计算机模拟--数学建模
数学建模练习:计算机模拟公共汽车的运行情况
计算机模拟公共汽车的运行情况某公共汽车站每隔30分钟到达一辆汽车,但可能有[0,3]分钟误差,此误差大小与前一辆汽车的运行无关。
汽车最多容纳50名旅客,到达该汽车站时车内旅客人数服从[20,50]的均匀分布,到站下车的旅客人数服从[3,7]的均匀分布,每名旅客下车的时间服从[1,7]秒的均匀分布。
旅客按照每30分钟到达12个人的泊松分布到达汽车站,单队排列等车,先到先上,如果某位旅客未能上车,他不再等候。
旅客上车时间服从[4,12]秒的均匀分布。
上下车的规则是:先下后上,逐个上车,逐个下车。
假设每天共发车25辆,现在要求模拟30天汽车的运行情况,了解平均一天中在站内等候汽车的总人数、能上车及不能上车的人数、旅客排队时间分布情况、不能上车人数的分布情况。
参考解答思路:摘要计算机模拟式一般是一种能用来帮助企业经理在不确定条件下进行决策的方法。
对于复杂的随机事件系统,无法用数学计算直接进行求解,为此我们可以在计算机上进行模拟仿真,一般以时间作为变量,其他作为因变量。
本题是属于离散型的模拟,该模拟中的时间表示为整数序列,只考虑系统在这些时刻上的状态变化。
该问题是关于排队等汽车的问题,属于排队服务问题,可以采用下次事件法(也就是下次时间作为时间的起始时刻),使用计算机进行模拟。
为了使模型简单,我们假设所有等车的旅客都是同一时刻到达车站等车,则等车总时间为旅客到达时刻与上一辆汽车离开时刻的时间差,再加上旅客上车和下车的总时间。
在模型的建立过程中,先用MATLAB软件创建数据。
这里由于题目中的数据都给了,所以对于均匀分布和泊松分布,我们可以直接调用MATLAB软件中的unifrnd函数和poissrnd函数进行模拟。
在模型的求解部分,先用建立的模型模拟一天中等车总人数、能上车人数、未上车人数、平均等待时间的情况,然后用类似的方法对三十天的数据进行模拟求解,得出结论。
关键词:下次法、离散、MATLAB问题重述(略)问题分析该问题是关于排队等汽车的问题,属于排队服务问题,可以采用下次事件法,使用计算机进行模拟。
数学建模10种常用算法
数学建模10种常用算法1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问 题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处参数估计C.F.20世纪60年代,随着电子计算机的。
参数估计有多种方法,有最小二乘法、极大似然法、极大验后法、最小风险法和极小化极大熵法等。
数学建模和计算机仿真技术的研究
数学建模和计算机仿真技术的研究数学建模和计算机仿真技术是当今社会中非常重要的两个研究领域,广泛应用于各个领域,如工业制造、金融经济、医学、科学研究等等。
数学建模是指将实际问题转化为数学问题,并利用数学方法求解实际问题的过程。
而计算机仿真技术则是指利用计算机对实际问题进行模拟和分析,进而得到实际问题的解决方案的过程。
本文将从理论和应用的角度,分别讨论数学建模和计算机仿真技术的研究。
数学建模的研究数学建模的研究主要涉及到以下三个方面。
第一,数学建模的方法。
数学建模的方法主要包括问题建模、模型选择、模型求解和模型评价等。
问题建模是指了解实际问题的背景、意义、数据等信息,并将问题抽象成数学形式;模型选择是指从候选模型中选择合适的模型,并进行合适的约束和简化;模型求解是指利用现有的数学方法对模型进行求解;模型评价是指对求解结果进行判断和评价。
第二,数学建模的应用。
数学建模广泛应用于各个领域,如物理、化学、经济、医学、环境等。
具体应用包括利用数学建模预测自然灾害、优化物流系统、研究生态环境等。
第三,数学建模的研究前沿。
数学建模的研究前沿主要包括非线性数学建模、混合整数线性规划、时间序列分析等。
这些前沿问题都需要新的理论和方法来求解。
计算机仿真技术的研究计算机仿真技术的研究也包括以下几个方面。
第一,仿真软件的开发。
仿真软件是计算机仿真技术的核心,它能够模拟实际问题,并通过仿真结果来辅助决策和优化。
目前广泛应用的仿真软件包括Matlab, Simulink, Comsol等。
第二,计算机图形学的研究。
计算机图形学主要研究计算机如何呈现和处理现实世界中的图形和动画。
它与计算机仿真技术密切相关,常用于可视化仿真结果。
第三,仿真算法的研究。
仿真算法主要研究如何利用数学方法和计算机算法来模拟实际问题。
目前最常用的仿真算法包括Monte Carlo仿真、离散事件仿真等。
数学建模与计算机仿真技术的联合应用数学建模和计算机仿真技术通常相互配合应用,以实现对实际问题的深入研究和解决。
计算机仿真与建模数学建模和仿真技术
计算机仿真与建模数学建模和仿真技术计算机仿真与建模是一种基于数学模型和仿真技术的研究方法,通过使用计算机模拟和实验来预测和分析现实世界的各种现象和系统行为。
该技术在科学研究、工程设计、决策支持等领域具有广泛的应用。
一、数学建模数学建模是计算机仿真与建模的基础,它利用数学模型来描述和解决现实世界中的问题。
数学建模是一种将实际问题转化为数学形式进行描述和求解的方法,通过对问题进行抽象和简化,建立起数学模型,从而得到问题的解析解或数值解。
数学建模通常包括问题的描述、模型的建立、求解方法的选择和模型验证等步骤。
在建立模型时,需要考虑问题的物理背景、相互关系和约束条件,合理选择数学方法和工具,以及对模型进行检验和优化。
