高一下学期期中考试数学试题
2023~2024学年度第二学期高一年级期中考试数学试卷
唐山市第三十六中学2023-2024学年高一下学期期中考试数学试卷一、选择题1.判断下列各命题的真假:①向量与平行,则与的方向相同或相反;②两个有共同起点而且相等的向量,其终点必相同;③零向量是没有方向的;④向量就是有向线段.其中假命题的个数为( )A .2B .3C .4D .52.如图,分别是长方体的棱的中点,则等于( )A .B .C .D .3.已知,,为非零平面向量,则下列说法正确的是( )A .B .若,则C .若,则,D .4.已知向量,,且,则实数的值为( )A .B .3C .8D .125.已知单位向量,的夹角为,则( )A .1BCD .36.在中,角A ,B ,C 所对边分别为,,,,则值等于( )a b a b E F ,ABCD A B C D '-'''AB CD ,AB CF + AD 'AC ' DE AE a b c()()a b c a b c ⋅⋅=⋅⋅ a c b c ⋅=⋅ a b =//a bλR ∃∈λb a = ||||||a b a b ⋅=⋅ (2,4)a = (,6)b m =- //a bm 3-a b 2π3a b -= ABC V ,,a b c π3A =2b =8c =22a b c sinA sinB sinC -+-+AB .CD7.已知复数在复平面内对应的点在第四象限,则实数的取值范围是( )A .B .C .D .8.在三棱锥P -ABC 中,PA ⊥底面ABC ,PA =2,底面ABC 是边长为的正三角形,M 为AC 的中点,球O 是三棱锥P -ABM 的外接球.若D 是球0上一点,则三棱锥D -PAC 的体积的最大值是( )A.2B .CD二、多项选择题9.在△ABC 中,下列说法正确的是( )A .若,则B .若,则C .若,则D .若,则10.若关于 方程 ( 是实数)有两个不等复数根 ,其中 ( 是虚数单位),下面四个选项正确的有( )A .B.C .D .11.如图,在直三棱柱中,,,E 为的中点,过AE 的截面与棱BB 、分别交于点F 、G ,则下列说法中正确的是( )(2)(1)i z m m =+++m (2,1)--(,2)(1,)⋃-∞--+∞(1,)-+∞(,2)-∞-A B C >>sinA sinB sinC>>A B C >>222sin A sin B sin C>>A B C >>cosA cosB cosC<<A B C >>222cos A cos B cos C<<x 的20x px q ++=p q ,αβ和12α=-+i 1αβ⨯=21αβ=2αβ=332αβ+=111ABC A B C -90ACB ∠=︒12AC BC CC ===11B C 11A CA .当点F 为棱中点时,截面B .线段长度的取值范围是C .当点F 与点B 重合时,三棱锥的体积为D .存在点F ,使得三、填空题12.已知平面和直线,给出条件:①;②;③;④;⑤.(1)当满足条件 时,有;(2)当满足条件 时,有.(填所选条件的序号)13.下列说法正确的序号为 .①若复数,则;②若全集为复数集,则实数集的补集为虚数集;③已知复数,,若,则,均为实数;④复数的虚部是1.14.如图,在四边形 中,对角线 与 相交于点 .已知 ,, ,且 是 的中点,若 ,则 的值为 .四、解答题15.如图,在平面四边形ABCD 中,已知,,△ABC 为等边三角形,记.1BB AFEG 3++1C G []01,C AEF -431A F AE ⊥αβ,m αm P αm ⊥αm ⊂αβ⊥αβP βm P βm ⊥3i z =+13i 1010z =-1z 2z 12z z >1z 2z 3i 1z =-+ABCD AC BD O AC BC =AC BC ⊥AD BD ⊥O AC 2AD AB CD CB ⋅-⋅= AC BD ⋅ 1AD =2CD =αADC ∠=(1)若,求△ABD 的面积;(2)若,求△ABD 的面积的取值范围.16.已知向量.(1)当时,求的值;(2)设函数,且,求 的最大值以及对应的的值.17.已知是关于x 的实系数一元二次方程.(1)若a是方程的一个根,且,求实数k 的值;(2)若,是该方程的两个实根,且,求使的值为整数的所有k 的值.18.如图,多面体 中,底面 是菱形, ,四边形 是正方形且 平面 .(1)求证:平面 ;(2)若 ,求多面体 的体积 .19.如图,两个相同的正四棱锥底面重合组成一个八面体,可放入一个底面为正方形的长方体内,且长方体的正方形底面边长为2,高为4,已知重合的底面与长方体的正方形底面平行,八面体的各顶点均在长方体的表面上.πα3=πα,π2⎛⎫∈⎪⎝⎭)1cos 12a x x b ⎛⎫==- ⎪ ⎪⎝⎭,a b ⊥ tan x ()()f x a b b =+⋅ π02x ⎡⎤∈⎢⎥⎣⎦,()f x x 24410kx kx k -++=1a =1x 2x Z k ∈1221x x x x +ABCDEF ABCD 60BCD ∠=︒BDEF DE ⊥ABCD //CF ADE AE =ABCDEF V(2)求该八面体表面积S的取值范围.。
2024年大连二十四中高一下学期5月期中数学试题答案
大连市第二十四中学2023-2024学年高一下学期5月期中考试数学科试卷参考答案1-8.ABADB CBD 9-11 AD AC BCD 12. 13.14. 15. (1)因为,,所以,即,则,则,即与夹角的余弦值(2)因为与的夹角为锐角,所以且与不共线,由,得,即,解得,当与共线时,有,即,由(1)知与不共线,所以,解得,所以当与不共线时,,所以且,即实数的取值范围为16. (1),1725-34±6π1a b == ()()223a b a b +⋅-=- 22223a ab b +⋅-=- 2123a b +⋅-=- 13a b ⋅= 1cos ,3a b a b a b ⋅==a b 13ka b + 3a b +()()30ka b a b +⋅+> ka b + 3a b +()()30ka b a b +⋅+> ()223130ka k a b b ++⋅+> ()131303k k ++⨯+>53k >-ka b + 3a b + ()3ka b a b λ+=+ 3k a b a b λλ+=+a b 13k λλ=⎧⎨=⎩13k =ka b + 3a b + 13≠k 53k >-13≠k k 511,,333⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭ ()()()()π3πcos sin sin cos cos 22sin 3πsin πsin sin sin x x x x x f x x x x x x⎛⎫⎛⎫+- ⎪ ⎪-⋅⎝⎭⎝⎭===-+--⋅-由已知,,得,所以.(2),,得,由,得,. . ..而,...17.(1)由于函数图象上两相邻对称轴之间的距离为,则该函数的最小正周期为,,此时.若选①,则函数的一条对称轴,则,得,,当时,,此时,;若选②,则函数的一个对称中心,则,得,,当时,,此时,;cos 1()sin 2f ααα=-=tan 2α=-222222sin cos 2sin tan 2tan 286sin cos 2sin sin cos tan 1415ααααααααααα++-++====+++()3f α=- cos 3sin αα∴-=-1tan 3α=()2f αβ-=-1tan()2αβ-=∴tan()tan tan(2)tan[()]11tan()tan αβααβαβααβα-+-=-+==-- π,π2β⎛⎫∈⎪⎝⎭π0,2α⎛⎫∈ ⎪⎝⎭π0αβ∴-<-<1tan()02αβ-=>∴ππ2αβ-<-<-2(π,0)αβ∴-∈-∴3π24αβ-=-()y f x =2π22T ππ=⨯=222T ππωπ∴===()()2sin 21f x x ϕ=++()y f x =3x π=-()232k k Z ππϕπ-+=+∈()76k k Z πϕπ=+∈22ππϕ-<< 1k =-6πϕ=()2sin 216f x x π⎛⎫=++ ⎪⎝⎭()y f x =5,112π⎛⎫⎪⎝⎭()56k k Z πϕπ+=∈()56k k Z πϕπ=-∈22ππϕ-<< 1k =6πϕ=()2sin 216f x x π⎛⎫=++ ⎪⎝⎭若选③,则函数的图象过点,则,得,,,,解得,此时,.综上所述,;(2)令,,,,当或时,即当或时,线段的长取到最大值18. (1)由图象可知则,则,又,所以,所以,又,所以,所以的解析式为;(2),令,由可得,令,由对称性可知,两式相加可得,,所以;()y f x =5,06π⎛⎫⎪⎝⎭552sin 1063f ππϕ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭51sin 32πϕ⎛⎫+=- ⎪⎝⎭22ππϕ-<< 7513636πππϕ∴<+<51136ππϕ∴+=6πϕ=()2sin 216f x x π⎛⎫=++ ⎪⎝⎭()2sin 216f x x π⎛⎫=++ ⎪⎝⎭()()()2sin 21cos 6h x f x g x x x xπ⎛⎫=-=++- ⎪⎝⎭122cos 212cos 2102x x x x ⎫=++=+≥⎪⎪⎭()cos 21P Q h t t ∴==+[]0,t π∈ []20,2t π∴∈20t =22t π=0=t t π=PQ 22π7πππ2,441234T A ω===-=2ω=()()2sin 2f x x ϕ=+7π7π2sin 2126f ϕ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭7πsin 16ϕ⎛⎫+=- ⎪⎝⎭7π3π2π,Z 62k k ϕ+=+∈π||2ϕ<π3ϕ=()f x π()2sin 23f x x ⎛⎫=+⎪⎝⎭π()2sin 3h x x ⎛⎫=+ ⎪⎝⎭π3π,,π32m x m ⎡⎫=+∈-⎪⎢⎣⎭π4()2sin 33h x x ⎛⎫=+= ⎪⎝⎭2sin 3m =1232sin sin sin 3m m m ===1223π,πm m m m +=-+=12320m m m ++=1234π23x x x ∴++=-()1234π1cos 2cos 32x x x ⎛⎫++=-=- ⎪⎝⎭(3),令,则,因为对于任意,当时,都有成立,所以对于任意,当时,都有成立,即对于任意,当时,都有成立,所以函数在上单调递增,由,得,所以,解得,所以的最大值为19.(1)依题意,得,所以,所以或,当时,,则,又,所以,当,则又,所以或,所以,所以方程在上的解集为πππ()2sin 22cos 2233g x x x ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭()()()F x f x g x =-ππ()2sin 22cos 233F x x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭ππ234x ⎛⎫=+- ⎪⎝⎭π212x ⎛⎫=+ ⎪⎝⎭12,[0,]x x t ∈12x x <()()()()1212f x f x g x g x -<-12,[0,]x x t ∈12x x <()()()()1122f x g x f x g x -<-12,[0,]x x t ∈12x x <()()12F x F x <()F x []0,t []0,x t ∈πππ2,2121212x t ⎡⎤+∈+⎢⎥⎣⎦ππ2122t +≤5π024t <≤t 5π2422sin cos cos 2cos sin ααααα-==-()()cos sin sin cos 10αααα-++=cos sin 0αα-=sin cos 1αα+=-cos sin 0αα-=cos 0α≠tan 1α=[]0,2πα∈π5π,44α=sin cos 1αα+=-πsin 4α⎛⎫+=-⎪⎝⎭[]ππ9π0,2π,,444αα⎡⎤∈∴+∈⎢⎥⎣⎦π5π44α+=7π43ππ,2α=()co s 2f x α=[]0,2ππ5π3π,π,,442⎧⎫⎨⎬⎩⎭(2)①设,当时,则,此时在上单调递增,在上也单调递增,所以在上单调递增,,所以在区间上有且只有一个零点;②记函数的零点为,所以,且,所以,所以,令,因为,所以,又,则,所以,则.()πsin cos 2ln 2ln 4F x x x x x x ⎛⎫=-+=-+ ⎪⎝⎭,42x ππ⎛⎫∈ ⎪⎝⎭ππ0,44x ⎛⎫-∈ ⎪⎝⎭π4y x ⎛⎫=- ⎪⎝⎭ππ,42⎛⎫ ⎪⎝⎭2ln y x =ππ,42⎛⎫⎪⎝⎭()F x ππ,42⎛⎫⎪⎝⎭πππππ2ln 0,2ln 044242F F ⎛⎫⎛⎫=<=+> ⎪ ⎪⎝⎭⎝⎭()y Fx =ππ,42⎛⎫⎪⎝⎭()y Fx =0x 000sin cos 2ln 0x x x -+=0x ∈ππ,42⎛⎫⎪⎝⎭()0001ln cos sin 2x x x =-()000000111ln sin 2cos sin sin cos 422x x x x x x +=-+000πcos sin 4t x x x ⎛⎫=-=+ ⎪⎝⎭0ππ,42x ⎛⎫∈ ⎪⎝⎭()1,0t ∈-20012sin cos t x x =-2001sin cos 2t x x -=()2220011111111111ln sin 21,42224244224t x x t t t t -⎛⎫+=+⨯=-++=--+∈- ⎪⎝⎭00111ln sin 2244x x -<+<。
人教版高一下学期期中考试数学试卷及答案解析(共五套)
人教版高一下学期期中考试数学试卷(一)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为312.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a 的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.参考答案一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.【答案】D【分析】根据共线向量的定义即可得结论.【解答】解:由题,点C是线段AB靠近点B的三等分点,=3=﹣3,所以选项A错误;=2=﹣2,所以选项B和选项C错误,选项D正确.故选:D.【知识点】平行向量(共线)、向量数乘和线性运算2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.【答案】D【分析】直接利用复数代数形式的乘除运算化简,然后利用共轭复数的概念得答案.【解答】解:∵z(3+i)=3+i2020,i2020=(i2)1010=(﹣1)1010=1,∴z(3+i)=4,∴z=,∴=,∴共轭复数的虚部为,故选:D.【知识点】复数的运算3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.【答案】C【分析】利用图形,求出数量积的向量,然后转化求解即可.【解答】解:由题意,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,可知=+=,=﹣=﹣2,所以•=()•(﹣2)=﹣2﹣2=1.故选:C.【知识点】平面向量数量积的性质及其运算4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i【答案】B【分析】利用错位相减法、等比数列的求和公式及其复数的周期性即可得出.【解答】解:设S=2i+3i2+4i3+ (2020i2019)∴iS=2i2+3i3+ (2020i2020)则(1﹣i)S=i+i+i2+i3+……+i2019﹣2020i2020.==i+==﹣2021+i,∴S==.故选:B.【知识点】复数的运算5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°【答案】B【分析】易知∠ABA1即为所求,再由△ABA1为等腰直角三角形,得解.【解答】解:因为AB∥CD,所以∠ABA1即为异面直线A1B与CD所成的角,因为△ABA1为等腰直角三角形,所以∠ABA1=45°.故选:B.【知识点】异面直线及其所成的角6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.【答案】C【分析】先利用正弦定理将已知等式中的边化角,再结合两角和公式与三角形的内角和定理,可推出sin B=2sin A;然后利用三角形的面积公式、正弦定理,即可得解.【解答】解:由正弦定理知,==,∵(a﹣2b)cos C=c(2cos B﹣cos A),∴(sin A﹣2sin B)cos C=sin C(2cos B﹣cos A),即sin A cos C+sin C cos A=2(sin B cos C+cos B sin C),∴sin(A+C)=2sin(B+C),即sin B=2sin A.∵△ABC的面积为a2sin,∴S=bc sin A=a2sin,根据正弦定理得,sin B•sin C•sin A=sin2A•sin,化简得,sin B•sin cos=sin A•cos,∵∈(0,),∴cos>0,∴sin==,∴=,即C=.故选:C.【知识点】正弦定理、余弦定理7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°【答案】B【分析】连接AB1,求出∠ACB1可判断选项A;连接B1D1,找出点B1在平面AD1C上的投影O,设直线B1C与平面AD1C所成的角为θ,由cosθ=可判断选项B;利用平移法找出选项C和D涉及的异面直线夹角,再进行相关运算,即可得解.【解答】解:连接AB1,∵△AB1C为等边三角形,∴∠ACB1=60°,即直线B1C与AC所成的角为60°,故选项A正确;连接B1D1,∵AB1=B1C=CD1=AD1,∴四面体AB1CD1是正四面体,∴点B1在平面AD1C上的投影为△AD1C的中心,设为点O,连接B1O,OC,则OC=BC,设直线B1C与平面AD1C所成的角为θ,则cosθ===≠,故选项B错误;连接BC1,∵AD1∥BC1,且B1C⊥BC1,∴直线B1C与AD1所成的角为90°,故选项C正确;∵AB⊥平面BCC1B1,∴AB⊥B1C,即直线B1C与AB所成的角为90°,故选项D正确.故选:B.【知识点】直线与平面所成的角、异面直线及其所成的角8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π【答案】A【分析】由题意可得AC⊥面EFBD,可得V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD,再由多面体ABCDEF 的体积为,可得矩形EFBD的高与正方形ABCD的边长之间的关系,再由题意可得矩形EFBD的对角线的交点为外接球的球心,进而求出外接球的半径,再由均值不等式可得外接球的半径的最小值,进而求出外接球的表面积的最小值.【解答】解:设正方形ABCD的边长为a,矩形BDEF的高为b,因为正方形ABCD,所以AC⊥BD,设AC∩BD=O',由因为平面ABCD与平面EFBD互相垂直,AC⊂面ABCD,平面ABCD∩平面EFBD=BD,所以AC⊥面EFBD,所以V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD=2•S EFBD•CO'=•a•b•a =a2b,由题意可得V ABCDEF=,所以a2b=2;所以a2=,矩形EFBD的对角线的交点O,连接OO',可得OO'⊥BD,而OO'⊂面EFBD,而平面ABCD⊥平面EFBD,平面ABCD∩平面EFBD=BD,所以OO'⊥面EFBD,可得OA=OB=OE=OF都为外接球的半径R,所以R2=()2+(a)2=+=+=++≥3=3×,当且仅当=即b=时等号成立.所以外接球的表面积为S=4πR2≥4π•3×=6π.所以外接球的表面积最小值为6π.故选:A.【知识点】球的体积和表面积二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.【答案】BC【分析】由已知利用余弦定理整理可得cos A=,对于A,若A=,可得b=<0,错误;对于B,若A=,可得b=>0,对于C,若A=,可得b=>0,对于D,若A=,可得c=0,错误,即可得解.【解答】解:因为在△ABC中,a2=b2+bc,又由余弦定理可得:a2=b2+c2﹣2bc cos A,所以b2+bc=b2+c2﹣2bc cos A,整理可得:c=b(1+2cos A),可得:cos A=,对于A,若A=,可得:﹣=,整理可得:b=<0,错误;对于B,若A=,可得:=,整理可得:b=>0,对于C,若A=,可得:cos==,整理可得:b=>0,对于D,若A=,可得:cos=﹣=,整理可得:c=0,错误.故选:BC.【知识点】余弦定理10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.【答案】ABC【分析】由向量的加减法法则、平面向量基本定理解决【解答】解:由,知A正确;由知B正确;由知C正确;由N为线段DC的中点知知D错误;故选:ABC.【知识点】向量数乘和线性运算、平面向量的基本定理11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为3【答案】BD【分析】通过复数的基本性质,结合反例,以及复数的模,判断命题的真假即可.【解答】解:当两个复数都是实数时,可以比较大小,所以A不正确;复数的实部与虚部都是0时,复数是0,所以B正确;反例z1=1,z2=i,满足z12+z22=0,所以C不正确;复数z满足|z|=1,则|z+2i|的几何意义,是复数的对应点到(0,﹣2)的距离,它的最大值为3,所以D正确;故选:BD.【知识点】复数的模、复数的运算、虚数单位i、复数、命题的真假判断与应用12.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°【答案】ABD【分析】在正方体ABCD﹣A1B1C1D1中,建立合适的空间直角坐标系,设正方体的棱长为2,根据空间向量的坐标运算,以及异面直线所成角的向量求法,逐项判断即可.【解答】解:在正方体ABCD﹣A1B1C1D1中,以点A为坐标原点,分别以AB,AD,AA1为x 轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为2,则A(0,0,0),A1(0,0,2),B(2,0,0),B1(2,0,2),C (2,2,0),D(0,2,0),D1(0,2,2),所以,故,故选项A正确;又,又,所以,,则,故选项B正确;,所以,因此与的夹角为120°,故选项C错误;因为E,F分别是BC,A1C的中点,所以E(2,1,0),F(1,1,1),则,所以,又异面直线的夹角大于0°小于等于90°,所以异面直线EF与DD1所成的角为45°,故选项D正确;故选:ABD.【知识点】异面直线及其所成的角三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.【分析】根据向量的几何意义可得P为BC的中点,再根据向量的数量积的运算和正方形的性质即可求出.【解答】解:由=(+),可得P为BC的中点,则|CP|=1,∴|PD|==,∴•=•(+)=﹣•(+)=﹣2﹣•=﹣1,故答案为:,﹣1.【知识点】平面向量数量积的性质及其运算14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.【答案】1【分析】设z1=a+bi,则z2=a﹣bi,(a,b∈R),根据两个复数相等的充要条件求出z1,z2,再由根与系数的关系求得p,q的值.【解答】解:由题意可知z1与z2为共轭复数,设z1=a+bi,则z2=a﹣bi,(a,b∈R 且b≠0),又,则a2﹣b2+2abi=a﹣bi,∴(2a+b)+(a+2b)i=1﹣i,∴,解得.∴z1=+i,z2=i,(或z2=+i,z1=i).由根与系数的关系,得p=﹣(z1+z2)=1,q=z1•z2=1,∴pq=1.故答案为:1.【知识点】复数的运算15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.【分析】由题意画出图形,找出三棱锥外接球的位置,求解三角形可得外接球的半径,再由棱锥体积公式求解.【解答】解:记BD的中点为M,连接A′M,CM,可得A′M2+CM2=A′C2,则∠A′MC=90°,则外接球的球心O在△A′MC的边A′C的中垂线上,且过正三角形BCD的中点F,且在与平面BCD垂直的直线m上,过点A′作A′E⊥m于点E,如图所示,设外接球的半径为R,则A′O=OC=R,,A′E=1,在Rt△A′EO中,A′O2=A′E2+OE2,解得R=.故三棱锥A﹣BCD的外接球的体积为.故答案为:.【知识点】球的体积和表面积16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.【分析】根据题意,该四面体内接于圆锥的内切球,通过内切球即可得到a的最大值.【解答】解:依题意,四面体可以在圆锥内任意转动,故该四面体内接于圆锥的内切球,设球心为P,球的半径为r,下底面半径为R,轴截面上球与圆锥母线的切点为Q,圆锥的轴截面如图:则OA=OB=,因为SO=,故可得:SA=SB==3,所以:三角形SAB为等边三角形,故P是△SAB的中心,连接BP,则BP平分∠SBA,所以∠PBO=30°;所以tan30°=,即r=R=×=,即四面体的外接球的半径为r=.另正四面体可以从正方体中截得,如图:从图中可以得到,当正四面体的棱长为a时,截得它的正方体的棱长为a,而正四面体的四个顶点都在正方体上,故正四面体的外接球即为截得它的正方体的外接球,所以2r=AA1=a=a,所以a=.即a的最大值为.故答案为:.【知识点】旋转体(圆柱、圆锥、圆台)四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.【分析】(1)直接利用余弦定理的应用求出结果;(2)利用余弦定理的应用建立等量关系式,进一步求出结果.【解答】解:(1)在四边形ABCD中,AD=BD=CD=1.若AB=,所以:cos∠ADB==,由于AB∥CD,所以∠BDC=∠ABD,即cos∠BDC=cos∠ABD=,所以BC2=BD2+CD2﹣2•BD•CD•cos∠BDC==,所以BC=.(2)设BC=x,则AB=2BC=2x,由余弦定理得:cos∠ADB==,cos∠BDC===,故,解得或﹣(负值舍去).所以.【知识点】余弦定理18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.【分析】(1)把z1,z2代入=+,利用复数代数形式的乘除运算化简求出,进一步求出z;(2)设z=a+bi(a,b∈R),利用复数的运算及(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,可得,又ω==i,|ω|=5,可得,即可得出a,b,再代入可得ω.【解答】解:(1)由z1=1﹣2i,z2=3+4i,得=+==,则z=;(2)设z=a+bi(a,b∈R),∵(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,∴.又ω===i,|ω|=5,∴.把a=3b代入化为b2=25,解得b=±5,∴a=±15.∴ω=±(i)=±(7﹣i).【知识点】复数的运算19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.【分析】(1)首项利用两角和的正切公式建立函数关系,进一步利用判别式确定函数的最大值;(2)利用两角和的正切公式建立函数关系,利用a的取值范围即可确定x的范围.【解答】解:(1)如图,作CD⊥AF于D,则CD=EF,设∠ACD=α,∠BCD=β,CD=x,则θ=α﹣β,在Rt△ACD和Rt△BCD中,tanα=,tanβ=,则tanθ=tan(α﹣β)==(x>0),令u=,则ux2﹣2x+1.25u=0,∵上述方程有大于0的实数根,∴△≥0,即4﹣4×1.25u2≥0,∴u≤,即(tanθ)max=,∵正切函数y=tan x在(0,)上是增函数,∴视角θ同时取得最大值,此时,x==,∴观察者离墙米远时,视角θ最大;(2)由(1)可知,tanθ===,即x2﹣4x+4=﹣a2+6a﹣4,∴(x﹣2)2=﹣(a﹣3)2+5,∵1≤a≤2,∴1≤(x﹣2)2≤4,化简得:0≤x≤1或3≤x≤4,又∵x>1,∴3≤x≤4.