化工热力学答案-冯新-宣爱国-课后总习题答案详解
化工热力学(冯新 宣爱国)第5章 习题解答
习 题 五一 是否题5-1 汽液平衡关系ˆˆV L i i f f =的适用的条件是理想气体和理想溶液。
解:否。
适用所有气体和溶液。
5-2 汽液平衡关系s i i i i py p x γ=的适用的条件是低压条件下的非理想液相。
解:是。
只有低压条件下11==i s i ˆ,ϕϕ5-3 在(1)-(2)二元系统的汽液平衡中,若(1)是轻组分,(2)是重组分, 则11y x >, 22y x <。
解:错,若系统存在共沸点,就可以出现相反的情况。
5-4 混合物汽液相图中的泡点曲线表示的是饱和汽相,而露点曲线表示的是饱和液相。
解:错。
正好相反。
5-5 对于负偏差系统,液相的活度系数总是小于1。
解:是。
5-6 在一定压力下,组成相同的混合物的露点温度和泡点温度不可能相同。
解:错,在共沸点时相同。
5-7 在组分(1)-组分(2)二元系统的汽液平衡中,若(1)是轻组分,(2)是重组分,若温度一定,则系统的压力,随着1x 的增大而增大。
解:错,若系统存在共沸点,就可以出现相反的情况。
5-8 理想系统的汽液平衡 K i 等于1。
解:错,理想系统即汽相为理想气体,液相为理想溶液,11==i s i ˆ,ϕϕ,1=i γ,但K i 不一定等于1。
5-9 对于理想系统,汽液平衡常数K i ,只与 T 、p 有关,而与组成无关。
解:对,对于 理想系统s s si i i i i i i y p p K x p p ϕϕ===,只与 T 、p 有关,而与组成无关。
5-10 能满足热力学一致性的汽液平衡数据就是高质量的数据。
解:错。
热力学一致性是判断实验数据可靠性的必要条件,但不是充分条件。
即符合热力学一致性的数据,不一定是正确可靠的;但不符合热力学一致性的数据,一定是不正确可靠的。
5-11 当潜水员深海作业时,若以高压空气作为呼吸介质,由于氮气溶入血液的浓度过大,会给人体带来致命影响(类似氮气麻醉现象)。
化工热力学课后习题答案
化工热力学课后习题答案化工热力学课后习题答案解析与实践化工热力学是化学工程专业中的重要课程,它涉及到热力学原理在化工过程中的应用。
课后习题是学生巩固知识、提高能力的重要途径。
本文将针对化工热力学课后习题答案进行解析,并结合实际工程案例进行讨论。
第一题:某化工过程中,液体从100°C冷却至30°C,求其冷却前后的焓变化。
解析:根据热力学知识,焓变化可以通过温度变化和相变潜热来计算。
在这个过程中,液体从100°C冷却至30°C,因此焓变化可以表示为:ΔH = mcΔT + mL其中,m为液体的质量,c为液体的比热容,ΔT为温度变化,L为相变潜热。
实际案例:在化工生产中,液体冷却过程常常会伴随着热量的释放。
比如在冷却塔中,热水经过冷却塔顶部的喷淋装置,通过与空气的接触,将热量传递给空气,使水的温度降低。
这个过程中,热水的焓发生了变化,而释放的热量则被转化为冷却塔底部的冷却水。
第二题:某反应器中,气体从1MPa膨胀至0.1MPa,求其膨胀过程中的焓变化。
解析:气体的膨胀过程可以看作是绝热膨胀,根据绝热过程的热力学关系,焓变化可以表示为:ΔH = C_pΔT其中,C_p为气体的定压比热容,ΔT为温度变化。
实际案例:在化工生产中,气体的膨胀过程常常会伴随着功的输出。
比如在天然气输送管道中,高压天然气经过减压阀膨胀至低压,释放出的能量可以用来驱动压缩机或者发电机,实现能量的转换和利用。
通过以上两个习题的解析和实际案例的讨论,我们可以看到化工热力学的知识在实际工程中的重要性。
掌握热力学原理和应用是化学工程师必备的基本能力,通过课后习题的答案解析和实践案例的讨论,可以帮助学生更好地理解和应用这些知识,提高工程实践能力,为将来的工程实践打下坚实的基础。
化工热力学课后答案完整版
.第二章流体的压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出400 ℃、 4.053MPa 下甲烷气体的摩尔体积。
( 1 )理想气体方程;( 2 ) RK 方程;( 3)PR 方程;( 4 )维里截断式( 2-7)。
其中 B 用 Pitzer 的普遍化关联法计算。
[解 ] ( 1 )根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积V id为V id RT8.314(400273.15) 1.381 103m3mol 1p 4.053106(2)用 RK 方程求摩尔体积将RK 方程稍加变形,可写为V RT a(V b)b(E1)p T 0.5 pV (V b)其中0.42748R2T c2.5ap c0.08664 RT cbp c从附表 1 查得甲烷的临界温度和压力分别为T c=190.6K,p c=4.60MPa,将它们代入a, b 表达式得a0.42748 8.3142 190.62.5 3.2217m 6 Pa mol -2 K 0.54.60106b0.086648.314190.6 2.9846 10 5 m3 mol 14.60106以理想气体状态方程求得的V id为初值,代入式( E1)中迭代求解,第一次迭代得到V1值为V18.314673.15 2.984610 54.053106.3.2217 (1.381 100.56673.15 4.053 10 1.381 103 2.9846 10 5 )3(1.381 10 3 2.984610 5 )1.38110 32.984610 5 2.124610 51.3896331 10m mol第二次迭代得 V2为V2 1.381103 2.98461053.2217(1.389610 3 2.984610 5)673.15 0.5 4.05310 61.389610 3(1.389610 3 2.984610 5)1.38110 32.984610 5 2.112010 51.389710 3 m3 mol1V1和 V2已经相差很小,可终止迭代。
化工热力学课后答案完整版
.第二章流体的压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出400 ℃、 4.053MPa 下甲烷气体的摩尔体积。
( 1 )理想气体方程;( 2 ) RK 方程;( 3)PR 方程;( 4 )维里截断式( 2-7)。
其中 B 用 Pitzer 的普遍化关联法计算。
[解 ] ( 1 )根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积V id为V id RT8.314(400273.15) 1.381 103m3mol 1p 4.053106(2)用 RK 方程求摩尔体积将RK 方程稍加变形,可写为V RT a(V b)b(E1)p T 0.5 pV (V b)其中0.42748R2T c2.5ap c0.08664 RT cbp c从附表 1 查得甲烷的临界温度和压力分别为T c=190.6K,p c=4.60MPa,将它们代入a, b 表达式得a0.42748 8.3142 190.62.5 3.2217m 6 Pa mol -2 K 0.54.60106b0.086648.314190.6 2.9846 10 5 m3 mol 14.60106以理想气体状态方程求得的V id为初值,代入式( E1)中迭代求解,第一次迭代得到V1值为V18.314673.15 2.984610 54.053106.3.2217 (1.381 100.56673.15 4.053 10 1.381 103 2.9846 10 5 )3(1.381 10 3 2.984610 5 )1.38110 32.984610 5 2.124610 51.3896331 10m mol第二次迭代得 V2为V2 1.381103 2.98461053.2217(1.389610 3 2.984610 5)673.15 0.5 4.05310 61.389610 3(1.389610 3 2.984610 5)1.38110 32.984610 5 2.112010 51.389710 3 m3 mol1V1和 V2已经相差很小,可终止迭代。
化工热力学答案冯新宣爱国课后总习题答案详解
6.料流方向取决于料流进入型腔的位置,故在型腔一定时影响分子取向方向的因素是浇口位置。
7.牛顿型流体包括粘性流体、粘弹性流体和时间依赖性流体。
8.受温度的影响,低分子化合物存在三种物理状态:固态、液态、气态。
稳定剂:提高树脂在热、光和霉菌等外界因素作用时的稳定性。
润滑剂:改进高聚物的流动性、减少摩擦、降低界面粘附。
着色剂:使塑料制件具有各种颜色。
3.增塑剂的作用是什么?