二、仿真技术仿真技术是计算机仿真与建模的关键工具,它通过创建虚拟的仿真环境,模拟实际系统的行为和演化过程。
仿真技术可以提供对系统运行状态、特征和性能等方面的详细和准确的信息。
仿真技术通常包括模型构建、参数设置、仿真运行和结果分析等步骤。
在模型构建中,需要根据实际系统的特点和需求,定义系统的组成部分和它们之间的关系;在参数设置中,需要确定各个参数的取值范围和初值;在仿真运行中,需要选择适当的仿真算法和计算机资源,进行模拟计算和结果记录;在结果分析中,需要对仿真结果进行统计分析和可视化展示,以便于对系统的行为和性能进行评估和改进。
三、应用领域计算机仿真与建模数学建模和仿真技术在各个领域都有广泛的应用。
在自然科学领域,如物理学、化学和生物学等,可以利用仿真技术模拟和预测物理过程、化学反应和生物系统的行为;在工程设计领域,如航空航天、汽车制造和建筑结构等,可以使用仿真技术验证和优化设计方案,提高产品性能和可靠性;在社会科学领域,如经济学、管理学和社会学等,可以运用仿真技术模拟和分析人类行为和社会系统的运行规律,为决策提供科学依据。
总结:计算机仿真与建模数学建模和仿真技术是一种重要的研究方法和工程技术,通过数学模型和仿真技术的应用,可以更好地理解和解决现实世界中的问题。
计算机仿真与建模方法
计算机仿真与建模方法计算机仿真与建模是一种利用计算机技术来模拟和重现现实系统或过程的方法。
它被广泛应用于各个领域,包括工程、科学、医学、社会科学等。
本文将介绍计算机仿真与建模的基本原理和常见方法,并探讨其在不同领域中的应用。
一、计算机仿真与建模的基本原理计算机仿真与建模的基本原理是通过数学模型来描述现实系统或过程,并运用计算机技术进行模拟和分析。
其基本步骤包括:系统建模、模型验证、仿真实验和结果评估。
1. 系统建模系统建模是计算机仿真与建模的第一步。
它涉及到对待模拟系统的深入了解,包括系统的结构、特性和行为规律等。
建模可以采用不同的方法,如数学建模、物理建模或逻辑建模等,具体选择取决于模拟对象的特点和研究目的。
2. 模型验证模型验证是保证仿真结果准确性的关键环节。
它包括对模型的数学基础、逻辑关系和参数设定进行检验和验证。
验证方法包括对比实测数据、与已有模型对比和理论推导等。
3. 仿真实验仿真实验是计算机仿真与建模的核心环节。
在仿真实验阶段,利用计算机技术对建立的数学模型进行模拟和分析,得到仿真结果。
实验中会根据需要对系统参数进行调整,以观察不同条件下系统的行为变化。
4. 结果评估结果评估是对仿真实验结果进行分析和评价的过程。
评估结果可以与实际系统进行对比,评估仿真模型的可靠性和准确性。
评估结果还可以为实际系统的改进提供参考和指导意见。
二、常见的计算机仿真与建模方法计算机仿真与建模方法有多种,具体的选择取决于模拟对象的特点和研究目的。
以下列举了几种常见的方法:1. 数值模拟方法数值模拟方法是计算机仿真与建模中常用的一种方法。
它通过将实际问题离散化为一系列数学方程,然后利用数值计算方法求解这些方程,得到仿真结果。
数值方法包括有限元法、差分法、有限差分法等,适用于各种工程、物理和科学领域的仿真建模。
2. 离散事件模拟方法离散事件模拟方法是一种基于事件驱动的仿真方法。
它将系统建模为一系列离散的事件,并模拟这些事件的发生时间和处理过程,得到仿真结果。
数学建模知识点总结
数学建模知识点总结数学建模是指利用数学方法和技术解决实际问题的过程。
它是一种综合运用数学思想和数学工具对实际问题进行分析和求解的能力。
在数学建模中,需要掌握一些基本的知识点和方法才能有效地进行建模和求解。
下面将对数学建模中的一些重要知识点进行总结和介绍。
一、数学建模的基本步骤数学建模的基本步骤包括问题的理解、建立数学模型、模型的求解和结果的验证四个步骤。
1. 问题的理解:在这一步骤中,需要明确问题的目标和约束条件,以及收集和整理与问题相关的数据和背景信息。
2. 建立数学模型:在这一步骤中,需要确定问题的数学描述方式,选择适当的数学方法和模型来描述问题,并将问题转化为数学问题。
3. 模型的求解:在这一步骤中,需要运用数学理论和方法对建立的数学模型进行求解,得到问题的解答。
4. 结果的验证:在这一步骤中,需要对求解结果进行验证和评估,判断模型的可行性和解答的准确性,并根据需要对模型进行修正和改进。
二、数学建模中的数学工具1. 微积分:微积分是数学建模中最基本的工具之一,它涉及了函数的极限、导数和积分等概念和方法。
在数学建模中,常常需要利用微积分来描述问题的变化规律和求解最优化问题。
2. 线性代数:线性代数是研究向量空间和线性变换的数学学科,它在数学建模中具有重要的应用。
在数学建模中,常常需要利用线性代数的知识来描述和处理多维数据、矩阵运算和线性方程组等问题。
3. 概率论与数理统计:概率论与数理统计是研究随机事件和随机现象的概率和统计规律的学科,它在数学建模中具有广泛的应用。
在数学建模中,常常需要利用概率论和数理统计的知识来描述和分析随机事件、概率模型和数据分布等问题。
4. 最优化理论:最优化理论是研究如何寻找最优解的数学学科,它在数学建模中具有重要的应用。
在数学建模中,常常需要利用最优化理论的知识来建立和求解最优化模型,找到问题的最优解。
5. 图论与网络流:图论与网络流是研究图和网络中的基本性质和算法的数学学科,它在数学建模中具有广泛的应用。
计算机模拟
其中
cos xi1 xi
d
sin yi1 yi
d
d (xi1 xi )2 ( yi1 yi )2
3. 取足够小的 , d 时结束算法.
