体。

在黑洞的视界半径内,引力场非常强大,甚至连光都无法逃逸,因此黑洞是不可见的。

黑洞的质量和视界半径之间存在一个简单的关系,即视界半径正比于质量,这就是所谓的“事件视界”。

广义相对论还预言了引力波的存在,这是一种由引力场振荡产生的波动,类似于电磁波。

广义相对论的定义

广义相对论的定义

广义相对论的定义广义相对论(General Relativity)是爱因斯坦于1915年以几何语言建立而成的引力理论,统合了狭义相对论和牛顿的万有引力定律,将引力改描述成因时空中的物质与能量而弯曲的时空,以取代传统对于引力是一种力的看法。

因此,狭义相对论和万有引力定律,都只是广义相对论在特殊情况之下的特例。

狭义相对论是在没有重力时的情况;而万有引力定律则是在距离近、引力小和速度慢时的情况。

广义相对论是爱斯坦的第二种相对性理论(1916年)。

该理论认为引力是由空间——时间几何(也就是,不仅考虑空间中的点之间,而是考虑在空间和时间中的点之间距离的几何)的畸变引起的,因而引力场影响时间和距离的测量.广义相对论:爱因斯坦的基于科学定律对所有的观察者(而不管他们如何运动的)必须是相同的观念的理论。

它将引力按照四维空间—时间的曲率来解释。

一、背景爱因斯坦在1907年发表了一篇探讨光线在狭义相对论中,重力和加速度对其影响的论文,广义相对论的雏型就此开始形成。

1912年,爱因斯坦发表了另外一篇论文,探讨如何将重力场用几何的语言来描述。

至此,广义相对论的运动学出现了。

到了1915年,爱因斯坦场方程式被发表了出来,整个广义相对论的动力学才终于完成。

1915年后,广义相对论的发展多集中在解开场方程式上,解答的物理解释以及寻求可能的实验与观测也占了很大的一部份。

但因为场方程式是一个非线性偏微分方程,很难得出解来,所以在电脑开始应用在科学上之前,也只有少数的解被解出来而已。

其中最著名的有三个解:史瓦西解(the Schwarzschild solution (1916)), the Reissner-Nordstro m solution and the Kerr solution。

在广义相对论的观测上,也有着许多的进展。

水星的岁差是第一个证明广义相对论是正确的证据,这是在相对论出现之前就已经量测到的现象,直到广义相对论被爱因斯坦发现之后,才得到了理论的说明。

广义相对论的原理

广义相对论的原理

广义相对论的原理广义相对论,简称GR,是爱因斯坦在1915年提出的一种描述引力的物理理论。

相对论理论的出现,使得人们对物理学有了更加深刻的认识和了解,而广义相对论的提出更是使得人们对大自然的认知达到了一个新的高度。

一、相对论的出现要了解广义相对论,我们必须先回顾一下相对论的出现。

相对论是由爱因斯坦提出的,爱因斯坦以非常直观的方式打破了牛顿力学中的绝对时空观念。

牛顿力学把时间当作绝对量,认为时间与空间没有任何联系,但爱因斯坦相对论却告诉我们,时间与空间是互相影响、相互作用的。

如果我们沿着运动方向移动,则时间会变得较慢。

这种相对论引起人们的极大关注,也对物理学做出了非常重要的贡献。

二、广义相对论的提出引力一直是物理学研究的重要课题,牛顿力学中,引力的作用是由质量之间的作用造成的,牛顿对引力的描述可以解释地球围绕太阳旋转,万物皆有重力的现象,但是牛顿力学不能够解释一些现象,比如,水平飞行的飞机为什么不落地。

为解决这一问题,爱因斯坦继续推广了自己的相对论体系,提出了广义相对论。

广义相对论把引力看做是时空弯曲的结果;即质量会使时空产生变化,这种变化可以用曲率来描述。

因此,质量之间的作用可以被看做是它们所造成的几何曲率变化。

在这个理论中,重力被解释为物体在弯曲的时空中运动。

这是一个完全革命性的想法,为人们对引力的理解提供了全新的视角。

三、广义相对论的核心原理广义相对论的核心原理是“等效原理”。

等效原理的意思是,质量和加速度是相同的,也就是说,在加速的观测系中,我们无法区分是处于重力场内,还是处于拉力的作用下加速运动。

比如,如果我们把自己置身于免重力场的太空船内,也许你会觉得自己感受不到重力,但只要它开始加速,你会立刻感觉到一种引力的感觉,就好像你处在一个重力场一样。

因此,我们可以把质量和加速度等同起来,这也成为广义相对论的核心原理。

这个原理可以用熟悉的例子来说明。

假设你站在电梯内,电梯在地球上下运动,你会感觉到一个向上或向下的重力。

【精品文献】广义相对论

【精品文献】广义相对论

百度首页 | 登录新闻网页贴吧知道MP3图片视频百科文库帮助设置首页自然文化地理历史生活社会艺术人物经济科学体育红楼梦世博编辑词条广义相对论百科名片广义相对论(General Relativity?),是爱因斯坦于1915年以几何语言建立而成的引力理论,统合了狭义相对论和牛顿的万有引力定律,将引力改描述成因时空中的物质与能量而弯曲的时空,以取代传统对于引力是一种力的看法。