答:在树脂中加入增塑剂后,加大了分子间的距离,削弱了大分子间的作用力。这样便使树脂分子容易滑移,从而使塑料能在较低温度下具有良好的可塑性和柔软性。增塑剂的加入虽然可以改善塑料的工艺性能和使用性能,但也使树脂的某些性能降低了,如硬度、抗拉强度等。
15.收缩率的影响因素有压力、温度和时间。
16.塑料在一定温度与压力下充满型腔的能力称为流动性。
17.根据塑料的特性和使用要求,塑件需进行后处理,常进行退火和调湿处理。
判断
1.根据塑料的成份不同可以分为简单组分和多组分塑料。单组分塑料基本上是树脂为主,加入少量填加剂而成。(√)
2.填充剂是塑料中必不可少的成分。(×)
(4)提高原材料的纯度
第 2 章
填空
1.塑料的主要成份有树脂、填充剂、增塑剂、着色剂、润滑剂、稳定剂。
2.根据塑料成型需要,工业上用成型的塑料有粉料、粒料、溶液和分散体等物料。
3.热固性塑料的工艺性能有:收缩性、流动性、压缩率、水分与挥化物含量、固化特性。
4.热塑性塑料的工艺性能有:收缩性、塑料状态与加工性、粘度性与流动性、吸水性、结晶性、热敏性、应力开裂、熔体破裂。
化工热力学答案-冯新 第六章 第七章概要
第六章思考题:6-1 空气被压缩机绝热压缩后温度是否上升,为什么? 6-2 为什么节流装置通常用于制冷和空调场合? 6-3 请指出下列说法的不妥之处:① 不可逆过程中系统的熵只能增大不能减少。
② 系统经历一个不可逆循环后,系统的熵值必定增大。
③ 在相同的始末态之间经历不可逆过程的熵变必定大于可逆过程的熵变。
④ 如果始末态的熵值相等,则必定是绝热过程;如果熵值增加,则必定是吸热过程。
6-4 某封闭体系经历一可逆过程。
体系所做的功和排出的热量分别为15kJ 和5kJ 。
试问体系的熵变:(a )是正?(b )是负?(c )可正可负?6-5 某封闭体系经历一不可逆过程。
体系所做的功为15kJ ,排出的热量为5kJ 。
试问体系的熵变: (a )是正?(b )是负?(c )可正可负?6-6 某流体在稳流装置内经历一不可逆过程。
加给装置的功为25kJ ,从装置带走的热(即流体吸热)是10kJ 。
试问流体的熵变:(a )是正?(b )是负?(c )可正可负?6-7 某流体在稳流装置内经历一个不可逆绝热过程,加给装置的功是24kJ ,从装置带走的热量(即流体吸热)是10kJ 。
试问流体的熵变: (a )是正?(b )是负?(c )可正可负?6-8 热力学第二定律的各种表述都是等效的,试证明:违反了克劳休斯说法,则必定违反开尔文说法。
6-9 理想功和可逆功有什么区别?6-10 对没有熵产生的过程,其有效能损失是否必定为零? 6-11 总结典型化工过程热力学分析。
习题6-1 压力为1.5MPa ,温度为320℃的水蒸气通过一根内径为75㎜的管子,以-13m s ⋅的速度进入透平机。
由透平机出来的乏气用内径为25㎜的管子引出,其压力为35kPa ,温度为80℃。
假定过程无热损失,试问透平机输出的功率为多少?【解】:查593K 和353K 过热水蒸气焓值,-113255.8kJ kg h =⋅,-122645.6kJ kg h =⋅ 由 3-13-11176.5cm g 0.1765m kg V =⋅=⋅313-124625 4.625m kg V cm g -=⋅=⋅进口截面积 ()22210.0750.00442m 44A D ππ==⨯=-11130.004420.0751kg s 0.1756u A m V ⨯===⋅、 m V A u V A u ==111222-122220.0751 4.6257.08m s 0.254m V u A π⋅⨯===⋅⨯ -1212645.63255.8610.2kJ kg h h h ∆=-=-=-⋅忽略位能变化,则 0z ∆=()2223-1117.0831020.563kJ kg 22u -∆=-⨯=⋅212s q w m h u ⎛⎫+=∆+∆ ⎪⎝⎭()-10.0751610.220.56347.37kJ s 47.37kW s w =-+=-⋅=-6-2 有一水泵每小时从水井抽出1892kg 的水并泵入储水槽中,水井深61m ,储水槽的水位离地面18.3m ,水泵用功率为3.7KW 的电机驱动,在泵送水过程中,只耗用该电机功率的45%。
化工热力学答案-冯新 第六章 第七章概要
第六章思考题:6-1 空气被压缩机绝热压缩后温度是否上升,为什么? 6-2 为什么节流装置通常用于制冷和空调场合? 6-3 请指出下列说法的不妥之处:① 不可逆过程中系统的熵只能增大不能减少。
② 系统经历一个不可逆循环后,系统的熵值必定增大。
③ 在相同的始末态之间经历不可逆过程的熵变必定大于可逆过程的熵变。
④ 如果始末态的熵值相等,则必定是绝热过程;如果熵值增加,则必定是吸热过程。
6-4 某封闭体系经历一可逆过程。
体系所做的功和排出的热量分别为15kJ 和5kJ 。
试问体系的熵变:(a )是正?(b )是负?(c )可正可负?6-5 某封闭体系经历一不可逆过程。
体系所做的功为15kJ ,排出的热量为5kJ 。
试问体系的熵变: (a )是正?(b )是负?(c )可正可负?6-6 某流体在稳流装置内经历一不可逆过程。
加给装置的功为25kJ ,从装置带走的热(即流体吸热)是10kJ 。
试问流体的熵变:(a )是正?(b )是负?(c )可正可负?6-7 某流体在稳流装置内经历一个不可逆绝热过程,加给装置的功是24kJ ,从装置带走的热量(即流体吸热)是10kJ 。
试问流体的熵变: (a )是正?(b )是负?(c )可正可负?6-8 热力学第二定律的各种表述都是等效的,试证明:违反了克劳休斯说法,则必定违反开尔文说法。
6-9 理想功和可逆功有什么区别?6-10 对没有熵产生的过程,其有效能损失是否必定为零? 6-11 总结典型化工过程热力学分析。
习题6-1 压力为1.5MPa ,温度为320℃的水蒸气通过一根内径为75㎜的管子,以-13m s ⋅的速度进入透平机。
由透平机出来的乏气用内径为25㎜的管子引出,其压力为35kPa ,温度为80℃。
假定过程无热损失,试问透平机输出的功率为多少?【解】:查593K 和353K 过热水蒸气焓值,-113255.8kJ kg h =⋅,-122645.6kJ kg h =⋅ 由 3-13-11176.5cm g 0.1765m kg V =⋅=⋅313-124625 4.625m kg V cm g -=⋅=⋅进口截面积 ()22210.0750.00442m 44A D ππ==⨯=-11130.004420.0751kg s 0.1756u A m V ⨯===⋅、 m V A u V A u ==111222-122220.0751 4.6257.08m s 0.254m V u A π⋅⨯===⋅⨯ -1212645.63255.8610.2kJ kg h h h ∆=-=-=-⋅忽略位能变化,则 0z ∆=()2223-1117.0831020.563kJ kg 22u -∆=-⨯=⋅212s q w m h u ⎛⎫+=∆+∆ ⎪⎝⎭()-10.0751610.220.56347.37kJ s 47.37kW s w =-+=-⋅=-6-2 有一水泵每小时从水井抽出1892kg 的水并泵入储水槽中,水井深61m ,储水槽的水位离地面18.3m ,水泵用功率为3.7KW 的电机驱动,在泵送水过程中,只耗用该电机功率的45%。
