高考数学二轮复习 第二部分 专题二 函数与导数 2.4.2 导数与不等式及参数范围优质课件 理

合集下载

高考数学二轮复习专题二函数与导数2.4.2导数与不等式

高考数学二轮复习专题二函数与导数2.4.2导数与不等式

-12解题策略一 解题策略二
对点训练2设f(x)=xex,g(x)=
(1)令F(x)=f(x)+g(x),求F(x)的最小值; (2)若任意x1,x2∈[-1,+∞)且x1>x2有m[f(x1)-f(x2)]>g(x1)-g(x2)恒成立, 求实数m的取值范围.Βιβλιοθήκη 1 2 x +x. 2
解 (1)∵F(x)=f(x)+g(x)=xex+2x2+x,
(2)∵不等式ax-ln x≥a(2x-x2)对∀x∈[1,+∞)恒成立, ∴等价于a(x2-x)≥ln x对∀x∈[1,+∞)恒成立. 当x=1时,a∈R都有不等式恒成立;
当 x>1 时,a≥ 即 h(x)=
ln������ 恒成立,令 ������2 -������
h(x)=
ln������ . ������2 -������
∵f'(x)=a-������,∴k=f'(x0)=a-������ ,
0
1
1
即直线的切线方程为 y-ax0+ln x0= ������-
1 ������0
(x-x0),
又切线过原点O, 所以-ax0+ln x0=-ax0+1, 由ln x0=1,解得x0=e,所以切点的横坐标为e.
-8解题策略一 解题策略二
-3解题策略一 解题策略二
难点突破一(直接构造函数) 求 f(x)>0(x>1)时 a 的范围,因 f(1)=0,只需 f(x)在(1,+∞)单调递增.f(x)>0(x>1)⇔f(x)在(1,+∞)单调递 ������'(������) ≥ 0 ≥0⇔ ⇔ ������ > 1 ������ > 1, ������ > 1 1 数 φ(x)=1+������+ln x(x>1),易求得 φ(x)>2,所以 a≤2. 增⇔

高考数学二轮复习专题二函数与导数2.3.2利用导数解不等式及参数范围课件

高考数学二轮复习专题二函数与导数2.3.2利用导数解不等式及参数范围课件

-5热点1 热点2 热点3
题后反思利用导数证明不等式,主要是构造函数,通过导数判断 函数的单调性,由函数的单调性证明不等式成立,或通过求函数的 最值,当该函数的最大值或最小值对不等式成立时,则不等式是恒 成立,从而可将不等式的证明转化为求函数的最值.
-6热点1 热点2 热点3
对点训练 1 设函数 f(x)=e2x-aln x. (1)讨论 f(x)的导函数 f'(x)零点的个数; (2)证明:当 a>0 时,f(x)≥2a+aln .
-2=0,且函数
������ 2
loga2
为端点的闭区间上的图象不间断,所以在 0和 loga2 之间存在 g(x)的 零点,记为 x1.因为 0<a<1,所以 loga2<0.又 0<0,所以 x1<0,与“0 是函 数 g(x)的唯一零点”矛盾. 若 x0>0,同理可得,在 0和 logb2 之间存在 g(x)的非 0 的零点,矛盾.因 此,x0=0.
②由条件知 f(2x)=22x+2-2x=(2x+2-x)2-2=(f(x))2-2.
因为 f(2x)≥mf(x)-6 对于 x∈R 恒成立,且 f(x)>0, 所以
(������(������)) +4 m≤ 对于 ������(������)
2
x∈R 恒成立.
4 (������(0))2 +4 ������(������)· =4,且 =4, ������(������) ������(0)
������ ������
一零点.
-8-
(2)证明 由(1),可设 f'(x)在区间(0,+∞)内的唯一零点为 x0,当 x∈(0,x0) 时,f'(x)<0;当 x∈(x0,+∞)时,f'(x)>0.故 f(x)在区间(0,x0)内单调递减,在 区间(x0,+∞)内单调递增,所以当 x=x0 时,f(x)取得最小值,最小值为 f(x0). 由于 2e

