如何用SPSS分析中介作用与调节作用
SPSS中介与调节效应分析
1
第一节 什么是心理学
二、心理学的目标 2. 解释: 揭示事实的原因, 分析现象间的前因后果。 [殊途同归、同途异归、相互作用、交互作用]。 e.g., 生活事件影响心理病理学的机制。
目录 1.中介效应分析 2.调节效应分析 3.有调节的中介效应分析 4.有中介的调节效应分析
3
from kindergarten (age 5–6) until the end of sixth grade (age 11–12)
and beyond.
Teachers’ expectations
Children's ethnicity
Children’s socio-economic SES
achievement outcomes. Furthermore, the role of children's ethnicity
in moderating this mediated relation is investigated.
➢ 研究方法:A cohort of approximately 4,000 students was followed
研究假设概念模型图
Language and math achievement
39
有调节的中介案例(2)
研究发现:
40
有调节的中介案例(2)
研究发现:
教师期望
1.60 1.40 1.20 1.00 0.80 0.60 0.40 0.20 0.00 -0.20 -0.40 -0.60
minority children majority children
低感恩 高感恩
低教师支持
高教师支持
SPSS基本技法-调节效应与中介效应的探讨.ppt
部屬知覺到的 流動性
主管的 不當對待行為
部屬的 工作滿意度
流動性 高 低
工高 作 滿 意 度低
低高
不當對待領導
11
問題與討論
目前已經有研究指出:當員工的加班時間 越長,其工作倦怠的情形也就越嚴重。
加班時間長短
工作倦怠
針對以上刺激-反應模式,你認為:
– 可能的中介變項是什麼? – 可能的調節變項有哪些?
主管的 不當對待行為
部屬的工作 滿意度
定義:員工對於主管持續展現語言或非語 言敵意行為的程度,所產生的知覺,肢體 接觸並不包含在內 (Tepper, 2000, p178)。例: -嘲笑部屬 -在別人面前責罵部屬 -對部屬表現無禮的態度
7
中介效果模式(mediating effect model)
12
2-2.如何處理控制變項
有沒有這個可能性?
主管的不當 對待領導
部屬的 工作滿意
部屬的 負向情緒性
我才是幕後 的黑手!
13
所以,我們該怎麼辦呢?
-在控制不相關之變項(負向情緒性)的情況下, 探討獨變項(不當對待領導)對依變項(工作滿意 度的預測效果。
統計分析上怎麼做:階層迴歸分析(hierarchical regression) Y=工作滿意度,X1=負向情緒性,X2=不當對待領導
Step2 :預測變項 不當對待領導 (ΔR2)
合計R2 調整後的R2 F值 自由度
R12
* p<.05 **p<0.1
工作滿意度
M1
M2
-.31** (.10)**
.10 .09 29.90** 1,277
-.30**
-.20** (.04)**
如何运用SPSS及AMOS进行中介效应与调节效应分析
如何运用SPSS及AMOS进行中介效应与调节效应分析SPSS和AMOS是两个常用的统计软件,它们可以用于进行中介效应和调节效应分析。
下面我将详细介绍如何在SPSS中进行中介效应和调节效应分析,并结合AMOS进行结构方程模型的分析。
中介效应分析:中介效应分析用于探究一个因变量和一个自变量之间是否存在中介变量,以及中介变量对于因变量和自变量之间关系的解释程度。
1.数据准备首先,需要将需要分析的数据导入SPSS软件中。
确保数据已经整理好并进行了数据清洗。
2.建立回归模型在SPSS中,选择“回归”分析模块。
将自变量放入“独立变量”框中,将因变量放入“因变量”框中。
3.检验中介变量在回归模型中,将可能的中介变量放入“控制变量”框中。
运行回归模型后,观察自变量对因变量的影响是否减小或变得不显著。
如果在加入中介变量后,自变量对因变量的影响减小或不显著,则说明中介变量起到了中介作用。
4.中介效应检验使用SPSS的BOOTSTRAP方法进行中介效应检验。
在“回归分析”中选择“中介效应”,然后将自变量、中介变量和因变量依次放入相应的框中。
确保你勾选了“调节变量”框,在该框中放入与自变量和中介变量之间可能存在调节关系的变量,比如性别、年龄等。
5.结果解释SPSS将计算出中介效应的点估计值和置信区间。
通过检查置信区间是否包含0来判断中介效应是否显著。
如果置信区间不包含0,则可以认为中介效应是显著的。
调节效应分析:调节效应分析用于探索调节变量对于自变量和因变量之间关系的调节作用。
1.数据准备同样,将需要分析的数据导入SPSS软件中。