【知识点】解三角形20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.【分析】(I)利用复数的几何意义、向量的坐标运算性质、平行四边形的性质即可得出.(II)利用向量垂直与数量积的关系、模的计算公式、矩形的面积计算公式即可得出.【解答】解:(Ⅰ)依题点A对应的复数为﹣1,对应的复数为2+2i,得A(﹣1,0),=(2,2),可得B(1,2).又对应的复数为4﹣4i,得=(4,﹣4),可得C(5,﹣2).设D点对应的复数为x+yi,x,y∈R.得=(x﹣5,y+2),=(﹣2,﹣2).∵ABCD为平行四边形,∴=,解得x=3,y=﹣4,故D点对应的复数为3﹣4i.(Ⅱ)=(2,2),=(4,﹣4),可得:=0,∴.又||=2,=4.故平行四边形ABCD的面积==16.【知识点】复数的代数表示法及其几何意义21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.【分析】(1)推导出GC⊥BC,EC⊥BC,从而∠ECG=60°.连接DG,推导出DG⊥EF,由BC⊥EF,BC⊥CG,得BC⊥平面DEG,从而DG⊥BC,进而DG⊥平面ABCE,DG是四棱锥G ﹣ABCE的高,由此能求出四棱锥G﹣ABCE的体积.(2)取DE的中点H,连接BH、GH,则BH∥AE,∠GBH既是AE与BG所成角或其补角.由此能求出异面直线AE与BG所成角的大小.【解答】解:(1)由已知,有GC⊥BC,EC⊥BC,所以∠ECG=60°.连接DG,由CD=AB=1,CG=CF=2,∠ECG=60°,有DG⊥EF①,由BC⊥EF,BC⊥CG,有BC⊥平面DEG,所以,DG⊥BC②,由①②知,DG⊥平面ABCE,所以DG就是四棱锥G﹣ABCE的高,在Rt△CDG中,.故四棱锥G﹣ABCE的体积为:.(2)取DE的中点H,连接BH、GH,则BH∥AE,故∠GBH既是AE与BG所成角或其补角.在△BGH中,,,则.故异面直线AE与BG所成角的大小为.【知识点】异面直线及其所成的角、棱柱、棱锥、棱台的体积22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.【分析】(1)点F为BC的中点,设点D在平面ABC内的射影为O,连接OD,OC,取AC 的中点H,连接EH,由题意知EH⊥AC,EH⊥平面ABC,由题意知DO⊥平面ABC,得DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,从而OF∥平面EAC,平面DOF∥平面EAC,由此能证明DF∥平面EAC.(2)连接OH,由OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出直线AB与平面EBC所成角的余弦值.【解答】解:(1)点F为BC的中点,理由如下:设点D在平面ABC内的射影为O,连接OD,OC,∵AD=CD,∴OA=OC,∴在Rt△ABC中,O为AB的中点,取AC的中点H,连接EH,由题意知EH⊥AC,又平面EAC⊥平面ABC,平面EAC∩平面ABC=AC,∴EH⊥平面ABC,由题意知DO⊥平面ABC,∴DO∥EH,∴DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,又OF⊄平面EAC,AC⊂平面EAC,∴OF∥平面EAC,∵DO∩OF=O,∴平面DOF∥平面EAC,∵DF⊂平面DOF,∴DF∥平面EAC.(2)连接OH,由(1)可知OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立如图所示空间直角坐标系,则B(1,﹣1,0),A(﹣1,1,0),E(0,1,﹣),C(1,1,0),∴=(2,﹣2,0),=(0,2,0),=(﹣1,2,﹣),设平面EBC的法向量=(a,b,c),则,取a=,则=(,0,﹣1),设直线与平面EBC所成的角为θ,则sinθ===.∴直线AB与平面EBC所成角的余弦值为cosθ==.【知识点】直线与平面平行、直线与平面所成的角人教版高一下学期期中考试数学试卷(二)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.14.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.25.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.96.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R27.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π8.已知半球O与圆台OO'有公共的底面,圆台上底面圆周在半球面上,半球的半径为1,则圆台侧面积取最大值时,圆台母线与底面所成角的余弦值为()A.B.C.D.二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.下列有关向量命题,不正确的是()A.若||=||,则=B.已知≠,且•=•,则=C.若=,=,则=D.若=,则||=||且∥10.若复数z满足,则()A.z=﹣1+i B.z的实部为1 C.=1+i D.z2=2i11.如图,在平行四边形ABCD中,E,F分别为线段AD,CD的中点,AF∩CE=G,则()A.B.C.D.12.已知正方体ABCD﹣A1B1C1D1,棱长为2,E为线段B1C上的动点,O为AC的中点,P 为棱CC1上的动点,Q为棱AA1的中点,则以下选项中正确的有()A.AE⊥B1CB.直线B1D⊥平面A1BC1C.异面直线AD1与OC1所成角为D.若直线m为平面BDP与平面B1D1P的交线,则m∥平面B1D1Q三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知向量=(m,1),=(m﹣6,m﹣4),若∥,则m的值为.14.将表面积为36π的圆锥沿母线将其侧面展开,得到一个圆心角为的扇形,则该圆锥的轴截面的面积S=.15.如图,已知有两个以O为圆心的同心圆,小圆的半径为1,大圆的半径为2,点A 为小圆上的动点,点P,Q是大圆上的两个动点,且•=1,则||的最大值是.16.如图,在三棱锥A﹣BCD的平面展开图中,已知四边形BCED为菱形,BC=1,BF=,若二面角A﹣CD﹣B的余弦值为﹣,M为BD的中点,则CD=,直线AD与直线CM所成角的余弦值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.已知,.(1)若与同向,求;(2)若与的夹角为120°,求.18.已知a、b、c是△ABC中∠A、∠B、∠C的对边,a=4,b=6,cos A=﹣.(1)求c;(2)求cos2B的值.19.已知:复数z1与z2在复平面上所对应的点关于y轴对称,且z1(1﹣i)=z2(1+i)(i为虚数单位),|z1|=.(Ⅰ)求z1的值;(Ⅱ)若z1的虚部大于零,且(m,n∈R),求m,n的值.20.(Ⅰ)在复数范围内解方程|z|2+(z+)i=(i为虚数单位)(Ⅱ)设z是虚数,ω=z+是实数,且﹣1<ω<2.(1)求|z|的值及z的实部的取值范围;(2)设,求证:μ为纯虚数;(3)在(2)的条件下求ω﹣μ2的最小值.21.如图,直三棱柱A1B1C1﹣ABC中,AB=AC=1,,A1A=4,点M为线段A1A 的中点.(1)求直三棱柱A1B1C1﹣ABC的体积;(2)求异面直线BM与B1C1所成的角的大小.(结果用反三角表示)22.如图所示,在正方体ABCD﹣A1B1C1D1中,点G在棱D1C1上,且D1G=D1C1,点E、F、M分别是棱AA1、AB、BC的中点,P为线段B1D上一点,AB=4.(Ⅰ)若平面EFP交平面DCC1D1于直线l,求证:l∥A1B;(Ⅱ)若直线B1D⊥平面EFP.(i)求三棱锥B1﹣EFP的表面积;(ii)试作出平面EGM与正方体ABCD﹣A1B1C1D1各个面的交线,并写出作图步骤,保留作图痕迹.设平面EGM与棱A1D1交于点Q,求三棱锥Q﹣EFP的体积.答案解析一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【分析】直接利用复数的运算和几何意义的应用求出该点所表示的位置.【解答】解:设z=a+bi(a,b∈R),所以(2﹣i)(a+bi)=2a+b+(2b﹣a)i,由于对应的点在虚轴的正半轴上,所以,即,所以a<0,b>0.故该点在第二象限.故选:B.【知识点】复数的代数表示法及其几何意义2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.【答案】D【分析】利用平行四边形的性质以及向量相等的概念,再利用平面向量基本定理进行转化即可.【解答】解:因为ABCD为平行四边形,所以,故.故选:D.【知识点】平面向量的基本定理3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.1【答案】B【分析】根据平面向量的坐标表示和共线定理,列方程求出t的值.【解答】解:向量=(6t+3,9),=(4t+2,8),所以+=(6t+3,11),﹣=(4t+2,5).又(+)∥(﹣),所以5(6t+3)﹣11(4t+2)=0,解得t=﹣.故选:B.【知识点】平面向量共线(平行)的坐标表示4.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.2【答案】D【分析】先根据M,N满足的条件,将(+)•=0化成的表达式,从而判断出矩形ABCD为正方形;再将+=x+y,左边用表示出来,结合x+y =3,即可得NC+MC=4,最后借助于基本不等式求出MN的最小值.【解答】解:当M,N分别是边BC,DC的中点时,有(+)•===,所以AD=AB,则矩形ABCD为正方形,设,,则=.则x=2﹣λ,y=2﹣μ.又x+y=3,所以λ+μ=1.故NC+MC=4,则MN==(当且仅当MC=NC=2时取等号).故线段MN的最短长度为2.故选:D.【知识点】平面向量数量积的性质及其运算5.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.9【答案】B【分析】由题意画出图形,再由复数模的几何意义,数形结合得答案.【解答】解:由|z+3+4i|≤2,得z在复平面内对应的点在以Q(﹣3,﹣4)为圆心,以2为半径的圆及其内部.如图:|z﹣1﹣i|的几何意义为区域内的动点与定点P得距离,则M=|PQ|+2,m=|PQ|﹣2,则M﹣m=4.故选:B.【知识点】复数的运算6.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R2【答案】B【分析】设圆锥的底面半径为r,求得圆锥的高,由球的截面性质,运用勾股定理可得r,由圆锥的表面积公式可得所求.【解答】解:如图,设圆锥的底面半径为r,则圆锥的高为r,则R2=r2+(r﹣R)2,解得r=R,则圆锥的表面积为S=πr2+πr•2r=3πr2=3π(R)2=πR2,故选:B.【知识点】球内接多面体、旋转体(圆柱、圆锥、圆台)7.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π【答案】A【分析】先根据题意求得正四面体的体积,进而得到六面体的体积,再由图形的对称性得,内部的丸子要是体积最大,就是丸子要和六个面相切,设丸子的半径为R,则,由此求得R,进而得到答案.【解答】解:由题意可得每个三角形面积为,由对称性可知该六面体是由两个正四面体合成的,可得该四面体的高为,故四面体的体积为,∵该六面体的体积是正四面体的2倍,。
北京市2023-2024学年高一下学期期中考试数学试题含答案
北京2023—2024学年第二学期期中练习高一数学(答案在最后)2024.04说明:本试卷共4页,共120分.考试时长90分钟.一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin120︒的值等于()A.12-B.12C.2D.2【答案】D 【解析】【分析】根据特殊角的三角函数值得到2,从而可求解.【详解】由题意可得sin1202︒=,故D 正确.故选:D.2.若角α的终边过点()4,3,则πsin 2α⎛⎫+= ⎪⎝⎭()A.45B.45-C.35D.35-【答案】A 【解析】【分析】根据余弦函数定义结合诱导公式计算求解即可.【详解】因为角α的终边过点()4,3,所以4cos 5α==,所以π4sin cos 25αα⎛⎫+== ⎪⎝⎭.故选:A3.已知扇形的弧长为4cm ,圆心角为2rad ,则此扇形的面积是()A.22cmB.24cm C.26cm D.28cm 【答案】B【解析】【分析】由条件结合弧长公式l R α=求出圆的半径,然后结合扇形的面积公式12S lR =可得答案.【详解】因为扇形的圆心角2rad α=,它所对的弧长4cm l =,所以根据弧长公式l R α=可得,圆的半径2R =,所以扇形的面积211424cm 22S lR ==⨯⨯=;故选:B .4.向量a ,b ,c在正方形网格中的位置如图所示,若向量c a b λ=+,则实数λ=()A.2-B.1-C.1D.2【答案】D 【解析】【分析】将3个向量的起点归于原点,根据题设得到它们的坐标,从而可求λ的值.【详解】如图,将,,a b c的起点平移到原点,则()()()1,1,0,1,2,1a b c ==-= ,由c a b λ=+可得()()()2,11,10,1λ=+-,解得2λ=,故选:D.5.下列四个函数中以π为最小正周期且为奇函数的是()A.()cos2f x x =B.()tan2x f x =C.()()tan f x x =- D.()sin f x x=【答案】C 【解析】【分析】根据三角函数的周期性和奇偶性对选项逐一分析,由此确定正确选项.【详解】对于A ,函数()cos2f x x =的最小正周期为π,因为()()()cos 2cos 2f x x x f x -=-==,所以()cos2f x x =为偶函数,A 错误,对于B ,函数()tan 2xf x =的最小正周期为2π,因为()()tan tan 22x x f x f x ⎛⎫-=-=-=- ⎪⎝⎭,所以函数()tan 2x f x =为奇函数,B 错误,对于C ,函数()()tan f x x =-的最小正周期为π,因为()()()tan tan f x x x f x -==--=-,所以函数()()tan f x x =-为奇函数,C 正确,对于D ,函数()sin f x x =的图象如下:所以函数()sin f x x =不是周期函数,且函数()sin f x x =为偶函数,D 错误,6.在ABC 中,4AB =,3AC =,且AB AC AB AC +=- ,则AB BC ⋅= ()A.16B.16- C.20D.20-【答案】B 【解析】【分析】将AB AC AB AC +=- 两边平方,即可得到0AB AC ⋅=,再由数量积的运算律计算可得.【详解】因为AB AC AB AC +=- ,所以()()22AB ACAB AC +=-,即222222AB AB AC AC AB AB AC AC +⋅+=-⋅+uu u r uu u r uuu r uuu r uu u r uu u r uuu r uuu r ,所以0AB AC ⋅= ,即AB AC ⊥ ,所以()220416AB BC AB AC AB AB AC AB ⋅=⋅-=⋅-=-=- .故选:B7.函数cos tan y x x =⋅在区间3,22ππ⎛⎫⎪⎝⎭上的图像为()A.B.C.D.【答案】C 【解析】【分析】分别讨论x 在3,,[,)22ππππ⎛⎫⎪⎝⎭上tan x 的符号,然后切化弦将函数化简,作出图像即可.【详解】因为3,22x ππ⎛⎫∈ ⎪⎝⎭,所以sin ,,23sin ,.2x x y x x πππ⎧-<<⎪⎪=⎨⎪≤<⎪⎩故选:C.8.已知函数()sin 24f x x π⎛⎫=+ ⎪⎝⎭,则“()ππ8k k α=+∈Z ”是“()f x α+是偶函数,且()f x α-是奇函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】【分析】首先求出()f x α+、()f x α-的解析式,再根据正弦函数的性质求出使()f x α+是偶函数且()f x α-是奇函数时α的取值,再根据充分条件、必要条件的定义判断即可.【详解】因为()sin 24f x x π⎛⎫=+⎪⎝⎭,则()sin 224f x x ααπ⎛⎫+=++ ⎪⎝⎭,()sin 224f x x ααπ⎛⎫-=-+ ⎪⎝⎭,若()f x α-是奇函数,则112π,Z 4k k απ-+=∈,解得11π,Z 82k k απ=-∈,若()f x α+是偶函数,则222π,Z 42k k αππ+=+∈,解得22π,Z 82k k απ=+∈,所以若()f x α+是偶函数且()f x α-是奇函数,则π,Z 82k k απ=+∈,所以由()ππ8k k α=+∈Z 推得出()f x α+是偶函数,且()f x α-是奇函数,故充分性成立;由()f x α+是偶函数,且()f x α-是奇函数推不出()ππ8k k α=+∈Z ,故必要性不成立,所以“()ππ8k k α=+∈Z ”是“()f x α+是偶函数,且()f x α-是奇函数”的充分不必要条件.故选:A9.已知向量,,a b c 共面,且均为单位向量,0a b ⋅= ,则a b c ++ 的最大值是()A.1+ B.C.D.1-【答案】A 【解析】【分析】根据题意,可设出向量,,a b c 的坐标,由于这三个向量都是单位向量,则向量,,a b c的终点都落在以坐标原点为圆心的单位圆上,作出示意图,由向量的性质可知,只有当c 与a b +同向时,a b c ++ 有最大值,求解即可.【详解】因为向量,,a b c 共面,且均为单位向量,0a b ⋅= ,可设()1,0a =,()0,1b = ,(),c x y = ,如图,所以2a b += ,当c 与a b +同向时,此时a b c ++ 有最大值,为21+.故选:A .10.窗花是贴在窗户玻璃上的贴纸,它是中国古老的传统民间艺术之一在2022年虎年新春来临之际,人们设计了一种由外围四个大小相等的半圆和中间正方形所构成的剪纸窗花(如图1).已知正方形ABCD 的边长为2,中心为O ,四个半圆的圆心均为正方形ABCD 各边的中点(如图2),若P 为 BC 的中点,则()PO PA PB ⋅+=()A .4B.6C.8D.10【答案】C 【解析】【分析】根据平面向量的线性运算将()PO PA PB ⋅+ 化为OA 、OB 、OP表示,再根据平面向量数量积的运算律可求出结果.【详解】依题意得||||2OA OB ==,||2OP =,3π4AOP =Ð,π4BOP =Ð,所以3π2||||cos 22(242OA OP OA OP ⋅=⋅=⨯-=- ,π2||||cos 22242OB OP OB OP ⋅=⋅=⨯= ,所以()PO PA PB ⋅+= ()OP OA OP OB OP -⋅-+- 22||OA OP OB OP OP =-⋅-⋅+ 222228=-+⨯=.故选:C二、填空题(本大题共5小题,每小题4分,共20分,把答案填在题中横线上)11.写出一个与向量()3,4a =-共线的单位向量_____________.【答案】34,55⎛⎫- ⎪⎝⎭(答案不唯一)【解析】【分析】先求出a r ,则aa±即为所求.【详解】5a ==所以与向量()3,4a =- 共线的单位向量为34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭.故答案为:34,55⎛⎫- ⎪⎝⎭(答案不唯一)12.已知函数()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图,则π3f ⎛⎫= ⎪⎝⎭__________.【解析】【分析】根据图象可得函数()f x 的最大值,最小值,周期,由此可求,A ω,再由5π212f ⎛⎫=⎪⎝⎭求ϕ,由此求得的解析式,然后求得π3f ⎛⎫⎪⎝⎭.【详解】由图可知,函数()f x 的最大值为2,最小值为2-,35ππ3π41234T =+=,当5π12x =时,函数()f x 取最大值2,又()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭所以2A =,32π3π44ω⨯=,所以2ω=,所以()()2sin 2f x x ϕ=+,又5π212f ⎛⎫=⎪⎝⎭,所以5π5π2sin 2126f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,由于πππ5π4π,22363ϕϕ-<<<+<,所以5πππ,623ϕϕ+==-,所以()π2sin 23f x x ⎛⎫=- ⎪⎝⎭,ππ2sin 33f ⎛⎫== ⎪⎝⎭.13.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象过点10,2⎛⎫ ⎪⎝⎭,则ϕ=__________.,若将函数()f x 图象仅向左平移π4个单位长度和仅向右平移π2个单位长度都能得到同一个函数的图象,则ω的最小值为__________.【答案】①.π6##1π6②.83##223【解析】【分析】由条件列方程求ϕ,再利用平移变换分别得到变换后的函数解析式,并根据相位差为2π,Z k k ∈求解;【详解】因为函数()()sin f x x ωϕ=+的图象过点10,2⎛⎫ ⎪⎝⎭,所以1sin 2ϕ=,又π2ϕ<,所以π6ϕ=,函数()πsin 6f x x ω⎛⎫=+⎪⎝⎭(0ω>)的图象仅向左平移π4个单位长度得到函数ππππsin sin 4646y x x ωωω⎡⎛⎫⎤⎛⎫=++=++ ⎪ ⎢⎥⎝⎭⎦⎝⎭⎣的图象,函数()πsin 6f x x ω⎛⎫=+⎪⎝⎭(0ω>)的图象仅向右平移π2个单位长度得到ππππsin sin 2626y x x ωωω⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,则ππππ2π4626k ωω⎛⎫⎛⎫+--+=⎪ ⎪⎝⎭⎝⎭(Z k ∈),化简得3π2π4k ω=(Z k ∈),解得83k ω=(Z k ∈),由于0ω>,所以当1k =时,ω取得最小值83,故答案为:π8,63.14.已知边长为2的菱形ABCD 中,π3DAB ∠=,点E 满足3BE EC = ,点F 为线段BD 上一动点,则AF BE ⋅的最大值为______.【答案】3【解析】【分析】建立如图平面直角坐标系,设BF BD λ= ,利用平面向量线性运算与数量积的坐标表示可得AF BE⋅关于λ的表达式,从而得解.【详解】如图,以A为原点建立平面直角坐标系,则(0,0),(2,0),A B C D ,因为3BE EC =,所以(33333,4444BE BC ⎛⎫=== ⎪ ⎪⎝⎭,由题意,设()01BF BD λλ=≤≤,则(()BF λλ=-=- ,则()()()2,02,AF AB BF λλ=+=+-=-,所以()3333324422AF BE λλ⋅=-+=+,因为01λ≤≤,所以当1λ=时,AF BE ⋅的最大值为3.故答案为:3.15.声音是由物体振动产生的声波.我们听到的每个音都是由纯音合成的,纯音的数学模型是函数sin y A t ω=.音有四要素,音调、响度、音长和音色.它们都与函数sin y A t ω=及其参数有关,比如:响度与振幅有关,振幅越大响度越大,振幅越小响度越小;音调与频率有关,频率低的声音低沉,频率高的声音尖锐.我们平时听到的乐音不只是一个音在响,而是许多音的结合,称为复合音.我们听到的声音对应的函数是111sin sin 2sin 3sin 4234y x x x x =++++⋯..给出下列四个结论:①函数1111sin sin 2sin 3sin 4sin1023410y x x x x x =++++⋯+不具有奇偶性;②函数()111sin sin2sin3sin4234f x x x x x =+++在区间ππ,88⎡⎤-⎢⎥⎣⎦上单调递增;③若某声音甲对应的函数近似为()11sin sin 2sin 323g x x x x =++,则声音甲的响度一定比纯音()1sin22h x x =的响度小;④若某声音乙对应的函数近似为()1sin sin 22x x x ϕ=+,则声音乙一定比纯音()1sin22h x x =更低沉.其中所有正确结论的序号是__________.【答案】②④【解析】【分析】对①,结合奇偶性的定义判断即可;对②,利用正弦型函数的单调性作出判断;对③,分别判断()(),g x h x 的振幅大小可得;对④,求出周期,可得频率,即可得出结论.【详解】对于①,令()1111sin sin2sin3sin4sin1023410F x x x x x x =++++⋯+,所以()()()()()()1111sin sin 2sin 3sin 4sin 1023410F x x x x x x -=-+-+-+-+⋯+-,所以()1111sin sin2sin3sin4sin1023410F x x x x x x -=-----⋅⋅⋅-,所以()()F x F x -=-,所以()F x 是奇函数,①错误;对于②,由ππ88x -≤≤可得,ππ244x -≤≤,3π3π388x -≤≤,ππ422x -≤≤,所以111sin ,sin2,sin3,234x x x x 都在ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,所以()111sin sin2sin3sin4234f x x x x x =+++在ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,所以函数()f x 在区间ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,②正确;对于③.因为()11sin sin 2sin 323g x x x x =++,所以π223g ⎛⎫= ⎪⎝⎭,所以()max 23g x ≥,即()g x 的振幅比()1sin22h x x =的振幅大,所以声音甲的响度一定比纯音()1sin22h x x =的响度大,所以③错误;对于④,因为()()()()112πsin 2πsin 24πsin sin 222x x x x x x ϕϕ+=+++=+=,所以函数()x ϕ为周期函数,2π为其周期,若存在02πα<<,使()()x x ϕϕα=+恒成立,则必有()()0ϕϕα=,()()110sin 0sin 00sin sin 222ϕϕααα∴=+===+,()sin 1cos 0αα∴+=,因为02πα<<,πα∴=,又()()()11πsin πsin 2πsin sin 222x x x x x ϕ+=+++=-+与()1sin sin 22x x x ϕ=+不恒相等,所以函数()1sin sin22x x x ϕ=+的最小正周期是2π,所以频率1112πf T ==而()h x 的周期为π,频率21πf =,12f f <,所以声音乙一定比纯音()1sin22h x x =更低沉,所以④正确.故答案为:②④.三、解答题(本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤)16.如图,在ABC 中,2BD DC = ,E 是AD 的中点,设AB a = ,AC b = .(1)试用a ,b 表示AD ,BE ;(2)若1a b == ,a 与b 的夹角为60︒,求AD BE ⋅ .【答案】(1)1233AD a b =+ ,5163BE a b =-+ (2)518-【解析】【分析】(1)利用向量加法减法的三角形法则及数乘运算即可求解;(2)根据(1)的结论,利用向量的数量积运算法则即可求解.【小问1详解】因为2BD DC = ,所以23BD BC = ,所以221)212(333333AB AC AB AB AC a b AD AB BD AB BC +-=+=+=+=+= .