高考数学新课标全国二轮复习课件2.函数与导数2

高考数学新课标全国二轮复习课件2.函数与导数2
第二讲
导数
导数及其应用 (1)导数概念及其几何意义
①了解导数概念的实际背景. ②理解导数的几何意义.
(2)导数的运算
①能根据导数定义求函数y=C(C为常数),
y=x,y=x2,y=x3,y=������ ,y= ������的导数.
②能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单
������ ������
过点 P(2,-5),且该曲线在点 P 处的切线与直线 7x+2y+3=0 平行,则 a+b 的值是 . 解析:由曲线 y=ax2+������ 过点 P(2,-5), 得 4a+2 =-5. 又 y'=2ax-������ 2 ,
������ ������ ������

调区间(其中多项式函数一般不超过三次).
②了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、
极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值
(其中多项式函数一般不超过三次). (4)生活中的优化问题 会利用导数解决某些实际问题.
1.导数的几何意义 (1)函数y=f(x)在x=x0处的导数f'(x0)等于曲线y=f(x)在点(x0,f(x0))处的切线的斜率, 即k= f'(x0). (2)曲线y=f(x)在点(x0,f(x0))处的切线方程为y-f(x0)= f'(x0)(x-x0). (3)导数的物理意义:s'(t)=v(t),v'(t)=a(t).
在点
π 2
,2 处的切线与直线 x+ay+1=0 垂直,则
(2-cos ������ )'sin ������ -(2-cos ������ )(sin ������ )' 1-2cos ������ si n 2 ������ π 2

2019版高考数学二轮复习专题二函数与导数2.2.4.2应用导数求参数的值或参数的范围课件文

2019版高考数学二轮复习专题二函数与导数2.2.4.2应用导数求参数的值或参数的范围课件文

调递减,在(2,+∞)单调递增.故 h(2)=1- e2 是 h(x)在[0,+∞)的最小值.
4������
①若 h(2)>0,即 ②若 h(2)=0,即 ③若 h(2)<0,即
由(1)知,当 x>0 时,ex>x2,所以
e2 a< 4 ,h(x)在(0,+∞)没有零点; e2 a= ,h(x)在(0,+∞)只有一个零点; 4 e2 a> 4 ,由于 h(0)=1,所以 h(x)在(0,2)有一个零点.
-4考向一 考向二 考向三 考向四 考向五
解题心得求参数的值,方法因题而异,需要根据具体题目具体分 析,将题目条件进行合理的等价转化,在转化过程中,构造新的函数, 在研究函数中往往需要利用对导数的方法确定函数的单调性.
-5考向一 考向二 考向三 考向四 考向五
对点训练1(2018辽宁凌源一模,文21节选)已知函数f(x)=xex. (1)略; (2)若直线y=x+2与曲线y=f(x)的交点的横坐标为t,且t∈[m,m+1], 求整数m所有可能的值. 解 (1)略. (2)由题可知,原命题等价于方程 xex=x+2 在 x∈[m,m+1]上有解,
e 3 e 1 1 1 2 2 ������
x
x 2
所以直线 y=x+2 与曲线 y=f(x)的交点仅有两个,且两交点的横坐标 分别在区间[1,2]和[-3,-2]内,所以整数 m 的所有值为-3,1.
-6考向一 考向二 考向三 考向四 考向五
已知函数有极值求参数范围 ������ ������ 例2(2018山西吕梁一模,理21)已知函数f(x)= -a(x-ln x). ������ (1)当a≤0时,试求f(x)的单调区间; (2)若f(x)在(0,1)内有极值,试求a的取0 不是方程的解,所以原方程等价于 e - -1=0,令 r(x)=ex-������ -1,因为 r'(x)=ex+������ 2 >0 对于 x∈(-∞,0)∪(0,+∞)恒成立,所以 r(x)在(-∞,0)和(0,+∞)内单调递增. 又 r(1)=e-3<0,r(2)=e2-2>0,r(-3)= 3 − <0,r(-2)= 2 >0,