化工热力学课后答案
化工热力学课后答案(填空、判断、画图)第1章 绪言一、是否题1. 封闭体系的体积为一常数。
(错)2. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
(对)3. 理想气体的焓和热容仅是温度的函数。
(对)4. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
(对。
状态函数的变化仅决定于初、终态与途径无关。
)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。
3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP ⎪⎪⎭⎫ ⎝⎛--,U =()1121T PPR C igP ⎪⎪⎭⎫⎝⎛--,H =1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。
B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,U = 0 ,H = 0 。
第2章P-V-T关系和状态方程一、是否题1. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。
(错。
可以通过超临界流体区。
)2. 当压力大于临界压力时,纯物质就以液态存在。
(错。
若温度也大于临界温度时,则是超临界流体。
化工热力学习题 冯新主编第6章习题及答案打印版
第6章 压缩、膨胀和制冷循环一、选择题1. 蒸汽压缩制冷循环过程中,制冷剂蒸发吸收的热量一定 制冷剂冷却和冷凝放出的热量 A 大于 B 等于 C 小于 (C )2. 从制冷原理和生产应用方面说明制冷剂的选择原则。
答(1)潜热要大。
因为潜热大,冷冻剂的循环量可以减小。
氨在这方面具有显著的优点,它的潜热比氟里昂约大10倍,常用于大型制冷设备。
(2)操作压力要合适。
即冷凝压力(高压)不要过高,蒸发压力(低压)不要过低。
因为冷凝压力高将增加压缩机和冷凝器的设备费用,功率消耗也会增加;而蒸发压力低于大气压力,容易造成空气漏入真空操作的蒸发系统,不利于操作稳定。
在这方面氨和氟里昂也是比较理想的。
(3)冷冻剂应该具有化学稳定性。
冷冻剂对于设备不应该有显著的腐蚀作用。
氨对铜有强烈的腐蚀作用,对碳钢则腐蚀不强;氟里昂则无腐蚀。
(4)冷冻剂不应有易燃和易爆性。
(5)冷冻剂对环境应该无公害。
氟里昂F11、F12对大气臭氧的破坏已被公认,将逐渐被禁用,无公害的氟里昂替代品已大量应用。
综合以上各点,氨作为冷冻剂常用于大型冷库和工业装置。
而无公害氟里昂常用于小型冷冻机和家用电器3. 某蒸汽压缩制冷过程,制冷剂在250K 吸收热量Q L ,在300K 放出热量-Q H ,压缩和膨胀过程是绝热的,向制冷机输入的功为Ws ,判断下列问题的性质。
A 可逆的 B 不可逆的 C 不可能的 (1). Q L =2000kJ Ws=400kJ ( A )2505300250η==-可逆 20005400L sQ W η===ηη=可逆 该制冷过程是可逆的 (2). Q L =1000kJ Q H =-1500kJ ( B ) 2505300250η==-可逆 1000215001000L L sH LQ Q W Q Q η====---ηη<可逆该制冷过程是不可逆的(3). Ws=100kJ Q H =-700kJ ( C )2505300250η==-可逆 7001006100H sL ssQ W Q W W η---====ηη>可逆该制冷过程是不可能的4. 卡诺制冷循环的制冷系数与 有关。
化工热力学课后答案
第1章 绪言一、是否题1. 封闭体系的体积为一常数。
(错)2. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
(对)3. 理想气体的焓和热容仅是温度的函数。
(对)4. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
(对。
状态函数的变化仅决定于初、终态与途径无关。
) 二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的以V 表示)(以P 表示)。
3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C ig P ⎪⎪⎭⎫ ⎝⎛--,∆U =()1121T P P R C igP ⎪⎪⎭⎫ ⎝⎛--,∆H =1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。
B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,∆U = 0 ,∆H = 0 。
C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,∆U =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-11211PC RigPP P R V P R C ,∆H =1121T P P C igPC R ig P ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛。
化工热力学课后部分习题答案
2-3.偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?答:纯物质的偏心因子ω是根据物质的蒸气压来定义的。
实验发现,纯态流体对比饱和蒸气压的对数与对比温度的倒数呈近似直线关系,即符合:⎪⎪⎭⎫ ⎝⎛-=r sr Tp 11log α 其中,c s s r p p p =对于不同的流体,α具有不同的值。
但Pitzer 发现,简单流体(氩、氪、氙)的所有蒸气压数据落在了同一条直线上,而且该直线通过r T =0.7,1log -=sr p 这一点。
对于给定流体对比蒸气压曲线的位置,能够用在r T =0.7的流体与氩、氪、氙(简单球形分子)的s r p log 值之差来表征。