因为E 是AD 的中点,所以()11211()22323BE BA BD AB BC AB AC AB ⎛⎫=+=-+=-+- ⎪⎝⎭ 51516363AB AC a b =-+=-+ .【小问2详解】因为1a b == ,a 与b 的夹角为60︒,所以11cos ,1122a b a b a b ⋅==⨯⨯= ,由(1)知,1233AD a b =+ ,5163BE a b =-+ ,所以22125154233631899AD BE a b a b a a b b ⎛⎫⎛⎫⋅=+⋅-+=--⋅+ ⎪ ⎪⎝⎭⎝⎭541251892918=--⨯+=-.17.已知函数()π3sin 24f x x ⎛⎫=+⎪⎝⎭(1)求()f x 的最小正周期;(2)求函数()f x 的单调递增区间;(3)若函数()f x 在区间[]0,a 内只有一个零点,直接写出实数a 的取值范围.【答案】(1)()f x 的最小正周期为π,(2)函数()f x 的单调递增区间是3πππ,π88k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z ;(3)a 的取值范围为3π7π,88⎡⎫⎪⎢⎣⎭.【解析】【分析】(1)根据正弦型函数的周期公式求解即可;(2)利用正弦函数的单调区间结论求解;(3)求出()0f x =的解后可得a 的范围.【小问1详解】因为()π3sin 24f x x ⎛⎫=+ ⎪⎝⎭,所以函数()f x 的最小正周期2ππ2T ==;【小问2详解】由πππ2π22π242k x k -≤+≤+,Z k ∈,可得3ππππ88k x k -≤≤+,Z k ∈,所以函数()f x 的单调递增区间是3πππ,π88k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z ;【小问3详解】由π()3sin(204f x x =+=可得,π2π4x k +=,Z k ∈所以ππ28k x =-,Z k ∈,因为函数()f x 在区间[]0,a 上有且只有一个零点,所以3π7π88a ≤<,所以实数a 的取值范围为3π7π,88⎡⎫⎪⎢⎣⎭.18.已知()()()4,0,0,4,cos ,sin ,(0π)A B C ααα<<.(1)若OA OC += (O 为坐标原点),求OB 与OC 的夹角;(2)若⊥ AC BC ,求sin cos αα-的值.【答案】(1)OB 与OC 的夹角为π6,(2)sin cos 4αα-=【解析】【分析】(1)根据向量模长以及夹角的坐标公式计算即可;(2)由向量垂直得到数量积为0,进而得到1sin cos 4αα+=,通过平方得到2sin cos αα,进而可得()2sin cos αα-,再根据α的范围确定正负,开方得解.【小问1详解】因为()()()4,0,0,4,cos ,sin A B C αα,所以()()()4,0,0,4,cos ,sin OA OB OC αα=== ,所以()4cos ,sin OA OC αα+=+ ,由OA OC += ()224+cos sin 21αα+=,所以1cos 2α=,又0πα<<,,所以π3α=,13,22C ⎛⎫ ⎪ ⎪⎝⎭,设OB 与OC 的夹角为β()0πβ≤≤,则cos OB OC OB OC β⋅= 23342==,又0πβ≤≤,故OB 与OC 的夹角为π6,【小问2详解】由⊥ AC BC 得0AC BC ⋅= ,又()cos 4,sin AC αα=- ,()cos ,sin 4BC αα=- ,所以()()cos 4cos sin sin 40αααα-+-=,所以1sin cos 4αα+=,所以152sin cos 016αα-=<,又0πα<<,所以ππ2α<<,所以()21531sin cos 11616αα--=-=,所以sin cos 4αα-=.19.已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭,且()f x 图像的相邻两条对称轴之间的距离为π2,再从条件①、条件②、条件③中选择两个作为一组已知条件.(1)确定()f x 的解析式;(2)设函数()π24g x x ⎛⎫=+ ⎪⎝⎭,则是否存在实数m ,使得对于任意1π0,2x ⎡⎤∈⎢⎥⎣⎦,存在2π0,2x ⎡⎤∈⎢⎥⎣⎦,()()12m g x f x =-成立?若存在,求实数m 的取值范围:若不存在,请说明理由.条件①:()f x 的最小值为2-;条件②:()f x 图像的一个对称中心为5π,012⎛⎫ ⎪⎝⎭;条件③:()f x 的图像经过点5π,16⎛⎫- ⎪⎝⎭.注:如果选择多组条件分别解答,按第一个解答计分.【答案】(1)选①②,②③,①③答案都为()2sin(2)6f x x π=+,(2)存在m 满足条件,m 的取值范围为2,0⎤⎦.【解析】【分析】(1)先根据已知求出()f x 的最小正周期,即可求解ω,选条件①②:可得()f x 的最小值为A -,可求A .根据对称中心可求ϕ,即可得解函数解析式;选条件①③:可得()f x 的最小值为A -,可求A .根据函数()f x 的图象过点5π,16⎛⎫⎪⎝⎭,可求ϕ,可得函数解析式;选条件②③:根据对称中心可求ϕ,再根据函数()f x 的图象过点5π,16⎛⎫⎪⎝⎭,可求A 的值,即可得解函数解析式.(2)求出函数()f x ,()g x 在π0,2⎡⎤⎢⎥⎣⎦上的值域,再结合恒成立、能成立列式求解作答.【小问1详解】由于函数()f x 图像上两相邻对称轴之间的距离为π2,所以()f x 的最小正周期π2π2T =⨯=,所以2π2T ω==,此时()()sin 2f x A x ϕ=+.选条件①②:因为()f x 的最小值为A -,所以2A =.因为()f x 图象的一个对称中心为5π,012⎛⎫⎪⎝⎭,所以5π2π(Z)12k k ϕ⨯+=∈,所以56k ϕπ=π-,()k ∈Z ,因为||2ϕπ<,所以π6ϕ=,此时1k =,所以()2sin(2)6f x x π=+.选条件①③:因为()f x 的最小值为A -,所以2A =.因为函数()f x 的图象过点5π,16⎛⎫-⎪⎝⎭,则5π()16f =-,所以5π2sin()13ϕ+=-,即5π1sin()32ϕ+=-.因为||2ϕπ<,所以7π5π13π636ϕ<+<,所以5π11π36ϕ+=,所以π6ϕ=,所以()2sin(2)6f x x π=+.选条件②③:因为函数()f x 的一个对称中心为5π,012⎛⎫⎪⎝⎭,所以5π2π(Z)12k k ϕ⨯+=∈,所以5ππ(Z)6k k ϕ=-∈.因为||2ϕπ<,所以π6ϕ=,此时1k =.所以π()sin(26f x A x =+.因为函数()f x 的图象过点5π,16⎛⎫-⎪⎝⎭,所以5π(16f =-,所以5ππsin 136A ⎛⎫+=-⎪⎝⎭,11πsin 16A =-,所以2A =,所以()2sin(2)6f x x π=+.综上,不论选哪两个条件,()2sin(2)6f x x π=+.【小问2详解】由(1)知,()2sin(2)6f x x π=+,由20,2x π⎡⎤∈⎢⎥⎣⎦得:2ππ7π2,666x ⎡⎤+∈⎢⎥⎣⎦,2π1sin 2,162x ⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,因此[]2()1,2f x ∈-,由10,2x π⎡⎤∈⎢⎥⎣⎦得:1ππ5π2,444x ⎡⎤+∈⎢⎥⎣⎦,1πsin 2,142x ⎡⎤⎛⎫+∈-⎢⎥ ⎪⎝⎭⎣⎦,因此1()g x ⎡∈-⎣,从而1()1,g x m m m ⎡-∈---+⎣,由()()12m g x f x =-得:()()21f x g x m =-,假定存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()12m g x f x =-成立,即存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()21f x g x m =-成立,则[]1,1,2m m ⎡---+⊆-⎣,于是得112m m --≥-⎧⎪⎨-+≤⎪⎩,解得20m -≤≤,因此存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()12m g x f x =-成立,所以实数m的取值范围是2,0⎤⎦.20.对于定义在R 上的函数()f x 和正实数T 若对任意x ∈R ,有()()f x T f x T +-=,则()f x 为T -阶梯函数.(1)分别判断下列函数是否为1-阶梯函数(直接写出结论):①()2f x x =;②()1f x x =+.(2)若()sin f x x x =+为T -阶梯函数,求T 的所有可能取值;(3)已知()f x 为T -阶梯函数,满足:()f x 在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,且对任意x ∈R ,有()()2f T x f x T x --=-.若函数()()F x f x ax b =--有无穷多个零点,记其中正的零点从小到大依次为123,,,x x x ⋅⋅⋅;若1a =时,证明:存在b ∈R ,使得()F x 在[]0,2023T 上有4046个零点,且213240464045x x x x x x -=-=⋅⋅⋅=-.【答案】(1)①否;②是(2)2πT k =,*k ∈N (3)证明见解析【解析】【分析】(1)利用T -阶梯函数的定义进行检验即可判断;(2)利用T -阶梯函数的定义,结合正弦函数的性质即可得解;(3)根据题意得到()()F x T F x +=,()()F T x F x -=,从而取3344TT b f ⎛⎫=- ⎪⎝⎭,结合零点存在定理可知()F x 在(),1mT m T +⎡⎤⎣⎦上有且仅有两个零点:4T mT +,34T mT +,从而得解.【小问1详解】()2f x x =,则22(1)()(1)211f x f x x x x +-=+-=+≠;()1f x x =+,则(1)()11f x f x x x +-=+-=,故①否;②是.【小问2详解】因为()f x 为T -阶梯函数,所以对任意x ∈R 有:()()()()()sin sin sin sin f x T f x x T x T x x x T x T T +-=+++-+=+-+=⎡⎤⎣⎦.所以对任意x ∈R ,()sin sin x T x +=,因为sin y x =是最小正周期为2π的周期函数,又因为0T >,所以2πT k =,*k ∈N .【小问3详解】因为1a =,所以函数()()F x f x x b =--,则()()()()()()()F x T f x T x T b f x T x T b f x x b F x +=+-+-=+-+-=--=,()()()()()()()2F T x f T x T x b f x T x T x b f x x b F x -=----=+----=--=.取3344TT b f ⎛⎫=- ⎪⎝⎭,则有3330444TT T F f b ⎛⎫⎛⎫=--= ⎪ ⎪⎝⎭⎝⎭,30444T T T F F T F ⎛⎫⎛⎫⎛⎫=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由于()f x 在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,因此()()F x f x x b =--在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,结合()()F T x F x -=,则有()F x 在0,2T ⎡⎤⎢⎥⎣⎦上有唯一零点4T ,在,2T T ⎡⎤⎢⎥⎣⎦上有唯一零点34T .又由于()()F x T F x +=,则对任意k ∈Ζ,有044T T F kT F ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭,33044T T F kT F ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭,因此,对任意m ∈Z ,()F x 在(),1mT m T +⎡⎤⎣⎦上有且仅有两个零点:4T mT +,34T mT +.综上所述,存在3344TT b f ⎛⎫=- ⎪⎝⎭,使得()F x 在[]0,2023T 上有4046个零点,且14T x =,234T x =,354T x =,474T x =,L ,404580894T x =,404680914T x =,其中,2132404640452T x x x x x x -=-=⋅⋅⋅=-=.【点睛】关键点睛:本题解决的关键是充分理解新定义T -阶梯函数,从而在第3小问推得()()F x T F x +=,()()F T x F x -=,由此得解.。
北京市中国人民大学附属中学2023-2024学年高一下学期期中练习数学试题
人大附中2023~2024学年度第二学期高一年级数学期中练习2024年4月23日制卷人:宁少华王鼎审卷人:吴中才说明:本试卷共六道大题,共7页,满分150分,考试时间120分钟第Ⅰ卷(共18题,满分100分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)1.在平行四边形ABCD 中,BA DA += ()A.CAB.ACC.BDD.DB【答案】A 【解析】【分析】利用向量加法的平行四边形法则求解即得.【详解】在ABCD Y 中,,BA CD DA CB ==,所以BA DA CD CB CA +=+=.故选:A2.已知角α终边上一点(1,)P y ,若cos 5α=,则y 的值为()A.B.2C.D.2±【答案】D 【解析】【分析】利用余弦函数的定义列式计算即得.【详解】由角α终边上一点(1,)P y ,得r =,因此5cos 5α==,解得2y =±,所以y 的值为2±.故选:D3.下列函数中,既是偶函数又在区间π0,2⎛⎫⎪⎝⎭单调递增的是()A.tan y x= B.sin y x= C.cos y x= D.sin y x x=【答案】D 【解析】【分析】根据奇偶性的定义判断排除AB ,再由单调性排除C 的可得.【详解】由三角函数性质知选项AB 中函数都是奇函数,C 中函数是偶函数,但它在π(0,)2上是减函数,也排除,只有D 可选,实际上,记()sin f x x x =,则()sin()sin ()f x x x x x f x -=--==,它是偶函数,又设12π02x x <<<,则120sin sin x x <<,因此1122sin sin x x x x <,即12()()f x f x <,()f x 在π(0,)2上是增函数,满足题意.故选:D .4.已知P 为ABC 所在平面内一点,2BC CP =uuu r uur,则()A .1322AP AB AC =-+uuu r uuur uuu r B.1233AP AB AC=+C.3122AP AB AC =-uuu r uuu r uuu r D.2133AP AB AC =+uuu r uuu r uuu r 【答案】A 【解析】【分析】根据题意作出图形,利用向量线性运算即可得到答案.【详解】由题意作出图形,如图,则11()22AP AC CP AC BC AC AC AB =+=+=+-1322AB AC =-+,故选:A.5.把函数()sin 2f x x =的图象按向量π(,1)6m =- 平移后,得到新函数的解析式为()A.πsin(2)16y x =++B.πsin(2)16y x =-+C.πsin(2)13y x =++ D.πsin(213y x =-+【答案】C 【解析】【分析】把函数()f x 的图象向左平移π6个单位长度,再向上平移1个单位长度,写出解析式即可.【详解】把函数()sin 2f x x =的图象按向量π(,1)6m =- 平移,即把函数()f x 的图象向左平移π6个单位长度,再向上平移1个单位长度,所以得到新函数的解析式为ππsin 2()1sin(2)163y x x =++=++.故选:C6.在人大附中π节活动的入场券中有如下图形,单位圆M 与x 轴相切于原点O ,该圆沿x 轴向右滚动,当小猫头鹰位于最上方时,其对应x 轴的位置正好是π,若在整个运动过程中当圆M 滚动到与出发位置时的圆相外切时(此时记圆心为N ),此时小猫头鹰位于A 处,圆N 与x 轴相切于B ,则劣弧AB 所对应的扇形面积是()A.1B.2C.π3D.π4【答案】A 【解析】【分析】根据给定条件,求出劣弧AB 的长,再利用扇形面积公式计算即得.【详解】由圆M 与圆N 外切,得2MN =,又圆M 、圆N 与x 轴分别相切于原点O 和B ,则2OB MN ==,依题意,圆M 沿x 轴向右无滑动地滚动,因此劣弧AB 长等于OB 长2,所以劣弧AB 所对应的扇形面积是11212⨯⨯=.故选:A7.已知函数()sin()(0,0)f x A x A ωϕω=+>≠,则“π2π,Z 2k k ϕ=+∈”是“()f x 为偶函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】利用正余弦函数性质,充分条件、必要条件的定义判断即得.【详解】当π2π,Z 2k k ϕ=+∈时,π()si 2n()os π2c f x A x A x k ωω=+=+,()f x 为偶函数;反之,()f x 为偶函数,则π2π,Z 2k k ϕ=+∈或π2π,Z 2k k ϕ=-∈,所以“π2π,Z 2k k ϕ=+∈”是“()f x 为偶函数”的充分不必要条件.故选:A8.已知O 为坐标原点,P 是α终边上一点,其中4cos ,||45OP α==,非零向量a的方向与x 轴正方向相同,若,[0,5]||OQ a a λλ=∈ ,则OP OQ -取值范围是()A.16,35⎡⎤⎢⎥⎣⎦B.12,35⎡⎤⎢⎥⎣⎦C.16,45⎡⎤⎢⎥⎣⎦D.12,45⎡⎤⎢⎥⎣⎦【答案】D 【解析】【分析】根据向量模的坐标表示写出模的表达式,然后由函数性质得结论.【详解】由已知1612(,55P 或1612(,)55-,1612(,)55OP = 或1612(,)55-,(1,0)(,0)OQ a a λλλ=== ,1612(,55OP OQ λ-=-±,OP OQ -= ,又05λ≤≤,所以165λ=时,OP OQ - 取最小值125,0λ=时,OP OQ - 取最大值4,故选:D .9.函数sin 3sin 5()sin 35x xf x x =++图像可能是()A.B.C. D.【答案】D 【解析】【分析】根据函数图象的对称性排除AC ,再结合函数值π()2f 大小排除B ,从而得正确结论.【详解】从四个选项中可以看出,函数的周期性、奇偶性、函数值的正负无法排除任一个选项,但是sin(3π3)sin()sin 3sin 5sin (35π5)(π)sin(π)355x x f x x xx x x f ---=-++=+=+,因此()f x 的图象关于直线π2x =对称,可排除AC ,又3π5πsinsin ππ111322()sin 1122353515f =++=-+=<,排除B ,故选:D .10.已知函数sin ()xf x x=,下列结论错误的是()A.()f x 的图像有对称轴B.当(π,0)(0,π)x ∈-⋃时,cos ()1x f x <<C.sin ()xf x x=有最小值 D.方程()cos ln f x x x =-在(1,)π上无解【答案】D 【解析】【分析】选项A ,根据条件可得sin ()xf x x=为偶函数,即可判断选项A 的正误,选项B ,利用偶函数的性质,先判断π()0,x ∈时,cos ()1x f x <<成立,分π,π2x ⎡⎫∈⎪⎢⎣⎭和π0,2x ⎛⎫∈ ⎪⎝⎭两种情况,当π,π2x ⎡⎫∈⎪⎢⎣⎭时,利用三角函数的符号即可判断成立,当π0,2x ⎛⎫∈ ⎪⎝⎭时,利用三角函数的定义及弧长公式,即可判断成立;选项C ,利用sin y x =的周期性及sin ()x f x x=的奇偶性,当0x >,得到sin ()xf x x=存在最小值,则最小值只会在区间()π,2π内取到,再利用导数与函数单调性间的关系,即可判断出选项C 的正误;选项D ,利用零点存在性原理,即可判断出选项D 的正误,从而得出结果.【详解】对于选项A ,易知sin ()xf x x=的定义域为{}|0x x ≠,关于原点对称,又sin()sin ()()x x f x f x x x--===-,所以sin ()xf x x =为偶函数,关于y 轴对称,所以选项A 结论正确,对于选项B ,当π,π2x ⎡⎫∈⎪⎢⎣⎭时,cos 0x ≤,又0sin 1x <≤,π12x ≥>,所以sin 0()1x f x x <=<,即当π,π2x ⎡⎫∈⎪⎢⎣⎭时,cos ()1x f x <<成立,当π0,2x ⎛⎫∈ ⎪⎝⎭时,如图,在单位圆中,设OP 是角x 的终边,过A 作x 轴的垂线交OP 于T ,过P 作x 轴的垂线交x 轴于H ,易知 AP x =,由三角函数的定义知,sin ,tan PH x AT x ==,由图易知OPA OAT POA S S S << 扇形,即111222PH x AT <<,得到 PH APAT <<,所以sin tan <<x x x ,即有sin cos 1xx x<<,。
湖北省襄阳市鄂北六校联考2023-2024学年高一下学期4月期中考试 数学含答案
2023—2024学年下学期高一期中考试数学试题(答案在最后)试卷满分:150分考试用时:120分钟注意事项:1.答题前,先将自己的姓名、准考证号、考场号﹑座位号填写在试卷和答题卡上,并认真核准准考证号条形码上的信息,将条形码粘贴在答题卡上的指定位置。
2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量()1,2a = ,(),4b x = ,若2b a =,则x =()A .5B .2C .3D .42.已知点()1,2落在角α的终边上,则cos 2α=()A .1B .1-C .35-D .353.函数()()sin f x A x ωϕ=+(0A >,0ω>,2πϕ<)的部分图象如图示,则图象解析式为()A .sin 26y x π⎛⎫=-⎪⎝⎭B .cos 2y x =C .sin 2y x=D .sin 26y x π⎛⎫=+⎪⎝⎭4.若两个单位向量a,b的夹角为3π,则2a b += ()A .2B .C .1D5.化简(sin 40tan10︒︒-得()A .B .2-C .1-D .12-6.我国古代的数学著作《九章算术》中的一个问题,现有一个“圆材埋壁”模型,其截面如图所示.若圆柱材料的截面圆的半径长为3,圆心为O ,墙壁截面ABCD 为矩形,且劣弧 AB 的长等于半径OA 长的2倍,则圆材埋在墙壁内部的阴影部分截面面积是()A .99sin 22-B .9sin 22C .12sin 22-D .97.已知O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,且()()20OB OC OB OC OA -⋅+-=,当8BC =时,则BA BC ⋅=()A .64B .32C .24D .88.如图,在钝角△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,2A π>,过点A 作与AC 垂直的单位向量j ,将j 与向量表达式AC CB AB +=两边进行数量积的运算,即()j AC CB j AB ⋅+=⋅ ,化简后得到的结论是()A .sin sin a c A C =B .sin sin b c B C =C .sin sin a b A B =D .cos cos a cA C=二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分.部分选对的得部分分,有选错的得0分.9.下列说法正确的是()A .已知a ,b为平面内两个不共线的向量,则{},3a b a b +-+ 可作为平面的一组基底B .已知两个非零向量a ,b ,若a b a b +=+ ,则a 与b同向C .在△ABC 中,若12AB AC AB AC ⋅= ,()()0AB AC AB AC -⋅+=,则△ABC 为等边三角形D .若向量a ,b 满足a b ∥ ,则存在唯一实数λ,使得a bλ=10.把函数()4sincos 226x x f x ωωπ⎛⎫=+ ⎪⎝⎭(0ωπ<<)的图象向左平移6π个单位长度,得到的函数图象恰好关于y 轴对称,则下列说法正确的是()A .()f x 的最小正周期为2πB .()f x 在区间,126ππ⎛⎫-⎪⎝⎭上单调递增C .当0,3x π⎡⎤∈⎢⎣⎦时,()f x 的值域为[]0,1D .若()f x 在区间[],a π-上至少存在六个零点,则实数a 的取值范围为4,3π⎡⎫+∞⎪⎢⎣⎭11.在△ABC 中,7AB =,5AC =,3BC =,点D 在线段AB 上,下列结论正确的是()A .若CD 是中线,则192CD =B .若CD 是高,则1514CD =C .若CD 是角平分线,则158CD =D .若4CD =,则D 是线段AB 的三等分点三、填空题:本题共3小题,每小题5分,共15分.12.已知向量()1,1a = ,()1,2b =- ,则向量a b - 在向量a上的投影向量为(用坐标表示).13.已知1tan 3tan θθ+=,则44sin cos θθ+=.14.定义:a b ad bc cd =-.已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 所对的边,若2cos 12cos 1cos C C C-+0=,且5a b +=,则边c 的最小值为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知()1,3a = ,()2,4b =-.(1)求a b + 与a b -的夹角的余弦值;(2)若()a ab λ⊥-,求λ值.16.(本小题满分15分)已知cos 5α=,()sin 10αβ-=,且α,0,2πβ⎛⎫∈ ⎪⎝⎭,()sin ,cos a αα= ,()()()cos ,sin b αβαβ=--,求:(1)a b ⋅的值;(2)β的值.17.(本小题满分15分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且()()()sin sin sin A B a b c C B +-=-.(1)求角A 的大小;(2)若1cos 3ABC ∠=-,D 是线段AC 上的一点,ABD CBD ∠=∠,BD =c .18.(本小题满分17分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且BC ,AC 边上的两条中线AM ,BN 相交于点P .(1)令AB a = ,AC b = ,用a ,b表示AP ;(2)证明:AM = (3)若4AB =,10AC =,60BAC ∠=︒,求MPN 的余弦值.19.(本小题满分17分)已知O 为坐标原点,对于函数()sin cos f x a x b x =+,称向量(),OM a b = 为函数()f x 的相伴特征向量,同时称函数()f x 为向量OM的相伴函数.(1)记向量(ON = 的相伴函数为()f x ,若()45f x =且,36x ππ⎛⎫∈- ⎪⎝⎭,求sin x 的值;(2)设()cos 3cos 44g x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭(x R ∈),试求函数()g x 的相伴特征向量OM ,并求出与OM方向相反的单位向量﹔(3)已知()2,3A -,()2,6B ,()OT = ,为函数()sin 6h x m x π⎛⎫=- ⎪⎝⎭(m R ∈)的相伴特征向量,()23x x h πϕ⎛⎫=- ⎪⎝⎭,请问在()y x ϕ=的图象上是否存在一点P ,使得AP BP ⊥ ?若存在,求出点P的坐标;若不存在,说明理由.2023—2024学年下学期高一期中考试数学试题参考答案及评分标准题号1234567891011答案BCDBCABAABCBCDAC12.11,22⎛⎫ ⎪⎝⎭13.7914.215.解:(1)()1,7a b+=- ,()3,1a b -=-∴ab +=a b -=22cos ,5a b a b <+->=-(2)()12,34a b λλλ-=+-∴()a ab λ-= ∴1λ=16.解:(1)∵α,0,2πβ⎛⎫∈ ⎪⎝⎭,∴,22ππαβ⎛⎫-∈-⎪⎝⎭sin 5α==,()cos 10αβ-==∴()()()()sin 2sin sin coscos sin a b αβααβααβααβ⋅=-=+-=⋅-+⋅-51051010=⋅+⋅=(2)由(1)可得∴()()()cos cos cos cos sin sin 2βααβααβααβ=--=-+-=⎡⎤⎣⎦又∵0,2πβ⎛⎫∈ ⎪⎝⎭∴4πβ=17.解:(1)因为()()()sin sin sin A B a b c C B +-=-,所以由正弦定理可得()()()a b a b c c +-=-,即222b c a +-=,所以222cos 22b c a A bc +-==,因为0A π<<,所以6A π=(2)设ABD θ∠=(02πθ<<),则2ABC θ∠=,所以21cos 22cos 13θθ=-=-,解得cos 3θ=,sin 3θ=所以sin sin 66BDA πθ+⎛⎫∠=+= ⎪⎝⎭,由正弦定理,sin sin c BDBDA A=∠,所以c =18.解:(1)连接MN ,则MN 平行于AB 且MN 为中位线,12MP PA =所以()21113333AP AM AB AC a b==+=+ (2)△ABC 中,由余弦定理得222cos 2a c b ABC ac+-∠=△ABM 中,由余弦定理得AM ===(3)∵,AM BN MPN<>=∠1122AM a b =+ ,12BN a b=-+ 22111852512244AM BN a ab b ⋅=--+=--+=AM ====cos ,91AM BN AM BN AM BN ⋅<>==⋅19.解:(1)由题意知,向量(ON =的相伴函数为()sin 2sin 3f x x x x π⎛⎫=+=+ ⎪⎝⎭由题意()42sin 35f x x π⎛⎫=+= ⎪⎝⎭,且0,32x ππ⎛⎫+∈ ⎪⎝⎭,2sin 35x π⎛⎫+= ⎪⎝⎭,21cos 35x π⎛⎫+= ⎪⎝⎭,故212sin sin sin cos cos sin 333333525210x x x x ππππππ⎡⎤-⎛⎫⎛⎫⎛⎫=+-=+-+=⨯-⨯= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦(2)因为()cos 3cos 44g x x x x x ππ⎛⎫⎛⎫=++-= ⎪ ⎪⎝⎭⎝⎭故函数()g x的相伴特征向量OM =,则与OM反向的单位向量为,55⎛⎫-- ⎪ ⎪⎝⎭(3)因为()1sin sin cos 622h x m x x x π⎛⎫=-=- ⎪⎝⎭,其相伴特征向量()OT =,故2112m m =⎪⎪⎨⎪-=⎪⎩,所以2m =-,则()2sin 6h x x π⎛⎫=--⎪⎝⎭,()2sin 2sin 2cos23236222x x x x x h ππππϕ⎡⎤⎛⎫⎛⎫⎛⎫=-=---=-= ⎪ ⎪ ⎪⎢⎝⎭⎝⎭⎝⎭⎣⎦设点,2cos2x P x ⎛⎫ ⎪⎝⎭,又()2,3A -,()2,6B ,所以2,2cos 32x AP x ⎛⎫=+- ⎪⎝⎭ ,2,2cos 62x BP x ⎛⎫=-- ⎪⎝⎭,若AP BP ⊥,则()()222cos 32cos 6022x x AP BP x x ⎛⎫⎛⎫⋅=+-+--= ⎪⎪⎝⎭⎝⎭ ,即2244cos18cos 18022x x x -+-+=,229252cos 224x x ⎛⎫-=- ⎪⎝⎭,因为22cos22x -≤≤,13952cos 2222x ---≤≤,故22591692cos 4224x ⎛⎫- ⎪⎝⎭≤≤,又2252544x -≤,故当且仅当0x =时,22925252cos 2244x x ⎛⎫-=-= ⎪⎝⎭成立故在()y x ϕ=的图象上存在一点()0,2P ,使得AP BP⊥。