高考数学二轮复习 专题2 函数与导数 教案 文

高考数学二轮复习 专题2 函数与导数 教案 文

高考数学二轮复习 专题2 函数与导数 教案 文专题二 函数与导数【重点知识回顾】1.函数是高考数学的重点内容之一,函数的观点和思想方法是高中数学的一条重要的主线,选择、填空、解答三种题型每年都有,函数题的身影频现,而且常考常新.以基本函数为背景的综合题和应用题是近几年的高考命题的新趋势.函数的图象也是高考命题的热点之一.近几年来考查导数的综合题基本已经定位到压轴题的位置了.2.对于函数部分考查的重点为:函数的定义域、值域、单调性、奇偶性、周期性对称性和函数的图象;指数函数、对数函数的概念、图象和性质;应用函数知识解决一些实际问题;导数的基本公式,复合函数的求导法则;可导函数的单调性与其导数的关系,求一些实际问题(一般指单峰函数)的最大值和最小值.【典型例题】 1.函数的性质与图象函数的性质是高考考查的重点内容.根据函数单调性和奇偶性的定义,能判断函数的奇偶性,以及函数在某一区间的单调性,从数形结合的角度认识函数的单调性和奇偶性,掌握求函数最大值和最小值的常用方法.函数的图象是函数性质的直观载体,能够利用函数的图象归纳函数的性质.对于抽象函数一类,也要尽量画出函数的大致图象,利用数形结合讨论函数的性质.例1.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……用S1、S2分别表示乌龟和兔子所行的路程,t 为时间,则下图与故事情节相吻合的是( )答案:BA B C D解析:在选项B 中,乌龟到达终点时,兔子在同一时间的路程比乌龟短.点评:函数图象是近年高考的热点的试题,考查函数图象的实际应用,考查学生解决问题、分析问题的能力,在复习时应引起重视.例2.已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,则1234_________.x x x x +++=答案:-8解析:因为定义在R 上的奇函数,满足(4)()f x f x -=-,所以(4)()f x f x -=-,所以, 由)(x f 为奇函数,所以函数图象关于直线2x =对称且(0)0f =,由(4)()f x f x -=-知(8)()f x f x -=,所以函数是以8为周期的周期函数,又因为)(x f 在区间[0,2]上是增函数,所以)(x f 在区间[-2,0]上也是增函数.如图所示,那么方程f(x)=m(m>0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,不妨设1234x x x x <<<,由对称性知1212x x +=-,344x x +=.所以12341248x x x x +++=-+=-.点评:本题综合考查了函数的奇偶性,单调性,对称性,周期性,以及由函数图象解答方程问题,运用数形结合的思想和函数与方程的思想解答问题.2.函数与解方程、不等式的综合问题函数与方程、不等式、数列是密切相关的几个部分,通过建立函数模型来解决有关他们的综合问题是高考的考查方向之一,解决该类问题要善于运用转化的思想方法,将问题进行不断转化,构建模型来解决问题.例2.x 为何值时,不等式()23log log 2-<x x m m 成立.解析:当1>m 时,212132023023022<<⇔⎪⎪⎩⎪⎪⎨⎧<<>≠⇔⎪⎩⎪⎨⎧-<>->x x x x x x x x . 当10<<m 时,21322132023023022><<⇔⎪⎪⎩⎪⎪⎨⎧><>≠⇔⎪⎩⎪⎨⎧-<>->x x x x x x x x x x 或或. 故1>m 时,21<<x .10<<m 时,2132><<x x 或为所求.点评:该题考查了对数不等式的解法,其基本的解题思路为将对数不等式转化为普通不等式,需要注意转化之后x 的范围发生了变化,因此最后要检验,或者转化时将限制条件联立.3.函数的实际应用函数的实际运用主要是指运用函数的知识、思想和方法综合解决问题.函数描述了自然界中量的依存关系,是对问题本身的数量本质特征和制约关系的一种刻画,用联系和变化的观点提出数学对象,抽象其数学特征,建立函数关系.掌握有关函数知识是运用函数思想的前提,考生应具备用初等数学思想方法研究函数的能力,运用函数思想解决有关数学问题的意识是运用函数思想的关键.例3.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x (x ≥10)层,则每平方米的 平均建筑费用为560+48x (单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层? (注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=建筑总面积购地总费用)解析:设楼房每平方米的平均综合费为y 元,依题意得:*21601000010800(56048)56048(10,)2000y x x x x N x x⨯=++=++≥∈.则21080048y x '=-,令0y '=,即210800480x -=,解得15x =. 当15x >时,0y '>;当015x <<时,0y '<, 因此,当15x =时,y 取得最小值,min 2000y =元.