2.建立回归模型选择“回归”分析模块。
将自变量放入“独立变量”框中,将因变量放入“因变量”框中,将调节变量放入“控制变量”框中。
3.检验调节效应观察调节变量是否对自变量和因变量之间的关系产生显著的影响。
如果调节变量对于自变量和因变量关系的显著性有所改变或存在交互作用,则说明调节变量具有调节效应。
中介效应与调节效应辨析
名目一、明确概念 (1)二、讨论步骤 (3)(1)中介效应 (3)第1步:确认数据,确保正确分析。
(3)第2步:中介作用检验 (3)(2)调整效应 (7)第1步:识别X和M的数据类别,选择合适的讨论方法。
(7)第2步:调整作用检验 (8)第3步:SPSAU进彳盼析 (9)在当前学术讨论中,会常常遇到中介作用和调整作用,但许多小伙伴还搞不清晰什么是中介效应、什么是调整效应?以及如何区分两者?闲谈少叙下面就来为各位讲解一下。
一、明确概念中介效应或者调整效应并非分析方法,而是一种关系的描述,讨论人员需要结合不同的数据分析方法对两种关系进行分析。
中介效应中介作用是讨论X 对Y 的影响时,是否会先通过中介变量M ,再去影响Y ;即是否有X->M->Y 这样的关系,假如存在此种关系,则说明具有中介效应。
比如工作满足度(X )会影响到创新氛围(M ),再影响最终工作绩效(Y ),此时创新氛围就成为了这一因果 链当中的中介变量。
X, Y调整作用调整作用是讨论x 对Y 的影响时,是否会受到调整变量z 的干扰;比如开车速度(x ) 会对车祸可能性(γ)产生影响,这种影响关系受到是否喝酒(z )的干扰,即喝酒时的 影响幅度,与不喝酒时的影响幅度是否有着明显的不一样。
二、讨论步骤(1)中介效应中介作用的分析较为简单,共分为以下三个步骤:第1步:确认数据,确保正确分析。
中介作用在进行详细讨论时需要对应使用讨论方法(分层回归)去实现;中介作用分析时,Y肯定是定量数据。
X也是定量数据,中介变量M也是定量数据。
资料来源:SPSSAU关心手册-中介作用第2步:中介作用检验检验中介效应是否存在,其实就是检验X到M , M到Y的路径是否同时具有有显著性意义。
中介效应检验模型说明模型1:Y=cX+e l模型2:Y=cX+hMΛ-e2资料来源:SPSSAU关心手册-中介作用中介作用共分为3个模型。
针对上图,需要说明如下:模型1 :自变量X和因变量(Y )的回归分析模型2 :自变量X ,中介变量(M)和因变量(Y )的回归分析模型3:自变量X和中介变量(M)的回归分析模型1和模型2的区分在于,模型2在模型1的基础上加入了中介变量(M),因而模型1到模型2这两个模型应当使用分层回归分桐第一层放入X其次层放入M \在理解了中介分析的原理之后,接着根据中介作用分析的步骤进行,如下图:最终第5步进行中介作用检验。
SPSS数据分析案例-信度效度-调节效应-中介效应
样本的基本计数统计:年龄、艺考科目、准备时间、年级、性别、是否独生、是否寄宿、家庭类型对于变量年龄,年龄为16的频数是72(占17.2%),年龄为17的频数是224(占53.5%),年龄为18的频数是123(占29.4%);对于变量艺考科目,艺考科目为体育的频数是57(占13.6%),艺考科目为美术的频数是208(占49.6%),艺考科目为舞蹈的频数是86(占20.5%),艺考科目为音乐的频数是68(占16.2%);对于变量准备时间,准备时间为高二的频数是362(占86.4%),准备时间为高三的频数是57(占13.6%);对于变量年级,年级为高二的频数是75(占17.9%),年级为高三的频数是344(占82.1%);对于变量性别,性别为男的频数是153(占36.5%),性别为女的频数是266(占63.5%);对于变量是否独生,是否独生为是的频数是303(占72.3%),是否独生为否的频数是116(占27.7%);对于变量是否寄宿,是否寄宿为是的频数是275(占65.6%),是否寄宿为否的频数是144(占34.4%);对于变量家庭类型,家庭类型为双亲家庭的频数是301(占71.8%),家庭类型为组合家庭的频数是118(占28.2%)。
变量年龄、艺考科目、准备时间、年级、性别、是否独生、是否寄宿、家庭类型的计数统计频数百分比年龄16 72 17.217 224 53.518 123 29.4艺考科目体育57 13.6美术208 49.6舞蹈86 20.5音乐68 16.2 准备时间高二362 86.4高三57 13.6 年级高二75 17.9高三344 82.1 性别男153 36.5女266 63.5 是否独生是303 72.3否116 27.7 是否寄宿是275 65.6否144 34.4 家庭类型双亲家庭301 71.8变量年龄、艺考科目、准备时间、年级、性别、是否独生、是否寄宿、家庭类型的计数统计频数百分比组合家庭118 28.2变量反向编码因为变量q11_2、q11_5、q11_6、q11_12、q11_11、q11_14、q11_16、q11_17、q11_18、q11_20是反向计分的,为了和其他题目保持相同的计分方式,并且能够与其他题目合成,我们需要对这些题目进行反向计分,也就是把分数进行转换使得高分变成低分,低分变成高分。