山东省德州市2023-2024学年高一下学期期中考试 数学含答案
高一数学试题(答案在最后)2024.4本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1-2页,第Ⅱ卷3-4页,共150分,测试时间120分钟.注意事项:选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,不能答在测试卷上.第Ⅰ卷选择题(共58分)一、选择题(本题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.)1.设x ∈R ,向量(1,)a x =r ,(2,1)b =r,若a b ⊥r r ,则x =()A .2B .12C .12-D .2-2.已知复数z 满足(14z +=(i 是虚数单位),则||z =()A .2B .4C .8D .163.已知02παβ<<<,且5cos()13αβ-=,4cos 25β=,则cos()αβ+=()A .3365-B .1665-C .5665D .63654.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若3a =,3A π=,sin 2sin C B =,则ABC △的面积是()A .32B .2C .94D .45.若23||||||3a b a b b +=-=r r r r r ,则a b -r r 与b r 的夹角是()A .6πB .3πC .23πD .56π6.在Rt ABC △中,2AB AC ==,,BC AC 边上的两条中线AM ,BN 相交于点P ,则MPN ∠的余弦值是()A .105-B .1010-C .1010D .1057,数学家欧拉在1765年提出定理:三角形的外心,重心,垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称为三角形的欧拉线,该定理被称为欧拉线定理,设点O ,G ,H 分别为三角形ABC 的外心,重心,垂心,则()A .1233AG AO AH=-uuu r uuu r uuu r B .1233AG AO AH=+uuu r uuu r uuu rC .2133AG AO AH=-uuu r uuu r uuu r D .2133AG AO AH=+uuu r uuu r uuu r 8.在锐角ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若3B π=,sin sin sin B C b A ac =2取值范围是()A .21,52⎛⎫⎪⎝⎭B .21,52⎡⎫⎪⎢⎣⎭C .22,53⎡⎫⎪⎢⎣⎭D .22,53⎛⎫⎪⎝⎭二、选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.设z 为非零复数(i 是虚数单位),下列命题正确的是()A .若||z z =,则z 为正实数B .若2z ∈R ,则z ∈R C .若210z +=,则iz =±D .若0z z +=,则z 为纯虚数10.下列命题中正确的是()A .若,a b r r是单位向量,则a b=r r B .若(0)a b b ≠∥r r r,则存在唯一的实数λ,使得a b λ=r rC .若向量a r 和b r ,满足||1a =r ,||||2b a b =+=r r r ,则||a b -=r rD .若向量(1,3)a =-r ,(3,0)b =r ,则a r 在b r 方向上投影的数量是10-11.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,以下命题中正确的是()A .若9a =,10b =,3A π=,则符合条件的三角形有两个B .若22tan tan a b A B=,则ABC △为等腰或直角三角形C .若2sin ABC S b B =△,则cos B 的最小值为54D .若3A π=,BC =BC 边上的高为1,则符合条件的三角形有两个第Ⅱ卷非选择题(共92分)三、填空题(本题共3小题,每小题5分,共15分)12.已知,2παπ⎛⎫∈⎪⎝⎭,2sin 2cos 21αα=-,则tan 2α=___________.13.若O 为ABC △的外心,且2BO BA BC =+uu u r uu r uu u r ,则AB BC ⋅=uu u r uu u r___________.14.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,满足(1cos )(2cos )a B b A +=-,sin cos sin B A C =,且16AB AC ⋅=uu u r uuu r ,则b =___________;若在线段AB 上存在动点P 使得2||||CA CBCP x y CA CB =+uu r uu ruu r uu r uu r ,则xy 的最大值为___________.(第一空2分,第二空3分)四、解答题(本题共5小题,共77分,解答应写出必要的文字说明、证明过程或演算步骤.)15.(本小题满分13分)已知θ为三角形的一个内角,i 为虚数单位,复数cos isin z θθ=+,且2z z +在复平面上对应的点在实轴上.(1)求θ;(2)设2,i z z ,21z z ++在复平面上对应的点分别为A ,B ,C ,求ABC △的面积.16.(本小题满分15分)已知平面上三点A ,B ,C ,且(0,4)A ,(,3)B k -,(2,0)C .(1)若A ,B ,C 不构成三角形,求实数k 应满足的条件;(2)若ABC △为针角三角形,求k 的取值范围.17.(本小题满分15分)已知函数()sin (sin )1f x x x x =+-,x ∈R .(1)若31(),0,222f πθθ⎛⎫=-∈ ⎪⎝⎭,求tan θ的值;(2)若存在0,2x π⎡⎤∈⎢⎥⎣⎦,使等式2[()]()0f x f x m ++=成立,求实数m 的取值范围.18.(本小题满分17分)如图所示,在扇形AOB 中,AOB ∠为锐角,四边形OMPN 是平行四边形,点P 在弧»AB 上,点M ,N分别在线段OA ,OB 上,OP =,6OA OB ⋅=uu r uu u r,记POB θ∠=.(1)当6πθ=时,求OP NB ⋅uu u r uu u r ;(2)请写出阴影部分的面积S 关于θ的函数关系式,并求当θ为何值时,S 取得最小值.19.(本小题满分17分)在ABC △中,角A ,B ,C 的对边分别为,,a b c ,sin sin cos cos cos cos sin C B B AB A C--=+.(1)若236ABC S c =△,求证:23c b =;(2)若2DC BD =uuu r uu u r ,求||||AD BD uuu ruu u r 的最大值.高一数学试题参考答案一、选择题(本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.)1.D2.A3.C4.B5.D6.B7.D8.A二、选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.ACD10.BC11.ABD三、填空题(本题共3小题,每小题5分,共15分)12.4313.014.4,32四、解答题(本题共5小题,共77分,解答应写出必要的文字说明、证明过程或演算步骤.)15.解:(1)22(cos sin )cos 2sin 2z i i θθθθ=+=+Q ,2(cos 2cos )(sin 2sin )z z i θθθθ+=+++,因为2z z +在复平面上对应的点在实轴上,所以sin 2sin 2sin cos sin 0,(0,)θθθθθθπ+=+=∈,所以1cos 2θ=-,2;3πθ=(2)由(1)知:sin 2θ=,21z =-+,所以11i i i 2222z ⎛⎫=-+=-- ⎪⎝⎭,213313i i 44222z =--=--所以2131311i i 02222z z ++=-+--=.在复平面上对应的点分别为(A -,31,22B ⎛⎫-- ⎪⎝⎭,(0,0)C ,所以2AC =,1BC =,1(022CA CB ⎛⎫⋅=-⋅-= ⎪⎝⎭uu r uu r 所以,CA CB ⊥uu r uu r ,所以,12112ABC S =⨯⨯=△.16.解:(1)由题可知,(2,3)BC k =-uu u r ,(2,4)AC =-uuu r,三点A ,B ,C 不构成三角形,得A ,B ,C 三点共线,所以4(2)230k ---⨯=,解得72k =.(注:利用AB uu u r求解,同样得分)(2)当C 为钝角时,0AC BC ⋅<uuu r uu u r,所以2(2)3(4)0k ⨯-+⨯-<,解得4k >-且72k ≠,当A 为钝角时,(,7)AB k =-uu u r ,(2,4)AC =-uuu r,0AB AC ⋅<uu u r uuu r,即(,7)(2,4)0k -⋅-<,2280k +<,所以14k <-.当B 为钝角时,(,7)BA k =-uu r ,(2,3)BC k =-uu u r,(,7)(2,3)0BA BC k k ⋅=-⋅-<uu r uu u r,22210k k -+<,无解.所以14k <-或4k >-且72k ≠.17.解:(1)()sin (sin )1f x x x x =+-2sin cos 1x x x =+-1cos 2212xx -=+-1sin 262x π⎛⎫=--⎪⎝⎭131()sin 26222f πθθ⎛⎫=--=- ⎪⎝⎭,sin 262πθ⎛⎫-= ⎪⎝⎭,02πθ<<,52666πππθ-<-<,所以263ππθ-=或23π,即4πθ=或512π,当4πθ=时,tan tan 14πθ==,当512πθ=时,tan tan46tan tan 2461tan tan 46ππππθππ+⎛⎫=+==+ ⎪⎝⎭-(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,52666x πππ-≤-≤,则111sin 2622x π⎛⎫-≤--≤ ⎪⎝⎭,即11()2f x -≤≤,令()t f x =,112t -≤≤,关于t 的方程20t t m ++=在11,2⎡⎤-⎢⎥⎣⎦上有解,即2m t t -=+在11,2⎡⎤-⎢⎥⎣⎦上有解,当112t -≤≤时,21344t t -≤+≤,由1344m -≤-≤,得3144m -≤≤,即实数m 的取值范围是31,44⎡⎤-⎢⎥⎣⎦.18.解:(1)根据题意,||||cos cos 6OA OB OA OB AOB AOB ⋅=∠=∠=uur uu u r uur uu u r,1cos 2AOB ∠=因为AOB ∠为锐角,所以,3AOB π∠=,6πθ=,四边形OMPN 是平行四边形,所以,OPM △为等腰三角形,OP =2OM ON ==,||||cos 2)662OP NB OP NB π⋅=⋅=-⨯=uu u r uu u r uu u r uu u r .(2)由题可知,在PMO △中,OP =23PMO π∠=,MPO θ∠=,3MOP πθ∠=-,则由正弦定理sin sin sin OP OM PMPMO MPO MOP==∠∠∠,sin sin 3OM PMπθθ==⎛⎫- ⎪⎝⎭,故可得4sin OM θ=,4sin 3PM πθ⎛⎫=-⎪⎝⎭,1sin 2PMO S OM MP PMO =⨯⨯⨯∠△14sin 4sin 232πθθ⎛⎫=⨯⨯-⨯ ⎪⎝⎭sin 3πθθ⎛⎫=- ⎪⎝⎭sin cos cos sin 33ππθθθ⎛⎫=- ⎪⎝⎭26πθ⎛⎫=+- ⎪⎝⎭,03πθ⎛⎫<< ⎪⎝⎭,所以,AOB OMPNS S S =-扇形平行四边形226ππθ⎛⎫=-++ ⎪⎝⎭,03πθ⎛⎫<< ⎪⎝⎭,当6πθ=时,sin 216πθ⎛⎫+= ⎪⎝⎭,此时S取得最小值2π-.19.解:(1)sin sin cos cos cos cos sin C B B AB A C--=+(sin sin )sin (cos cos )(cos cos )C B C B A B A -=+-222sin sin sin cos cos C B C B A-=-()222sin sin sin 1sin 1sin C B C B A-=---由正弦定理得222c b a bc +-=,2221cos 22c b a A bc +-==,0A π<<,所以3A π=,21sin 26ABC S bc A c ==△,所以23c b =.(2)2DC BD =uuu r uuu r ,11()33BD BC AC AB ==-uu ur uu u r uuu r uu u r ,又2133AD AB BD AB AC =+=+uuu r uu u r uu u r uu u r uuu r ,所以1|2|||31||||3AB AC AD BD AC AB +==-uu u r uuu ruuu r uu u r uuu r uu u r ,令0bt c=>,所以||||AD BD ===uuu r uu u r ,1=≤==+.当且仅当1t =取等号,所以||||AD BD uuu r uu u r1+.。
湖北武汉华中师第一附中2024年高一下学期4月期中检测数学试卷
华中师大一附中2023-2024学年度下学期期中检测高一数学试题考试时间:120分钟试卷 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足2(1i)|1i |z −=+,则z =( )A .1i −B .1i +C .1i −−D .1i −+ 2.下列说法正确的是( )A .空间中两直线的位置关系有三种:平行、垂直和异面B .若空间中两直线没有公共点,则这两直线异面C .和两条异面直线都相交的两直线是异面直线D .若两直线分别是正方体的相邻两个面的对角线所在的直线,则这两直线可能相交,也可能异面3.已知,,a b c 均为单位向量,且234a b c =+ ,则a 与b 的夹角的余弦值为( ) A .13 B .13− C .14 D .14− 4.毡帐是蒙古族牧民居住的一种房子,内部木架结构,外部毛毡围拢,建造和搬迁都很方便,适合牧业和游牧生活.如图所示,某毡帐可视作一个圆锥与一个圆柱的组合体,下半部分圆柱的高为2.5米;上半部分圆锥的母线长为米,轴截面(过圆锥轴的截面)是面积为平方米的等腰钝角三角形,则建造该毡帐(不含底面)需要毛毡(A .15)π+B .6)π+C .15)πD .6)π+5.设复数12,z z 对应的向量分别为12,,OZ OZ O 为坐标原点,且1z ,若把1OZ 绕原点顺时针旋转34π,把2OZ 绕原点逆时针旋转43π,所得两向量的终点重合,则2z =( )A .1B .1−C i −D .i +6.已知ABC △的内角,,A B C 的对边分别为,,,,66a b cB c π==,若ABC △有两解,则b 的取值范围是( )A .(3,6)B .C .D .7.如图,在四边形ABCD 中,,,8,163AD CD BAD BCD AB AD π⊥∠=∠===,点E 在边AD 上,且BE AD ⊥,点F 为边BC (含端点)上一动点,则DF EF ⋅ 的最小值为( )A .36B .39C .45D .488.已知ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,且23cos c b A b c +=,112tan tan tan A C B +=,则sin B =( )ABCD二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.设12,,z z z 是复数,则( )A .若||2z =,则24z =B .若12z z =,则21z z =C .若20z ≠,则1122z z z z = D .若0z z +=,则z 为纯虚数 10.对非零向量,a b ,定义运算“(*)”:(*)||cos ||sin a b a b θθ=+ ,其中θ为a 与b 的夹角,则( )A .若a b ∥ ,则|(*)|||a b a =B .若(1,2),(3,1)a b =−=−,则()(*)a b a −C .若Rt ABC △中,,2,12C AC BC π===,则(*)AB AC = D .若ABC △中,(*)(*)0AB BC BC AB == ,则ABC △是等腰三角形11.已知正四棱锥O ABCD −,高为3,则( )A .若点P 为正四棱锥O ABCD −外接球的球心,则四棱锥P ABCD −的体积为4B .直径为1的球能够整体放入正四棱锥O ABCD −内C .若点M 在底面内(包含边界)运动,N 为OD 中点,则当MN ∥平面OBC 时,点MD .若以点O O 的球面与正四棱锥O ABCD −的棱,,,OA OB OC OD 分别交于点,,,EFGH ,则四边形EFGH 的面积为1三、填空题:本题共3小题,每小题5分,共15分.12.如图,已知A B C ′′′△是水平放置的ABC △用斜二测画法画出的直观图,A B ′′在x ′轴上,B C ′′与x ′轴垂直,且4B C ′′=,则ABC △的边AB 上的高为______.13.如图,为测量武汉防汛纪念碑AB 的高度及取景点C 与F 之间的距离(,,,B C D F 在同一水平面上,雕像垂直该水平面于点B ,且,,B C D 三点共线),华中师大一附中研究性学习小组同学在,,C D F 三点处测得顶点A 的仰角分别为60,30,45°°°,若45,50FCB CD ∠=°=米,则纪念碑的高度为______米,取景点C 与F 之间的距离为______米.14.已知平面非零向量,a b 和单位向量e ,若a 与e 的夹角为,33b e π− 与5b e − 的夹角为4π,则||a b − 的最小值为______. 四、解答题:本题共5小题,共77分。
北京市2023-2024学年高一下学期期中考试数学试卷含答案
北京市2023-2024学年高一(下)期中数学试卷一、选择题(每题5分,共50分)(答案在最后)1.若复数2i z =-+,则复数z 在复平面内对应的点位于()A .第一象限B.第二象限C.第三象限D.第四象限【答案】B 【解析】【分析】运用复数的几何意义求解即可.【详解】复数2i z =-+,则复数z 在复平面内对应的点(2,1)-位于第二象限.故选:B .2.已知向量(2,1)a = ,(4,)b x = ,且a b∥,则x 的值为()A.-2B.2C.-8D.8【答案】B 【解析】【分析】运用平面向量共线的坐标公式计算即可.【详解】(2,1)a =rQ ,(4,)b x =,且a b∥,240x ∴-=,即2x =.故选:B .3.在三角形ABC 中,角,,A B C 对应的边分别为,,a b c ,若0120A ∠=,2a =,3b =,则B =()A.3πB.56π C.566ππ或 D.6π【答案】D 【解析】【详解】试题分析:由于0120A ∠=为钝角,所以只有一解.由正弦定理得:21sin sin1203sin 2B B =⇒=,选D.考点:解三角形.4.已知圆锥的轴截面是一个边长为2的等边三角形,则该圆锥的体积为()A.B.πC.D.2π【答案】A 【解析】【分析】根据圆锥轴截面的定义结合正三角形的性质,可得圆锥底面半径长和高的大小,由此结合圆锥的体积公式,即可求解.【详解】由题知,如图,PAB 为圆锥的轴截面,边长均为2,则圆锥的高322PO =⨯=底面半径1212r =⨯=,故圆锥体积2211ππ1π333V r PO =⋅=⨯=.故选:A5.已知P 为ABC 所在平面内一点,2BC CP =uu u r uur,则()A.1322AP AB AC =-+uu u r uu u r uuu r B.1233AP AB AC=+C.3122AP AB AC=-uu u r uu u r uuu r D.2133AP AB AC=+uu u r uu u r uuu r【答案】A 【解析】【分析】根据题意作出图形,利用向量线性运算即可得到答案.【详解】由题意作出图形,如图,则11()22AP AC CP AC BC AC AC AB =+=+=+- 1322AB AC =-+,故选:A.6.已知非零向量a ,b,则“a b b -= ”是“20a b -= ”成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据充分条件和必要条件的定义,结合向量的模的定义,数量积的性质和运算律判断.【详解】若20a b -= ,则a b b -=,a b b -= ,所以“a b b -= ”是“20a b -=”成立的必要条件,若a b b -= ,则220a a b -⋅=,()20a a b ⋅-= ,当()1,0a = ,11,22b ⎛⎫=- ⎪⎝⎭时,()20,1a b -= ,()20a a b ⋅-= 成立,但20a b -≠.所以,“a b b -= ”不是“20a b -=”成立的充分条件,所以“a b b -= ”是“20a b -= ”成立的必要不充分条件,故选:B.7.在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且2cos a B c =,则ABC 的形状一定是()A.等边三角形B.等腰三角形C.等腰直角三角形D.直角三角形【答案】B 【解析】【分析】由正弦定理可得2sin cos sin A B C =,再由()C A B π=-+,可得2sin cos sin()sin cos cos sin A B A B A B A B =+=+,从而可得in 0()s A B -=,进而可得结论【详解】解:因为2cos a B c =,所以由正弦定理可得2sin cos sin A B C =,因为A B C π++=,所以()C A B π=-+,所以()()sin sin sin C A B A B π⎡⎤=-+=+⎣⎦,所以2sin cos sin()sin cos cos sin A B A B A B A B =+=+,所以sin cos cos sin 0A B A B -=,所以in 0()s A B -=,因为A B ππ-<-<,所以0A B -=,所以A B =,所以ABC 为等腰三角形,故选:B8.对于非零向量,m n ,定义运算“⨯”:sin m n m n θ⨯=,其中θ为,m n 的夹角.设,,a b c 为非零向量,则下列说法错误..的是A.a b b a⨯=⨯ B.()a b c a c b c+⨯=⨯+⨯C.若0a b ⨯=,则//a bD.()a b a b⨯=-⨯【答案】B 【解析】【详解】由运算定义,sin ,sin a b a b b a b a θθ⨯=⨯=,所以a b b a⨯=⨯正确;()sin ,sin sin a b c a b c a c b c a c b c θαβ+⨯=+⨯+⨯=+ ,所以()a b c a c b c +⨯≠⨯+⨯,故B错误;C 、sin 0a b a b θ⨯== ,则0,θπ=,所以//a b 正确;D 、()()sin ,sin sin a b a b a b a b a b θπθθ⨯=-⨯=--= ,所以()a b a b ⨯=-⨯正确.故选B .点睛:本题考查向量的新定义运算,关键就是理解新定义.本题采取排除法,通过逐个验证,我们可以发现A 、C 、D 都是正确的,所以错误的就是B .9.如图,直三棱柱111ABC A B C -中,1,,AB BC AA AB P ⊥=为棱11A B 的中点,Q 为线段1AC 上的动点.以下结论中正确的是()A.存在点Q ,使BQ AC ∥B.不存在点Q ,使11BQ B C ⊥C.对任意点Q ,都有1BQ AB ⊥D.存在点Q ,使BQ 平面1PCC 【答案】C 【解析】【分析】A 选项,根据异面直线的定义可以判断;B 选项,容易发现1,A Q 重合时符合题意;C 选项,利用线面垂直得到线面垂直;D 选项,先找出平面1PCC 的一条垂线,问题转化为判断这条垂线是否和BQ 垂直的问题.