Pitzer 把这一差值定义为偏心因子ω,即)7.0(00.1log =--=r s r T p ω任何流体的ω值都不是直接测量的,均由该流体的临界温度c T 、临界压力c p 值及r T =0.7时的饱和蒸气压s p 来确定。
2-4.纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸气的摩尔体积随着温度的升高而减小吗?答:正确。
由纯物质的p –V 图上的饱和蒸气和饱和液体曲线可知。
2-5.同一温度下,纯物质的饱和液体与饱和蒸气的热力学性质均不同吗?答:同一温度下,纯物质的饱和液体与饱和蒸气的Gibbs 自由能是相同的,这是纯物质气液平衡准则。
气他的热力学性质均不同。
3-1 思考下列说法是否正确① 当系统压力趋于零时,()()0,,≡-p T Mp T M ig(M 为广延热力学性质)。
(F ) ② 理想气体的H 、S 、G 仅是温度的函数。
(F ) ③ 若()⎪⎪⎭⎫⎝⎛+-=00ln p p R S S A ig,则A 的值与参考态压力0p 无关。
(T ) ④ 对于任何均相物质,焓与热力学能的关系都符合H >U 。
(T ) ⑤ 对于一定量的水,压力越高,蒸发所吸收的热量就越少。
(T ) 3-2 推导下列关系式:V T T p V S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ p T p T V U VT -⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂()2RT H T RT G p ∆∆-=⎥⎦⎤⎢⎣⎡∂∂ ()RTV p RT G T ∆∆=⎥⎦⎤⎢⎣⎡∂∂ 证明:(1)根据热力学基本方程 V p T S A d d d --= (a)因为A 是状态函数,所以有全微分:V V A T T A A TV d d d ⎪⎭⎫⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂= (b) 比较(a)和(b)得: p V A S T A TV -=⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂, 由全微分性质得:V V T T p T T p p A T T A p V S ⎪⎭⎫ ⎝⎛∂∂-=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂∂∂=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂=⎪⎭⎫ ⎝⎛∂∂-即 VT T p V S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂(2)由热力学基本方程 V p S T U d d d -= 将上式两边在恒定的温度T 下同除以的d V 得:p V S T V U TT -⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂由(1)已经证明VT T p V S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂ 则 p T p T V U VT -⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂(3)由热力学基本方程 p V T S G d d d +-= 当压力恒定时 SdT dG -=由Gibbs 自由能定义式得 S T H G ∆∆∆-=()()()222T H T S T H S T T GT GTT T G p∆∆∆∆∆∆∆-=---⋅=-∂∂=⎥⎦⎤⎢⎣⎡∂∂等式两边同乘以R 得()2RT H T RT G p∆∆-=⎥⎦⎤⎢⎣⎡∂∂(4)当温度恒定时Vdp dG =()T V p T G T ∆∆=⎥⎦⎤⎢⎣⎡∂∂ 所以 ()RTVp RT G T ∆∆=⎥⎦⎤⎢⎣⎡∂∂ 3-4 计算氯气从状态1(300K 、1.013×105Pa )到状态2( 500K 、1.013×107Pa )变化过程的摩尔焓变。
化工热力学习题 冯新主编第7章习题及答案打印版
第7章 相平衡与化学反应平衡一、是否题1. 在一定温度T (但T <T c )下,纯物质的饱和蒸汽压只可以从诸如Antoine 等蒸汽压方程求得,而不能从已知常数的状态方程(如PR 方程)求出,因为状态方程有三个未知数(P 、V 、T )中,只给定了温度T ,不可能唯一地确定P 和V 。
(错,因为纯物质的饱和蒸汽压代表了汽液平衡时的压力。
由相律可知,纯物质汽液平衡状态时自由度为1,若已知T ,其蒸汽压就确定下来了。
已知常数的状态方程中,虽然有P 、V 、T 三个变量,但有状态方程和汽液平衡准则两个方程,所以,就能计算出一定温度下的蒸汽压。
) 2. 混合物汽液相图中的泡点曲线表示的是饱和汽相,而露点曲线表示的是饱和液相。
(错) 3. 在一定压力下,组成相同的混合物的露点温度和泡点温度不可能相同。
(错,在共沸点时相同)4. 一定压力下,纯物质的泡点温度和露点温度是相同的,且等于沸点。
(对)5. 由(1),(2)两组分组成的二元混合物,在一定T 、P 下达到汽液平衡,液相和汽相组成分别为11,y x ,若体系加入10 mol 的组分(1),在相同T 、P 下使体系重新达到汽液平衡,此时汽、液相的组成分别为'1'1,y x ,则1'1x x >和1'1y y >。
(错,二元汽液平衡系统的自由度是2,在T ,P 给定的条件下,系统的状态就确定下来了。
) 6. 在(1)-(2)的体系的汽液平衡中,若(1)是轻组分,(2)是重组分,则11x y >,22x y <。
(错,若系统存在共沸点,就可以出现相反的情况)7. 在(1)-(2)的体系的汽液平衡中,若(1)是轻组分,(2)是重组分,若温度一定,则体系的压力,随着1x 的增大而增大。
(错,若系统存在共沸点,就可以出现相反的情况)8. 纯物质的汽液平衡常数K 等于1。
(对,因为111==y x )9. 理想系统的汽液平衡K i 等于1。
化工热力学答案-冯新 第六章 第七章概要
第六章思考题:6-1 空气被压缩机绝热压缩后温度是否上升,为什么? 6-2 为什么节流装置通常用于制冷和空调场合? 6-3 请指出下列说法的不妥之处:① 不可逆过程中系统的熵只能增大不能减少。
② 系统经历一个不可逆循环后,系统的熵值必定增大。
③ 在相同的始末态之间经历不可逆过程的熵变必定大于可逆过程的熵变。
④ 如果始末态的熵值相等,则必定是绝热过程;如果熵值增加,则必定是吸热过程。
6-4 某封闭体系经历一可逆过程。
体系所做的功和排出的热量分别为15kJ 和5kJ 。
试问体系的熵变:(a )是正?(b )是负?(c )可正可负?6-5 某封闭体系经历一不可逆过程。
体系所做的功为15kJ ,排出的热量为5kJ 。