答:为了使楼房每平方米的平均综合费最少,该楼房应建为15层.点评:这是一题应用题,利用函数与导数的知识来解决问题.利用导数,求函数的单调性、求函数值域或最值是一种常用的方法.4.导数与单调性、极(最)值问题.导数作为工具来研究三次函数、指数函数、对数函数的单调性,极值、最值时,具有其独特的优越性,要理解导数的几何意义,熟练导数的运算公式,善于借助导数解决有关的问题.例4.已知函数321()33f x ax bx x =+++,其中0a ≠. (1)当b a ,满足什么条件时,)(x f 取得极值?(2)已知0>a ,且)(x f 在区间(0,1]上单调递增,试用a 表示出b 的取值范围. 解析: (1)由已知得2'()21f x ax bx =++,令0)('=x f ,得2210ax bx ++=,)(x f 要取得极值,方程2210ax bx ++=必须有解,所以△2440b a =->,即2b a >, 此时方程2210ax bx ++=的根为:122b b x a a ---==,222b b x a a--+==,所以12'()()()f x a x x x x =-- 当0>a 时,所以)(x f 在x 1, x 2处分别取得极大值和极小值. 当0<a 时,所以)(x f 在x 1, x 2处分别取得极大值和极小值. 综上,当b a ,满足2b a >时,)(x f 取得极值.(2)要使)(x f 在区间(0,1]上单调递增,需使2'()210f x ax bx =++≥在(0,1]上恒成立.即1,(0,1]22ax b x x ≥--∈恒成立,所以max 1()22ax b x≥--, 设1()22ax g x x =--,2221()1'()222a x a a g x x x -=-+=, 令'()0g x =得x =或x =舍去),当1>a 时,101a <<,当x ∈时'()0g x >,1()22ax g x x =--单调增函数;当x ∈时'()0g x<,1()22ax g x x =--单调减函数,所以当x =()g x取得最大,最大值为g = 所以b ≥ 当01a <≤1≥,此时'()0g x ≥在区间(0,1]恒成立, 所以1()22ax g x x=--在区间(0,1]上单调递增,当1x =时()g x 最大,最大值为1(1)2a g +=-,所以12a b +≥-.综上,当1>a 时, b ≥01a <≤时, 12a b +≥-.点评:本题为三次函数,利用求导的方法研究函数的极值、单调性和函数的最值,函数在区间上为单调函数,则导函数在该区间上的符号确定,从而转为不等式恒成立,再转为函数研究最值.运用函数与方程的思想,化归思想和分类讨论的思想解答问题.【模拟演练】1.函数22log 2xy x-=+的图象( ) A . 关于原点对称 B .关于主线y x =-对称 C . 关于y 轴对称 D .关于直线y x =对称 2. 定义在R 上的偶函数()f x 的部分图象如右图所示,则在()2,0-上,下列函数中与()f x 的单调性不同的是( )A .21y x =+ B . ||1y x =+C . 321,01,0x x y x x +≥⎧=⎨+<⎩D .,,0x x e x oy e x -⎧≥⎪=⎨<⎪⎩3.已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,则( )A .(25)(11)(80)f f f -<<B . (80)(11)(25)f f f <<-C . (11)(80)(25)f f f <<-D . (25)(80)(11)f f f -<<4. 定义在R 上的函数f(x )满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x ,则f (2009)的值为 .5. 已知函数()f x 在R 上满足2()2(2)88f x f x x x =--+-,则曲线()y f x =在点(1,(1))f 处的切线方程是 .6.已知函数321(),3f x x ax bx =++且'(1)0f -= (I )试用含a 的代数式表示b ; (Ⅱ)求()f x 的单调区间;(Ⅲ)令1a =-,设函数()f x 在1212,()x x x x <处取得极值,记点1122(,()),(,())M x f x N x f x ,证明:线段MN 与曲线()f x 存在异于M 、N 的公共点.7.已知函数32()22f x x bx cx =++-的图象在与x 轴交点处的切线方程是510y x =-. (I )求函数()f x 的解析式;(II )设函数1()()3g x f x mx =+,若()g x 的极值存在,求实数m 的取值范围以及函数()g x 取得极值时对应的自变量x 的值.【参考答案】 1.答案:A解析:由于定义域为(-2,2)关于原点对称,又f(-x)=-f(x),故函数为奇函数,图象关于原点对称,选A . 2.答案:C解析:根据偶函数在关于原点对称的区间上单调性相反,故可知求在()2,0-上单调递减,注意到要与()f x 的单调性不同,故所求的函数在()2,0-上应单调递增.