【详解】A 选项,由于BQ ⋂平面ABCB =,B AC ∉,AC ⊂平面ABC ,则,BQ AC 一定异面,A 选项错误;B 选项,根据直三棱柱性质,1BB ⊥平面ABC ,BC ⊂平面ABC ,故1BB BC ⊥,又AB BC ⊥,1AB BB B Ç=,1,AB BB ⊂平面11ABB A ,故BC ⊥平面11ABB A ,又1BA ⊂平面11ABB A ,故1BC BA ⊥,显然11BC B C ∥,即111B C BA ⊥,故1,A Q 重合时,11BQ B C ⊥,B 选项错误;C 选项,直棱柱的侧面11ABB A 必是矩形,而1AA AB =,故矩形11ABB A 成为正方形,则11AB BA ⊥,B 选项已经分析过,BC ⊥平面11ABB A ,由1AB ⊂平面11ABB A ,故1AB BC ⊥,又1BC BA B ⋂=,1,BC BA ⊂平面1BCA ,故1AB ⊥平面1BCA ,又BQ ⊂平面1BCA ,则1BQ AB ⊥必然成立,C 选项正确;D 选项,取AB 中点M ,连接,CM PM ,根据棱柱性质可知,CM 和1C P 平行且相等,故平面1PCC 可扩展成平面1CMPC ,过B 作BN CM ⊥,垂足为N ,根据1BB ⊥平面ABC ,BN ⊂平面ABC ,故1BB BN ⊥,显然11BB CC ∥,故1BN CC ⊥,由BN CM ⊥,1CC CM C = ,1,CC CM ⊂平面1CMPC ,故BN ⊥平面1CMPC ,若BQ 平面1PCC ,则BQ BN ⊥,过Q 作QO //1BB ,交11A C 于O ,连接1B O ,于是1BQOB 共面,又1BQ BB B = ,1,BQ BB ⊂平面1BQOB ,故BN ⊥平面1BQOB ,由于1B O ⊂平面1BQOB ,故1BN B O ⊥,延长OQ 交AC 于J ,易得1B O //BJ ,则BJ BN ⊥,而J 在线段AC 上,这是不可能的,D 选项错误.故选:C10.圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标竿(称为“表”)和一把呈南北方向水平固定摆放的与标竿垂直的长尺(称为“圭”).当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据北京的地理位置设计的圭表的示意图,已知北京冬至正午太阳高度角(即ABC ∠)为26.5 ,夏至正午太阳高度角(即ADC ∠)为73.5 ,圭面上冬至线与夏至线之间的距离(即DB 的长)为a ,则表高(即AC 的长)为()A.sin532sin 47a ︒︒B.2sin 47sin53a ︒︒C.tan 26.5tan 73.5tan 47a ︒︒︒D.sin 26.5sin 73.5sin 47a ︒︒︒【答案】D 【解析】【分析】先求BAD ∠,在BAD 中利用正弦定理求AD ,在Rt ACD 中即可求AC .【详解】73.526.547BAD ∠=-= ,在BAD 中由正弦定理得:sin sin BD AD BAD ABD=∠∠,即sin 47sin 26.5a AD= ,所以sin 26.5sin 47a AD =,又因为在Rt ACD 中,sin sin 73.5ACADC AD=∠= ,所以sin 26.5sin 73.5sin 73.5sin 47a AC AD =⨯=,故选:D【点睛】本题主要考查了解三角形应用举例,考查了正弦定理,属于中档题.二、填空题(每题5分,共30分)11.已知复数i(1i)z =+,则z =________;||z =________.【答案】①.1i--②.【解析】【分析】运用共轭复数、复数乘法及复数的模的公式计算即可.【详解】因为i(1i)1i z =+=-+,则1i z =--,||z ==.故答案为:1i --.12.已知向量(1,1)a =-r ,(2,1)b =- ,则2a b += ________;向量a 在b上的投影向量的坐标为________.【答案】①.(0,1)-②.63(,)55-【解析】【分析】运用平面向量加法、向量数量积、向量的模、投影向量公式计算即可.【详解】解:(1,1)a =-r,(2,1)b =-,则2(2,2)(2,1)(0,1)a b +=-+-=-;()()12113a b ⋅=⨯-+-⨯=-,||b == 故向量a 在b上的投影向量的坐标为:363,555a b b b b b⋅⎛⎫⨯=-=- ⎪⎝⎭ .故答案为:(0,1)-;63(,55-.13.在正四面体A -BCD 中,二面角A -BC -D 的余弦值是_______.【答案】13【解析】【分析】根据二面角平面角的定义,结合正四面体的性质,找出该角,由余弦定理,可得答案.【详解】如图,取BC 的中点F ,连接AF,DF,则AF BC ⊥,DF BC ⊥,即AFD ∠为二面角A BC D --的平面角,设正四面体D ABC -的棱长为6,在正ABC中,sin 60AF AB ==sin 60DF BD ==由余弦定理2221cos 23FD FA AD AFD FD FA +-∠===⋅⋅.故答案为:13.14.已知点(0,0)O ,(1,2)A ,(,0)(0)B m m >,则cos ,OA OB <>=___________;若B 是以OA 为边的矩形的顶点,则m =___________.【答案】①.②.5【解析】【分析】①根据向量的夹角公式,直接求解即可;②根据已知可得0OA AB ⋅=,求出相应的坐标代入即可求出m 的值.【详解】①因为(0,0)O ,(1,2)A ,(,0)(0)B m m >,所以(1,2)OA = ,(,0)OB m =,所以5cos ,5||||OA OB OA OB OA OB ⋅<>===;②(1,2)AB m =-- ,若B 是以OA 为边的矩形的顶点,则0OA AB ⋅=,即140OA AB m ⋅=--=,所以5m =.故答案为:5;515.若ABC 的面积为2223()4a cb +-,且∠C 为钝角,则∠B =_________;c a 的取值范围是_________.【答案】①.60②.(2,)+∞【解析】【分析】根据题干结合三角形面积公式及余弦定理可得tan B =,可求得3B π∠=;再利用()sin sin C A B =+,将问题转化为求函数()f A 的取值范围问题.【详解】()2221sin 42ABC S a c b ac B ∆=+-=,2222a c b ac +-∴=,即cos B =,sin cos 3B B B π∴=∠=,则21sin cos sin sin 11322sin sin sin 2tan 2A A Ac C a A A A A π⎛⎫⎛⎫-⋅--⋅ ⎪ ⎪⎝⎭⎝⎭====⋅+,C ∴∠为钝角,,036B A ππ∠=∴<∠<,)1tan 0,,3tan A A ⎛∴∈∈+∞ ⎝⎭,故()2,ca∈+∞.故答案为3π,()2,∞+.【点睛】此题考查解三角形的综合应用,能够根据题干给出的信息选用合适的余弦定理公式是解题的第一个关键;根据三角形内角A B C π++=的隐含条件,结合诱导公式及正弦定理,将问题转化为求解含A ∠的表达式的最值问题是解题的第二个关键.16.如图矩形ABCD 中,22AB BC ==,E 为边AB 的中点,将ADE V 沿直线DE 翻转成1A DE △.若M 为线段1AC 的中点,则在ADE V 翻转过程中,下列叙述正确的有________(写出所有序号).①BM 是定值;②一定存在某个位置,使1CE DA ⊥;③一定存在某个位置,使1DE A C ⊥;④一定存在某个位置,使1MB A DE 平面∥.【答案】①②④【解析】【分析】运用等角定理及余弦定理可判断①;运用勾股定理证得1A E CE ⊥、DE EC ⊥,结合线面垂直的判定定理及性质可判断②;运用反证法证及线面垂直判定定理证得DE ⊥平面1A EC ,结合线面垂直性质可得1DE A E ⊥得出矛盾可判断③;运用面面平行判定定理证得平面//MBF 平面1A DE ,结合面面平行性质可判断④.【详解】对于①,取CD 中点F ,连接MF ,BF ,如图所示,则1MF DA ∥,BF DE ,11122MF A D ==,FB DE ==由等角定理知,1π4A DE MFB ∠=∠=,所以由余弦定理可得22252cos 4MB MF FB MF FB MFB =+-⋅⋅∠=,所以52MB =是定值,故①正确;对于④,由①知,1MF DA ∥,BF DE ,又FB 、MF ⊄平面1A DE ,1DA 、DE ⊂平面1A DE ,所以//FB 平面1A DE ,//MF 平面1A DE ,又FB MF F = ,FB 、MF ⊂平面MBF ,所以平面//MBF 平面1A DE ,又因为MB ⊂平面MBF ,所以//MB 平面1A DE ,故④正确,对于②,连接EC ,如图所示,当1A C =时,因为11A E =,CE =22211A C A E CE =+,所以1A E CE ⊥,因为矩形ABCD 中,D E C E ==,2DC =,所以222DE CE DC +=,即DE EC ⊥,又因为1A E DE E ⋂=,1A E 、DE ⊂平面1A DE ,所以CE ⊥平面1A DE ,又1A D ⊂平面1A DE ,所以1CE DA ⊥,故②正确;对于③,假设③正确,即在某个位置,使1DE A C ⊥,又因为矩形ABCD 中,D E C E ==2DC =,所以222DE CE DC +=,即DE EC ⊥,又因为1A C EC C ⋂=,1AC 、EC ⊂平面1A EC ,所以DE ⊥平面1A EC ,又1A E ⊂平面1A EC ,所以1DE A E ⊥,这与1π4DEA ∠=矛盾,所以不存在某个位置,使1DE A C ⊥,故③错误.故答案为:①②④.三、解答题(每题14分,共70分)17.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,底面ABCD 为正方形,E ,F 分别是AB ,PB 的中点.(1)求证://EF 平面PAD ;(2)求证:EF CD ⊥.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)由三角形中位线证得EF PA ∥,结合线面平行的判定定理证明即可.(2)由线面垂直性质可得PD CD ⊥,结合线面垂直判定定理可得CD ⊥平面PAD ,再结合线面垂直性质、线线垂直性质证明即可.【小问1详解】因为E ,F 分别是AB ,PB 的中点,所以EF PA ∥,又EF ⊄平面PAD ,PA ⊂平面PAD ,所以//EF 平面PAD ;【小问2详解】因为PD ⊥平面ABCD ,CD ⊂平面ABCD ,所以PD CD ⊥,又因为底面ABCD 为正方形,CD AD ⊥,=PD AD D ⋂,PD 、AD ⊂平面PAD ,所以CD ⊥平面PAD ,又PA ⊂平面PAD ,所以CD PA ⊥,由(1)知,EF PA ∥,所以EF CD ⊥.18.已知2()22cos f x x x =+.(1)求()f x 的最小正周期及单调递减区间;(2)求函数()f x 在区间π[0,]2上的最大值和最小值.【答案】(1)π,π2π[π,π]63k k ++,Z k ∈(2)max ()3f x =,min ()0f x =【解析】【分析】(1)结合二倍角公式及辅助角公式化简函数()f x ,结合sin y t =图象与性质求解即可.(2)先求出π26x +的范围,结合sin y t =图象与性质即可求得最值.【小问1详解】因为2π()22cos 2cos 212sin(216f x x x x x x =+=++=++,所以()f x 的最小正周期2ππ2T ==,令ππ3π2π22π262k x k +≤+≤,Z k ∈,解得π2πππ63k x k +≤≤+,Z k ∈,所以()f x 单调递减区间为π2π[π,π]63k k ++,Z k ∈.【小问2详解】因为π[0,]2x ∈,所以ππ7π2[,]666x +∈,所以由函数图象性质知,当ππ262x +=,即π6x =时,max ()3f x =;当π7π266x +=,即π2x =时,min ()0f x =.19.如图,四边形ABCD 是菱形,DE ⊥平面ABCD ,//AF DE ,3DE AF =.(1)求证:平面//BAF 平面CDE ;(2)求证:平面EAC ⊥平面EBD ;(3)设点M 是线段BD 上一个动点,试确定点M 的位置,使得//AM 平面BEF ,并证明你的结论.【答案】(1)证明见解析(2)证明见解析(3)13BM BD =,证明见解析【解析】【分析】(1)利用线面平行的判定定理得到//AF 平面CDE ,//AB 平面CDE ,再利用面面平行的判定定理,即可证明结果;(2)根据条件得到AC ⊥平面EBD ,再由面面垂直的判定定理,即可证明结果;(3)构造平行四边形,利用线面平行的判定定理,即可证明结果.【小问1详解】因为//AF DE ,AF ⊄面CDE ,DE ⊂面CDE ,所以//AF 平面CDE ,同理,//AB 平面CDE ,又AF AB A ⋂=,,AF AB ⊂面BAF ,所以平面//BAF 平面CDE .【小问2详解】因为四边形ABCD 是菱形,所以AC BD ⊥,DE ⊥ 平面ABCD ,AC ⊂平面ABCD ,AC DE ∴⊥,BD DE D = ,,BD DE ⊂平面EBD ,AC ∴⊥平面EBD ,AC ⊂ 平面EAC ,所以平面EAC ⊥平面EBD .【小问3详解】当13BM BD =时,//AM 平面BEF ,理由如下:作MN ED ∥,则MN 平行且等于13BD ,//AF DE ,3DE AF =,∴AF 平行且等于MN ,∴AMNF 是平行四边形,//AM FN ∴,AM ⊄ 平面BEF ,FN ⊂平面BEF ,//AM ∴平面BEF .20.在ABC ∆中,2sin sin sin A B C =.(Ⅰ)若π3A ∠=,求B ∠的大小;(Ⅱ)若1bc =,求ABC ∆的面积的最大值.【答案】(1)π3B ∠=,(2).【解析】【详解】【分析】试题分析:(Ⅰ)因为2sin sin sin ,A B C =由正弦定理可得2a bc =,再利用余弦定理得所以22222122a b c bc b c bc =+-⨯=+-即b c =,所以为等边三角形.所以π3B ∠=(注:当然也可用化角来处理);(Ⅱ)由已知可得21a bc ==.所以222221cos 22b c a b c A bc +-+-==21122bc -≥=,又sin (0,]2A ∈.所以11sin sin 224ABC S bc A A ∆==≤11sin sin 224ABC S bc A A ∆==≤试题解析:(Ⅰ)方法一:因为2sin sin sin ,A B C =且,所以2a bc =.又因为π3A ∠=,所以22222122a b c bc b c bc =+-⨯=+-.所以2()0b c -=.所以b c =.因为π3A ∠=,所以为等边三角形.所以π3B ∠=.方法二:因为πA BC ++=,所以sin sin()C A B =+.因为2sin sin sin B C A =,π3A ∠=,所以2ππsin sin()sin 33B B +=.所以13sin cos sin )224B B B +=.所以11cos 23sin 24224B B -+⨯=.所以12cos 2122B B -=.所以πsin(2)16B -=.因为(0,π)B ∈,所以ππ112(,π)666B -∈-.所以ππ262B -=,即π3B ∠=.(Ⅱ)因为2sin sin sin ,A B C =1bc =,且,所以21a bc ==.所以222221cos 22b c a b c A bc +-+-==21122bc -≥=(当且仅当时,等号成立).因为(0,π)A ∈,所以π(0,]3A ∈.所以sin (0,]2A ∈.所以11sin sin 224ABC S bc A A ∆==≤.所以当是边长为1的等边三角形时,其面积取得最大值.考点:三角函数的性质与解三角形21.对于数集{}12,,1,n X x x x =- ,其中120n x x x <<<⋅⋅⋅<,2n ≥,定义向量集(){},,,Y a a s t s X t X ==∈∈ ,若对任意1a Y ∈ ,存在2a Y ∈ 使得120a a ⋅= ,则称X 具有性质P .(1)判断{}1,1,2-是否具有性质P ;(2)若2x >,且{}1,1,2,X x =-具有性质P ,求x 的值;(3)若X 具有性质P ,求证:1X ∈且当1n x >时,11x =.【答案】(1)具有性质P(2)4(3)证明见解析【解析】【分析】(1)根据集合新定义判断即可;(2)在Y 中取()1,2a x = ,根据数量积的坐标表示,求出可能的2a ,再根据2x >求出符合条件的值即可;(3)取()111,a x x Y =∈ ,()2,a s t Y =∈ ,由120a a ⋅= ,化简可得0s t +=,所以,s t 异号,而1-是X 中的唯一的负数,所以,s t 中之一为1-,另一个为1,从而得到1X ∈,最后通过反证法得出1n x >时,11x =.【小问1详解】{}1,1,2-具有性质P .因为{}1,1,2X =-,所以()()()()()()()()(){}1,1,1,1,1,2,1,1,1,1,1,2,2,1,2,1,2,2Y =------,若对任意1a Y ∈ ,存在2a Y ∈ 使得120a a ⋅= ,所以X 具有性质P .【小问2详解】因为2x >,且{}1,1,2,X x =-具有性质P ,所以可取()1,2a x = ,又Y 中与()1,2a x = 垂直的元素必有形式()()()1,1,1,2,1,x ---中的一个,当()21,1a =- 时,由120a a ⋅= ,可得202x x -+=Þ=,不符合题意;当()21,2a =- 时,由120a a ⋅= ,可得404x x -+=Þ=,符合题意;当()21,a x =- 时,由120a a ⋅= ,可得200x x x -+=Þ=,不符合题意;所以4x =.【小问3详解】证明:取()111,a x x Y =∈ ,设()2,a s t Y =∈ ,满足120a a ⋅= ,所以()100s t x s t +=⇒+=,所以,s t 异号,因为1-是X 中的唯一的负数,所以,s t 中之一为1-,另一个为1,所以1X ∈,假设1k x =,其中1k n <<,则101n x x <<<,选取()11,n b x x = ,并设()2,b p q = ,满足120b b ⋅= ,所以10n px qx +=,则,p q 异号,从而,p q 之中恰有一个为1-,若1p =-,则1n x qx =,显然矛盾;若1q =-,则1n n x px p x =<<,矛盾,所以当1n x >时,11x =,综上,得证.【点睛】关键点点睛:本题的关键在于理解集合的新定义,并用向量的数量积为零时坐标表示出所求的参数值.。
河南省青铜鸣大联考2023-2024学年高一下学期4月期中考试数学试题
试数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.在四边形 ABCD 中, AC
与
BD
交于点
O
,且
uuur AO
uuur uuur uuur = OC,BO,= OD
【分析】利用复数模求出 a ,再利用复数的除法求解即得.
【详解】依题意,| z |= a2 + (2 - a)2 = 2a2 - 4a + 4 = 2 ,解得 a = 1 ,则 z = 1+ i ,
所以
2
z -
i
=
1+ i 2-i
=
(1+ i)(2 + i) (2 - i)(2 + i)
=
1+ 3i 5
+
uuur 3OB
+
uuur tOC
=
r 0
(t
Î
R
),V AOB
的面积为
V
ABC
面积的
1
.
2
(1)求 t 的值; (2)若 O 为VABC 的垂心,求 cosÐ ACB 的值.
试卷第51 页,共33 页
1.D
参考答案:
【分析】由题意,根据相等向量的概念和向量的模,结合矩形的判定定理即可求解.
uuur uuur uuur uuur uuur uuur 【详解】由 AO = OC, BO = OD, AC = BD ,
,结合共轭复数的概念与
复数的乘法运算即可求解.
【详解】由 z1 = z2,得 (x + 2 y) + ( y + 2)i = (2x - y) + (x - y)i ,
北京市2023-2024学年高一下学期期中考试数学试题含答案
2023—2024学年度第二学期北京市高一数学期中考试试卷(答案在最后)一、选择题(本大题共10小题,每小题4分,共40分)1.11πsin3的值为()A.2B.2-C.2D.2【答案】A 【解析】【分析】利用诱导公式及特殊角的三角函数值计算可得.【详解】11πππsin sin 4πsin 3332⎛⎫=-=-=-⎪⎝⎭.故选:A2.下列函数中,最小正周期为π且是偶函数的是()A.πsin 4y x ⎛⎫=+ ⎪⎝⎭B.tan y x =C.cos 2y x =D.sin 2y x=【答案】C 【解析】【分析】由三角函数的最小正周期公式和函数奇偶性对选项一一判断即可得出答案.【详解】对于A ,πsin 4y x ⎛⎫=+⎪⎝⎭的最小正周期为:2π2π1T ==,故A 不正确;对于B ,tan y x =的最小正周期为:ππ1T ==,tan y x =的定义域为ππ,Z 2x x k k ⎧⎫≠+∈⎨⎬⎩⎭,关于原点对称,令()tan f x x =,则()()()tan tan f x x x f x -=-=-=-,所以tan y x =为奇函数,故B 不正确;对于C ,cos 2y x =的最小正周期为:2ππ2T ==,令()cos 2g x x =的定义域为R 关于原点对称,则()()()cos 2cos 2g x x x g x -=-==,所以cos 2y x =为偶函数,故C 正确;对于D ,sin 2y x =的最小正周期为:2ππ2T ==,sin 2y x =的定义域为R ,关于原点对称,令()sin 2h x x =,则()()()sin 2sin 2h x x x h x -=-=-=-,所以sin 2y x =为奇函数,故D 不正确.故选:C .3.设向量()()3,4,1,2a b ==- ,则cos ,a b 〈〉=()A.5-B.5C.5-D.5【答案】D 【解析】【分析】根据给定条件,利用向量夹角的坐标表示求解即得.【详解】向量()()3,4,1,2a b ==-,则cos ,5||||a b a b a b ⋅〈〉==.故选:D4.在△ABC 中,已知1cos 3A =,a =,3b =,则c =()A.1B.C.2D.3【答案】D 【解析】【分析】直接利用余弦定理求解即可【详解】因为在△ABC 中,1cos 3A =,a =,3b =,所以由余弦定理得2222cos a b c bc A =+-,2112963c c =+-⨯,得2230c c --=,解得3c =,或1c =-(舍去),故选:D5.函数()()sin f x A x =+ωϕ(其中0A >,0ω>,0ϕπ<<)的图像的一部分如图所示,则此函数的解析式是()A.()3sin 42f x x ππ⎛⎫=+⎪⎝⎭ B.3()3sin 44f x x ππ⎛⎫=+⎪⎝⎭C.()3sin 84f x x ππ⎛⎫=+ ⎪⎝⎭ D.3()3sin 84f x x ππ⎛⎫=+⎪⎝⎭【答案】C 【解析】【分析】根据图象可以求出最大值,结合函数的零点,根据正弦型函数的最小正周期公式,结合特殊值法进行求解即可.【详解】由函数图象可知函数的最大值为3,所以3A =,由函数图象可知函数的最小正周期为4(62)16⨯-=,因为0ω>,所以24(62)168ππωω⨯-==⇒=,所以()3sin 8f x x πϕ⎛⎫=+ ⎪⎝⎭,由图象可知:(2)3f =,即3sin 32()2()4424k k Z k k Z ππππϕϕπϕπ⎛⎫+=⇒+=+∈⇒=+∈ ⎪⎝⎭,因为0ϕπ<<,所以令0k =,所以4πϕ=,因此()3sin 84f x x ππ⎛⎫=+ ⎪⎝⎭,故选:C6.函数ππ()sin(2),[0,]62f x x x =+∈的最大值和最小值分别为()A.11,2-B.31,2-C.1,12- D.1,1-【答案】A 【解析】【分析】根据给定条件,求出相位的范围,再利用正弦函数的性质求解即得.【详解】由π[0,2x ∈,得ππ7π2[,666x +∈,则当ππ262x +=,即π6x =时,max ()1f x =,当π7π266x +=,即π2x =时,min 1()2f x =-,所以所求最大值、最小值分别为11,2-.故选:A7.已知向量,,a b c在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c +⋅= ()A.2B.2- C.1 D.1-【答案】B 【解析】【分析】根据给定信息,利用向量数量的运算律,结合数量积的定义计算得解.【详解】依题意,π3π|||2,||2,,,,,44a b c a b b c a c ===〈〉=⊥〈〉= ,因此3π||||cos2(242a c a c ⋅==⨯-=-,0b c ⋅= ,所以()2a b c a c b c +⋅=⋅+⋅=-.故选:B8.在ABC 中,已知cos cos 2cos a B b A c A +=,则A =()A.π6B.π4C.π3 D.π2【答案】C 【解析】【分析】根据给定条件,利用正弦定理边化角,再逆用和角的正弦求出即得.【详解】在ABC 中,由cos cos 2cos a B b A c A +=及正弦定理,得sin cos sin cos 2sin cos A B B A C A +=,则sin()2sin cos A B C A +=,即sin 2sin cos C C A =,而sin 0C >,因此1cos 2A =,而0πA <<,所以π3A =.故选:C9.已知函数()()π2sin 03⎛⎫=+> ⎪⎝⎭f x x ωω,则“()f x 在π0,3⎡⎤⎢⎥⎣⎦上既不是增函数也不是减函数”是“1ω>”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】以π3x ω+为整体结合正弦函数的性质可得12ω>,进而根据充分、必要条件分析判断.【详解】因为π0,3x ⎡⎤∈⎢⎥⎣⎦且0ω>,则ππππ,3333x ωω⎡⎤+∈+⎢⎥⎣⎦,若()f x 在π0,3⎡⎤⎢⎣⎦上既不是增函数也不是减函数,则2πππ33ω+>,解得12ω>,又因为()1,+∞1,2⎛⎫+∞ ⎪⎝⎭,所以“()f x 在π0,3⎡⎤⎢⎥⎣⎦上既不是增函数也不是减函数”是“1ω>”的必要不充分条件.故选:B.10.如图,正方形ABCD 的边长为2,P 为正方形ABCD 四条边上的一个动点,则PA PB ⋅的取值范围是()A.[]1,2-B.[]0,2 C.[]0,4 D.[]1,4-【答案】D 【解析】【分析】建立平面直角坐标系,分点P 在CD 上,点P 在BC 上,点P 在AB 上,点P 在AD 上,利用数量积的坐标运算求解.【详解】解:建立如图所示平面直角坐标系:则()()0,2,2,2A B ,当点P 在CD 上时,设()(),002Px x ≤≤,则()(),2,2,2PA x PB x =-=--,所以()()224133,4PA PB x x x ⎡⎤⋅=-+=-+∈⎣⎦ ;当点P 在BC 上时,设()()2,02P yy ≤≤,则()()2,2,0,2PA y PB y =-=-,所以()220,4PA PB y ⎡⎤⋅=-∈⎣⎦ ;当点P 在AB 上时,设()(),202Px x ≤≤,则()(),0,2,0PA x PB x ==-,所以()()22111,0PA PB x x x ⎡⎤⋅=-=--∈-⎣⎦ ;当点P 在AD 上时,设()()0,02P y y ≤≤,则()()0,2,2,2PA y PB y=-=--,所以()220,4PA PB y ⎡⎤⋅=-∈⎣⎦ ;综上:PA PB ⋅的取值范围是[]1,4-.故选:D二、填空题(本大题共5小题,每小题5分,共25分)11.已知圆的半径为2,则60 的圆心角的弧度数为__________;所对的弧长为__________.【答案】①.π3##1π3②.2π3##2π3【解析】【分析】利用度与弧度的互化关系,弧长计算公式求解即可.【详解】60 的圆心角的弧度数为ππ601803⨯=;所对的弧长为π2π233⨯=.故答案为:π3;2π312.已知向量()2,3a =- ,(),6b x =- .若//a b ,则a =r __________,x =__________.【答案】①.②.4【解析】【分析】利用坐标法求出向量的模,再根据向量共线的坐标表示求出x .【详解】因为向量()2,3a =- ,所以a == ,又(),6b x =- 且//a b ,所以()326x =-⨯-,解得4x =.;4.13.