试问体系的熵变: (a )是正?(b )是负?(c )可正可负?6-6 某流体在稳流装置内经历一不可逆过程。
加给装置的功为25kJ ,从装置带走的热(即流体吸热)是10kJ 。
试问流体的熵变:(a )是正?(b )是负?(c )可正可负?6-7 某流体在稳流装置内经历一个不可逆绝热过程,加给装置的功是24kJ ,从装置带走的热量(即流体吸热)是10kJ 。
试问流体的熵变: (a )是正?(b )是负?(c )可正可负?6-8 热力学第二定律的各种表述都是等效的,试证明:违反了克劳休斯说法,则必定违反开尔文说法。
6-9 理想功和可逆功有什么区别?6-10 对没有熵产生的过程,其有效能损失是否必定为零? 6-11 总结典型化工过程热力学分析。
习题6-1 压力为1.5MPa ,温度为320℃的水蒸气通过一根内径为75㎜的管子,以-13m s ⋅的速度进入透平机。
由透平机出来的乏气用内径为25㎜的管子引出,其压力为35kPa ,温度为80℃。
假定过程无热损失,试问透平机输出的功率为多少?【解】:查593K 和353K 过热水蒸气焓值,-113255.8kJ kg h =⋅,-122645.6kJ kg h =⋅ 由 3-13-11176.5cm g 0.1765m kg V =⋅=⋅313-124625 4.625m kg V cm g -=⋅=⋅进口截面积 ()22210.0750.00442m 44A D ππ==⨯=-11130.004420.0751kg s 0.1756u A m V ⨯===⋅、 m V A u V A u ==111222-122220.0751 4.6257.08m s 0.254m V u A π⋅⨯===⋅⨯ -1212645.63255.8610.2kJ kg h h h ∆=-=-=-⋅忽略位能变化,则 0z ∆=()2223-1117.0831020.563kJ kg 22u -∆=-⨯=⋅212s q w m h u ⎛⎫+=∆+∆ ⎪⎝⎭()-10.0751610.220.56347.37kJ s 47.37kW s w =-+=-⋅=-6-2 有一水泵每小时从水井抽出1892kg 的水并泵入储水槽中,水井深61m ,储水槽的水位离地面18.3m ,水泵用功率为3.7KW 的电机驱动,在泵送水过程中,只耗用该电机功率的45%。
化工热力学课后答案
第1章 绪言一、是否题1. 封闭体系的体积为一常数。
(错)2. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
(对)3. 理想气体的焓和热容仅是温度的函数。
(对)4. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
(对。
状态函数的变化仅决定于初、终态与途径无关。
) 二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的以V 表示)(以P 表示)。
3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C ig P ⎪⎪⎭⎫ ⎝⎛--,∆U =()1121T P P R C igP ⎪⎪⎭⎫ ⎝⎛--,∆H =1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。
B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,∆U = 0 ,∆H = 0 。
C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,∆U =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-11211PC RigPP P R V P R C ,∆H =1121T P P C igPC R ig P ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛。
化工热力学课后题答案
习题:2-1.为什么要研究流体的pVT 关系?答:在化工过程的分析、研究与设计中,流体的压力p 、体积V 和温度T 是流体最基本的性质之一,并且是可以通过实验直接测量的。
而许多其它的热力学性质如内能U 、熵S 、Gibbs 自由能G 等都不方便直接测量,它们需要利用流体的p –V –T 数据和热力学基本关系式进行推算;此外,还有一些概念如逸度等也通过p –V –T 数据和热力学基本关系式进行计算。
因此,流体的p –V –T 关系的研究是一项重要的基础工作。
2-2.理想气体的特征是什么?答:假定分子的大小如同几何点一样,分子间不存在相互作用力,由这样的分子组成的气体叫做理想气体。
严格地说,理想气体是不存在的,在极低的压力下,真实气体是非常接近理想气体的,可以当作理想气体处理,以便简化问题。
理想气体状态方程是最简单的状态方程:RT pV =2-3.偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?答:纯物质的偏心因子ω是根据物质的蒸气压来定义的。
实验发现,纯态流体对比饱和蒸气压的对数与对比温度的倒数呈近似直线关系,即符合:⎪⎪⎭⎫ ⎝⎛-=r sr Tp 11log α 其中,cs s r p p p = 对于不同的流体,α具有不同的值。
但Pitzer 发现,简单流体(氩、氪、氙)的所有蒸气压数据落在了同一条直线上,而且该直线通过r T =0.7,1log -=sr p 这一点。
对于给定流体对比蒸气压曲线的位置,能够用在r T =0.7的流体与氩、氪、氙(简单球形分子)的sr p log 值之差来表征。
Pitzer 把这一差值定义为偏心因子ω,即)7.0(00.1log =--=r s r T p ω任何流体的ω值都不是直接测量的,均由该流体的临界温度c T 、临界压力c p 值及r T =0.7时的饱和蒸气压s p 来确定。
2-4.纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸气的摩尔体积随着温度的升高而减小吗?答:正确。
化工热力学课后部分习题答案
2-3.偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?答:纯物质的偏心因子ω是根据物质的蒸气压来定义的。
实验发现,纯态流体对比饱和蒸气压的对数与对比温度的倒数呈近似直线关系,即符合:⎪⎪⎭⎫ ⎝⎛-=r sr Tp 11log α 其中,c s s r p p p =对于不同的流体,α具有不同的值。
但Pitzer 发现,简单流体(氩、氪、氙)的所有蒸气压数据落在了同一条直线上,而且该直线通过r T =0.7,1log -=sr p 这一点。