而函数21y x =+在(],1-∞上递减;函数1y x =+在(],0-∞时单调递减;函数321,01,0x x y x x +>⎧=⎨+<⎩在(,0]-∞上单调递减,理由如下y '=3x 2>0(x<0),故函数单调递增,显然符合题意;而函数,0,0x x e x y e x -⎧≥⎪=⎨<⎪⎩,有y '=-x e -<0(x<0),故其在(,0]-∞上单调递减,不符合题意,综上选C . 3. 答案:D解析:因为)(x f 满足(4)()f x f x -=-,所以(8)()f x f x -=,所以函数是以8为周期的周期函数,则)1()25(-=-f f ,)0()80(f f =,)3()11(f f =,又因为)(x f 在R 上是奇函数, (0)0f =,得0)0()80(==f f ,)1()1()25(f f f -=-=-,而由(4)()f x f x -=-得)1()41()3()3()11(f f f f f =--=--==,又因为)(x f 在区间[0,2]上是增函数,所以0)0()1(=>f f ,所以0)1(<-f ,即(25)(80)(11)f f f -<<,故选D . 4.答案:1解析:由已知得2(1)log 21f -==,(0)0f =,(1)(0)(1)1f f f =--=-,(2)(1)(0)1f f f =-=-,(3)(2)(1)1(1)0f f f =-=---=,(4)(3)(2)0(1)1f f f =-=--=,(5)(4)(3)1f f f =-=,(6)(5)(4)0f f f =-=, 所以函数f(x)的值以6为周期重复性出现.,所以f (2009)= f (5)=1. 5.答案:21y x =-解析:由2()2(2)88f x f x x x =--+-得:2(2)2()(2)8(2)8f x f x x x -=--+--,即22()(2)44f x f x x x --=+-,∴2()f x x =∴/()2f x x =, ∴切线方程为12(1)y x -=-,即210x y --=. 6.解析:(I )依题意,得2'()2f x x ax b =++, 由'(1)120f a b -=-+=得21b a =-. (Ⅱ)由(I )得321()(21)3f x x ax a x =++-, 故2'()221(1)(21)f x x ax a x x a =++-=++-, 令'()0f x =,则1x =-或12x a =-, ①当1a >时,121a -<-,当x 变化时,'()f x 与()f x 的变化情况如下表:由此得,函数()f x 的单调增区间为(,12)a -∞-和(1,)-+∞,单调减区间为(12,1)a --. ②由1a =时,121a -=-,此时,'()0f x ≥恒成立,且仅在1x =-处'()0f x =,故函数()f x 的单调区间为R ;③当1a <时,121a ->-,同理可得函数()f x 的单调增区间为(,1)-∞-和(12,)a -+∞,单调减区间为(1,12)a --.综上:当1a >时,函数()f x 的单调增区间为(,12)a -∞-和(1,)-+∞,单调减区间为(12,1)a --;当1a =时,函数()f x 的单调增区间为R ;当1a <时,函数()f x 的单调增区间为(,1)-∞-和(12,)a -+∞,单调减区间为(1,12)a --(Ⅲ)当1a =-时,得321()33f x x x x x=--,由2'()230f x x x =--=,得121,3x x =-=.由(Ⅱ)得()f x 的单调增区间为(,1)-∞-和(3,)+∞,单调减区间为(1,3)-,所以函数()f x 在121,3x x =-=处取得极值,故5(1,),(3,9)3M N --,所以直线MN 的方程为813y x =--,由32133813y x x x y x ⎧=--⎪⎪⎨⎪=--⎪⎩得32330x x x --+= 解得1231, 1.3x x x =-==,1233121135119,,33x x x y y y =-=⎧⎧=⎧⎪⎪∴⎨⎨⎨=-==-⎩⎪⎪⎩⎩, 所以线段MN 与曲线()f x 有异于,M N 的公共点11(1,)3-. 7.解析:(I )由已知,切点为(2,0),故有(2)0f =,即430b c ++=……① 又2()34f x x bx c '=++,由已知(2)1285f b c '=++=得870b c ++=……② 联立①②,解得1,1b c =-=.所以函数的解析式为32()22f x x x x =-+-.(II )因为321()223g x x x x mx =-+-+.令21()34103g x x x m '=-++=.当函数有极值时,则0∆≥,方程2134103x x m -++=有实数解, 由4(1)0m ∆=-≥,得1m ≤. ①当1m =时,()0g x '=有实数23x =,在23x =左右两侧均有()0g x '>,故函数()g x 无极值; ②当1m <时,()0g x '=有两个实数根1211(2(2x x =-=+(),()g x g x '情况如下表:所以在(,1)∈-∞m 时,函数()g x 有极值;当1(23=-x 时,()g x 有极大值;当1(23=x 时,()g x 有极小值..精品资料。