目录[隐藏]简介基本假设广义相对论的基本概念主要内容广义相对论的实验检验爱因斯坦第四假设广义相对论-天体物理学上的应用广义相对论-进阶概念广义相对论-和量子理论的关系当前进展广义相对论基础教案示例简介基本假设广义相对论的基本概念主要内容广义相对论的实验检验爱因斯坦第四假设广义相对论-天体物理学上的应用广义相对论-进阶概念广义相对论-和量子理论的关系当前进展广义相对论基础教案示例[编辑本段]简介广义相对论爱因斯坦的第二种相对性理论(1916年)。

该理论认为引力是由空间——时间几何(也就是,不仅考虑空间中的点之间,而是考虑在空间和时间中的点之间距离的几何)的畸变引起的,因而引力场影响时间和距离的测量. 广义相对论:爱因斯坦的基于光速对所有的观察者(而不管他们如何运动的)必须是相同的观念的理论。

它将引力按照四维空间—时间的曲率来解释。

狭义相对论和万有引力定律,都只是广义相对论在特殊情况之下的特例。

狭义相对论是在没有重力时的情况;而万有引力定律则是在距离近、引力小和速度慢时的情况。

600千米的距离观看十倍太阳质量黑洞模拟图在600千米的距离上观看十倍太阳质量的黑洞(模拟图),背景为银河系背景爱因斯坦在1905年发表了一篇探讨光线在狭义相对论中,重力和加速度对其影响的论文,广义相对论的雏型就此开始形成。

1912年,爱因斯坦发表了另外一篇论文,探讨如何将重力场用几何的语言来描述。

至此,广义相对论的运动学出现了。

到了1915年,爱因斯坦场方程式被发表了出来,整个广义相对论的动力学才终于完成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录概况广义相对论是阿尔伯特●爱因斯坦于1916年发表的用几何语言描述的引力理论,它代表了现代物理学中引力理论研究的最高水平。

广义相对论将经典的牛顿万有引力定律包含在狭义相对论的框架中,并在此基础上应用等效原理而建立的。

在广义相对论中,引力被描述为时空的一种几何属性(曲率);而这种时空曲率与处于时空中的物质与辐射的能量-动量张量直接相关系,其关系方式即是爱因斯坦的引力场方程(一个二阶非线性偏微分方程组)。

从广义相对论得到的有关预言和经典物理中的对应预言非常不相同,尤其是有关时间流逝、空间几何、自由落体的运动以及光的传播等问题,例如引力场内的时间膨胀、光的引力红移和引力时间延迟效应。

广义相对论的预言至今为止已经通过了所有观测和实验的验证——虽说广义相对论并非当今描述引力的唯一理论,它却是能够与实验数据相符合的最简洁的理论。

不过,仍然有一些问题至今未能解决,典型的即是如何将广义相对论和量子物理的定律统一起来,从而建立一个完备并且自洽的量子引力理论。

爱因斯坦的广义相对论理论在天体物理学中有着非常重要的应用:它直接推导出某些大质量恒星会终结为一个黑洞——时空中的某些区域发生极度的扭曲以至于连光都无法逸出。

有证据表明恒星质量黑洞以及超大质量黑洞是某些天体例如活动星系核和微类星体发射高强度辐射的直接成因。

光线在引力场中的偏折会形成引力透镜现象,这使得人们能够观察到处于遥远位置的同一个天体的多个成像。

广义相对论还预言了引力波的存在,引力波已经被间接观测所证实,而直接观测则是当今世界像激光干涉引力波天文台(LIGO)这样的引力波观测计划的目标。

此外,广义相对论还是现代宇宙学膨胀宇宙论的理论基础。

目录相关简介相对论是现代物理学的理论基础之一。

论述物质运动与空间时间关系的理论。

20世纪初由爱因斯坦创立并和其他物理学家一起发展和完善,狭义相对论于1905年创立,广义相对论于1916年完成。

19世纪末由于牛顿力学和(苏格兰数学家)麦克斯韦(1831~1879年)电磁理论趋于完善,一些物理学家认为“物理学的发展实际上已经结束”,但当人们运用伽利略变换解释光的传播等问题时,发现一系列尖锐矛盾,对经典时空观产生疑问。