对于给定流体对比蒸气压曲线的位置,能够用在r T =0.7的流体与氩、氪、氙(简单球形分子)的s r p log 值之差来表征。
Pitzer 把这一差值定义为偏心因子ω,即)7.0(00.1log =--=r s r T p ω任何流体的ω值都不是直接测量的,均由该流体的临界温度c T 、临界压力c p 值及r T =0.7时的饱和蒸气压s p 来确定。
2-4.纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸气的摩尔体积随着温度的升高而减小吗?答:正确。
由纯物质的p –V 图上的饱和蒸气和饱和液体曲线可知。
2-5.同一温度下,纯物质的饱和液体与饱和蒸气的热力学性质均不同吗?答:同一温度下,纯物质的饱和液体与饱和蒸气的Gibbs 自由能是相同的,这是纯物质气液平衡准则。
气他的热力学性质均不同。
3-1 思考下列说法是否正确① 当系统压力趋于零时,()()0,,≡-p T Mp T M ig(M 为广延热力学性质)。
(F ) ② 理想气体的H 、S 、G 仅是温度的函数。
(F ) ③ 若()⎪⎪⎭⎫⎝⎛+-=00ln p p R S S A ig,则A 的值与参考态压力0p 无关。
(T ) ④ 对于任何均相物质,焓与热力学能的关系都符合H >U 。
(T ) ⑤ 对于一定量的水,压力越高,蒸发所吸收的热量就越少。
(T ) 3-2 推导下列关系式:V T T p V S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ p T p T V U VT -⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂()2RT H T RT G p ∆∆-=⎥⎦⎤⎢⎣⎡∂∂ ()RTV p RT G T ∆∆=⎥⎦⎤⎢⎣⎡∂∂ 证明:(1)根据热力学基本方程 V p T S A d d d --= (a)因为A 是状态函数,所以有全微分:V V A T T A A TV d d d ⎪⎭⎫⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂= (b) 比较(a)和(b)得: p V A S T A TV -=⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂, 由全微分性质得:V V T T p T T p p A T T A p V S ⎪⎭⎫ ⎝⎛∂∂-=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂∂∂=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂=⎪⎭⎫ ⎝⎛∂∂-即 VT T p V S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂(2)由热力学基本方程 V p S T U d d d -= 将上式两边在恒定的温度T 下同除以的d V 得:p V S T V U TT -⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂由(1)已经证明VT T p V S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂ 则 p T p T V U VT -⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂(3)由热力学基本方程 p V T S G d d d +-= 当压力恒定时 SdT dG -=由Gibbs 自由能定义式得 S T H G ∆∆∆-=()()()222T H T S T H S T T GT GTT T G p∆∆∆∆∆∆∆-=---⋅=-∂∂=⎥⎦⎤⎢⎣⎡∂∂等式两边同乘以R 得()2RT H T RT G p∆∆-=⎥⎦⎤⎢⎣⎡∂∂(4)当温度恒定时Vdp dG =()T V p T G T ∆∆=⎥⎦⎤⎢⎣⎡∂∂ 所以 ()RTVp RT G T ∆∆=⎥⎦⎤⎢⎣⎡∂∂ 3-4 计算氯气从状态1(300K 、1.013×105Pa )到状态2( 500K 、1.013×107Pa )变化过程的摩尔焓变。
化工热力学课后习题答案
化⼯热⼒学课后习题答案习题第1章绪⾔⼀、是否题1. 孤⽴体系的热⼒学能和熵都是⼀定值。
(错。
和,如⼀体积等于2V 的绝热刚性容器,被⼀理想的隔板⼀分为⼆,左侧状态是T ,P 的理想⽓体,右侧是T 温度的真空。
当隔板抽去后,由于Q =W =0,,,,故体系将在T ,2V ,状态下达到平衡,,,)2. 封闭体系的体积为⼀常数。
(错)3. 封闭体系中有两个相。
在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。
(对)4. 理想⽓体的焓和热容仅是温度的函数。
(对)5. 理想⽓体的熵和吉⽒函数仅是温度的函数。
(错。
还与压⼒或摩尔体积有关。
)6. 要确定物质在单相区的状态需要指定两个强度性质,但是状态⽅程 P =P (T ,V )的⾃变量中只有⼀个强度性质,所以,这与相律有⽭盾。
(错。
V 也是强度性质)7. 封闭体系的1mol ⽓体进⾏了某⼀过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的;同样,对于初、终态压⼒相等的过程有。
(对。
状态函数的变化仅决定于初、终态与途径⽆关。
)8. 描述封闭体系中理想⽓体绝热可逆途径的⽅程是(其中),⽽⼀位学⽣认为这是状态函数间的关系,与途径⽆关,所以不需要可逆的条件。
(错。
) 9. ⾃变量与独⽴变量是⼀致的,从属变量与函数是⼀致的。
(错。
有时可能不⼀致)10. ⾃变量与独⽴变量是不可能相同的。
(错。
有时可以⼀致)三、填空题1. 状态函数的特点是:状态函数的变化与途径⽆关,仅决定于初、终态。
22. 单相区的纯物质和定组成混合物的⾃由度数⽬分别是 2 和 2 。
3. 封闭体系中,温度是T 的1mol 理想⽓体从(P ,V )等温可逆地膨胀到(P ,V ),则所做的功为i i f f(以V 表⽰)或(以P 表⽰)。
4. 封闭体系中的1mol 理想⽓体(已知),按下列途径由T 1、P 1和V 1可逆地变化⾄P ,则mol,温度为和⽔。
化工热力学答案_冯新_宣爱国_课后总习题答案详解
习题四一、是否题M M。
4-1 对于理想溶液的某一容量性质M,则i i解:否4-2 在常温、常压下,将10cm3的液体水与20 cm3的液体甲醇混合后,其总体积为30 cm3。
解:否4-3温度和压力相同的两种纯物质混合成理想溶液,则混合过程的温度、压力、焓、Gibbs 自由能的值不变。
解:否4-4对于二元混合物系统,当在某浓度范围内组分2符合Henry规则,则在相同的浓度范围内组分1符合Lewis-Randall规则。