4. 对每一个点,连接它在各时刻的位置,即得所求运动轨迹.
To MATLAB(chase)
计算程序:
v=1; dt=0.05; x=[0 0 10 10]; y=[0 10 10 0];
其中 >0为常数,则称X服从参数为 的 指数分布.
1
•指数分布的期望值为
•指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进机场
的时间间隔,排队服务系统中顾客到达率为常数时的到达间隔、故障率
为常数时零件的寿命都服从指数分布.
•指数分布在排队论、可靠性分析中有广泛应用.
•注意:MATLAB中,产生参数为 的指数分布的命令为
S3 = Q1 ; else
S3 = D; end if D < Q2
S4 = Q2 ; else
S4 = D; end L1 = 5 *S3 - 2. 5 * Q1 ; L2 = 5 *S4 - 2. 5 *Q2 ; TL1 = TL1 + L1 ; TL2 = TL2 + L2 ; k=k+1; end S1 = S3 ; S22 = S21 ; S21 = S4 ;
模拟过程的流程图
【模型的求解】
利用Matlab 编程来实现这一过程, 建立如下M文件:
function[ TL1 , TL2 ] = kucun( T , S1 , S21 , S22) TL1 = 0; TL2 = 0 ; k = 1; while k < T
Q1 = S1 ; Q2 = ( S21 + S22) / 2 ; D = normrnd(135 ,22. 4) ; if D < Q1
数学建模
在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。
模型求解
利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。
模型分析
对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。
模型检验
将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
建模应用
数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性、结论的明确性和体系的完整性,而且在于它应用的广泛性。自从20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在21世纪这个知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展、数学理论与方法的不断扩充,使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。
第二条 竞赛内容
题目有较大的灵活性供参赛者发挥其创造能力。参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷)。
第三条 竞赛形式、规则和纪律
1.全国统一竞赛题目,采取通讯竞赛方式,以相对集中的形式进行。
2.竞赛每年举办一次,一般在某个周末前后的三天内举行。
计算机仿真和模拟的方法和工具
计算机仿真和模拟的方法和工具计算机仿真和模拟是指利用计算机软件和硬件来模拟和重现现实世界的某种情境或系统的过程。
它是一种强有力的工具,广泛应用于各个领域,如工程、科学、医药、经济等。
本文将介绍计算机仿真和模拟的方法和工具。
一、数学建模数学建模是计算机仿真和模拟的基础,通过对现实问题进行抽象和理论化,将其转化为数学方程和模型。
数学建模能够对现实问题进行描述和分析,并为计算机仿真提供了数学基础。
1. 线性模型线性模型是一种简单而常用的数学模型,它基于线性关系进行建模。
线性模型可以用于描述各种线性系统,如电路系统、运输系统等。
在计算机仿真中,线性模型可以通过编写线性方程组来实现。
2. 非线性模型非线性模型是指不能用一个简单的线性关系来表示的模型。
非线性模型在实际问题中更为常见,如生态系统、气候系统等。
计算机仿真中,非线性模型需要使用数值计算方法(如迭代法)来求解。
3. 统计模型统计模型是通过对数据的统计分析建立的模型,用于预测和分析未知的现象。
统计模型常用于金融市场预测、医学研究等领域。
计算机仿真中,可以通过随机数生成和概率分布函数模拟统计模型。
二、仿真软件计算机仿真和模拟需要借助各种专业的仿真软件来实现。
下面介绍几种常用的仿真软件。
1. MatlabMatlab是一种数学计算和仿真软件,被广泛用于科学计算和工程仿真。
它具有强大的数学建模能力和丰富的函数库,可以用于线性和非线性模型的建模与仿真。
2. SimulinkSimulink是Matlab的一个附加模块,用于建立和仿真动态系统模型。
Simulink使用图形化界面来进行建模和仿真,使得模型的构建更加直观和方便。
3. ANSYSANSYS是一种通用的有限元分析软件,可以用于工程结构和流体等领域的仿真。
它提供了强大的建模和分析功能,可以模拟各种复杂的物理现象。
4. COMSOL MultiphysicsCOMSOL Multiphysics是一种多物理场有限元分析软件,广泛应用于科学和工程领域。
数学建模和计算机仿真
硬币正面?
6
N
骰子点数?
4,5
k1=k1+1
k2=k2+1
k3=k3+1
k1=k1+1
Y i<20? N k k k (k k ) E= 2 3 E1= 0× 1 +1 × 2 +2 × 3 20 20 20 20
停止
简单的例子——数学仿真
4. 模拟结果
试验 序号 1 2 3 4 5 6 7 8 9 10 投硬币 结 果 正 正 反 正 正 反 正 正 反 反 ∨ ∨ ∨ ∨ 指示 正确 ∨ ∨ ∨ ∨ ∨ ∨ 3 6 ∨ ∨ 1 2 指 示 不正确 掷骰子 结 果 4 4 ∨ ∨ ∨ ∨ ∨ ∨ 消灭敌人火炮数 0 1 2 ∨ ∨
k
(1)顾客到达某商店的 间隔时间服从参数为 0.1的指数分布
(2)该商店在单位时间 内到达的顾客数服从 参数为0.1的泊松分布
• 指两个顾客到达商店的 平均间隔时间是10个单 位时间.即平均10个单 位时间到达1个顾客.