如何用SPSS做中介效应与调节效应
如何用SPSS做中介效应与调节效应1、调节变量的定义变量Y与变量X的关系受到第三个变量M的影响,就称M为调节变量。
调节变量可以是定性的,也可以是定量的。
在做调节效应分析时,通常要将自变量和调节变量做中心化变换。
简要模型:Y = aX + bM + cXM + e。
Y与X的关系由回归系数a+cM来刻画,它是M的线性函数,c衡量了调节效应(moderatingeffect)的大小。
如果c显著,说明M的调节效应显著。
2、调节效应的分析方法显变量的调节效应分析方法:分为四种情况讨论。
当自变量是类别变量,调节变量也是类别变量时,用两因素交互效应的方差分析,交互效应即调节效应;调节变量是连续变量时,自变量使用伪变量,将自变量和调节变量中心化,做Y=aX+bM+cXM+e的层次回归分析:1、做Y对X和M的回归,得测定系数R12。
2、做Y对X、M和XM的回归得R22,若R22显著高于R12,则调节效应显著。
或者,作XM的回归系数检验,若显著,则调节效应显著;当自变量是连续变量时,调节变量是类别变量,分组回归:按M的取值分组,做Y对X的回归。
若回归系数的差异显著,则调节效应显著,调节变量是连续变量时,同上做Y=aX +bM +cXM +e的层次回归分析。
潜变量的调节效应分析方法:分两种情形:一是调节变量是类别变量,自变量是潜变量;二是调节变量和自变量都是潜变量。
当调节变量是类别变量时,做分组结构方程分析。
做法是,先将两组的结构方程回归系数限制为相等,得到一个χ2值和相应的自由度。
然后去掉这个限制,重新估计模型,又得到一个χ2值和相应的自由度。
前面的χ2减去后面的χ2得到一个新的χ2,其自由度就是两个模型的自由度之差。
如果χ2检验结果是统计显著的,则调节效应显著;当调节变量和自变量都是潜变量时,有许多不同的分析方法,最方便的是Marsh,Wen和Hau 提出的无约束的模型。
3.中介变量的定义自变量X对因变量Y的影响,如果X通过影响变量M来影响Y,则称M为中介变量。
SPSS中介与调节效应分析
SPSS中介与调节效应分析首先,中介效应是指一个变量对于自变量和因变量之间关系的解释作用,通过该变量的加入,可以揭示自变量与因变量之间的潜在机制。
调节效应是指一个变量是否能够改变自变量与因变量之间的关系强度或者方向。
中介与调节效应分析可以帮助研究者深入了解自变量与因变量之间的关系,从而更好地解释研究结果。
SPSS可以用来进行中介与调节效应分析。
下面将介绍相应的步骤:1.数据收集与准备:首先,需要收集所需的数据,并将数据录入SPSS。
确保数据的准确性和完整性。
2.数据清洗与变量筛选:根据研究的需求,对数据进行清洗和变量筛选。
这包括删除缺失值、异常值或不相关的变量。
3.变量计算:根据中介与调节效应的研究假设,可以对一些变量进行组合或计算。
例如,计算中介变量的总得分或变量之间的差值。
4. 进行中介效应分析:在SPSS中,可以使用插件PROCESS来进行中介效应分析。
首先,选择"Analyze"选项卡,然后选择"PROCESS"插件。
在打开的窗口中,输入自变量、中介变量和因变量。
选择适当的模型,例如"Model 4",并点击"Run"进行分析。
5. 解读中介分析结果:中介分析的结果有三项:自变量对中介变量的影响(路径a)、中介变量对因变量的影响(路径b)以及自变量对因变量的总效应(路径c)。
可以通过Bootstrap置信区间来检验效应的统计显著性。
如果路径a和b都显著,那么就可以认为存在中介效应。
6. 进行调节效应分析:调节效应分析也可以通过PROCESS插件进行。
首先,选择"PROCESS"插件,然后选择"Model 1"。
输入自变量、调节变量和因变量,点击"Run"进行分析。
7. 解读调节分析结果:在调节效应分析中,主要关注调节变量对自变量和因变量之间关系的影响。
中介效应和调节效应的SPSS检验
中介效应和调节效应的SPSS检验为将不同的变量的数据的尺度统一化,将所有数据进行中心化处理,即将原始数据减去平均数。
SPPS步骤:打开数据,在菜单中执行:analyse--descriptive statistics--descriptives。
一.SPSS回归分析中介效应检验步骤:第一步:检验自变量X(EP1)与因变量Y(SI1)的关系,即方程y=cx+e1中的c是否显著,检验结果如下表:由上表可知,方程y=cx+e的回归效应显著,系数c值.342显著性为p<.000,可以进行方程m=ax+e和方程y=c’x+bm+e的显著性检验;第二步:分别检验a和b的显著性,如果都显著,则急需检验部分中介效应和完全中介效应;如果都不显著,则停止检验;如果a或b其中只有一个较显著,则进行sobel检验(边缘检验)。