若函数()sin f x A x x =的一个零点为π3,则A =__________;将函数()f x 的图象向左至少平移__________个单位,得到函数2sin y x =的图象.【答案】①.1②.π3##1π3【解析】【分析】利用零点的意义求出A ;利用辅助角公式化简函数()f x ,再借助平移变换求解即得.【详解】函数()sin f x A x x =的一个零点为π3,得ππsin 033A =,解得1A =;则π()sin 2sin()3f x x x x =-=-,显然πππ(2sin[()]2sin 333f x x x +=+-=,所以()f x 的图象向左至少平移π3个单位,得到函数2sin y x =的图象.故答案为:1;π314.设平面向量,,a b c 为非零向量,且(1,0)a = .能够说明“若a b a c ⋅=⋅ ,则b c = ”是假命题的一组向量,b c的坐标依次为__________.【答案】(0,1),(0,1)-(答案不唯一)【解析】【分析】令向量,b c 与向量a 都垂直,且b c ≠即可得解.【详解】令(0,1),(0,1)b c ==- ,显然0a b a c ⋅==⋅,而b c ≠ ,因此(0,1),(0,1)b c ==- 能说明“若a b a c ⋅=⋅ ,则b c = ”是假命题,所以向量,b c的坐标依次为(0,1),(0,1)-.故答案为:(0,1),(0,1)-15.已知函数()2cosπ1xf x x =+,给出下列四个结论:①函数()f x 是奇函数;②函数()f x 有无数个零点;③函数()f x 的最大值为1;④函数()f x 没有最小值.其中,所有正确结论的序号为__________.【答案】②③【解析】【分析】根据偶函数的定义判断①,令()0f x =求出函数的零点,即可判断②,求出函数的最大值即可判断③,根据函数值的特征判断④.【详解】函数()2cosπ1xf x x =+的定义域为R ,又22cos(π)cos π()()()11x x f x f x x x --===-++,所以()2cosπ1xf x x =+为偶函数,故①错误;令2cos ππ1()0cos π0ππ(Z)(Z)122x f x x x k k x k k x ==⇒=⇒=+∈⇒=+∈+,所以函数()f x 有无数个零点,故②正确;因为cos π1x ≤,当ππ(Z)x k k =∈,即(Z)x k k =∈时取等号,又因为211x +≥,当且仅当0x =时取等号,所以有21011x <≤+,当且仅当0x =时取等号,所以有2cos π11x x ≤+,当且仅当0x =时取等号,因此有()2cos π11xf x x =≤+,即()()max 01f x f ==,故③正确;因为()2cosπ1xf x x =+为偶函数,函数图象关于y 轴对称,只需研究函数在()0,∞+上的情况即可,当x →+∞时2101x →+,又1cosπ1x -≤≤,所以当x →+∞时()0f x →,又()()max 01f x f ==,当102x <<时cos π0x >,210x +>,所以()0f x >,当1322x <<时1cos π0x -≤<,210x +>,所以()0f x <,当1x >时212x +>,0cos π1x ≤≤,所以()12f x <,又()112f =-,102f ⎛⎫= ⎪⎝⎭,302f ⎛⎫= ⎪⎝⎭,且()f x 为连续函数,所以()f x 存在最小值,事实上()f x 的图象如下所示:由图可知()f x 存在最小值,故④错误.故答案为:②③三、解答题(本大题共6小题,共85分)16.在平面直角坐标系xOy 中,角θ以Ox 为始边,终边经过点()1,2--.(1)求tan θ,tan2θ的值;(2)求πsin ,cos ,cos 4θθθ⎛⎫+⎪⎝⎭的值.【答案】(1)tan 2θ=,4tan 23θ=-(2)sin 5θ-=,cos 5θ=,π10cos 410θ⎛⎫+=⎪⎝⎭【解析】【分析】(1)由三角函数的定义求出tan θ,再由二倍角正切公式求出tan 2θ;(2)由三角函数的定义求出sin θ,cos θ,再由两角和的余弦公式计算可得.【小问1详解】因为角θ以Ox 为始边,终边经过点()1,2--,所以2tan 21θ-==-,则222tan 224tan 21tan 123θθθ⨯===---.【小问2详解】因为角θ以Ox 为始边,终边经过点()1,2--,所以sin 5θ-==,cos 5θ==,所以πππcos cos cos sin sin 444θθθ⎛⎫+=- ⎪⎝⎭2520555210221⎛⎫- =⨯-⨯=⎪ ⎪⎝⎭.17.已知平面向量,,2,3,a b a b a == 与b的夹角为60 ,(1)求22,,a b a b ⋅;(2)求(2)(3)a b a b -⋅+的值:(3)当x 为何值时,xa b -与3a b +rr 垂直.【答案】(1)4,9,3;(2)4-;(3)3013x =.【解析】【分析】(1)利用数量积的定义计算即得.(2)利用数量积的运算律计算即得.(3)利用垂直关系的向量表示,数量积的运算律求解即得.【小问1详解】向量,,2,3,a b a b a == 与b 的夹角为60 ,所以2222|4,|9,3||||c |os 0|6a a b b a b a b ===⋅=== .【小问2详解】依题意,2222(2)(3)2352233534a b a b a b a b -⋅+=-+⋅=⨯-⨯+⨯=- .【小问3详解】由()(3)0xa b a b -⋅+= ,得223(31)4273(31)13300xa b x a b x x x -+-⋅=-+-=-= ,解得3013x =,所以当3013x =时,xa b - 与3a b +r r 垂直.18.已知函数()sin2cos2f x x x =+.(1)求(0)f ;(2)求函数()f x 的最小正周期及对称轴方程;(3)求函数()f x 的单调递增区间.【答案】(1)1;(2)π,ππ,Z 82k x k =+∈;(3)()3πππ,πZ 88k k k ⎡⎤-++∈⎢⎥⎣⎦.【解析】【分析】(1)代入计算求出函数值.(2)(3)利用辅助角公式化简函数()f x ,再结合正弦函数的图象与性质求解即得.【小问1详解】函数()sin2cos2f x x x =+,所以(0)sin0cos01f =+=.【小问2详解】函数π())4f x x =+,所以函数()f x 的最小正周期2ππ2T ==;由ππ2π,Z 42x k k +=+∈,解得ππ,Z 82k x k =+∈,所以函数()f x 图象的对称轴方程为ππ,Z 82k x k =+∈.【小问3详解】由πππ2π22π,Z 242k x k k -+≤+≤+∈,得3ππππ,Z 88k x k k -+≤≤+∈,所以函数()f x 的单调递增区间是()3πππ,πZ 88k k k ⎡⎤-++∈⎢⎥⎣⎦.19.在△ABC 中,7a =,8b =,再从条件①、条件②这两个条件中选择一个作为已知.(1)求A ∠;(2)求ABC 的面积.条件①:3c =;条件②:1cos 7B =-.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1)选①②答案相同,3A π∠=;(2)选①②答案相同,ABC 的面积为【解析】【分析】(1)选①,用余弦定理得到cos A ,从而得到答案;选②:先用余弦定理求出3c =,再用余弦定理求出cos A ,得到答案;(2)选①,先求出sin 2A =,使用面积公式即可;选②:先用sin sin()C A B =+求出sin C ,再使用面积公式即可.【小问1详解】选条件①:3c =.在△ABC 中,因为7a =,8b =,3c =,由余弦定理,得222cos 2b c a A bc+-=64949283+-=⨯⨯12=.因为()0,πA ∈,所以π3A ∠=;选条件②:1cos 7B =-由余弦定理得:222249641cos 2147a cbc B ac c +-+-===-,解得:3c =或5-(舍去)由余弦定理,得222cos 2b c a A bc+-=64949283+-=⨯⨯12=.因为()0,πA ∈,所以π3A ∠=;【小问2详解】选条件①:3c =由(1)可得sin 2A =.所以ABC 的面积11sin 8322S bc A ==⨯⨯=选条件②:1cos 7B =-.由(1)可得1cos 2A =.因为sin sin[()]C A B =π-+sin()A B =+sin cos cos sin A B A B=+11()72=-+⨯3314=,所以ABC 的面积11sin 7822S ab C ==⨯⨯=..20.已知函数()2π2cos cos 213f x x x ⎛⎫=+-- ⎪⎝⎭.(1)求π6f ⎛⎫ ⎪⎝⎭的值;(2)求函数()f x 的在[]0,π上单调递减区间;(3)若函数()f x 在区间[]0,m 上有且只有两个零点,求m 的取值范围.【答案】(1)32(2)π7π,1212⎡⎤⎢⎥⎣⎦(3)3564π,π⎡⎫⎪⎢⎣⎭【解析】【分析】(1)利用二倍角公式及和差角公式化简函数解析式,再代入计算可得;(2)由x 的取值范围求出π23x +的范围,再根据正弦函数的性质得到ππ3π2232x ≤+≤,解得即可;(3)由x 的取值范围求出π23x +的范围,再根据正弦函数的性质得到不等式组,解得即可.【小问1详解】因为()2π2cos cos 213f x x x ⎛⎫=+-- ⎪⎝⎭ππcos2cos2cossin 2sin 33x x x =++3cos2sin 222x x =+1cos2sin 222x x ⎫=+⎪⎪⎭π23x ⎛⎫=+ ⎪⎝⎭,所以πππ2π3266332f ⎛⎫⎛⎫=⨯+== ⎪ ⎪⎝⎭⎝⎭.【小问2详解】当[]0,πx ∈时ππ7π2,333x ⎡⎤+∈⎢⎥⎣⎦,令ππ3π2232x ≤+≤,解得π7π1212x ≤≤,所以函数()f x 的在[]0,π上的单调递减区间为π7π,1212⎡⎤⎢⎥⎣⎦.【小问3详解】当[]0,x m ∈时,πππ2,2333x m ⎡⎤+∈+⎢⎥⎣⎦,又函数()f x 在区间[]0,m 上有且只有两个零点,所以π2π23π3m ≤<+,解得5π4π63m ≤<,即m 的取值范围为3564π,π⎡⎫⎪⎢⎣⎭.21.某地进行老旧小区改造,有半径为60米,圆心角为π3的一块扇形空置地(如图),现欲从中规划出一块三角形绿地PQR ,其中P 在 BC 上,PQ AB ⊥,垂足为Q ,PR AC ⊥,垂足为R ,设π0,3PAB α⎛⎫∠=∈ ⎪⎝⎭;(1)求PQ ,PR (用α表示);(2)当P 在BC 上运动时,这块三角形绿地的最大面积,以及取到最大面积时α的值.【答案】(1)60sin PQ α=,π60sin 3PR α⎛⎫=- ⎪⎝⎭(2)三角形绿地的最大面积是平方米,此时π6α=【解析】【分析】(1)利用锐角三角函数表示出PQ 、PR ;(2)依题意可得2π3QPR ∠=,则1sin 2PQR S PQ PR QPR =⋅⋅⋅∠ ,利用三角恒等变换公式化简,再结合正弦函数的性质求出最大值.【小问1详解】在Rt PAQ 中,π0,3PAB ∠α⎛⎫=∈ ⎪⎝⎭,60AP =,∴sin 60sin PQ AP αα==(米),又π3BAC ∠=,所以π3PAR α∠=-,在Rt PAR 中,可得πsin 60sin 3PR PAR AP α⎛⎫==-⎪⎝⎭∠(米).【小问2详解】由题可知2π3QPR ∠=,∴PQR 的面积1sin 2PQR S PQ PR QPR =⋅⋅⋅∠1π2π60sin 60sin sin 233αα⎛⎫=⨯⨯-⨯ ⎪⎝⎭πsin3αα⎛⎫=- ⎪⎝⎭ππsin cos cos sin 33ααα⎛⎫=- ⎪⎝⎭112cos 222αα⎫=+-⎪⎪⎭π1sin 262α⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦,又π0,3α⎛⎫∈ ⎪⎝⎭,526πππ,66α⎛⎫+∈ ⎪⎝⎭,∴当ππ262α+=,即π6α=时,PQR 的面积有最大值即三角形绿地的最大面积是π6α=.。
四川省内江市第六中学2023-2024学年高一下学期期中考试数学试卷 Word版含解析
内江六中2023--2024学年(下)高2026届半期考试数学试题考试时间:120分钟 满分:150分第Ⅰ卷 选择题(满分60分)一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设平面向量,则A. B. C. D. 【答案】A 【解析】【详解】∵ ∴故选A ;【考点】:此题重点考察向量加减、数乘的坐标运算;【突破】:准确应用向量的坐标运算公式是解题的关键;2. 已知复数,则的虚部为( )A 2B. C. D. 【答案】C 【解析】【分析】根据复数的概念判断即可.【详解】复数的虚部为.故选:C3. 在所在平面内,是延长线上一点且,是的中点,设,,则( )A. B. C. D. 【答案】C.()()3,5,2,1a b ==- 2a b -=()7,3()7,7()1,7()1,3()()3,5,2,1a b ==- ()()()()23,522,1345273a b -=--=+-=,,12z i =-z 2i 2-2i-12z i =-2-ABC D BC 4BD CD =E AB AB a =AC b= ED =1455a b + 3144a b +5463a b-+ 5564a b-+【解析】【分析】根据给定条件,借助向量的线性运算用 、表示即可判断作答.【详解】在所在平面内,在延长线上,且,则,又是的中点,所以.故选:C4. 若,,则( )A.B. C.D.【答案】D 【解析】【分析】由两角和与差的正切公式即可求解.【详解】.故选:D .5. 已知,则向量的夹角为( )A. B. C.D. 【答案】C 【解析】【分析】利用向量模的计算公式,化简求得,结合向量的夹角公式,即可求解.【详解】由题意,向量,可得,解得,又由,可得.故选:C.6. 在中,,是直线上的一点,若则实数的值为( )AB AC EDABC D BC 4BD CD =43BD BC =EAB 2)14141454()2332363(ED EB BD AB BC AB AC AB a b a a b =+=+=+-=+-=-+ tan 2α=tan 8(2)αβ+=tan()αβ+=101735-25617tan(2)tan 826tan()tan(2)1tan(2)tan 18217αβααβαβααβα+--+=+-===+++⨯3,1,2a b a b ==-= ,a b30 6012015032a b ⋅=- 3,1,2a b a b ==-=222224434419a b a a b b a b -=-⋅+=-⋅+= 32a b ⋅=- 1cos ,2a b a b a b⋅==-⋅,120a b = ABC 32AD DC = P BD 25AP t AB AC =+tA. B.C. D.【答案】B 【解析】【分析】依题意可得,根据平面向量共线定理的推论及平面向量基本定理计算可得.【详解】因,所以,又是直线上的一点,所以,又,所以,所以.故选:B7. 在△ABC 中,若,则△ABC 是( )A. 等腰三角形 B. 等边三角形C. 直角三角形 D. 等腰直角三角形【答案】A 【解析】【分析】根据已知,诱导公式与和、差角的余弦公式化简得到,从而得到,进而即可得出结论.【详解】在△ABC 中,由,得 ,则为13-1323-2353AC AD =32AD DC = 53AC AD =P BD ()1AP xAB x AD =+-2532AP t AB AC t AB AD =+=+ 213x tx =⎧⎪⎨-=⎪⎩13x t ==2sin sin cos 2CA B =()cos 1A B -=A B =πA B C ++=()πC A B =-+,所以,即,则,又,,则,所以,即,所以△ABC 为等腰三角形,但无法判断C 是不是直角.故选:A .8. 已知函数在区间上单调递增,则下列选项中错误的是( )A. 函数两个零点的最小距离为,则B. 若,则C. 若,则D. 若,且函数在区间有唯一零点,则【答案】C 【解析】【分析】根据题意,利用正弦型函数的周期性,单调性等有关的性质逐一进行分析,判断各项是否正确.【详解】对于A 中,函数在区间上单调递增,所以该函数的最小正周期满足,所以,当时,成立,所以的最大值为2,所以A 正确;对于B 中,因为在区间上单调递增,()()21cos 1111111cos cos πcos cos cos sin sin 222222222C C A B A B A B A B +⎡⎤==+-+=-+=-+⎣⎦111sin sin cos cos sin sin 222A B A B A B =-+cos cos sin sin 1A B A B +=()cos 1A B -=0πA <<0πB <<ππA B -<-<0A B -=A B =()()0()sin f x x ωϕω=+>π2π,63⎛⎫⎪⎝⎭()12y f x =-π32ω=π3ϕ=-504ω<≤5π012f ⎛⎫>⎪⎝⎭π2π063f f ⎛⎫⎛⎫+< ⎪ ⎪⎝⎭⎝⎭π6ϕ=()f x [0,π]1,16ω⎡∈⎤⎢⎥⎣⎦()()()sin 0f x x ωϕω=+>π2π,63⎛⎫⎪⎝⎭T π2πππ2362T ω=≥-=2ω≤5π6ϕ=-2ω=ω()()()sin 0f x x ωϕω=+>π2π,63⎛⎫⎪⎝⎭故有,当时,,所以,所以,所以,又因为,故,可得,所以B 正确;对于C 中,由于,故当时,,故C 错误;对于D 中,当,,所以,又因为函数在区间有唯一零点,所以,解得,所以D正确.故选:C二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.)9.)A.B.C.D. 【答案】ACπ2πππ22362T ωω=≥-=⇒≤π3ϕ=-π2π,63x ⎛⎫∈ ⎪⎝⎭ππ2ππ6333x ωωωϕ-<+<-πππ2π632,Z 2πππ2π332k k k ωω⎧-≥-⎪⎪∈⎨⎪-≤+⎪⎩121534k k ωω≥-⎧⎪⎨≤+⎪⎩2ω≤0k =504ω<≤π2π5ππ2π63,21263+⎛⎫=∈ ⎪⎝⎭5π012f ⎛⎫> ⎪⎝⎭π2π063f f ⎛⎫⎛⎫+> ⎪ ⎪⎝⎭⎝⎭π6ϕ=[]0,πx ∈ππππ666x ωω≤+≤+()f x []0,ππππ6ππ2π6ωω⎧+≥⎪⎪⎨⎪+<⎪⎩1,16ω⎡⎤∈⎢⎥⎣⎦+︒︒tan 21tan 24tan 21tan 24︒+︒+︒︒1tan151tan15+︒-︒2cos 15sin15cos 75︒︒-︒【解析】【分析】由两角和与差的正弦,正切公式,二倍角的余弦公式对选项一一判断即可得出答案.【详解】对于AA 正确;对于B ,因为,可得,所以,故B 错误;对于C ,C 正确;对于D ,D 错误.故选:AC .10. 已知向量,则( )A. 若,则B. 若,则C. 若,则向量与向量D. 若,则向量在向量上的投影向量为【答案】AC 【解析】【分析】利用向量共线的充要条件的坐标表示判断A ;利用向量垂直的充要条件的坐标表示判断B ;利用向量夹角的坐标表示判断C; 利用向量投影的坐标表示判断D【详解】若,则,解得,故A 正确.2⎫︒+︒=︒+︒⎪⎪⎭()()2cos 45sin15sin 45cos152sin 15452=︒︒+︒︒=︒+︒==()tan 21tan 24tan 45tan 21241tan 21tan 24︒+︒︒=︒+︒=-︒︒()tan 21tan 24tan 451tan 21tan 24︒+︒=︒-︒︒tan 21tan 24tan 21tan 24︒+︒+︒︒()tan 451tan 21tan 24tan 21tan 241=︒-︒︒+︒︒=()1tan15tan 45tan15tan 45151tan151tan 45tan15+︒︒+︒==︒+︒=-︒-︒⋅︒222cos 15sin15cos 75cos 15sin 15cos30︒-︒︒=︒-︒=︒=()(),1,4,2a x b ==a b ∥2x =a b ⊥12x =3x =ab=1x -b aa b∥240x -=2x =若,则,解得,故B 错误.若,则,又,所以向量与向量的夹角的余弦值为,故C 正确.若,则,又,所以向量在向量上投影向量为,故D 错误.故选:AC .11. 函数的部分图象如图所示,则下列说法中正确的是( )A. 的表达式可以写成B.的图象向右平移个单位长度后得到的新函数是奇函数C. 的对称中心,D. 若方程在上有且只有6个根,则【答案】ABC 【解析】【分析】利用特殊点求得函数的解析式即可判断A ,根据相位变换求得新函数解析式即可判断奇偶性,即可判断B ,先求出的解析式,然后代入正弦函数对称中心结论求的a b ⊥ 420x +=12x =-3x =()3,1a =()4,2b = a b a b a b⋅== =1x -()1,1a =-()4,2b = b a ()1,1a b a a a ⋅⋅==-()ππ)02,22f x x ωϕωϕ⎛⎫=+<≤-<< ⎪⎝⎭()f x ()24f x x π⎛⎫=- ⎪⎝⎭()f x 3π8()π14g x f x ⎛⎫=++ ⎪⎝⎭ππ,182k ⎛⎫-+ ⎪⎝⎭Z k ∈()1f x =()0,m 5π13π,24m ⎛⎫∈ ⎪⎝⎭()f x ()g x解判断C ,把问题转化为根的问题,找到第7个根,即可求解范围判断D.【详解】对A ,由,即又,所以,又的图象过点,则,即,所以,即得,,又,所以,所以,故A 正确;对B ,向右平移个单位后得,为奇函数,故B正确;对于C ,,令得,所以对称中心,,故C 正确;对于D ,由, 得,因为,所以,令,解得.又在上有6个根,则根从小到大为,再令,解得,则第7个根为,,故D 错误.πsin 24x ⎛⎫-= ⎪⎝⎭()01f =-1ϕ=-sin ϕ=ππ22ϕ-<<π4ϕ=-()f x π,08⎛⎫ ⎪⎝⎭π08f ⎛⎫= ⎪⎝⎭ππsin 084ω⎛⎫-= ⎪⎝⎭πππ84k ω-=82k ω=+Z k ∈02ω<≤2ω=π()24f x x ⎛⎫=- ⎪⎝⎭()f x 3π83π3ππ2π)884y f x x x x ⎡⎤⎛⎫⎛⎫=-=--=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦πππ()2121444g x x x ⎡⎤⎛⎫⎛⎫=+-+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()π2π4x k k +=∈Z ()ππ82k x k =-+∈Z ππ,182k ⎛⎫-+ ⎪⎝⎭Z k ∈()1f x =πsin 24x ⎛⎫-= ⎪⎝⎭(0,)x m ∈πππ2,2444x m ⎛⎫-∈-- ⎪⎝⎭4444444ππ3π9π11π17π19π2,,,,,m -=ππ5π3π9π5π,,,,,424242m =()0,m ππ5π3π9π5π,,,,,424242π25π244m -=13π4m =13π45π13π,24m ⎛⎤∈ ⎥⎝⎦故选:ABC .12. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且,则下列说法正确的是( )A. 若,则B. 若,且只有一解,则b 的取值范围为C. 若,且为锐角三角形,则周长的取值范围为D. 若为锐角三角形,,则AC 边上的高的取值范围为【答案】AC 【解析】【分析】根据正弦定理边角互化可得,即可根据余弦定理,结合不等式求解A ;根据正弦定理即可求解B ,根据正弦定理,结合三角恒等变换以及三角函数的性质即可求C ,根据余弦定理得,即可根据二次函数的性质求解D.【详解】由正弦定理可得,即因为,所以,所以,对于A ,若,由余弦定理得,由,,可得,即,当且仅当时等号成立,则面积,所以,故A 正确;对于B ,若,且,由正弦定理得,所以,2cos cos c B b C a +=π3A =ABC π4A =ABC (]0,1π3A =ABC ABC (1⎤⎦ABC 2AC =1a =235c <<sin cos sin cos sin C B B C a A +=()sin sin sin B C A a A +==0πA <<sin 0A ≠1a =π3A =22222π1cos cos 322b c a b c A bc bc+-+-===0b >0c >2212b c bc bc +=+³1bc ≤b c =ABC 11sin 22bc A ≤⨯=ABC π4A =1a =1πsin sin 4b B=πsin sin4B b ==当,时有一解,故B 错误;对于C ,若,由正弦定理得,由于为锐角三角形,故且,故,因此,故,故C 正确;对于D ,由于为锐角三角形,,,所,故AC 边上的高为,故D 错误.故选:AC第Ⅱ卷 非选择题(满分90分)三、填空题(本题共4小题,每小题5分,共20分)13. 在中,已知,则角为_________.【答案】【解析】【分析】利用余弦定理的变形形式即可求解.【详解】在中,,所以,,sin 1B =1=b =π3A =sin a A =)2π1sin sin 1sin sin 3a b c B C B B ⎫⎛⎫++=++=++- ⎪⎪⎝⎭⎭3π1sin 12sin 26B B B ⎫⎛⎫=+=++⎪ ⎪⎪⎝⎭⎭ABC π02B <<2ππ032B <-<ππ62B <<ππ2π,633B ⎛⎫+∈ ⎪⎝⎭(π12sin 16a b c B ⎛⎫⎤++=++∈+ ⎪⎦⎝⎭ABC 2AC b ==1a =2222222222222533541a b c c a c b c c c b a c ⎧⎧+>>⎪⎪+>⇒>⇒<<⎨⎨⎪⎪+>+>⎩⎩sin a C ⎫===⎪⎪⎭ABC 222c a b ab =+-C 3πABC 222c a b ab =+-222ab a b c =+-2221cos 222a b c ab C ab ab +-===又因为,所以.故答案为:【点睛】本题考查了余弦定理解三角形,考查了基本知识的掌握情况,属于基础题.14. 函数,最大值是______.【答案】2【解析】【分析】利用辅助角公式,结合定义域求解出函数的最大值.【详解】,又,,.的最大值为2.故答案为:215.如图,风景秀美的宝湖公园有一颗高大的银杏树,某研究小组为测量树的高度,在地面上选取了两点,从两点测得树尖的仰角分别为和,且两点间的距离为,则这颗银杏树的高度为_________________.【答案】【解析】的0C π<<3C π=3πsin y x x =[]0,πx ∈1sin 2sin 2y x x x x ⎛⎫=+=⋅+ ⎪ ⎪⎝⎭=πππ2cos sin sin cos 2sin 333x x x ⎛⎫⎛⎫⋅+=+ ⎪ ⎪⎝⎭⎝⎭[0,π]x ∈ ππ4π,333x ⎡⎤∴+∈⎢⎥⎣⎦πsin 3x ⎡⎤⎛⎫∴+∈⎢⎥ ⎪⎝⎭⎣⎦π2sin 23x ⎛⎫⎡⎤∴+∈ ⎪⎣⎦⎝⎭sin y x x ∴=+,A B ,A B 30 45 ,A B 20m m 1)+【分析】在中,利用余弦定理求出,再利用直角三角形的边角关系求解即得.【详解】在中,,由正弦定理得,则,在中,,因此,所以这颗银杏树的高度为.故答案为:16. 已知向量,满足,,且,若向量与的夹角为30°,则的最大值是___________.【答案】【解析】【分析】设证明四点共圆.设外接圆半径为,要使最大,所以必须过圆心,利用正弦、余弦定理求出即得解.【详解】设所以, 所以,ABC BC ABC 20,30,15AB A ACB ==∠= 1sin15sin(4530)2=-==sin 30sin15BC AB =BC ==Rt BCD 90BDC ∠= sin 451)CD BC ==+=+ 1)m +1)+a →b →1a →=b = 32a b ⋅=- - a c b c -||c →,,,OA a OB b OC c →→→→→→===,,,O A B C R ||c →OC 2R ,,,OA a OB b OC c →→→→→→===,a c CA b c CB →→→→→→-=-=30ACB ∠=所以,因为,所以所以四点共圆.设外接圆半径为,要使最大,所以必须过圆心,此时,在中,由余弦定理得.由正弦定理得.故答案为:四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 设复数,其中.