解:是4-5在一定温度和压力下的理想溶液的组分逸度与其摩尔分数成正比。
解:是4-6理想气体混合物就是一种理想溶液。
解:是4-7对于理想溶液,所有的混合过程性质变化均为零。
解:否4-8对于理想溶液所有的超额性质均为零。
解:否4-9 理想溶液中所有组分的活度系数为零。
解:否4-10 系统混合过程的性质变化与该系统相应的超额性质是相同的。
解:否4-11理想溶液在全浓度范围内,每个组分均遵守Lewis-Randall 定则。
解:否4-12 对理想溶液具有负偏差的系统中,各组分活度系数i γ均 大于1。
解:否4-13 Wilson 方程是工程设计中应用最广泛的描述活度系数的方程。
但它不适用于液液部分互溶系统。
解:是二、计算题4-14 在一定T 、p 下,二元混合物的焓为 2121x cx bx ax H ++= 其中,a =15000,b =20000,c = - 20000 单位均为-1J mol ⋅,求(1) 组分1与组分2在纯态时的焓值1H 、2H ;(2) 组分1与组分2在溶液中的偏摩尔焓1H 、2H 和无限稀释时的偏摩尔焓1∞H 、2∞H 。
解:(1)1111lim 15000J mol -→===⋅x H H a2121lim 20000J mol -→===⋅x H H b(2)按截距法公式计算组分1与组分2的偏摩尔焓,先求导:()()()12121111111d dd d d11d H ax bx cx x x x ax b x cx x x =++=+-+-⎡⎤⎣⎦12=-+-a b c cx将1d d Hx 代入到偏摩尔焓计算公式中,得()()()()()()11112121111111112122d 1d (1)211221H H H x x ax bx cx x x a b c cx ax b x cx x a b c cx x a b c cx a c x a cx =+-=+++--+-=+-+-+-+---+-=+-=+()()()()21121211111111121d 2d 112HH H x ax bx cx x x a b c cx x ax b x cx x x a b c cx b cx =-=++--+-=+-+---+-=+无限稀释时的偏摩尔焓1∞H 、2∞H 为:()()2-1112012-122111221lim lim 150002000035000J mol lim lim 200002000040000J molx x x x H H a cx H H b cx∞→→∞→→==+=+=⋅==+=+=⋅4-15 在25℃,1atm 以下,含组分1与组分2的二元溶液的焓可以由下式表示:121212905069H x x x x x x =++⋅+()式中H 单位为-1cal mol ⋅,1x 、2x 分别为组分1、2的摩尔分数,求 (1) 用1x 表示的偏摩尔焓1H 和2H 的表达式; (2) 组分1与2在纯状态时的1H 、2H ;(3) 组分1与2在无限稀释溶液的偏摩尔焓1∞H 、2∞H ;(4) ΔH 的表达式;(5) 1x =0.5 的溶液中的1H 和2H 值及溶液的H ∆值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章习题解答一、问答题:2-1为什么要研究流体的pVT 关系?【参考答案】:流体p-V-T 关系是化工热力学的基石,是化工过程开发和设计、安全操作和科学研究必不可少的基础数据。
(1)流体的PVT 关系可以直接用于设计。
(2)利用可测的热力学性质(T ,P ,V 等)计算不可测的热力学性质(H ,S ,G ,等)。
只要有了p-V-T 关系加上理想气体的id p C ,可以解决化工热力学的大多数问题。
2-2在p -V 图上指出超临界萃取技术所处的区域,以及该区域的特征;同时指出其它重要的点、线、面以及它们的特征。
【参考答案】:1)超临界流体区的特征是:T >T c 、p >p c 。
2)临界点C 的数学特征:3)饱和液相线是不同压力下产生第一个气泡的那个点的连线;4)饱和汽相线是不同压力下产生第一个液滴点(或露点)那个点的连线。
5)过冷液体区的特征:给定压力下液体的温度低于该压力下的泡点温度。
()()()()点在点在C V PC V PT T 0022==∂∂∂∂6)过热蒸气区的特征:给定压力下蒸气的温度高于该压力下的露点温度。
7)汽液共存区:在此区域温度压力保持不变,只有体积在变化。
2-3 要满足什么条件,气体才能液化?【参考答案】:气体只有在低于T c 条件下才能被液化。
2-4 不同气体在相同温度压力下,偏离理想气体的程度是否相同?你认为哪些是决定偏离理想气体程度的最本质因素?【参考答案】:不同。
真实气体偏离理想气体程度不仅与T 、p 有关,而且与每个气体的临界特性有关,即最本质的因素是对比温度、对比压力以及偏心因子r T ,r P 和ω。
2-5 偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?【参考答案】:偏心因子ω为两个分子间的相互作用力偏离分子中心之间的作用力的程度。
其物理意义为:一般流体与球形非极性简单流体(氩,氪、氙)在形状和极性方面的偏心度。
为了提高计算复杂分子压缩因子的准确度。
偏心因子不可以直接测量。
偏心因子ω的定义为:000.1)p lg(7.0T s r r--==ω ,ω由测定的对比温度为0.7时的对比饱和压力的数据计算而得,并不能直接测量。
2-6 什么是状态方程的普遍化方法?普遍化方法有哪些类型?【参考答案】:所谓状态方程的普遍化方法是指方程中不含有物性常数a ,b ,而是以对比参数作为独立变量;普遍化状态方程可用于任何流体、任意条件下的PVT 性质的计算。
普遍化方法有两种类型:(1)以压缩因子的多项式表示的普遍化关系式 (普遍化压缩因子图法);(2)以两项virial 方程表示的普遍化第二virial 系数关系式(普遍化virial 系数法)2-7简述三参数对应状态原理与两参数对应状态原理的区别。
【参考答案】:三参数对应状态原理与两参数对应状态原理的区别在于为了提高对比态原理的精度,引入了第三参数如偏心因子ω。
三参数对应态原理为:在相同的r T 和r p 下,具有相同ω值的所有流体具有相同的压缩因子Z ,因此它们偏离理想气体的程度相同,即),P ,T (f Z r r ω=。
而两参数对应状态原理为:在相同对比温度r T 、对比压力r p 下,不同气体的对比摩尔体积r V (或压缩因子z )是近似相等的,即(,)r r Z T P =。
三参数对应状态原理比两参数对应状态原理精度高得多。
2-8总结纯气体和纯液体pVT 计算的异同。