首先,检验中介变量M(OC1)与自变量X(EP1)的关系,即方程M=ax+e2中的c是否显著,检验结果如下表:由上面两个表格结果分析可知,方程m=ax+e中,a值0.112显著性p>.000,不显著,继续检验b的显著性。
第三步:检验中介变量M(OC1)、自变量X(EP1)和因变量Y(SI1)的关系,即方程y=c’x+bm+e3中的c是否显著,检验结果如下表:由上面两个表的结果分析可知,方程y=c’x+bm+e中,b值为0.146显著性为p>.000,所以b不显著。
因此综合两个方程m=ax+e和y=c’x+bm+e的检验结果,a和b都不显著,停止检验。
所以,由我们的数据,分析得出调节效应不存在。
二.SPSS回归分析调节效应检验步骤:首先,构建两个回归方程,Y(SI1)是因变量,x(EP1)是自变量,M (OC1)是调节变量,MX(spss计算得出:转换→计算变量,命名JFX)是调节变量和自变量的交互项,系数是a b c c'。
我们可以检验两个方程的R方改变量,如果该变量显著,说明调节作用显著,也可以直接检验c'的显著性,如果显著也可以说明调节作用。
如何用SPSS做中介效应与调节效应
如何用SPSS做中介效应与调节效应中介效应和调节效应是做结构方程模型的时候,不得不探讨的问题,有时候,这些效应会在你的研究中发挥着很大的作用。
可以说,知道如何用SPSS来测量中介效应和调节效应对你的研究和数据分析至关重要。
若你正好在搞结构方程模型,那么你可以使用SPSS,记住以下几点即可测量中介效应和调节效应。
首先,你需要在SPSS中建立一个结构方程模型,这个模型要包括自变量,因变量,中介变量和调节变量,然后打开“结构方程模型”窗口,点击“新建模型”,这样你的模型就建立好了,你就可以添加相关的变量了。
接下来,你需要添加自变量、因变量、中介变量和调节变量,右击模型框架后,选择“新建变量/因变量/中介变量/调节变量”,点击OK,在弹出的窗口中选择想要的变量,比如自变量、因变量、中介变量和调节变量,然后点击“确定”,变量就被添加到你的模型里了。
接下来,你需要在模型中添加因变量和自变量的回归参数,以测量中介效应和调节效应,点击“新建参数”,在弹出的窗口中,选择你最近添加的自变量和因变量,比如说,如果你想测量一个自变量对一个因变量的中介效应,你就需要选择两个变量。
SPSS及AMOS进行中介效应分析资料报告
SPSS及AMOS进行中介效应分析资料报告中介效应分析是社会科学研究中常用的统计方法,可以用来探究变量之间的关系以及中介变量在这个关系中的作用。
SPSS和AMOS是进行中介效应分析的常用软件工具。
本文将以一个实际案例为例,介绍如何使用SPSS和AMOS进行中介效应分析,并对结果进行解读。
【引言】介绍研究背景和目的,说明为什么需要进行中介效应分析。
【方法】1.变量选择:选择独立变量、中介变量和因变量。
独立变量是影响中介变量的因素,中介变量在独立变量和因变量之间起到介导作用,因变量是希望了解的结果。
3.测量工具:介绍使用的测量工具,并评估其信度和效度。
4.数据收集:详细说明数据收集过程,如何保证数据质量。
5.数据分析:使用SPSS进行描述性统计分析,探索变量间的关系。
然后使用AMOS进行结构方程建模,进行中介效应分析,并进行模型拟合度检验。
【结果】1.描述性统计分析结果:列出各变量的均值、标准差等统计指标,描述样本的基本情况。
2.相关分析结果:展示各变量之间的相关关系,判断是否存在相关性。
3.结构方程模型结果:列出模型的参数估计值、标准误差、置信区间等统计指标,探究变量之间的关系。
4.中介效应分析结果:根据模型结果计算中介效应的大小和显著性。
【讨论】1.结果解读:解释结构方程模型结果和中介效应分析结果,说明变量之间的关系和中介变量的作用。
2.结果讨论:分析结果的意义和影响,探讨与现有研究的一致性和差异性。
3.研究局限性:指出研究的局限性和不足之处。
4.建议和展望:根据研究结果提出建议,并对未来研究方向进行展望。
【结论】总结研究的主要发现,强调中介效应分析对于理解变量关系的重要性,提出对相关领域的启示和建议。
SPSS及AMOS进行中介效应分析
>中介效应重要理论及操作务实SPSS和AMOS调节效应一、中介效应概述中介效应是指变量间的影响关系(X→Y)不是直接的因果链关系而是通过一个或一个以上变量(M)的间接影响产生的,此时我们称M为中介变量,而X通过M对Y产生的的间接影响称为中介效应。
中介效应是间接效应的一种,模型中在只有一个中介变量的情况下,中介效应等于间接效应;当中介变量不止一个的情况下,中介效应的不等于间接效应,此时间接效应可以是部分中介效应的和或所有中介效应的总和。
在心理学研究当中,变量间的关系很少是直接的,更常见的是间接影响,许多心理自变量可能要通过中介变量产生对因变量的影响,而这常常被研究者所忽视。