(1)若是纯虚数,求的值;(2)所对应的点在复平面的第四象限内,求的取值范围.【答案】(1) (2)【解析】【分析】(1)根据纯虚数的定义可得到解方程即可;(2)根据复数对应的点在复平面的第四象限内可以得到,解不等式即可.【小问1详解】是纯虚数,只需,解得.【小问2详解】cos ,||||a ba b a b →→→→→→<>=== ,[0180]a b →→<>∈ ,,150,150.a b AOB →→<>=∴∠= ,,,O A B C R ||c →OC OAB2137,AB AB =+-=∴=2sin ABOC R AOB===∠()22276i z a a a a =+-+-+R a ∈z a z a 2-()1,62220760a a a a ⎧+-=⎨-+≠⎩2220760a a a a ⎧+->⎨-+<⎩z 2220760a a a a ⎧+-=⎨-+≠⎩2a =-由题意知,解得,故当时,所对应的点在复平面的第四象限内.18. 已知函数.(1)把化为的形式,并求的最小正周期;(2)求的单调递增区间以及对称中心.【答案】(1); (2),;,【解析】【分析】(1)先降幂,由两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦型函数性质求解;(2)由正弦型函数的单调区间可得,根据正弦型函数的对称中心可求解对称中心.【小问1详解】,所以最小正周期为.【小问2详解】由,,解得,,所以的增区间为,.由,,2220760a a a a ⎧+->⎨-+<⎩16a <<16a <<z ()22cos cos sin f x x x x x =+-()f x sin()y A x ωϕ=+()f x ()f x ()2sin 26f x x π⎛⎫=+⎪⎝⎭ππππ,π36k k ⎡⎤-+⎢⎥⎣⎦k ∈Z ππ,0212k⎛⎫- ⎪⎝⎭k ∈Z ()2cos 2f x x x =+π2sin 26x ⎛⎫=+ ⎪⎝⎭2ππ2T ==πππ2π22π262k x k -≤+≤+k ∈Z ππππ36k x k -≤≤+k ∈Z ()f x πππ,π36k k ⎡⎤-+⎢⎥⎣⎦k ∈Z π2π6x k +=k ∈Z解得,,所以对称中心为,.19. 在中,,,边,上的点,满足,,为中点.(1)设,求实数,的值;(2)若,求边的长.【答案】(1),; (2)8.【解析】【分析】(1)根据平面向量线性运算法则及平面向量基本定理计算可得;(2)用、表示出,再根据数量积的运算律及定义计算可得.【小问1详解】因为,,所以,,所以,又,且、不共线,ππ212k x =-k ∈Z ππ,0212k⎛⎫-⎪⎝⎭k ∈Z ABC 6BC =60ACB ∠=︒AB BC M N 13BM MA =2BN NC =P AC NM CB CA λμ=+u u u r u u r u u rλμ8BP NM ⋅=-AC 512λ=14μ=CB CA BP13BM MA = 2BN NC = 14BM BA = 23BN BC = 1243NM BM BN BA BC=-=-u u u r u u u r u u u r u u r u u u r()125143124BC CA BC CB CA =+-=+u uu r u u r u u u r u u r u u r NM CB CA λμ=+u u u r u u r u u r CB CA所以,;【小问2详解】因为,所以,解得或(舍去),即边的长为.20. 在第六章平面向量初步中我们学习了向量的加法、减法和数乘向量三种运算,以及由它们组合成的线性运算那向量乘法该怎样运算呢?数学中向量的乘法有两种:数量积和向量积(又称为“·乘”,“×乘”).向量与的向量积记作:.其中的运算结果是一个向量,其方向垂直于向量与所在平面,它的长度.现在我们定义一种运算规则“”.设平面内两个非零向量而,元的夹角为,规定示.试求解下列问题:(1)已知向量,满足,,,求的值;(2)已知向量,,,求的最小值.【答案】(1)2 (2)9【解析】【分析】(1)借助新定义计算即可得;(2)借助所给定义及三角函数间的关系,计算可得,代入数据,结合基本不等式计算即可得.【小问1详解】由己知,得,512λ=14μ=12BP BC CD CB CA =+=-+u u r u u u r u u u r u u r u u r1512124BP NM CB CA CB CA ⎛⎫⎛⎫⋅=-+⋅+ ⎪ ⎪⎝⎭⎝⎭u u r u u u r u u r u u r u u r u u r 2251112248CB CB CA CA =--⋅+u u r u u r u ur u u r 225111668122428CA CA =-⨯-⨯⨯⨯+⨯=- 8CA = 7CA =-AC 8aba b ⨯ a b ⨯a bsin a b a b θ⨯= ⊗θ||||sin m n m n θ≡⊗=r r r ra b (2,1)a = 2b = 4a b ⋅= a b ⊗ 12,cos sin a αα⎛⎫= ⎪⎝⎭r 21,sin cos b αα⎛⎫=- ⎪⎝⎭r π0,2α⎛⎫∈ ⎪⎝⎭a b ⊗ 1221sin a b a b x y x y θ⊗==-()2,1a = a =所以,即,又,所以,所以;【小问2详解】法一:设,,则,,所以,所以,故,,当且仅当,即时等号成立.所以的最小值的最小是9.法二:,故.故.故cos 44a b a b θθ⋅=⋅=⇒=cos θ=0πθ<<sin θ=||||sin 2a b a b θ⊗===r r r r 11(,)a x y = 22(,)= b x y ||a =r ||b =r cos ||||a ba b θ⋅==⋅r r r rsin θ===1221||||sin ||a b a b x y x y θ⊗==-r rr r 22221414cos sin cos sin a b αααα⊗=--=+ 22222222221414sin 4cos (cos sin )5cos sin cos sin cos sin αααααααααα⎛⎫+=++=++ ⎪⎝⎭59≥+=2222sin 4cos cos sin αααα=tan α=a b ⊗ 12210cos sin sin cos a b αααα⎛⎫⋅=⋅+⋅-= ⎪⎝⎭a b ⊥ sin ,1a b = 2214sin ,cos sin a b a b a b αα⊗==+22222222221414sin 4cos (cos sin )5cos sin cos sin cos sin αααααααααα⎛⎫+=++=++ ⎪⎝⎭,当且仅当,即时等号成立.所以的最小值的最小是9.21. 为了丰富同学们的课外实践活动,某中学拟对生物实践基地(△ABC 区域)进行分区改造.△BNC 区域为蔬菜种植区,△CMA区域规划为水果种植区,蔬菜和水果种植区由专人统一管理,△MNC 区域规划为学生自主栽培区.△MNC 的周围将筑起护栏.已知m ,m ,,,设.(1)若m ,求护栏的长度(△MNC 的周长);(2)试用表示△MNC 的面积,并研究△MNC 的面积是否有最小值?若有,请求出其最小值;若没有,请说明理由.【答案】(1)(m) (2),最小值为.【解析】【分析】(1)利用余弦定理证得,从而判断得是正三角形,由此得解;(2)在与中,利用正弦定理求得与关于的表达式,从而利用三角形的面积公式得到关于的表达式,再结合三角函数的最值即可得解.【小问1详解】依题意,在中,m ,m ,,所以,则,,即,所以,又,故,所以是正三角形,则m ,m ,59≥+=2222sin 4cos cos sin αααα=tan α=a b ⊗20AC =40AB =60BAC ∠=︒30MCN ∠=︒ACM θ∠=10AM =θ30+S =(23002m -AM CM ⊥ANC ANC ACM CN CM θCMN S θAMC 20AC =10AM =60BAC ∠=︒2222cos 300CM AM AC AM AC A =+-⋅=1CM =222AC CM AM =+AM CM ⊥30ACM ∠=︒30MCN ∠=︒60ACN∠=︒ANC 20CN AN AC ===10MN AN AM =-=所以护栏的长度为(m ).【小问2详解】学生自主栽培区的面积有最小值,理由如下:设,在△ANC 中,,则,由正弦定理得,得在中,,由正弦定理得,得所以,所以当且仅当,即时,.22. 在锐角中,内角A ,B ,C 所对的边分别为a ,b ,c ,满足.(1)求证:;(2)若,求a 边的范围;(3)求的取值范围.【答案】(1)证明见解析 (2)30CMCN MN ++=+MNC (23002m -060()ACM θθ∠=︒<<︒30MCN ∠=︒()180603090ANC θθ∠=︒-︒-+︒=︒-20sin 60sin(90)cos CN AC θθ==︒︒-CN =ACM 18060120CMA θθ∠=︒-︒-=︒-sin 60sin(120)CM AC θ=︒︒-CM =1300sin 3024sin(120)cos CMN S CM CN θθ︒-︒=⋅⋅=△3004(sin120cos cos120sin )cos θθθ=︒-︒===26090θ+︒=︒15θ=︒CMN (23002m =ABC 22a b bc -=2A B =1b =112sin tan tan A B A-+(3).【解析】【分析】(1)由,进而得到,再利用正弦定理将边转化为角,利用两角和的正弦公式求解;法二:由,利用正弦定理转化为,进而得到,再利用和差化积求解.(2)由(1)知,进而得到,再根据为锐角三角形,得到,再由,利用正弦定理求解;(3)由(2)知,转化为,再令,得到求解.【小问1详解】解:因为,所以,由正弦定理可得,又因为,代入可得,即,因为,,则,故,所以或,即或(舍去),所以.法二:由正弦定理可得:,则,则,⎫⎪⎪⎭22222cos a b c bc A b bc =+-=+2cos c b b A -=22a b bc -=22sin sin sin sin A B B C -=()()sin sin sin sin sin sin A B A B B C +-=2A B =π3C B =-ABC 64ππ,B ⎛⎫∈ ⎪⎝⎭1b =ππ2,32A B ⎛⎫=∈ ⎪⎝⎭1112sin 2sin tan tan sin A A B A A -+=+sin A t =12y t t=+22222cos a b c bc A b bc =+-=+2cos c b b A -=sin sin 2sin cos C B B A -=()sin sin sin cos cos sin C A B A B A B =+=+sin cos Cos sin sin A B A B B -=()sin sin A B B -=0A <πB <sin 0B >0πA B <-<A B B -=πA B B -+=2A B =πA =2A B =22sin sin sin sin A B B C -=()()sin sin sin sin sin sin A B A B B C +-=2sincos 2sin cos sin()sin(-)sin sin 2222A B A B A B A BA B A B B C +--+⨯=+⨯=又,故,因为,,则,故,所以或,即或(舍去),【小问2详解】因为为锐角三角形,,所以,由,解得,又故.小问3详解】由(2)知.由,,令,则在上单调递增,所以,所以的取值范围为.【()sin sin 0A B C +=≠()sin sin A B B -=0A <πB <sin 0B >0πA B <-<A B B -=πA B B -+=2A B =πA =ABC 2A B =π3C B =-π02π022π0π32B B B ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩64ππ,B ⎛⎫∈ ⎪⎝⎭1b =sin 2cos sin b A a B B ==∈ππ2,32A B ⎛⎫=∈ ⎪⎝⎭11cos cos 2sin 2sin tan tan sin sin B A A A B A B A-+=-+sin()12sin 2sin sin sin sin A B A A A B A-=+=+sin A t =12y t t =+t ⎫∈⎪⎪⎭y ⎫∈⎪⎪⎭112sin tan tan A B A -+⎫⎪⎪⎭。
山东省聊城市聊城一中2023-2024学年下学期期中考试高一数学试题(含答案)
2023-2024学年第二学期期中考试高一数学试题时间:120分钟分值:150分第Ⅰ卷(58分)一、单选题本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中;只有一个选项符合题目要求.1.若复数是纯虚数,则的共轪复数( )A .B .C .D .12.如图所示的中,点是线段上犁近的三等分点,点是线段的中点,则()A .B .C .D .3.如下图;正方形的边长为.它是水平放罝的一个平面图形的直观图,则图形的周长是()A .B .C .D .4.已知是两个不共线的向量,.若与是共线向量,实数的值为( )A .B .C .D .5.在等腰中,平分且与相交于点,则向量在上的投影向量为()A.B .CD6.下列命题正确的是()A .若是两条直线,是两个平面,且,则是异面直线()i1ia z a -=∈+R z z =1-i-iABC △D AC A E AB DE =1136BA BC--1163BA BC--5163BA BC--5163BA BC-+O A B C ''''2cm 16cm 8cm 4+12,e e 12122,2e e b e e a k =-=+ a bk 6-5-4-3-ABC △120,BAC AD ∠=︒BAC ∠BC D BD BA32BA34BABA a b 、,αβ,a b αβ⊂⊂a b 、B .四边形可以确定一个甲面C .已知两条相交直线,且平面,则与的位置关系是相交D .两两相交且不共点的三条直线确定一个平面7.已知点在所在平面内,且,,则点依次是的( )A .重心、外心、垂心B .重心、外心、内心C .外心、重心、垂心D .外心、重心、内心8.如图,在中,已知边上的两条中线相交于点,求的余弦值.()二、多选题本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.(多选)中,根据下列条件解三角形,其中有一解的是( )A .B .C .D .10.如图,透明望料制成的长方体内灌进一些水,固定容器底面一边于水平地面上,再将容器倾斜,随着倾斜度不同,其中正确的命题的是()A .没有水的部分始终呈棱柱形;B .水面所在四边形的面积为定值;C .棱始终与水面所在平面平行;D .当容器倾斜如图(3)所示时,是定值.11.《数书九章》是南宋时期杰出数学家秦九韶的著作,全书十八卷,共八十一个问题,分为九类,每类九个问题,《数书九章》中记录了秦九韶的许多创造性成就,其中在卷五“三斜求积术”中提出了已知三角形三边a b 、a ∥αb αO N P 、、ABC △,0OA OBOC NA NB NC ==++=PA PB PB PC PC PA ⋅=⋅=⋅O N P 、、ABC △ABC △2,5,60,,AB AC BAC BC AC ==∠=︒,AM BM P MPN ∠ABC △7,3,30b c c ===︒5,4,45b c B ===︒6,60a b B ===︒20,30,30a b A ===︒1111ABCD A B C D -BC EFGH 11A D BE BF ⋅,求面积的公式,这与古希腊的海伦公式完全等价,其求法是:“以少广求之,以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂减上,余四约之,为实:一为从隅,开平方得积.”若把以上这段文字写成公式,即.现有满足的面积)A .的周长为B .三个内角满足C .D .的中线的长为三、填空题本题共3小题,每小题5分,共15分.12.已知点,向旦,点是线段的三等分点,求点的坐标________.13.如图是一个正方体的展开图,如果将它还原为正方体,那么在这四条线段中,有________对异面直线?14.如下图,在中,点是的中点,过点的直线分别交直线于不同的两点M ,N .设,则________.四、解答题本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)如图,圆锥的底面直径和高均是,过的中点作平行于底面的截面,以该截面为底面挖去一个圆柱,求剩下几何体的表面积和体积.,,a b c S =ABC △sin :sin :sin 2:3:A B C =ABC △S =ABC △10+ABC △,,A B C 2C A B=+ABC △ABC △CD ()0,0O ()()2,3,6,3O OA B ==-P AB P ,,,AB CD EF GH ABC △O BC O ,AB AC ,AB mAM AC nAN ==m n +=PO a PO O '16.(15分)在复平面内,点对应的复数分别是(其中是虚数单位),设向量对应的复数为.(1)求复数;(2)求;(3)若,且是纯虚数,求实数的值.17.(15分)如图,是海面上位于东西方向相距海里的两个观测点,现位于点北偏东点北偏西的点有一艘轮船发出求救信号,位于点南偏西且与点相距海里的点的救援船立即前往营救,其航行速度为30海里/小时,试求:(1)轮船D 与观测点B 的距离;(2)救援船到达D点所需要的时间.18.(17分)在等腰梯形中,,动点分别在线段和上(不包含端点),和交于点,且.(1)用向量,表示向量;(2)求的取值范围;(3)是否存在点,使得.若存在,求;若不存在,说明理由.19.(17分)“费马点”是由十七世纪法国数学家费马提出并征解的一个问题.该问题是:“在一个三角形内求作一点,使其与此三角形的三个顶点的距离之和最小.”意大利数学家托里拆利给出了解答,当的,A B 23i,12i ++i BAz z 2z z z +⋅1i z m =+1z zm A B 、(53+A 45,B ︒60︒D B 60︒B C ABCD ,60,1,2,3AB DC DAB CD AD AB ∠=︒===∥,E F BC DC AE BD μ(),1BC D BE DC F λλ=⋅=- AB AD ,AE AF 2AE AF +E 8AM DM BM EM =λABC △三个内角均小于120°时,使得的点O 即为费马点,当有一个内角大于或等于时,最大内角的顶点为费马点.试用以上知识解决下面问题:已知的内角所对的边分别为,且.(1)求;(2)若,设点为的费马点,求;(3)设点为的费马点,,求实数的最小值.2023-2024学年第二学期期中考试高一数学试题参考答案一、单选题1.C 2.B 3.A 4.C 5.B 6.D 7.C 8.B 二、多选题9.BC 10.ACD 11.ABC三、填空题12.或 13.3 14.2四、解答题15.解:(由于是的中点,所以圆杜的高,且圆柱的底面半径为圆锥的体积为,圆柱的体积为,所以剩下几何体的体积为.剩下部分的表面积等于圆锥的面积加上圆柱的侧面积,即.(3部分面积分值分别为2、2、3分)16.解:(1)因为点对应的复数分别是,所以,所以,故.(2)因为,所以.120AOB BOC COA ∠=∠=∠=︒ABC △120︒ABC △,,A B C ,,a b c cos2cos2cos21B C A +-=A2bc =P ABC △PA PB PB PC PC PA ⋅+⋅+⋅ P ABC △PB PC t PA +=t 14,13⎛⎫- ⎪⎝⎭10,13⎛⎫⎪⎝⎭O 'PO 12OO a '=4a231ππ3212a a a⎛⎫⨯⨯⨯=⎪⎝⎭231ππ4232a a a ⎛⎫⨯⨯= ⎪⎝⎭33ππ5π123296a a ⎛⎫-=⎪⎝⎭2ππ2π2242a a a a ⎛⎫⨯+⨯+⨯⨯= ⎪⎝⎭,A B 23i,12i ++()()2,3,1,2A B ()1,1BA =1i z =+1i z =+()()222(1i)1i 1i 2i 1i 22i z z z +⋅=+++-=+-=+==(3)因为,所以,由是纯虚数,可知且,解得.17.解:(1)由在的北偏东,在的北偏西,,由正弦定理得,又,代入上式得:,答:轮船与观测点的距离为海里;(2)中,海里,海里,,,,解得海里,(小时),答:救援船到达D 所需的时间为1小时.18.解(1)因为,所以.又.(2),因为,所以1i z m =+()()()()()1i 1i 11i i 11i 1i 1i 1i 222m m m z m m mz +-++-++-====+++-1z z 102m +=102m -≠1m =-D A 45︒B 60︒45,30,105DAB DBA ADB ∴∠=︒∠=︒∴∠=︒,sin sin sin 45AB BD BD ADB DAB ==∠∠︒()sin105sin 4560sin 45cos60cos45sin 660︒=︒+︒=︒︒+︒︒=BD =D B BCD △BD =BC =60DBC ∠=︒22212cos60300120022DC BD BC BD BC ∴=+-⨯⨯︒=+-⨯⨯2900DC ∴=30DC =30130t ∴==()1233BE BC BA A AD D DC AB AD AB AB λλλλλ⎛⎫==++=-++=-+ ⎪⎝⎭213AE AB BE AB AD λλ⎛⎫=+=-+ ⎪⎝⎭()113AF A AD DF AD DC AB D λλ-=+=+-=+()542233A AE F AB AD λλ⎛⎫+=-++ ⎪⎝⎭3,2,32cos603AB AD AB AD ==⋅=⨯⨯︒=()()22222254545422(2)22333333AE AF AB AB AD AD AB ADλλλλλλ⎡⎤⎛⎫⎛⎫⎛⎫+=-++=-+++-+⋅ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.因为动点分别在线段和上゙且不包含端点,所以,所以所以的取值范围是.(3)设,其中,则,因为,由平面向量基本定理,得解得,由,得,故,所以,解得,或.因为,所以.19.解:(1)由已知中,即,故,由正弦定理可得,故直角三角形,即;(2)由(1)可得,所以三角形的三个角都小于,则由费马点定义可知:()2254549624(2)3333λλλλ⎛⎫⎛⎫=-+-+++ ⎪ ⎪⎝⎭⎝⎭2251691230611244λλλ⎛⎫=-+=-+ ⎪⎝⎭,E F BC DC 01λ<<24322AE AF AF <+<+<2A A E F +,tME B M D M M s A ==,0s t >()1111s s s s AB BM AB BD AB AD AB AB AD s s sM s A =+=+=+-=+++++ 21113t t AE AB AD t A t M λ⎡⎤⎛⎫==-+ ⎪⎢⎥++⎝⎭⎣⎦121,113.11t s t s t s tλλ⎧⎛⎫=- ⎪⎪⎪++⎝⎭⎨⎪=⎪++⎩3,323.s t λλλ⎧=⎪⎪-⎨⎪=⎪⎩8AM DM BM EM = 8AM DM t ME DM s MD EM ==8t s =33832λλλ=-12λ=34-01λ<<12λ=ABC △cos2cos2cos21B C A +-=22212sin 12sin 12sin 1B C A -+--+=222sin sin sin A B C =+222a b c =+ABC △π2A =π2A =ABC 120︒,设,由,得,整理得,则;(3)点为的费马点,则,设,则由,得:由余弦定理得,,,故由,得.即,而,故,当且仅当,结合,解得时,等号成立.又,即有,解得(舍去).故实数的最小值为120APB BPC APC∠=∠=∠=︒,,PA x PB y PC z===APB BPC APC ABCS S S S++=△△△△111122222xy yz xz++=⨯xy yz xz++=11112222PA PB PB PC PA PC xy yz xz⎛⎫⎛⎫⎛⎫⋅+⋅+⋅=⋅-+⋅-+⋅-=-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭P ABC△2π3APB BPC CPA∠=∠=∠=,,,0,0,0PB m PA PC n PA PA x m n x===>>>PB PC t PA+=m n t+=()22222222π||2cos13AB x m x mx m m x=+-=++()22222222π||2cos13AC x n x nx n n x=+-=++()2222222222π||2cos3BC m x n x mnx m n mn x=+-=++222AC AB BC+=()()()222222211n n x m m x m n mn x+++++=++2m n mn++=0,0m n>>222m nm n mn+⎛⎫++=≤ ⎪⎝⎭m n=2m n mn++=1m n==+m n t+=2480t t--≥2t≥+2t≤-t2。
广东省广州天省实验学校2023-2024学年高一下学期期中考试数学试卷(含简单答案)