•指一个单位时间内平均 到达0.1个顾客
连续系统模拟实例: 追逐问题
离散系统模拟实例: 排队问题
单服务员的排队模型:在某商店有一个售货员,顾客陆续来到, 售货员逐个地接待顾客.当到来的顾客较多时,一部分顾客便 须排队等待,被接待后的顾客便离开商店.设: •顾客到来间隔时间服从参数为0.1的指数分布. •对顾客的服务时间服从[4,15]上的均匀分布. •排队按先到先服务规则,队长无限制. 假定一个工作日为8小时,时间以分钟为单位. [1]模拟一个工作日内完成服务的个数及顾客平均等待时间t. [2]模拟100个工作日,求出平均每日完成服务的个数及每日顾
xi 1 xi cos d
1数学建模简介
数学建模与能力的培养 仅最近几年里, 仅最近几年里,我
校学生都在只参加 锻炼, ①数学建模实践的 了半年左右的学习 每一步中都 蕴含着能力上的 锻炼, 在调查研究阶段, 和实践后,就在全 要用到观察能力 分析能力和 观察能力、 在调查研究阶段,需 要用到观察能力、分析能力和数据 和实践后, 处理能力等 处理能力等。在提出假设 时,又需要用到 想象力和归纳 国大学生数学建模 开设数学建模课的主要目的为了提高学 简化能力。 生的综合素质 简化能力。 生的综合素质,增强 应用数学知识 解决实际问 综合素质, 竞赛中交出了非常 题的本领。 题的本领。 在真正开始自己的研究之前, ,夺得 ②在真正开始自己的研究之前,还应当尽可能先了解一下 出色的论文, 出色的论文 前人或别人的工作, 前人或别人的工作,使自己的工作成为别人研究工作的继 了国家奖2 了国家奖2项、省 续而不是别人工作的重复, 续而不是别人工作的重复,你可以把某些已知的研究结果 一等奖五项的好成 用作你的假设,去探索新的奥秘。 用作你的假设,去探索新的奥秘。因此我们还应当学会在 查到并学会我想应用的知识的本领 我想应用的知识的本领。 尽可能短的时间 内绩。 查到并学会我想应用的知识的本领。
数学模型竞赛与通常的数学竞赛不同之处在于它来 自实际问题或有明确的实际背景, 自实际问题或有明确的实际背景,它的宗旨是培养 大学生用数学方法解决实际问题的意识和能力, 大学生用数学方法解决实际问题的意识和能力,培 养创新意识、团队精神,鼓励参与、提倡公平竞争, 养创新意识、团队精神,鼓励参与、提倡公平竞争, 提高学生综合素质。 提高学生综合素质。 整个比赛要完成一篇包括问题的阐述分析, 整个比赛要完成一篇包括问题的阐述分析,模型的 假设和建立,计算结果及讨论的论文。 假设和建立,计算结果及讨论的论文。通过训练和 比赛,同学们不仅用数学方法解决实际问题的意识 比赛, 和能力有很大提高, 和能力有很大提高,而且在团结合作发挥集体力量 攻关, 攻关,以及撰写科技论文等方面将都会得到十分有 益的锻炼。 益的锻炼。
数学建模的计算机模拟
根据实 际 问题 建立 数学模 型 , 并 利用计 算机 模拟求 解 已成为解 决实 际问题 的一种 重要方 法. 计 算机技
术不但 使 问题 的求 解变 得更 加方便 、 快捷 和精确 , 而且 使得 解决 实 际 问题 的领 域更 加 广泛 . 计 算 机适 合 于
数 学建 模 的计算 机模 拟
杜 效伟 , 龚鑫 祥
( 1 . 漯河 职业技 术 学院 计 算机 工程 系,河南 漯河 4 6 2 0 0 0 ; 2 . 国营第 7 6 0厂 ,河南 新 乡 4 5 3 0 0 9 )
摘 要 : 对数 学建模 与计 算机技 术之 间的 关 系及计 算机模 拟 问题进行 阐述 , 并通过 具体 的 实
例, 从 连续 、 离散确 定性 和随机 的非确 定性领 域分 析说 明 了常用的计 算机模 拟 处理方 法. 关 键词 : 数 学建模 ; 计算机模 拟 ;问题 领域
中图分 类号 : 0 2 9 文献 标识码 : A
l 问 题 提 出
在 许多 领域 , 人 们利 用建 立数学 模型 的方法 解决现 实 问题 , 并 获得 巨大 成 功 , 数 学 与计 算 机 技术 相结 合, 形 成 了可 以实 现 的数 学技 术 , 在 算机 技术迅 速发 展 的今 天 , 计 算 和建模 正 在成 为 数学 科 学 向数 学技
第3 2卷 第 2期
2 0 1 3年 3 月
许 昌 学 院 学报
J OURNAL OF XUCHANG UNI VERS I TY
V0 1 .3 2. No.2 Ma r . 2 0l 3
文章编号 : 1 6 7 1 —9 8 2 4【 2 0 1 3) 0 2— 0 0 2 2—0 5
数学建模-计算机仿真分析
我缉私雷达发现前方(南)c km处有一艘走私船正 以速度a沿直线向东匀速行驶,缉私艇立即以最大速度b 追赶,若用雷达进行跟踪,缉私艇的瞬时速度方向始终 指向走私船,是求缉私艇追逐路线和追赶上的时间。
分析 此问题可以建立微分方程模型,这里我们建立差分方 程模型,用仿真的方法求解。
取时间步长为h,在第i 步时的时间即t=hi,走私船的位
(1)从发出订货到收到货物需隔三天; (2)每辆自行车保管费为0.75元/天,每辆自行车的缺货损
失为1.8元/天,每次的订货费为75元; (3)每天自行车的需求量服从0到99之间的均匀分布; (4)原始库存为115辆,并假设第一天没有发出订货。 若现在已有如下表所示的五种库存策略,请选择一种总费用
求解方法: 1、高数中的方法
f(x0,
x0
y0)
n
i1
Qi(xi x0)
0
((xi x0)2 (yi y0)2
f(x0,
y0
y0)
n
i1
Qi(yi x0)
0
((xi x0)2 (yi y0)2
2、数值计算方法
3、计算机仿真: 离散化,遍历!