例如,大学生就业压力与择业行为之间的关系往往不是直接的,而更有可能存在如下关系:○1就业压力→个体压力应对→择业行为反应。
此时个体认知评价就成为了这一因果链当中的中介变量。
在实际研究当中,中介变量的提出需要理论依据或经验支持,以上述因果链为例,也完全有可能存在另外一些中介因果链如下:○2就业压力→个体择业期望→择业行为反应;○3就业压力→个体生涯规划→择业行为反应;因此,研究者可以更具自己的研究需要研究不同的中介关系。
当然在复杂中介模型中,中介变量往往不止一个,而且中介变量和调节变量也都有可能同时存在,导致同一个模型中即有中介效应又有调节效应,而此时对模型的检验也更复杂。
,以最简单的三变量为例,假设所有的变量都已经中心化,则中介关系可以用回归方程表示如下:Y=cx+e1 1)M=ax+e2 2)Y=c’x+bM+e3 3)上述3个方程模型图及对应方程如下:二、中介效应检验方法中介效应的检验传统上有三种方法,分别是依次检验法、系数乘积项检验法和差异检验法,下面简要介绍下这三种方法:~1.依次检验法(causual steps)。
依次检验法分别检验上述1)2)3)三个方程中的回归系数,程序如下:首先检验方程1)y=cx+ e1,如果c显著(H0:c=0被拒绝),则继续检验方程2),如果c不显著(说明X对Y无影响),则停止中介效应检验;在c显著性检验通过后,继续检验方程2)M=ax+e2,如果a显著(H0:a=0被拒绝),则继续检验方程3);如果a不显著,则停止检验;在方程1)和2)都通过显著性检验后,检验方程3)即y=c ’x + bM + e3,检验b 的显著性,若b 显著(H0:b=0被拒绝),则说明中介效应显著。
如何用SPSS做中介效应
如何用SPSS做中介效应与调节效应1、调节变量的定义变量Y与变量X 的关系受到第三个变量M 的影响,就称M为调节变量。
调节变量可以是定性的,也可以是定量的。
在做调节效应分析时,通常要将自变量和调节变量做中心化变换。
简要模型:Y = aX + bM + cXM + e 。
Y与X 的关系由回归系数a + cM 来刻画,它是M 的线性函数, c衡量了调节效应(moderating effect)的大小。
如果c显著,说明M 的调节效应显著。
2、调节效应的分析方法显变量的调节效应分析方法:分为四种情况讨论。
当自变量是类别变量,调节变量也是类别变量时,用两因素交互效应的方差分析,交互效应即调节效应;调节变量是连续变量时,自变量使用伪变量,将自变量和调节变量中心化,做Y=aX+bM+cXM+e 的层次回归分析:1、做Y对X和M的回归,得测定系数R12。
2、做Y对X、M和XM的回归得R22,若R22显著高于R12,则调节效应显著。
或者,作XM的回归系数检验,若显著,则调节效应显著;当自变量是连续变量时,调节变量是类别变量,分组回归:按 M的取值分组,做 Y对 X的回归。
若回归系数的差异显著,则调节效应显著,调节变量是连续变量时,同上做Y=aX +bM +cXM +e 的层次回归分析。
潜变量的调节效应分析方法:分两种情形:一是调节变量是类别变量,自变量是潜变量;二是调节变量和自变量都是潜变量。
当调节变量是类别变量时,做分组结构方程分析。
做法是,先将两组的结构方程回归系数限制为相等,得到一个χ2值和相应的自由度。
然后去掉这个限制,重新估计模型,又得到一个χ2值和相应的自由度。
前面的χ2减去后面的χ2得到一个新的χ2,其自由度就是两个模型的自由度之差。
如果χ2检验结果是统计显著的,则调节效应显著;当调节变量和自变量都是潜变量时,有许多不同的分析方法,最方便的是Marsh,Wen和Hau提出的无约束的模型。
3.中介变量的定义自变量X对因变量Y的影响,如果X通过影响变量M来影响Y,则称M为中介变量。
SPSS教程PROCESS中介与调节效果分析
SPSS教程PROCESS中介与调节效果分析
一、中介效果分析在SPSS中的使用
在SPSS中,分析中介效应的处理方法是采用Procedure-> Regression->Linear(也可以采用Logistic,这里以Linear为例),来
实现中介效果的分析,根据自变量、因变量和中介变量的设定,计算出每
个变量的参数估计值、偏差平方和拟合指数等;用来评价中介效应的分析
结果,则可以采用偏差平方和拟合指数等,其中,最重要的参数就是中介
变量控制自变量对因变量的影响减少了多少,也就是所谓的中介效应贡献。
1. 根据要求,使用Procedure-> Regression->Linear,在Dependent List框中选择因变量,在Independent List框中输入自变量
和中介变量,此时SPSS将会自动计算因变量、自变量和中介变量之间的
参数估计值、偏差平方和拟合指数等;
2. 使用Syntax框输入语句,可以输入一下SPSS Syntax语句,以计
算出因变量、自变量和中介变量之间的关系:
Regress Y X1 X2 X3/Method=Enter.