广州天省实验学校2023-2024学年高一下学期期中考试数学试题注意:1.考试时间为120分钟.满分为150分.2.试卷分为第Ⅰ卷(选择题)与第Ⅱ卷(非选择题)两部分.3.选择题答案必须用2B 铅笔在答题卡对应题号答题框内填涂,非选择题需在问卷指定位置作答.第Ⅰ卷(选择题)一、选择题:本大题共8小题,只有一项符合题目要求,每小题5分,共40分.1. 已知,则复数的共轭复数是( )A. B. C. D. 2. 如图,已知等腰直角三角形是一个平面图形的直观图,,斜边,则这个平面图形的面积是( )A. B. 1 C. D. 3. 已知向量,则“”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4. 如图,在正四面体中,是的中点,P 是线段上的动点,则直线和所成角的大小()()1i 2i z +=z 1i +1i -+1i -1i --O A B '''O A A B ''''=2O B ''=()()1,1,,2a m b m =-=- 2m =a b ⊥ ABCD M BC AM DP BCA. 一定为B. 一定为C. 一定为D. 与P 的位置有关5.已知,若与的夹角为,则在上的投影向量为( )A. B. C. D. 6. 在中,,,为( ).A. B. C. D.7. 为捍卫国家南海主权,我国海军在南海海域进行例行巡逻,某天,一艘巡逻舰从海岛A 出发,沿南偏东75°的方向航行到达海岛B ,然后再从海岛B 出发,沿北偏东45°的方向航行了海里到达海岛C .若巡逻舰从海岛A以北偏东60°的航向出发沿直线到达海岛C ,则航行路程AC (单位:海里)为( )A B.C. D. 8. 如图,直三棱柱的底面为直角三角形,,,,P 是上一动点,则的最小值为( )A B. C. D. 二、选择题:本大题共4小题,每小题5分,共20分,全部选对的得5分,部分选对的得2分,有选错的得0分9. 已知复数,则下列说法正确的是( )A. 的共轭复数是..90︒60︒45︒2b a = a b 120 2ab - b 3b- 32b- 12b -3bABC V 60A ∠=︒1b =ABC V sin a A111ABC A B C -90ACB ∠=︒6AC =1BC CC ==1BC 1CP PA +1i z =+z 1i-B. 的虚部是C.D. 若复数满足,则的最大值是10. 已知,是两个不同的平面,l ,m 是两条不同的直线,则下列说法正确的有( )A. 若,,则B. 若,,,则C. 若,,,则D. 若,,,则11. 锐角△ABC 中,内角A ,B ,C 所对边分别为a ,b ,c ,且,下列结论正确的是( )A. A =2BB. B 的取值范围为C. 的取值范围为D. 的取值范围为12. 如图,在边长为2的正方形中,E 、F 分别是、的中点.若沿SE 、SF及EF 把这个正方形折成一个四面体,使、、三点重合,重合后的点记为G ,则( )A. B. 点G 到平面SEF的距离为C. 三棱锥的外接球表面积为D. 二面角等于第Ⅱ卷(非选择题)三、填空题:本题共4小题,每小题5分,共20分.13. 若,,则线段AB 的靠近B 的三等分点P 的坐标为______.14. 是关于的方程的根,______.z ii z z=0z 01z z -=0z 1+αβl α∥m α∥l m∥l α∥αβ∥⊂/l βl β∥l α⊥m β⊥αβ⊥l m ⊥αβ⊥m αβ= l m ⊥l β⊥2cos c b b A -=0,4π⎛⎫ ⎪⎝⎭a b 112sin tan tan A B A -+⎫⎪⎪⎭123SG G G 12G G 23G G 1G 2G 3G GS EF⊥34G SEF -6πE GSF --45︒()3,6AB =- ()2,3B -43i -+x 20(,R)x px q p q ++=∈p =15. 已知圆锥侧面展开图是一个半径为的半圆,则圆锥的底面半径为______;若该圆锥的顶点及底面圆周在球O 的表面上,则球O 的体积为______.16. 中国有悠久的金石文化,印信是金石文化的代表之一.如下图的印信,可以看成是将一个棱长等于2cm 的正方体截去8个一样的四面体之后得到的,则该印信的所有棱长之和等于______cm ,该印信的表面积等于______.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 如图,在中,是的中点,点在上,且与交于点,设.(1)求的值;(2)当时,求的值.18. 已知向量(1)向量夹角的余弦值;(2)若向量与垂直,求实数k 的值;(3)若向量,且与向量平行,求实数k 的值.19. 在中,内角A ,B ,C 所对边的长分别为a ,b ,c ,且满足.(1)求A ;(2)若,,AD 是的中线,求AD 的长.20. 已知四棱锥A —BCDE ,AB =BC =AC =BE =1,CD =2BE =2,CD 面ABC ,BE ∥CD ,F 为AD 中点.的的2cm ABC V D BC E AB 2,BE EA AD =CE O AO AD λ= λ5,3AB AC ==AO BC ⋅ ()()()3,1,1,2,a b m a kb k =-=-=+∈R ,a b m 2a b - (1,1)c =- m kb c + ABC V cossin 2B C b a B +=a =3BA AC ⋅= ABC V ⊥(1)求证:EF ∥面ABC ;(2)求四棱锥A —BCDE 体积,21. 如图,为矩形,为梯形,平面平面,,,.(1)若为中点,求证:平面;(2)求直线与直线所成角的大小;(3)设平面平面,试判断与平面能否垂直?并求平面与平面所成锐二面角的大小.22. 若函数,的角,,的对边分别为,,,且.(1)当取最大值时,判断的形状;(2)在中,为边的中点,且,求的长.的PDCE ABCD PDCE ⊥ABCD 90BAD ADC ∠=∠=︒12AB AD CD a ===PD =M PA AC ∥MDE PB CD PAD ⋂EBC l =l ABCD PAD EBC 2()2cos 2x f x x =+ABC V A B C a b c ()3f A =b c a+ABC V ABC V D BC AD =2AC =BC广州天省实验学校2023-2024学年高一下学期期中考试数学试题简要答案第Ⅰ卷(选择题)一、选择题:本大题共8小题,只有一项符合题目要求,每小题5分,共40分.【1题答案】【答案】C【2题答案】【答案】A【3题答案】【答案】A【4题答案】【答案】A【5题答案】【答案】B【6题答案】【答案】B【7题答案】【答案】D【8题答案】【答案】A二、选择题:本大题共4小题,每小题5分,共20分,全部选对的得5分,部分选对的得2分,有选错的得0分【9题答案】【答案】AD【10题答案】【答案】BC【11题答案】【答案】ACD【12题答案】【答案】AC第Ⅱ卷(非选择题)三、填空题:本题共4小题,每小题5分,共20分.【13题答案】【答案】【14题答案】【答案】【15题答案】【答案】 ①.②. 【16题答案】【答案】 ①.②. 四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.【17题答案】【答案】(1) (2)【18题答案】【答案】(1)(2)(3)【19题答案】【答案】(1) (2【20题答案】【答案】(1)证明略;(2【21题答案】(3,5)-832π312+12λ=4-53k =13k =-23A π=【答案】(1)证明略(2)(3)垂直,【22题答案】【答案】(1)是等边三角形;(2).3π4πABCV BC=。
重庆市2023-2024学年高一下学期期中考试数学试卷含答案
重庆市2023-2024学年高一(下)期中数学试卷(答案在最后)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.(5分)已知复数,则的虚部是()A.﹣i B.﹣1C.i D.12.(5分)设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A.若m∥n,m∥α,则n∥αB.若α∥β,m⊂α,n⊂β,则m∥nC.若m∥n,m⊥α,则n⊥αD.若α⊥β,m⊂α,n⊂β,则m⊥n3.(5分)在△ABC中,b=6,c=3,A=60°,则此三角形外接圆面积为()A.9B.9πC.36D.36π4.(5分)已知向量满足,向量与的夹角为,则在方向上的投影向量为()A.B.C.D.5.(5分)如图所示是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为自豪的发现,我们来重温这个伟大发现,圆柱的表面积与球的表面积之比为()A.B.2C.D.6.(5分)如图,在矩形ABCD中,AB=2AD,E,F分别为BC,CD的中点,G为EF中点,则=()A.B.C.D.7.(5分)嵩岳寺塔位于河南郑州登封市嵩岳寺内,历经1400多年风雨侵蚀,仍巍然屹立,是中国现存最早的砖塔.如图,为测量塔的总高度AB,选取与塔底B在同一水平面内的两个测量基点C与D,现测得∠BCD=30°,∠BDC=45°,CD=32m,在C点测得塔顶A的仰角为60°,则塔的总高度为()A.B.C.D.8.(5分)在正四棱台ABCD﹣A1B1C1D1中,AB=2A1B1=4,侧棱,若P为B1C1的中点,则过B,D,P三点截面的面积为()A.B.C.D.二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
(多选)9.(3分)已知复数z=2﹣3i,其中i是虚数单位,则下列结论正确的是()A.z的模等于13B.z在复平面内对应的点位于第四象限C.z的共轭复数为﹣2﹣3iD.若z(m+4i)是纯虚数,则m=﹣6(多选)10.(3分)设向量,,则下列叙述错误的是()A.若与的夹角为钝角,则k<2且k≠﹣2B.的最小值为2C.与共线的单位向量只有一个为D.若,则或(多选)11.(3分)在长方体ABCD﹣A1B1C1D1中,BC=2AB=2BB1=6,点E为棱BC上靠近点C的三等分点,点F是长方形ADD1A1内一动点(含边界),且直线B1F,EF与平面ADD1A1所成角的大小相等,则()A.A1F∥平面BCC1B1B.三棱锥F﹣BB1E的体积为4C.存在点F,使得A1F∥B1ED.线段A1F的长度的取值范围为[,]三、填空题:本题共3小题,每小题5分,共15分。
2023-2024学年河北省石家庄市河北高一下学期期中数学质量检测模拟试题(含解析)
2023-2024学年河北省石家庄市河北高一下册期中数学试题一、单选题1.复数z 满足()3i 12i z +=-(i 为虚数单位),则z 的虚部为()A .34B .3i4C .7i 10-D .710-【正确答案】D【分析】利用复数的除法运算求得z ,进而求得z 的虚部.【详解】()()()()12i 3i 12i 17i 17i 3i 3i 3i 101010z ----====-++-,则复数z 的虚部为710-.故选:D2.如图,在矩形ABCD 中,M 是CD 的中点,若AC AM AB λμ=+,则λμ+=()A .12B .1C .32D .2【正确答案】C【分析】由向量的平行四边形法则以及三角形法则得出12AC AM AB =+,进而得出λμ+.【详解】12AC AD AB AM MD AB AM AB =+=++=+ ,∴1λ=,12μ=,∴32λμ+=,故选:C .3.在△ABC 中,π3A =,6BC =,AB =,则C =()A .π6B .π4C .π3D .π4或3π4【正确答案】B【分析】利用正弦定理求得sin C ,进而求得C .【详解】由正弦定理得sin sin a cA C=,2,sinsin62CC==,由于c a<,所以C为锐角,所以π4C=.故选:B4.数据1,2,3,4,5,6,7,8,9的80%分位数为()A.7B.7.2C.7.5D.8【正确答案】D【分析】根据百分位数的定义计算即可得出答案.【详解】解:因为980%7.2⨯=,所以第80%分位数为第8个数,故数据1,2,3,4,5,6,7,8,9的第80百分位数为8.故选:D.5.已知向量()2,4a=r,()1,b x=,若向量a b⊥,则实数x的值是().A.2-B.12-C.12D.2【正确答案】B【分析】利用向量垂直的坐标表示即可求解.【详解】,240a b x⊥∴+=,解得12x=-.故选:B6.在ABC中,内角A,B,C所对应的边分别是a,b,c,若ABC的面积是)2224b c a+-,则A=()A.π3B.2π3C.π6D.5π6【正确答案】A【分析】根据正余弦定理及面积公式化简计算即可.【详解】由余弦定理可得:()2222cos,0,πb c a bc A A+-=∈由条件及正弦定理可得:)2221sin cos242b c aS bc A A+-===,所以tan A =,则π3A =.故选:A7.已知某企业有职工8000人,其职工年龄情况和绿色出行情况分别如图1和图2所示,则下列说法正确的是()A .该企业老年职工绿色出行的人数最多B .该企业青年职工绿色出行的人数最多C .该企业老年职工绿色出行的人数和青年职工绿色出行的人数之和与中年职工绿色出行的人数相等D .该企业绿色出行的人数占总人数的80%【正确答案】D由图中所给数据可求出该企业老年职工绿色出行的人数、中年职工绿色出行的人数和青年职工绿色出行的人数,从而进行比较即可得答案【详解】由图可知该企业老年职工绿色出行的人数是800030%90%2160⨯⨯=,中年职工绿色出行的人数是800040%80%2560⨯⨯=,青年职工绿色出行的人数是800030%70%1680⨯⨯=,则该企业职工绿色出行的人数占总人数的比例为21602560168080%8000++=,故A ,B ,C 错误,D 正确故选:D8.ABC 的外接圆圆心为O ,2AB =,3AC =,BC =AO BC ⋅=()A .52B .72C .53D .73【正确答案】A【分析】设D 是BC 边中点,由OD BC ⊥,1()2AD AB AC =+ ,BC AC AB=-,再利用数量积的运算律计算可得.【详解】如图,设D 是BC 边中点,连接,OD AO ,则OD BC ⊥,1()2AD AB AC =+ ,2211()()()()22AO BC AD DO BC AD BC DO BC AB AC AC AB AC AB ⋅=+⋅=⋅+⋅=+⋅-=- 2215(32)22=⨯-=.故选:A.二、多选题9.若11i z =+,22i z =,则()A .212z z =B .121z z z -=C .21z z 在复平面内对应的点在第二象限D .122z z -+是实数【正确答案】ABD【分析】利用复数的四则运算法则及复数的摸公式,结合复数的复数的几何意义及复数的概念即可求解.【详解】因为()22211i 12i i 2i z =+=++=,所以A 正确;因为121i z z -=-=,11i z =+=B 正确;因为()()()2212i 1i 2i 2i 2i 1i 1i 1i 1i 2z z --====+++-,它在复平面内对应的点为()1,1,所以21z z 在复平面内对应的点在第一象限,所以C 错误;因为()12221i 2i 2z z -+=-++=-,所以122z z -+是实数,所以D 正确.故选:ABD.10.下列四式可以化简为PQ的是()A .()AB PA BQ ++ B .()()AB PC BA QC ++-C .QC CQ QP +-D .PA AB BQ+- 【正确答案】ABC【分析】根据向量的运算法则依次计算即可.【详解】对选项A :()()AB PA BQ AB BQ AP AQ AP PQ ++=+-=-=,正确;对选项B :()()()()AB PC BA QC AB AB PC CQ PQ ++-=-++=,正确;对选项C :QC CQ QP QP PQ +-=-=,正确;对选项D :PA AB BQ PB BQ PQ +-=-≠,错误.故选:ABC11.2021年4月至2021年12月我国规模以上工业天然气产量保持平稳,日均产量(亿立方米)与当月增速(%)如图所示,则()备注:日均产品产量是以当月公布的我国规模以上工业企业总产量除以该月日历天数计算得到.当月增速100%-=⨯当月产量去年同期产量去年同期产量.A .2021年12月份我国规模以上工业天然气产量当月增速比上月放缓2.1个百分点B .2021年4月至2021年12月我国规模以上工业天然气产量当月增速的极差为12.6%C .2021年7月份我国规模以上工业天然气产量为153亿立方米D .2021年4月至2021年12月我国规模以上工业天然气日均产量的40%分位数为5.3亿立方米【正确答案】ABD【分析】对于A 选项,对比11月份与12月份的增速即可判断;对于B 选项,利用极差的定于即可判断;对于C 选项,计算可知7月我国规模以上工业天然气产量为5.131158.1⨯=亿立方米,从而判断C 选项错误;对于D 选项,根据40%分位数的含义求解即可【详解】2021年12月份我国规模以上工业天然气产量当月增速为2.3个百分点,11月份增速为4.4个百分点,比上月放缓2.1个百分点.故A 正确;2021年4月至12月我国规模以上工业天然气产量当月增速的极差为13.1%0.5%12.6%-=.故B 正确;2021年7月我国规模以上工业天然气产量为5.131158.1⨯=亿立方米.故C 错误2021年4月至12月我国规模以上工业天然气日均产量从小到大为5.1,5.1,5.2,5.3,5.4,5.6,5.7,5.9,6.2,因为90.4 3.6⨯=,所以该组数据的40%分位数为5.3亿立方米.故D 正确故选:ABD12.在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知60,4B b =︒=,则下列判断中正确的是()A .若π4A =,则a =B .若92a =,则该三角形有两解C .ABC 周长有最大值12D .ABC面积有最小值【正确答案】ABC【分析】对于ABC ,根据正、余弦定理结合基本不等式即可解决;对于D,由正弦定理得164sin sin sin 23ABC S ac B A C == ,根据三角恒等变换解决即可.【详解】对于A ,60,4B b ︒==,π4A =,由正弦定理得sin sin b a B A =,所以4sin 2sin 3b Aa B⨯==,故A 正确;对于B ,由正弦定理得sin sin b a B A=得,所以9sin 22sin 1416a B Ab ⨯====<,因为a b A B >⇒>,则A 有两个解,所以该三角形有两解,故B 正确;对于C ,由2222cos b a c ac B =+-,得2222223116()3()()()44a c ac a c ac a c a c a c =+-=+-≥+-+=+,所以8a c +≤,当且仅当4a c ==时取等号,此时三角形周长最大为等边三角形,周长为12,故C 正确;对于Dsin sin sin b a cB AC ===得,a A c C =,故164sin sin sin 23ABC S ac B A C ==sin(120)A A ︒=-1sin (cos sin )322A A A =+12(1cos 2)4A A ⎤=+-⎥⎣⎦11cos(260)22A ︒⎡⎤=-+⎢⎥⎣⎦1cos(2120)2A ︒⎤=-+⎥⎣⎦由于1(0,120),2120(120,120),cos(2120),12A A A ︒︒︒︒︒︒⎛⎤∈---∈- ⎝∈⎥⎦,无最小值,所以ABC面积无最小值,有最大值为D 错误.故选:C.三、填空题13.已知一组数据3,2,4,5,1,9a a --的平均数为3(其中a R ∈),则中位数为_____________.【正确答案】3.5【分析】首先根据平均数求出参数a ,即可一一列出数据,再求出数据的中位数即可;【详解】解:因为数据3,2,4,5,1,9a a --的平均数为3,所以32451936a a -+++-++=⨯,解得2a =,所以则组数据分别是3,4,4,3,1,9-,按从小到大排列分别为3,1,3,4,4,9-,故中位数为343.52+=故3.514.已知向量()1,2a =r,()4,b k = .若()()22a b a b -⊥+ ,则实数k 的值为______.【正确答案】2±【分析】根据两个向量垂直的坐标公式计算求解即可.【详解】因为()1,2a =r,()4,b k = ,所以()()22,4,26,4a b k a b k -=--+=+ ,又因为()()22a b a b -⊥+ ,所以()()()()222264440a b a b k k k -⋅+=-⨯+-+=-= ,所以2k =±.故答案为:2±.15.如图,小李开车在一条水平的公路上向正西方向前进,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶1200m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为45°,则此山的高度为______m【正确答案】【分析】利用正弦定理即可求解.【详解】由题,作出空间图形如下,则有1200m,30,105AB CAB CBA =∠=∠= ,因为到达B 处仰角为45°,所以CB CD =,在ABC 中,1803010545ACB ∠=--= ,由正弦定理可得sin sin CB AB CAB ACB=∠∠解得CB =,所以CB CD ==,故答案为:.16.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sin 2sin B A =,()()sin sin sin sin sin 0b B a B A a c C a B +-+--=,则ca=__________.【分析】利用正弦定理,将已知条件中的角化边,再由齐次式进行求解即可.【详解】∵sin 2sin B A =,∴由正弦定理,得2b a =;又∵()()sin sin sin sin sin 0b B a B A a c C a B +-+--=,∴由正弦定理,得()()20b a b a a c c ab +-+--=,将2b a =代入上式,化简整理得2230c ac a --=,两边同除以2a ,得230c ca a⎛⎫--= ⎪⎝⎭,解得c a =0c a =<(舍).故答案为.12+四、解答题17.已知z 是复数,3i z -为实数,5i2iz ---为纯虚数(i 为虚数单位).(1)求复数z ;(2)求i1z-的模.【正确答案】(1)13i z =+【分析】(1)设复数i(,R)z a b a b =+∈,根据题意3i z -为实数,5i2iz ---为纯虚数,利用复数的运算即可求解;(2)根据复数的除法运算和复数模的计算公式即可求解.【详解】(1)设复数i(,R)z a b a b =+∈,因为()3i 3i z a b -=+-为实数,所以3b =,则复数3i(R)z a a =+∈,又因为()()()()2i 2i 2i 22(4)i 224i 2i 2i 255i i 52i 5a a a a a z a --+--++-+===+--=------+为纯虚数,则22040a a -=⎧⎨+≠⎩,得1a =,所以复数13i z =+.(2)由(1)可知复数13i z =+,则()()()()1+3i 1i 1+3i 24i 12i 1i 1i 1i 1i 2z +-+====-+---+,所以i1z-=18.已知ABC 的三个内角,,A B C 所对的边分别是,,a b c ,且12,3,cos 4a b C ===-.(1)求ABC 的周长;(2)求AB 边上的高.【正确答案】(1)9(2)8【分析】(1)运用余弦定理求得c 的值即可.(2)运用同角三角函数平方关系求得sin C 的值,再运用等面积法求得AB 边上的高即可.【详解】(1)在△ABC 中,12,3,cos 4a b C ===-,由余弦定理得2222491cos 22234a b c c C ab +-+-===-⨯⨯,解得4c =,∴△ABC 的周长为2349a b c ++=++=.(2)∵1cos 4C =-,∴sin 4C ==.设AB 边上的高为h ,则11sin 22ab C ch =,即11234242h ⨯⨯⨯=⨯,解得h =.所以AB .19.在ABC 中,角A B C 、、的对边分别为,,a b c ,且满足()2cos cos 0c b A a C ++=.(1)求角A 的值;(2)若14,6a c ==,求ABC 的面积.【正确答案】(1)2π3A =;(2)【分析】(1)先用正弦定理边化角,再逆用两角和的正弦公式进行化简即可求解;(2)利用余弦定理求出b 边,然后代入三角形面积公式计算即可.【详解】(1)解:由题意知()2cos cos 0b c A a C ++=,在ABC 中,将正弦定理代入有()2sin sin cos sin cos 0B C A A C ++=,所以2sin cos sin cos sin cos 0B A C A A C ++=,即()2sin cos sin 0B A C A ++=,即()2sin cos sin π0B A B +-=,即2sin cos sin 0B A B +=,因为0πB <<,所以sin 0B ≠,所以1cos 2A =-,因为0πA <<,所以2π3A =;(2)由(1)知2π3A =,在ABC 中,由余弦定理可知222cos 2b c a A bc+-=,即2221614226b b +--=⨯⨯,解得10b =或16-(舍),所以11sin 106222ABC S bc A ==⨯⨯⨯= .20.已知向量()()()2,1,1,2,3,4a b c =-==- ,求:(1)若c ma nb =+ ﹐求m n +;(2)若()ka b c +∥ ,求k 的值.【正确答案】(1)1(2)2-【分析】(1)利用求出ma nb + ,再利用向量相等的坐标表示即可求出结果;(2)先求出ka b + ,再利用向量平行的坐标表示即可求出结果.【详解】(1)因为()()()2,1,1,2,3,4a b c =-==- ,所以(2,)ma m m =- ,(,2)nb n n = ,所以(2,2)ma nb m n m n +=+-+ ,又因为c ma nb =+ ,所以2324m n m n +=⎧⎨-+=-⎩,解得2,1m n ==-,所以1m n +=.(2)因为()()()2,1,1,2,3,4a b c =-==- ,所以(21,2)ka b k k +=+-+ ,又()ka b c +∥ ,所以(21)(4)3(2)0k k +⨯--⨯-+=,即5100k --=,所以2k =-.21.2021年3月18日,位于孝感市孝南区长兴工业园内的湖北福益康医疗科技有限公司正式落地投产,这是孝感市第一家获批的具有省级医疗器械生产许可证资质的企业,也是我市首家“一次性使用医用口罩、医用外科口罩”生产企业。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一下学期期中考试数学试题
(本试卷满分150分,考试时间为100分钟)
一、选择题共12小题,每小题5分共60分。
在每小题给出的四个选项中,只有一项符
合题目要求。
1.若直线l 不平行于平面α,且α⊄l ,则( )
A.α内的所有直线与l 异面
B.α内不存在与l 平行的直线
C.α内存在唯一的直线与l 平行
D.α内的直线与l 都相交 2. 一个球的表面积是π16,那么这个球的体积为( )
.π16 C .π24
3.某几何体的三视图如图所示,则该几何体的体积为( )
B C. D .π5
4.下列说法正确的是( )
A.空间三个点确定一个平面
B.两个平面一定将空间分成四部分
C.梯形一定是平面图形
D.两个平面有不在同一条直线上的三个交点
5.正方体1111ABCD A B C D -中,直线1BC 与AC ( )
A A. 异面且垂直
B .异面但不垂直 C.相交且垂直 D .相交但不垂直
6.一个底面半径为1,母线长均为2的圆锥和圆柱的组合体,则该组合体的侧视图的
面积为( )
A .8π
B .6π
C .
D 7.正方体1111ABCD A B C D -中,则异面直线1AB 与1BC 所成的角是( )
A .30°
B . 45°
C . 60°
D .90°
8.正方体1111D C B A ABCD -中1BC 与截面11B BDD 所成的角是
A B C D
9.如果执行程序框图,输入x =-12,那么其输出的结果是
( )
A .9
B .3
10.某程序框图如图所示,若输出的S=57,则判断框内是( ) A. k >4? B. k >5? C. k >6? D. k >7?
11.已知两个不同的平面α,β和两条不重合的直线m,n ,则下列四种说法正确的为( )
A 、若m ∥n,n ⊂α,则m ∥α
B 、若m ⊥n,m ⊥α,则n ∥α
C 、若m ⊂α,n ⊂β,α∥β,则m,n 为异面直线
D 、若α⊥β,m ⊥α,n ⊥β,则m ⊥n
12设,αβ是两个不同的平面,l 是一条直线,以下命题正确的是( )A .若,l ααβ⊥⊥,则l β⊂ B .若//,//l ααβ,则l β⊂ C .若,//l ααβ⊥,则l β⊥ D .若//,l ααβ⊥,则l β⊥ 13.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能...
是(
)
14.在正方体C A 1中,对角线C A 1与平面11BCC B 所成的角是( ) A.11CB A ∠ B. 11CC A ∠ C. CB A 1∠ D. C B A 11∠ 15.下列表示大学新生报到入学流程,正确的是( )
第10题
A.
持通知书验证缴费注册 B.持通知书验证注册缴费
C. 验证持通知书缴费注册
D. 缴费持通知书验证注册
16.设β
α,为两个平面,m
l,为两条直线,且β
⊂
⊂m
a
l,,有如下两个命题:
β
α
β
α⊥
⊥则
若
,则
若,
)2(;
//
//
)1(m
l
m
l,那么()
A.(1)是真命题,(2)是假命题
B. (1)是假命题,(2)是真命题
C. (1)(2)都是真命题
D.(1)(2)都是假命题
17.一个体积为3
8cm的正方体的顶点都在球面上,则球的体积
..是()
A.3
12cm
π D
18.已知直二面角l
αβ
--,点,,
A AC l C
α
∈⊥为垂足,,,
B BD l D
β
∈⊥为垂足,若2,1,
AB AC BD
===则D到平面ABC的距离等于()
A. B. C. D.1
二、填空题共4小题,每小题6分,共24分.把答案填在题中横线上
19.右图伪代码输出的结果是.
20.已知正方体
1111
ABCD A B C D
-中, E为
11
C D的中点,则异面直线AE与BC所成
的角的余弦值为
21.正方体ABCD-A1B1C1D1中,AB=2。
,点E为AD的中点,点F在CD上,若EF∥
平面AB1C,则线段EF的长度等于__________.
22.已知矩形ABCD的顶点都在半径为4的球O的球面上(如图),且6,
AB BC
==,
则棱锥O ABCD -的体积为 。
三、解答题(每题12分共36分,解答应写出文字说明,证明过程或演算步骤) 23.在正方体ABCD -A 1B 1C 1D 1中,E 、F 为棱AD 、AB 的中点. (1)求证:EF ∥平面CB 1D 1 (2)求证:平面CAA 1C 1⊥平面CB 1D 1
PA
AC ⊥,PA AB ⊥,
分别在棱,PB PC 上,且//DE BC ,
的中点时,求AD 与平面PAC 所成的角的正弦值;
第22题
25.如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点,求证:(1)EF⊥ A1C (2)平面A B1D1∥平面EFG;。