爱因斯坦对这些问题,提出物理学中新的时空观,建立了可与光速相比拟的高速运动物体的规律,创立相对论。

狭义相对论提出两条基本原理。

(1)光速不变原理。

即在任何惯性系中,真空中光速c都相同,与光源及观察者的运动状况无关。

(2)狭义相对性原理是物理学的基本定律乃至自然规律,对所有惯性参考系来说都相同。

广义相对论爱因斯坦的第二种相对性理论(1916年)。

该理论认为引力是由空间——时间几何(也就是,不仅考虑空间中的点之间,而是考虑在空间和时间中的点之间距离的几何)的畸变引起的,因而引力场影响时间和距离的测量.广义相对论:爱因斯坦的基于光速对所有的观察者(而不管他们如何运动的)必须是相同的观念的理论。

它将引力按照四维空间—时间的曲率来解释。

狭义相对论和万有引力定律,都只是广义相对论在特殊情况之下的特例。

狭义相对论是在没有重力时的情况;而万有引力定律则是在距离近、引力小和速度慢时的情况。

600千米的距离观看十倍太阳质量黑洞模拟图在600千米的距离上观看十倍太阳质量的黑洞(模拟图),背景为银河系目录诞生背景爱因斯坦在1905年发表了一篇探讨光线在狭义相对论中,重力和加速度对其影响的论文,广义相对论的雏型就此开始形成。

1912年,爱因斯坦发表了另外一篇论文,探讨如何将重力场用几何的语言来描述。

至此,广义相对论的运动学出现了。

到了1915年,爱因斯坦场方程式被发表了出来,整个广义相对论的动力学才终于完成。

1915年后,广义相对论的发展多集中在解开场方程式上,解答的物理解释以及寻求可能的实验与观测也占了很大的一部份。

但因为场方程式是一个非线性偏微分方程,很难得出解来,所以在电脑开始应用在科学上之前,也只有少数的解被解出来而已。

其中最著名的有三个解:史瓦西解(the Schwarzschild solution (1916)), the Reissner-Nordström solution and the Kerr solution。

在广义相对论的观测上,也有著许多的进展。

水星的岁差是第一个证明广义相对论是正确的证据,这是在相对论出现之前就已经量测到的现象,直到广义相对论被爱因斯坦发现之后,才得到了理论的说明。

第二个实验则是1919年爱丁顿在非洲趁日蚀的时候量测星光因太阳的重力场所产生的偏折,和广义相对论所预测的一模一样。

这时,广义相对论的理论已被大众和大多的物理学家广泛地接受了。

之后,更有许多的实验去测试广义相对论的理论,并且证实了广义相对论的正确。

另外,宇宙的膨胀也创造出了广义相对论的另一场高潮。

从19爱因斯坦解释广义相对论的手稿扉页22年开始,研究者们就发现场方程式所得出的解答会是一个膨胀中的宇宙,而爱因斯坦在那时自然也不相信宇宙会来涨缩,所以他便在场方程式中加入了一个宇宙常数来使场方程式可以解出一个稳定宇宙的解出来。

但是这个解有两个问题。

在理论上,一个稳定宇宙的解在数学上不是稳定。

另外在观测上,1929年,哈勃发现了宇宙其实是在膨胀的,这个实验结果使得爱因斯坦放弃了宇宙常数,并宣称这是我一生最大的错误(the biggest blunder in my career)。

但根据最近的一形超新星的观察,宇宙膨胀正在加速。

所以宇宙常数似乎有再度复活的可能性,宇宙中存在的暗能量可能就必须用宇宙常数来解释.目录基本假设简单地说,广义相对论的两个基本原理是:一,等效原理:引力与惯性力等效;二,广义相对性原理:等效原理所有的物理定律在任何参考系中都取相同的形式。

等效原理等效原理:分为弱等效原理和强等效原理,弱等效原理认为引力质量和惯性质量是等同的。

强等效原理认为,两个空间分别受到引力和与之等大的惯性力的作用,在这两个空间中从事一切实验,都将得出同样的物理规律。

现在有不少学者在从事等效原理的论证研究,但是至少目前能够做到的精度来看,未曾从实验上证明等效原理是破缺的。

广义相对性原理广义相对性原理:物理定律的形式在一切参考系都是不变的。

普通物理学(大学课本)中是这样描述这两个原理的:等效原理:在处于均匀的恒定引力场影响下的惯性系,所发生的一切物理现象,可以和一个不受引力场影响的,但以恒定加速度运动的非惯性系内的物理现象完全相同。