这里Y为因变量,X1、X2和X3则为自变量和中介变量;
3. 在Statistics框中,默认选项无需更改,即可自动计算出因变量、自变量和中介变量之间的R平方值;
4. 再次输入以下Syntax语句,可以计算出控制中介变量之后,自变
量对因变量的影响减少了多少,也就是所谓的中介效应贡献:Regress Y X1 X2 X3/Method=Enter/Mediation.。
如何用SPSS做中介效应与调节效应教案资料
如何用SPSS做中介效应与调节效应教案资料使用SPSS进行中介效应和调节效应分析需要以下步骤和资料:1.数据准备:- 首先要确保你已经收集到了适当的数据,并将其整理成适合SPSS 分析的格式,通常是将数据输入到一个Excel文件中,并确保每个变量都有一个明确的变量名。
2.导入数据到SPSS:-打开SPSS软件,并导入数据文件。
选择"文件"->"打开"->"数据",然后选择你的数据文件,点击"打开"即可导入数据。
3.变量选择和重编码:-根据你的研究目的,选择相关变量。
对于中介变量和结果变量,确保它们是连续型变量。
如果这些变量是分类变量,可以进行重编码,将其转换成连续型变量。
对于调节变量,可以是分类变量或连续型变量。
4.中介效应分析:-选择"分析"->"回归"->"线性",将自变量放入"独立变量"框中,将中介变量放入"中介变量"框中,将结果变量放入"因变量"框中。
点击"模型"按钮,选择"中介",然后点击"继续"。
-在"状况变量"框中,可以选择添加其他控制变量。
- 点击"统计"按钮,确保勾选了"Sobel"和"Bootstrap"两个选项。
这些选项可以用来检验和估计中介效应的标准误差。
-点击"继续"按钮,然后点击"OK"按钮进行分析。
-SPSS将生成一个报告,其中包括回归系数、t值、p值以及中介效应的估计值和置信区间。
5.调节效应分析:-选择"分析"->"回归"->"线性",将自变量放入"独立变量"框中,将调节变量放入"因变量"框中,将结果变量放入"因变量"框中。
SPSS基本技法与调节效果与中介效果的探讨-精品文档
Slide 9
例:主管的不當對待領導行為(abusive supervision)對透過什麼樣的中介機制,影 響部屬反應呢部屬呢?(Tepper, 2000)
主管的 不當對待行為
部屬的 公平知覺
部屬的 工作滿意度
Slide 10
調節效果模式(moderating effect model)
獨變項
獨變項
(Independent variable)
中介變項
(mediator, mediating variable)
依變項
(dependent variable)
中介效果模式可以解釋:獨變項為什麼(why)可 以影響或預測依變項。
換言之,獨變項是透過什麼樣的機制(即中介變 項)來影響或預測依變項。
加班時間長短
工作倦怠
針對以上直接效果模式,你認為:
可能的中介變項是什麼? 可能的調節變項有哪些?
Slide 13
2-2.如何處理控制變項
有沒有這個可能性?
主管的不當 對待領導
部屬的 工作滿意
部屬的 負向情緒性
我才是幕後 的黑手!
Slide 14
所以,我們該怎麼辦呢?
-在控制不相關之變項(負向情緒性)的情況下, 探討獨變項(不當對待領導)對依變項(工作滿意 度)的預測效果。
若β3達到水準顯著,則調節效果存在
Slide 26
調節效果的驗証(續)
部屬知覺到ຫໍສະໝຸດ (X,獨變項) No的流動性
主管不當Image
對待領導
(M,調節變項) (Y,依變項) 部屬的 工作滿意度
拆成兩部曲(不含控制變項)
Step 1 Yˆ 10 11 X 12 M
R12
运用SPSS及AMOS进行中介效应分析
运用SPSS及AMOS进行中介效应分析中介效应重要理论及操作务实一、中介效应概述中介效应是指变量间的影响关系(X→Y)不是直接的因果链关系而是通过一个或一个以上变量(M)的间接影响产生的,此时我们称M 为中介变量,而X通过M对Y产生的的间接影响称为中介效应。
中介效应是间接效应的一种,模型中在只有一个中介变量的情况下,中介效应等于间接效应;当中介变量不止一个的情况下,中介效应的不等于间接效应,此时间接效应可以是部分中介效应的和或所有中介效应的总和。
在心理学研究当中,变量间的关系很少是直接的,更常见的是间接影响,许多心理自变量可能要通过中介变量产生对因变量的影响,而这常常被研究者所忽视。
例如,大学生就业压力与择业行为之间的关系往往不是直接的,而更有可能存在如下关系:○1就业压力→个体压力应对→择业行为反应。
此时个体认知评价就成为了这一因果链当中的中介变量。
在实际研究当中,中介变量的提出需要理论依据或经验支持,以上述因果链为例,也完全有可能存在另外一些中介因果链如下:○2就业压力→个体择业期望→择业行为反应;○3就业压力→个体生涯规划→择业行为反应;因此,研究者可以更具自己的研究需要研究不同的中介关系。
当然在复杂中介模型中,中介变量往往不止一个,而且中介变量和调节变量也都有可能同时存在,导致同一个模型中即有中介效应又有调节效应,而此时对模型的检验也更复杂。
以最简单的三变量为例,假设所有的变量都已经中心化,则中介关系可以用回归方程表示如下:Y=cx+e1 1)M=ax+e2 2)Y=c’x+bM+e3 3)上述3个方程模型图及对应方程如下:二、中介效应检验方法中介效应的检验传统上有三种方法,分别是依次检验法、系数乘积项检验法和差异检验法,下面简要介绍下这三种方法:1.依次检验法(causual steps)。