【参考答案】: 由于范德华方程(vdW 方程)最 大突破在于能同时计算汽、液两相性质,因此,理论上讲,采用基于vdW 方程的立方型状态方程能同时将纯气体和纯液体的性质计算出来(最小值是饱和液体摩尔体积、最大值是饱和气体摩尔体积),但事实上计算的纯气体性质误差较小,而纯液体的误差较大。
因此,液体的p-V-T 关系往往采用专门计算液体体积的公式计算,如修正Rackett 方程,它与立方型状态方程相比,既简单精度又高。
2-9如何理解混合规则?为什么要提出这个概念?有哪些类型的混合规则?【参考答案】:对于混合气体,只要把混合物看成一个虚拟的纯物质,算出虚拟的特征参数,如Tr ,pr ,ω,并将其代入纯物质的状态方程中,就可以计算混合物的性质了。
而计算混合物虚拟特征参数的方法就是混合规则;它是计算混合物性质中最关键的一步。
对于理想气体的混合物,其压力和体积与组成的关系分别表示成Dalton 分压定律i i py p =和Amagat 分体积定律i i y )nV (V =。
但对于真实气体,由于气体纯组分的非理想性及混合引起的非理想性,使得分压定律和分体积定律无法准确地描述真实气体混合物的p –V -T 关系。
为了计算真实气体混合物的p –V -T 关系,我们就需要引入混合规则的概念。
混合规则有虚拟临界参数法和Kay 规则、立方型状态方程的混合规则、气体混合物的第二维里系数。
2-10状态方程主要有哪些类型? 如何选择使用? 请给学过的状态方程之精度排个序。
【参考答案】:状态方程主要有立方型状态方程(vdW ,RK ,SRK ,PR );多参数状态方程(virial 方程);普遍化状态方程(普遍化压缩因子法、普遍化第二virial 系数法)、液相的Rackett 方程。
在使用时:(1)若计算液体体积,则直接使用修正的Rackett方程(2-50)~(2-53),既简单精度又高,不需要用立方型状态方程来计算;(2)若计算气体体积,SRK,PR是大多数流体的首选,无论压力、温度、极性如何,它们能基本满足计算简单、精度较高的要求,因此在工业上已广泛使用。
对于个别流体或精度要求特别高的,则需要使用对应的专用状态方程或多参数状态方程。
精度从高到低的排序是:多参数状态方程>立方型状态方程>两项截断virial方程>理想气体状态方程。
立方型状态方程中:PR>SRK>RK>vdW二、计算题:(说明:凡是题目中没有特别注明使用什么状态方程的,你可以选择你认为最适宜的方程,并给出理由)2-11. 将van der Waals方程化成维里方程式;并导出van der Waals 方程常数a、b表示的第二维里系数B的函数表达式。
2-12. 维里方程可以表达成以下两种形式。
21pV B CZ RT V V ==+++⋯ (1) 21''pVZ B p C p RT==+++⋯ (2) 请证明:'BB RT= 2'2()C B C RT -=)2(12⋯⋯+++==VCV B RT PV Z 2PVZ 1B'P C'P (1)RT==+++⋯⋯解:)3)(1(2⋯⋯+++=VCV B V RT P )5('])('['1)('''1)]1([)1'113322'22'3222'2⋯⋯++++=⋯++⋯⋯+++=⋯⋯+⋯⋯++++⋯⋯++++==VCRTB V RTC BRT B V RT B VRT C V CRT B V BRT B V RT B VC V B V RT C V C V B V RT B RT PV Z ()式右边得:)式代入(将(2'2()C B C RT -='BB RT∴= 2V ab V RT P --=解:VRTa Vb RTPVz --==11RTa b B -=∴nX X X X X (111)32++++=-幂级数展开)(V C V B RT PV Z 212⋯⋯+++==)(1113232.......)Vb ()V b (V RT a b VRT a .......])V b ()V b (V b [z +++-+=-++++=∴2-13. 某反应器容积为31.213m ,内装有温度为0227C 的乙醇45.40kg 。
现请你试用以下三种方法求取该反应器的压力,并与实验值(2.75MPa )比较误差。
(1)用理想气体方程;;(2)用RK 方程;(3)用普遍化状态方程。
解:(1)用理想气体方程MPa V nRT P 38.310213.115.50010314.8987.063=⨯⨯⨯⨯== 误差:%9.22 (2)用R-K 方程乙醇:K T C 2.516=, MPa P C 38.6=765.2625.22108039.21038.62.51610314.842748.042748.0⨯=⨯⨯⨯⨯==CCP T R a 0583.01038.62.51610314.808664.008664.063=⨯⨯⨯⨯==C C P RT b3229.1987.0213.1m V ==()()MPab V V T a b V RT P 76.2109247.7105519.30583.0229.1229.115.500108039.20583.0229.115.50010314.85625.0735.0=⨯-⨯=⨯+⨯--⨯⨯=+--= 误差:%36.0(3)用三参数普遍化关联 (2<r V 用维里方程关联,MPa P 7766.2=) 635.0=ω, 43.038.675.2===C r P P P , 97.02.51615.500==r T 查图2-12~2-13:82.00=Z , 055.01-=Z 7845.0055.0645.082.010=⨯-=+=Z Z Z ωMPa V ZRT P 65.210229.115.50010314.87845.063=⨯⨯⨯⨯== 误差:%64.32-14. 容积1m 3的贮气罐,其安全工作压力为100 atm ,内装甲烷100 kg ,问:1)当夏天来临,如果当地最高温度为40℃时,贮气罐是否会爆炸?(本题用RK 方程计算)2)上问中若有危险,则罐内最高温度不得超过多少度? 3)为了保障安全,夏天适宜装料量为多少kg ?4)如果希望甲烷以液体形式储存运输,问其压缩、运输的温度必须低于多少度?解:1)甲烷的临界参数为 : T c = 190.6 K , P c = 4.6 MPaa = 0.427485.22R pcTc=0.42748⨯65.22106.46.190314.8⨯⨯= 3.2217 b = 0.08664 pc c RT = 0.086646106.46.190314.8⨯⨯⨯=2.985510-⨯ V = 161010013⨯=1.6⨯104- 3m /mol 又 T = 40 ℃)(5.0b V V T ab V RT p +--==)10985.2106.1(106.115.3132217.310985.2106.115.313314.85445.054-----⨯+⨯⨯⨯⨯-⨯-⨯⨯ = 1.401Pa 710⨯ = 138.3 atm > p 安 = 100 atm 故 储气罐会发生爆炸。