广义相对论的相对性原理:所有非惯性系和有引力场存在的惯性系对于描述物理现象都是等价的。

目录基本概念广义相对论是基于狭义相对论的。

如果后者被证明是错误的,整个理论的大厦都将垮塌。

质量的两种不同表述为了理解广义相对论,我们必须明确质量在经典力学中是如何定义的。

首先,让我们思考一下质量在日常生活中代表什么。

“它是重量”?事实上,我们认为质量是某种可称量的东西,正如我们是这样度量它的:我们把需要测出其质量的物体放在一架天平上。

我们这样做是利用了质量的什么性质呢?是地球和被测物体相互吸引的事实。

这种质量被称作“小球落到正在加速的地板上和落到地球上引力质量”。

我们称它为“引力的”是因为它决定了宇宙中所有星星和恒星的运行:地球和太阳间的引力质量驱使地球围绕后者作近乎圆形的环绕运动。

现在,试着在一个平面上推你的汽车。

你不能否认你的汽车强烈地反抗着你要给它的加速度。

这是因为你的汽车有一个非常大的质量。

移动轻的物体要比移动重的物体轻松。

质量也可以用另一种方式定义:“它反抗加速度”。

这种质量被称作“惯性质量”。

因此我们得出这个结论:我们可以用两种方法度量质量。

要么我们称它的重量(非常简单),要么我们测量它对加速度的抵抗(使用牛顿定律)。

人们做了许多实验以测量同一物体的惯性质量和引力质量。

所有的实验结果都得出同一结论:惯性质量等于引力质量。

牛顿自己意识到这种质量的等同性是由某种他的理论不能够解释的原因引起的。

但他认为这一结果是一种简单的巧合。

与此相反,爱因斯坦发现这种等同性中存在着一条取代牛顿理论的通道。

日常经验验证了这一等同性:两个物体(一轻一重)会以相同的速度“下落”。

然而重的物体受到的地球引力比轻的大。

那么为什么它不会“落”得更快呢?因为它对加速度的抵抗更强。

结论是,引力场中物体的加速度与其质量无关。

伽利略是第一个注意到此现象的人。

重要的是你应该明白,引力场中所有的物体“以同一加速度下落”是(经典力学中)惯性质量和引力质量等同的结果。

现在我们关注一下“下落”这个表述。

物体“下落”是由于地球的引力质量产生了地球的引力场。

两个物体在所有相同的引力场中的加速度相同。

不论是月亮的还是太阳的,光锥它们以相同的比率被加速。

这就是说它们的速度在每秒钟内的增量相同。

(加速度是速度每秒的增加值)引力质量和惯性质量的等同性爱因斯坦一直在寻找“引力质量与惯性质量相等”的解释。

为了这个目标,他作出了被称作“等同原理”的第三假设。

它说明:如果一个惯性系相对于一个伽利略系被均匀地加速,那么我们就可以通过引入相对于它的一个均匀引力场而认为它(该惯性系)是静止的。

让我们来考查一个惯性系K’,它有一个相对于伽利略系的均匀加速运动。

在K 和K’周围有许多物体。

此物体相对于K是静止的。

因此这些物体相对于K’有一个相同的加速运动。

这个加速度对所有的物体都是相同的,并且与K’相对于K的加速度方向相反。

我们说过,在一个引力场中所有物体的加速度的大小都是相同的,因此其效果等同于K’是静止的并且存在一个均匀的引力场。

因此如果我们确立等同原理,物体的两种质量相等只是它的一个简单推论。

这就是为什么(质量)等同是支持等同原理的一个重要论据。

通过假定K’静止且引力场存在,我们将K’理解为一个伽利略系,(这样我们就可以)在其中研究力学规律。

由此爱因斯坦确立了他的第四个原理。

主要内容爱因斯坦提出“等效原理”,即引力和惯性力是等效的。

这一原理建立在引力质量与惯性质量的等价性上。

根据等效原理,爱因斯坦把狭义相对性原理推广为广义相对性原理,即物理定律的形式在一切参考系都是不变的。

物体的运动方程即该参考系中的测地线方程。

测地线方程与物体自身固有性质无关,只取决于时空局域几何性质。

而引力正是时空局域几何性质的表现。

物质质量的存在会造成时空的弯曲,在弯曲的时空中,物体仍然顺着最短距离进行运动(即沿着测地线运动——在欧氏空间中即是直线运动),如地球在太阳造成的弯曲时空中的测地线运动,实际是绕着太阳转,造成引力作用效应。

正如在弯曲的地球表面上,如果以直线运动,实际是绕着地球表面的大圆走。

引力是时空局域几何性质的表现。

虽然广义相对论是爱因斯坦创立的,但是它的数学基础的源头可以追溯到欧氏几何的公理和数个世纪以来为证明欧几里德第五公设(即平行线永远保持等距)所做的努力,这方面的努力在罗巴切夫斯基、Bolyai、高斯的工作中到达了顶点:他们指出欧氏第五公设是不能用前四条公设证明的。

相关文档
最新文档