16
计算机仿真案例2
例2 (赶火车过程仿真)一列火车从A站经过B站开 往C站,某人每天赶往B站乘这趟火车。已知火车从 A站到B站的运行时间是均值为30min、标准差为 2min的正态随机变量。火车大约在下午1点离开A 站。火车离开时刻的频率分布和这个人到达B站时
产生一个均值为 ,方差为 的正态分布的随机数: normrnd ( , )
•当研究对象视为大量相互独立的随机变量之和,且其中每 一种变量对总和的影响都很小时,可以认为该对象服从正态 分布.
•机械加工得到的零件尺寸的偏差、射击命中点与目标的偏差、 各种测量误差、人的身高、体重等,都可近似看成服从正态 分布.
计算机模拟数学建模
(. e at n f te t s n o ue c n eJ h uU iesy J h u4 60 , hn ; 1D pr met ma ma c dcmp t S i c,i o nv ri ,i o 10 0 C i o h i a r e s t s a
间 的当前值 . 拟 时间推 进方式 有 两种 : 次事件 推进 法和 均匀 间隔 时 间推进 法.模拟 离散 系统常 用下 次 模 生的时刻,计算系统的状态 , 产生未来
事件 并加 入到 队列 中去 ;跳 到下 一事 件 ,计算 系统 的状 态 ,…… ,重 复这一 过 程直 到满 足某个 终 止条件 为止 . 如“ 例 海港 系统 的卸载货 物 问题”l 【假设 某 海港在 任何 时刻 只允许 一 艘船 卸载货 物 ,由于船 到达 的时 1
计算机膜 拟的建模 步骤和 方法. 关键词 :计 算机模拟 ;数 学建模 ;连续 系统
中图分类号 : 0 9 2 文献标识码: A 文章编号: 6 25 9 (0 80 .0 00 17 -2 820 ) 1 2 -3 0
M a he a ia o ei g o m p t rS m u a i n t m tc l M d l f n Co u e i l to
1 计算机模拟在数学建模 中的应用概述
在一定假设条件下 ,利用数学运算模拟系统的运行 ,可称为数学模拟 ,现代的数学模拟都是在计算 机上进行的 ,因此称为计算机模拟. 模拟分为静态模拟和动态模拟. 数值积分中的蒙特卡罗方法就是典型 的静态 模拟 .动 态模 拟可 分 为 连续 系统 模 拟 和离 散事 件 系统 模 拟,连续 系统 模 拟研 究 系统 的状 态 随时 间 连续变化的情形 , 其模型一般是微分方程模型. 建模时首先确定系统的连续状态变量, 然后将它在时间上
数学建模的主要建模方法
数学建模的主要建模方法数学建模是一种用数学语言描述实际问题,并通过数学方法求解问题的过程。
它是数学与实际问题相结合的一种技术,具有广泛的应用领域,如物理、工程、经济、生物等。
数学建模的主要建模方法可以分为经典建模方法和现代建模方法。
经典建模方法是数学建模的基础,主要包括数理统计、微积分、线性代数等数学工具。
经典建模方法的特点是基于简化和线性的假设,并通过解析或数值方法来求解问题。
1.数理统计:统计学是数学建模的重要工具之一,它的主要任务是通过对样本数据的分析,推断出总体的特征。
数理统计中常用的方法有概率论、抽样理论、假设检验等。
2.微积分:微积分是数学建模中常用的工具,它研究变化率和积分问题。
微积分的应用范围广泛,常用于描述物体的运动,求解最优化问题等。
3.线性代数:线性代数是研究向量空间与线性变换的数学学科。
在数学建模中,线性代数经常出现在模型的描述和求解过程中,如矩阵运算、线性回归等。
现代建模方法是近年来发展起来的一种新的建模方法,主要基于现代数学工具和计算机技术。
现代建模方法的特点是模型更为复杂,计算更加精确,模拟和实验相结合。
1.数值模拟:数值模拟是一种基于计算机技术的建模方法,通过离散和近似的数学模型,利用数值计算方法求解模型。
数值模拟常用于模拟和预测实际问题的复杂现象,如天气预报、电路仿真等。
2.优化理论:优化理论是数学建模中的一种重要工具,它研究如何找到最优解或最优化方案。
优化问题常用于求解资源分配、生产排程等实际问题。
3.系统动力学:系统动力学是一种研究系统结构和行为的数学方法,它通过建立动态模型,分析系统的变化趋势和稳定性。
系统动力学常用于研究生态系统、经济系统等复杂系统。
4.随机过程:随机过程是描述随机事件随时间变化的数学模型。
它在数学建模中常用于分析随机现象的特征和规律,如金融市场变动、人口增长等。
总体而言,数学建模的方法多种多样,建模方法的选择取决于问题的性质、可用数据和计算资源等因素。
什么是数学建模
什么是数学建模数学建模是一种通过数学方法解决实际问题的过程。
它结合数学理论与实际问题,将抽象的数学模型与具体的实际情况相结合,通过计算机模拟、优化算法等手段,对问题进行分析和求解,从而得到实际问题的答案或者有效的解决方案。
数学建模可以应用于各个领域,如物理学、生物学、经济学、化学、环境科学、社会学等。
在实际问题中,通常会涉及到大量的变量、约束条件和目标函数。
数学建模的过程一般包括以下几个步骤:问题的建立、模型的建立、模型的求解、模型的验证和结果的分析与应用。
首先,问题的建立是数学建模的起点。
在这一步骤中,需要明确问题的目标、所处环境以及问题的限制条件。
具体来说,要确定需要解决的问题是什么、为什么需要解决这个问题、解决这个问题对应的适用范围等。