2021年高考数学二轮复习专题二函数与导数2.4函数、导数、方程、不等式课件文

2021年高考数学二轮复习专题二函数与导数2.4函数、导数、方程、不等式课件文
函数
调、构造函数
-4-
年份 卷别 设问特点
涉及知识点
函数模型 解题思想方法
讨论单调性、
全国 知 f(x)≥0 求 求导数、单调 x x
分类讨论、转
2
e (e -a)-a x
Ⅰ 参数取值范 性、最值
换思想

分类讨论、构
2017 全国 讨论单调性、 求导数、单调 二次函数
造函数、放缩
x
×e
Ⅱ 求参数范围 性、最值
(2)函数切线问题的求解策略:用好切点“三重性〞:
①切点在函数图象上,满足函数解析式;
②切点在切线上,满足切线方程;
③切点处的导数等于切线的斜率.
2.函数的导数与单调性的关系
函数y=f(x)在(a,b)内可导,
(1)假设f'(x)>0在(a,b)内恒成立,那么f(x)在(a,b)内单调递增;
(2)假设f'(x)<0在(a,b)内恒成立,那么f(x)在(a,b)内单调递减.
极大值;假设在x0附近左侧f'(x)<的极小值.
(2)设函数y=f(x)在[a,b]上连续,在(a,b)内可导,那么f(x)在[a,b]上
必有最大值和最小值且在极值点或端点处取得.
(3)假设函数f(x)在[a,b]上单调递增,那么f(a)为函数的最小值,f(b)