依次检验法分别检验上述1)2)3)三个方程中的回归系数,程序如下:1.1首先检验方程1)y=cx+ e1,如果c显著(H0:c=0被拒绝),则继续检验方程2),如果c不显著(说明X对Y无影响),则停止中介效应检验;1.2在c显著性检验通过后,继续检验方程2)M=ax+e2,如果a 显著(H0:a=0被拒绝),则继续检验方程3);如果a不显著,则停止检验;1.3在方程1)和2)都通过显著性检验后,检验方程3)即y=c ’x+ bM + e3,检验b 的显著性,若b 显著(H0:b=0被拒绝),则说明中介效应显著。
如何用SPSS做中介效应
如何用SPSS做中介效应
要使用SPSS进行中介效应分析,可以按照以下步骤进行操作:
1.数据准备和导入:将需要分析的数据准备好,并导入SPSS软件中。
确保数据集中包括自变量、中介变量和因变量的数据。
2.描述性统计分析:对数据进行描述性统计分析,包括计算变量的平
均值、标准差和相关系数等。
这些统计数据可以提供对数据的整体了解,
并对后续的分析做准备。
3.建立回归模型:通过建立回归模型,估计自变量对中介变量和因变
量的影响。
在SPSS中,可以使用多元回归分析进行此项分析。
将自变量
作为预测因子,将中介变量作为中介变量,同时将因变量作为结果变量。
这样可以估计自变量对中介变量和因变量的直接效应。
4. 中介效应的检验:为了检验中介效应,需要计算直接效应和间接
效应。
在SPSS中,可以使用bootstrap方法进行中介效应检验。
通过bootstrap,可以生成多个中介效应的置信区间,以确定中介效应是否显著。
SPSS中的PROCESS程序可以用于进行bootstrap分析。
5. 结果解释和报告:分析完毕后,需要解释和报告结果。
可以报告
中介效应的点估计和置信区间,以及回归模型的拟合度和显著性。
此外,
还可以绘制途径图(path diagram)以可视化中介过程。
总结起来,使用SPSS进行中介效应分析包括数据准备和导入、描述
性统计分析、建立回归模型、中介效应的检验以及结果解释和报告等步骤。
通过SPSS软件中的相关功能和程序,可以方便地进行中介效应的分析和
解释。
第30章 中介效应与调节效应分析——【SPSS精品教程 资源池】
• 2.调节效应检验过程 • 显变量的调节效应分析方法。分为四种情况讨论。 • 1)当自变量是类别变量,调节变量也是类别变量时,做两因素交互
效应的多因素方差分析,交互效应即调节效应; • 2)自变量使用哑变量,调节变量是连续变量时,将因变量、自变量
和调节变量中心化,做Y = aX + bM + e1 ; Y = aX + bM + cXM + e2的层 次和回XM归的分回析归:得①R2做2,Y对若XR和22显M著的高回于归R,12得,决则定调系节数效R应12显;著②。做或Y对者X,、作M XM的回归系数检验,若c显著,则调节效应显著; • 3)当自变量是连续变量时,调节变量是类别变量,做分组回归分析: 按M的取值分组,将因变量和自变量中心化后做Y对X的回归,若回 归系数的差异显著,则调节效应显著; • 4)当自变量是连续变量时,调节变量是连续变量时,将因变量、自 变量和调节变量中心化后,同2)做层次回归分析。
• 4)单击“确定”按钮,输出结果。 • 由0性.6图检783验,0。-7P、=0图.00300,-8可可知以,进方行程方Y程=cMX+=ea1X的+ e回2 归和效Y=应c′显X+著bM,+ec值3 的等显于著 • (显4著),中检介验效结应果分如析图第3二0-9步、检图验30,-1即0所检示验。方程M=aX+e2中的a是否
一、中介效应分析
• 1.中介效应的概述 • 中介效应是指变量间的影响关系(X→Y)不是直接的因
果链关系,而是通过一个或一个以上变量(M)的间接影响 产生的,此时我们称M为中介变量,而X通过M对Y产生 的的间接影响称为中介效应。 • 中介效应是间接效应的一种,模型中在只有一个中介变 量的情况下,中介效应等于间接效应;当中介变量不止 一个的情况下,中介效应不等于间接效应,此时间接效 应可以是部分中介效应和(或)所有中介效应的总和。 • 在社会心理学研究当中,变量间的关系很少是直接的, 更常见的是间接关系。
运用SPSS及AMOS进行中介效应分析
中介效应重要理论及操作务实一、中介效应概述中介效应是指变量间的影响关系(X→Y)不是直接的因果链关系而是通过一个或一个以上变量(M)的间接影响产生的,此时我们称M为中介变量,而X通过M对Y产生的的间接影响称为中介效应。
中介效应是间接效应的一种,模型中在只有一个中介变量的情况下,中介效应等于间接效应;当中介变量不止一个的情况下,中介效应的不等于间接效应,此时间接效应可以是部分中介效应的和或所有中介效应的总和。
在心理学研究当中,变量间的关系很少是直接的,更常见的是间接影响,许多心理自变量可能要通过中介变量产生对因变量的影响,而这常常被研究者所忽视。
例如,大学生就业压力与择业行为之间的关系往往不是直接的,而更有可能存在如下关系:○1就业压力→个体压力应对→择业行为反应。
此时个体认知评价就成为了这一因果链当中的中介变量。
在实际研究当中,中介变量的提出需要理论依据或经验支持,以上述因果链为例,也完全有可能存在另外一些中介因果链如下:○2就业压力→个体择业期望→择业行为反应;○3就业压力→个体生涯规划→择业行为反应;因此,研究者可以更具自己的研究需要研究不同的中介关系。
当然在复杂中介模型中,中介变量往往不止一个,而且中介变量和调节变量也都有可能同时存在,导致同一个模型中即有中介效应又有调节效应,而此时对模型的检验也更复杂。