接下来,模型的建立是数学建模的关键步骤。
在这一步骤中,需要确定适用的数学模型和假设,并将实际问题转化为数学形式。
根据实际问题的性质,常见的数学模型包括线性规划模型、非线性规划模型、随机模型等。
通过数学模型的建立,可以对问题进行抽象和简化,提高问题的可计算性和可解性。
然后,模型的求解是数学建模的核心步骤。
在这一步骤中,需要用数学方法和计算机技术对建立的模型进行求解。
根据不同的数学模型,常见的求解方法包括数值计算方法、优化算法、随机模拟等。
通过模型的求解,可以得到问题的解答、最优解或者有效的解决方案。
模型的验证是数学建模的重要步骤。
在这一步骤中,需要对模型的求解结果进行验证和分析。
对模型的验证可以通过与实际数据的对比、灵敏性分析、误差分析等方法进行。
通过验证结果,可以判断建立的模型是否准确可靠,并根据需要进行调整和优化。
最后,结果的分析与应用是数学建模的最终目标。
在这一步骤中,需要对模型的求解结果进行分析和解释,从而得出实际问题的结论或者决策依据。
根据实际问题的需求,可以通过模型的结果进行业务分析、评估和预测等。
总之,数学建模是一种结合数学理论和实际问题的求解方法。
数学建模模拟建模方法
随机数的产生
• 数学方法常见产生均匀分布随机数的几种方法的有平 方取中法、倍积取中法、乘同余法、二阶与三阶线性 同余法
• 由均匀分布产生各种分布的随机数、反函数法、取舍 法、Box-Muller方法和极方法。
•系统状态随时间而变化的动态写照
模拟的背景 应用领域: •运输系统模拟 •摩天大楼安全疏散系统模拟 •国民经济发展模拟 •人口增长系统模拟 •供水系统模拟
模拟的作用
• 对于很难用解析方法加以处理的问题, 模拟是一种有效的技术;
• 对建模过程中的假设进行鉴定,对理论 研究的结论加以检验;
• 对不同的实现方案进行多次模拟,按照 既定的目标函数对不同方案进行比较, 从中选择最优方案。
模拟的一般步骤
• 明确问题,建立模型。
明确模拟目的,确定模拟输出结果的目标函数 分析各状态变量之间关系,建立系统模型
• 收集和整理数据资料。特别是随机性资料。
分析收集的随机数据,确定系统中随机性因素的概率分布特征,以 此为依据产生抽样数据
• 编制程序,模拟运行。
编程、设定初始状态,模拟运行时间、随机样本量、模拟运行次数
r1=unifrnd(a,b,n,1);
%n×1阶的[a,b]均匀分布随机数矩阵
r2=unifrnd(a,b,n,1);
sol=[r1(1) r2(1)];
z0=inf;
for i=1:n
x1=r1(i);
x2=r2(i);
lpc=lpconst([x1 x2]);
if lpcபைடு நூலகம்=1
z=mylp([x1 x2]);
计算机数学建模
计算机数学建模
计算机数学建模是指利用计算机的运算能力和数学模型的方法,对实际问题进行建模、求解和分析的过程。
其应用范围非常广泛,涉及到物理、化学、经济、管理等领域,是现代科学技术的重要组成部分。
在计算机数学建模中,数学模型是关键。
数学模型是对实际问题进行抽象和描述的工具,通过建立数学方程或图形模型,对问题进行分析和求解。
数学模型的建立需要考虑问题的实际背景、问题的特点和目标要求等因素,同时还要对模型的可靠性、精度和稳定性进行评估。
数学模型的建立是计算机数学建模的第一步,其次是求解问题。
在求解问题中,计算机是必不可少的工具。
计算机可以利用数值计算方法、优化算法、仿真技术等方法对数学模型进行求解,得到问题的解析结果或数值结果。
其中,数值计算方法是计算机数学建模中最常用的方法之一,它可以通过数值逼近的方式对数学模型进行求解。
优化算法则是通过对数学模型进行优化,得到满足约束条件和最优目标的结果。
仿真技术则是通过模拟实际系统的运行状态,对实际问题进行求解。
除了数学模型的建立和求解外,计算机数学建模还需要对结果进行分析和验证。
结果分析是对求解结果进行评估和解释,验证则是对求解结果的正确性进行检验。
结果分析和验证是计算机数学建模的
最后一步,它们可以帮助我们评估数学模型的有效性和对实际问题的解释能力。
总的来说,计算机数学建模是现代科学技术的重要组成部分,它不仅可以帮助我们解决实际问题,还可以促进学科之间的交流和融合。
在未来,计算机数学建模将会在更广泛的领域发挥重要作用,为人类的发展和进步做出更大的贡献。
数学建模知识点总结
数学建模知识点总结一、数学建模概述1.1 数学建模的概念数学建模是利用数学方法和技术解决实际问题的过程,是将实际问题抽象成数学模型,再通过数学分析和计算来解决问题的一种方法。
数学建模可以应用于工程、科学、经济、环境等各个领域,对于解决复杂的实际问题具有重要的作用。
1.2 数学建模的基本步骤数学建模的基本步骤包括问题分析、建立数学模型、求解模型、模型验证和应用。
在处理实际问题时,首先要对问题进行充分的分析,然后建立相应的数学模型,再通过数学方法来求解模型,最后对模型进行验证和应用。
1.3 数学建模的应用范围数学建模的应用范围非常广泛,可以涉及到自然科学、社会科学、工程技术等各个领域。
例如,在工程领域可以用数学建模来设计飞机、汽车、桥梁等结构的强度和稳定性;在环境科学领域可以用数学建模来研究气候变化、环境污染等问题;在生物医学领域可以用数学建模来研究人体的生理过程。