讨论 f(x)的单
全国
求导数、单调 ln x+二次 求导确定单
调性、证明不

性、最值
函数
调、构造函数
等式
-5-
年份 卷别 设问特点
求单调区
间、证明函

数不等式
求单调区
全国 间、证明函

高三数学二轮复习 2.4导数及其应用课件

高三数学二轮复习 2.4导数及其应用课件

3.导数的计算
(1)基本初等函数的导数公式
①c′=0(c为常数);
②(xm)′=mxm-1;
③(sinx)′=cosx; ④(cosx)′=-sinx;
⑤(ex)′=ex; ⑥(ax)′=axlna;
⑦(lnx)′=1x; ⑧(logax)′=-xl1na.
(2)导数的四则运算法则 ①[f(x)±g(x)]′=f′(x)±g′(x); ②[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x); ③[gfxx]′=f′xgxg- 2xfxg′x. ④(理)(f(u))′=f′(u)·φ′(x)=af′(ax+b)
[解析] (1)f′(x)=1k(x2-k2)exk, 令f′(x)=0,得x=±k. 当k>0时,f(x)与f′(x)的情况如下:
x
(-∞, -k)
-k
(-k, k)
k
(k,+ ∞)
f′(x) + 0 - 0 +
f(x)
4k2 e-1
0
所以,f(x)的单调递增区间是(-∞,-k)和(k,+∞);单调 递减区间是(-k,k).
所以∀x∈(0,+∞),f(x)≤1e等价于 f(-k)=4ek2≤1e. 解得-12≤k<0.
故当∀x∈(0,+∞),f(x)≤1e时, k 的取值范围 是[-12,0).
[评析] 讨论函数的单调性其实就是讨论不等式的解集的情 况,大多数情况下是归结为一个含有参数的一元二次不等 式的解集的讨论,在能够通过因式分解求出不等式对应方 程的根时依据根的大小进行分类讨论,在不能通过因式分 解求出根的情况时根据不等式对应方程的判别式进行分类 讨论.讨论函数的单调性是在函数的定义域内进行的,千 万不要忽视了定义域的限制.

高三数学二轮复习导数与不等式 课件

高三数学二轮复习导数与不等式 课件
➢∀x∈D,均有f (x)<g(x)恒成立, 则F(x)=f (x)‒g(x) <0,∴ F(x)max <0;
➢∀x1∈D, ∀x2∈E,均有f (x1) >g(x2)恒成立, 则f (x)min> g(x)max;
➢∀x1∈D, ∀x2∈E,均有f (x1) < g(x2)恒成立, 则f (x)max < g(x) min.
【例2-1】若对∀1 ,2 ∈ , +∞ ,且1 <
1ln2−2ln1
2 ,都有
2−1
<1,则m的取值范
围是( C )注:(e为自然对数的底数,即e=2.71828)
A.
1
, +∞

B. , +∞
C. 1, +∞
D. −1, +∞
1
2
1
2
【例2-2】已知函数 = 2 − ln + − ,对任意x∈[1,+∞),当f (x)≥mx 恒
题型1:导数中的恒成立问题
分离参数法
利用分离参数法来确定不等式f(x,λ)≥0(x∈D, λ为实参数)恒成立
中参数λ的取值范围的基本步骤
01
02
03
参变分离
求最值
解不等式
化为g(λ)≥f(x)
(或g(λ)≤f(x) )
恒成立的形式;
求f(x)≥f(x) max (或
(-1,5)
是________.
【例4-2】已知f (x)=
1 2

2
求实数a的取值范围.
+ , g(x)=ln(x+1)‒a ,若存在x1, x2∈[0, 2], 使得f (x1)=g(x2),
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档