以最简单的三变量为例,假设所有的变量都已经中心化,则中介关系可以用回归方程表示如下:Y=cx+e11)M=ax+e22)Y=c’x+bM+e33)上述3个方程模型图及对应方程如下:二、中介效应检验方法中介效应的检验传统上有三种方法,分别是依次检验法、系数乘积项检验法和差异检验法,下面简要介绍下这三种方法:1.依次检验法(causual steps)。
依次检验法分别检验上述1)2)3)三个方程中的回归系数,程序如下:1.1首先检验方程1)y=cx+ e1,如果c显著(H:c=0被拒绝),则继续检验方程2),如果c不显著(说明X对Y无影响),则停止中介效应检验;1.2在c显著性检验通过后,继续检验方程2)M=ax+e2,如果a显著(H:a=0被拒绝),则继续检验方程3);如果a不显著,则停止检验;1.3在方程1)和2)都通过显著性检验后,检验方程3)即y=c’x + bM + e3,检验b的显著性,若b显著(H0:b=0被拒绝),则说明中介效应显著。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中介效应是间接效应,无论变量是否涉及潜变量,都可以用结构方程模型分析中介效应。
步骤为:第一步检验系统c,如果c不显著,Y与X相关不显著,停止中介效如果都显著,那么检验c′,c′显著中介效应显著,c′不显著则完全中介效应显著;如果a,b至少有一个不显著,做Sobel检验,显著则中介效应显著,不显著则中介效应不显著。
第三做回归分析。(在回归中选线性回归linear)
要先将自变量和M中心化,即减去各自的平均数
1、现将M(调节变量或者中介变量)、Y因变量,以及与自变量、因变量、M调节变量其中任何一个变量相关的变量输入indpendent
2、再按next将X自变量输入(中介变量到此为止)
3、要做调节变量分析,还要将X与M的乘机在next里输入作进一步回归。
1
变量Y与变量X的关系受到第三个变量M的影响,就称M为调节变量。调节变量可以是定性的,也可以是定量的。在做调节效应分析时,通常要将自变量和调节变量做中心化变换。
简要模型:Y = aX + bM + cXM + e
Y与X的关系由回归系数a + cM来刻画,它是M的线性函数, c衡量了调节效应(moderating effect)的大小。如果c显著,说明M的调节效应显著。
2、调节效应的分析方法
显变量的调节效应分析方法,分为四种情况讨论。
(1)当自变量是类别变量,调节变量也是类别变量时,用两因素交互效应的方差分析,交互效应即调节效应;
(2)当调节变量是连续变量时,自变量使用伪变量时,将自变量和调节变量中心化,做Y=aX+bM+cXM+e的层次回归分析
第一步做Y对X和M的回归,得测定系数R12
(2)调节变量和自变量都是潜变量
当调节变量和自变量都是潜变量时,有许多不同的分析方法,最方便的是Marsh,Wen和Hau提出的无约束的模型。
3.中介变量的定义
自变量X对因变量Y的影响,如果X通过影响变量M来影响Y,则称M为中介变量。Y=cX+e1,M=aX+ e2 , Y= c′X+bM+e3。其中,c是X对Y的总效应,ab是经过中介变量M的中介效应,c′是直接效应。当只有一个中介变量时,效应之间有c=c′+ab,中介效应的大小用c-c′=ab来衡量。
X对Y的影响时强时弱
Y=aM+bM+cXM+e
X,M在Y前面,M可以在X前面X如何影响Y中介效应、间接效应X对Y的影响较强且稳定M=aX+e
2Y=c′X+bM+e
3M在X之后、Y之前影响Y和X之间关系的方向(正或负)和强弱代表一种机制,X通过它影响YM与X、Y的相关都显著回归系数乘积ab^a^b
ab是否等于零
分析结果中的Beta就是Y=cX+bM+e的系数,B下的constant是常数。检验主要看F是否显著。
。
第二步做Y对X、M和XM的回归得R22
,若R22
显著高于R12
,则调节效应显著。或者,作XM的回归系数检验,若显著,则调节效应显著;
(3)当自变量是连续变量,调节变量是类别变量时,分组回归:
按M的取值分组,做Y对X的回归。若回归系数的差异显著,则调节效应显著,(4)当自变量是连续变量,调节变量是连续变量时,同上做Y=aX +bM +cXM +e的层次回归分析。
Sobel检验的统计量是z=^a^b/sab,中^a, ^b分别是a, b的估计,
sab=^a2sb2+b2sa2, sa,sb分别是^a, ^b的标准误。
5.调节变量与中介变量的比较
调节变量M中介变量M研究目的
关联概念
什么情况下考虑
典型模型
模型中M的位置
M的功能X何时影响Y或何时影响较大
调节效应、交互效应
潜变量的调节效应分析方法,分两种情形:
(1)调节变量是类别变量,自变量是潜变量
当调节变量是类别变量时,做分组结构方程分析。做法是,先将两组的结构方程回归系数限制为相等,得到一个χ2值和相应的自由度。然后去掉这个限制,重新估计模型,又得到一个χ2值和相应的自由度。前面的χ2减去后面的χ2得到一个新的χ2,其自由度就是两个模型的自由度之差。如果χ2检验结果是统计显著的,则调节效应显著;
验
M与X、Y的相关可以显著或不显著(后者较理
M与X、Y的关系
想)
效应
效应估计
效应检验
检验策略回归系数c
^c
c是否等于零
检验);或者检验测定系数的变化(F检验)
做层次回归分析,检验偏回归系数c的显著性(t做依次检验,必要时做Sobel检
6.中介效应与调节效应的SPSS操作方法
处理数据的方法
第一做描述性统计,包括M SD和内部一致性信度a(用分析里的scale里的realibility analsys)第二将所有变量做相关,包括统计学变量和假设的X,Y,M