1.4 数学建模的意义数学建模可以帮助人们更好地理解实际问题,设计出更优秀的工程产品,提高生产效率,优化资源配置,解决环境污染等问题,对于推动科技进步和社会发展具有重要的意义。
二、数学建模的数学基础2.1 微积分微积分是数学建模的基础。
微积分是研究变化的数学分支,包括导数、积分、微分方程等概念。
在数学建模中,微积分可以用来描述变化率、优化函数、求解微分方程等问题。
2.2 线性代数线性代数是数学建模的另一个基础。
线性代数是研究向量、矩阵、线性方程组等概念的数学分支,可以用来描述多维空间的几何关系、解决大规模线性方程组等问题。
2.3 概率论与统计学概率论与统计学是数学建模的重要工具。
概率论研究随机事件的概率分布、随机过程等概念,统计学研究数据的收集、处理、分析等方法。
在数学建模中,概率论和统计学可以用来描述随机现象、分析数据、评估模型等问题。
3.1 最优化方法最优化方法是数学建模常用的方法之一。
最优化方法是研究如何找到使目标函数取得最大(小)值的变量取值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)
•机械加工得到的零件尺寸的偏差、射击命中点与目标的偏差、 各种测量误差、人的身高、体重等,都可近似看成服从正态 分布。
To Matlab (rnd)
4.产生 m n 阶期望值为 的指数分布的随机数矩阵:exprnd (
,m, n )
e t x 0 •若连续型随机变量X的概率密度函数为 f ( x ) x0 0 其中 >0为常数,则称X服从参数为 的指数分布。
蒙特卡洛(Monte Carlo)方法是一种应用随机数来 进行计算机模拟的方法.此方法对研究的系统进行随机 观察抽样,通过对样本值的观察统计,求得所研究系统 的某些参数.
例1 在我方某前沿防守地域,敌人以一个炮排(含两 门火炮)为单位对我方进行干扰和破坏.为躲避我方 打击,敌方对其阵地进行了伪装并经常变换射击地 点. 经过长期观察发现,我方指挥所对敌方目标的指 示有50%是准确的,而我方火力单位,在指示正确 时,有1/3的射击效果能毁伤敌人一门火炮,有1/6 的射击效果能全部消灭敌人. 现在希望能用某种方式把我方将要对敌人实施 的20次打击结果显现出来,确定有效射击的比率及 毁伤敌方火炮的平均值。
反之亦然。
例 (1)顾客到达某商店的间隔时间服从参数为0.1的指数分布
(2)该商店在单位时间内到达的顾客数服从参数为0.1的帕松分布 (1)指两个顾客到达商店的平均间隔时间是10个单位时间.即平均 10个单位时间到达1个顾客. (2)指一个单位时间内平均到达0.1个顾客
例2 敌坦克分队对我方阵地实施突袭,其到达规律服从 泊松分布,平均每分钟到达4辆.(1)模拟敌坦克在3 分钟内到达目标区的数量,以及在第1、2、3分钟内各 到达几辆坦克.(2)模拟在3分钟内每辆敌坦克的到达时 刻。 (1)用poissrnd(4)进行模拟。 To Matlab(poiss)
2、数学模拟 在一定的假设条件下,运用数学运算模拟系统的运 行,称为数学模拟。现代的数学模拟都是在计算机上进 行的,称为计算机模拟。
计算机模拟可以反复进行,改变系统的结构和系数 都比较容易。
在实际问题中,面对一些带随机因素的复杂系统, 用分析方法建模常常需要作许多简化假设,与面临的实 际问题可能相差甚远,以致解答根本无法应用。这时, 计算机模拟几乎成为唯一的选择。
产生一个[0,1]均匀分布的随机数:rand
例 1的计算机模拟
3.产生 m n 阶均值为 ,方差为 normrnd ( , ,m, n)
的正态分布的随机数矩阵:
产生一个均值为 ,方差为 的正态分布的随机数:normrnd ( ,
•当研究对象视为大量相互独立的随机变量之和,且其中每 一种变量对总和的影响都很小时,可以认为该对象服从正态 分布。
2. 符号假设
i:要模拟的打击次数; k1:没击中敌人火炮的射击总数; k2:击中敌人一门火炮的射击总数;k3:击中敌人两门火炮的射击总数. E:有效射击比率; E1:20次射击平均每次毁伤敌人的火炮数.
3. 模拟框图
初始化:i=0,k1=0,k2=0,k3=0 i=i+1
Y
1,2,3
硬币正面?
N
To Matlab(chase)
返回
离散系统模拟实例: 排队问题
排队论主要研究随机服务系统的工作过程。 在排队系统中,服务对象的到达时间和服务时间都是随机的。排队 论通过对每个个别的随机服务现象的统计研究,找出反映这些随机现象 平均特性的规律,从而为设计新的服务系统和改进现有服务系统的工作 提供依据。
试验 序号 11 12 13 14 15 16 17 18 19 20
投硬币 结 果 正 反 正 反 正 正 正 正 反 正
指示 正确 ∨
指 示 不正确
掷骰子 结 果 2
消灭敌人火炮数 0 ∨ ∨ 1 2
∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ 6 6 4 2 4 3
∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨
从以上模拟结果可计算出:
点各有一人.在某一时刻,四人同时出发以匀速 v=1米/秒按顺时针方向追逐下一人,如果他们始 终保持对准目标,则最终按螺旋状曲线于中心点 O.试求出这种情况下每个人的行进轨迹.
A
O
B
D
C
求解过程:
1. 建立平面直角坐标系:A(x1,y1), B(x2,y2), C(x3,y3), D(x4,y4). 2. 取时间间隔为Δ t,计算每一点在各个时刻的坐标.
返回
产生模拟随机数的计算机命令
在Matlab软件中,可以直接产生满足各种分布的随机数, 命令如下:
1.产生mn阶[a,b]均匀分布U(a,b)的随机数矩阵: unifrnd (a,b,m, n) 产生一个[a,b]均匀分布的随机数:unifrnd (a,b) 当只知道一个随机变量取值在(a,b)内,但不知道 (也没理由假设)它在何处取值的概率大,在何处取值的 概率小,就只好用U(a,b)来模拟它。 2.产生mn阶[0,1]均匀分布的随机数矩阵:rand (m, n)
(2)坦克到达的间隔时间应服从参数为4的负指数分布, 用exprnd(1/4)模拟。 To Matlab(time)
返回
连续系统模拟实例: 追逐问题
状态随时间连续变化的系统称为连续系统。对连续系 统的计算机模拟只能是近似的,只要这种近似达到一定的 精度,也就可以满足要求。 例 追逐问题: 如图,正方形ABCD的四个顶
计算机模拟
实验目的
学习计算机模拟的基本过程与方法。
实验内容
1、模拟的概念。 2、产生随机数的计算机命令。 3、计算机模拟实例。
4、实验作业。
计算机模拟实例
离散系统模拟实例: 排队问题
连续系统模拟实例: 追逐问题 用蒙特卡洛法解非线性规划问题
返回
模拟的概念
模拟就是利用物理的、数学的模型来类比、模仿现实 系统及其演变过程,以寻求过程规律的一种方法。
分析: 这是一个概率问题,可以通过理论计算得到相应的 概率和期望值.但这样只能给出作战行动的最终静态结果,而 显示不出作战行动的动态过程.
为了能显示我方20次射击的过程,现采用模拟的方式。
1. 问题分析
需要模拟出以下两件事: [1] 观察所对目标的指示正确与否
模拟试验有两种结果,每一种结果出现的概率都是1/2.
对于排队服务系统, 顾客常常注意排队的人是否太多, 等候的时间是否 长, 而服务员则关心他空闲的时间是否太短. 于是人们常用排队的长度、等 待的时间及服务利用率等指标来衡量系统的性能.
[2] 符号说明 w:总等待时间;ci:第i个顾客的到达时刻; bi:第i个顾客开始服务时刻; ei:第i个顾客服务结束时刻. xi:第i-1个顾客与第i个顾客之间到达的间隔时间 yi:对第i个顾客的服务时间
6. 结果比较
理论计算和模拟结果的比较
分类 项目 模 拟 理 论
无效射击 0.65 0.75
有效射击 0.35 0.25
平均值 0.5 0.33
虽然模拟结果与理论计算不完全一致,但它却能更加真实地表 达实际战斗动态过程.
用蒙特卡洛方法进行计算机模拟的步骤:
[1] 设计一个逻辑框图,即模拟模型.这个框图要正确反映系统各部 分运行时的逻辑关系。 [2] 模拟随机现象.可通过具有各种概率分布的模拟随机数来模拟随 机现象.
因此,可用投掷一枚硬币的方式予以确定,当硬币出现正面时为 指示正确,反之为不正确. [2] 当指示正确时,我方火力单位的射击结果情况 模拟试验有三种结果:毁伤一门火炮的可能性为1/3(即2/6), 毁伤两门的可能性为1/6,没能毁伤敌火炮的可能性为1/2(即3/6). 这时可用投掷骰子的方法来确定: 如果出现的是1、2、3三个点:则认为没能击中敌人; 如果出现的是4、5点:则认为毁伤敌人一门火炮; 若出现的是6点:则认为毁伤敌人两门火炮.
d 3. 取足够小的 , 时结束算法.
4. 对每一个点,连接它在各时刻的位置,即得所求运动轨迹.
To Matlab(chase)
返回
计算程序:
v=1; dt=0.05; x=[0 0 10 10]; y=[0 10 10 0]; for i=1:4 plot(x(i),y(i),'.'),hold on end d=20; while(d>0.1) x(5)=x(1);y(5)=y(1); for i=1:4 d=sqrt((x(i+1)-x(i))^2+(y(i+1)-y(i))^2); x(i)=x(i)+v*dt*(x(i+1)-x(i))/d; y(i)=y(i)+v*dt*(y(i+1)-y(i))/d; plot(x(i),y(i),'.'),hold on end end
E=7/20=0.35
E1 0
13 4 3 1 2 =0.5 20 20 20
5. 理论计算
0 观察所对目标指示不正 确 设: j 1 观察所对目标指示正确
A0:射中敌方火炮的事件;A1 :射中敌方一门火炮的事件; A2:射中敌方两门火炮的事件. 则由全概率公式: E = P(A0) = P(j=0)P(A0∣j=0) + P(j=1)P(A0∣j=1)
模拟的基本思想是建立一个试验模型,这个模型包含 所研究系统的主要特点.通过对这个实验模型的运行,获 得所要研究系统的必要信息
模拟的方法
1、物理模拟:
对实际系统及其过程用功能相似的实物系统去模仿。
例如,军事演习、船艇实验、沙盘作业等。
物理模拟通常花费较大、周期较长,且在物理模 型上改变系统结构和系数都较困难。而且,许多系统 无法进行物理模拟,如社会经济系统、生态系统等。
k!
•帕松分布在排队系统、产品检验、天文、物理等领域有 广泛应用。
指数分布与帕松分布的关系: •如相继两个事件出现的间隔时间服从参数为 的指数分布, 则在单位时间间隔内事件出现的次数服从参数为 的泊松分 布.即单位时间内该事件出现k次的概率为:P( X k ) 来自k e k!