离散数学考试题详细答案

合集下载

离散数学期末考试题及详细答案

离散数学期末考试题及详细答案

离散数学期末考试题及详细答案一、选择题(每题5分,共20分)1. 在离散数学中,下列哪个概念用来描述元素与集合之间的关系?A. 并集B. 交集C. 子集D. 元素答案:D2. 布尔代数中,下列哪个运算符表示逻辑“与”?A. ∨B. ∧C. ¬D. →答案:B3. 下列哪个命题的否定是正确的?A. 如果今天是周一,则明天是周二。

B. 如果今天是周一,则明天不是周二。

答案:B4. 在图论中,一个图的顶点数为n,边数为m,下列哪个条件可以保证该图是连通的?A. m > nB. m ≥ nC. m = nD. m > n-1答案:D二、填空题(每题5分,共20分)1. 在集合论中,一个集合的幂集包含该集合的所有______。

答案:子集2. 如果一个函数f: A → B是单射的,那么对于任意的a1, a2 ∈ A,如果a1 ≠ a2,则f(a1) ≠ f(a2)。

这种性质称为函数的______。

答案:单射性3. 在图论中,一个图的直径是指图中任意两个顶点之间的最短路径的最大值。

如果一个图的直径为1,则该图被称为______。

答案:完全图4. 一个布尔表达式可以表示为一系列逻辑运算符和变量的组合。

布尔表达式(A ∧ B) ∨ (¬ A ∧ C)的真值表中,当A为真,B为假,C为真时,整个表达式的值为______。

答案:真三、简答题(每题10分,共30分)1. 请简述什么是图的哈密顿回路,并给出一个例子。

答案:哈密顿回路是图中的一个回路,它恰好访问每个顶点一次。

例如,在一个完全图中,任意一个顶点出发,依次访问其他顶点,最后回到出发点的路径就是一个哈密顿回路。

2. 请解释什么是二元关系,并给出一个二元关系的例子。

答案:二元关系是定义在两个集合上的一个关系,它关联了第一个集合中的元素和第二个集合中的元素。

例如,小于关系是实数集合上的一个二元关系,它关联了每一对实数,如果第一个数小于第二个数。

《离散数学》试题及答案

《离散数学》试题及答案

《离散数学》试题及答案一、选择题(每题5分,共25分)1. 设集合A={1,2,3,4,5},B={2,4,6,8,10},则A∩B的结果是()A. {1,2,3,4,5}B. {2,4}C. {1,3,5}D. {1,2,3,4,5,6,8,10}答案:B2. 下列关系中,哪个是等价关系?()A. ≤B. ≠C. |D. ≠答案:A3. 设图G有5个顶点,每两个顶点之间都有一条边相连,则图G的边数是()A. 5B. 10C. 15D. 20答案:C4. 下列哪一个图是欧拉图?()A. 无向图B. 有向图C. 树D. 环答案:D5. 下列哪一个命题是正确的?()A. 若p→q为真,则p为真B. 若p∧q为假,则p为假C. 若p∨q为真,则q为真D. 若p→q为假,则p为假答案:B二、填空题(每题5分,共25分)1. 设集合A={a,b,c,d},B={c,d,e},则A-B=________。

答案:{a,b}2. 设p是命题“今天是晴天”,q是命题“我去公园玩”,则命题“如果今天不是晴天,那么我不去公园玩”可以表示为________。

答案:¬p→¬q3. 设图G有n个顶点,e条边,则图G的度数之和为________。

答案:2e4. 一个连通图至少有________个顶点。

答案:25. 设图G的邻接矩阵为A,则A的转置矩阵表示________。

答案:图G的转置图三、判断题(每题5分,共25分)1. 离散数学是研究离散结构的数学分支。

()答案:正确2. 两个集合的笛卡尔积是这两个集合的直积。

()答案:正确3. 有向图中,顶点u和顶点v之间的长度为2的路径是指路径上有3条边。

()答案:错误4. 树是一种无向图。

()答案:正确5. 哈夫曼编码是一种贪心算法。

()答案:正确四、应用题(每题25分,共50分)1. 设集合A={1,2,3,4,5},B={2,4,6,8,10},C={3,6,9,12,15},求A∪(B∩C)。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题1. 设A、B、C为三个集合,下列哪个式子是成立的?A) \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\)B) \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\)C) \(A \cup (B \cup C) = (A \cup B) \cup (A \cup C)\)答案:B2. 对于一个有n个元素的集合S,S的幂集中包含多少个元素?A) \(n\)B) \(2^n\)C) \(2 \times n\)答案:B二、判断题1. 对于两个关系R和S,若S是自反的,则R ∩ S也是自反的。

答案:错误2. 若一个关系R是反对称的,则R一定是反自反的。

答案:正确三、填空题1. 有一个集合A,其中包含元素1、2、3、4和5,求集合A的幂集的大小。

答案:322. 设a和b是实数,若a \(\neq\) b,则a和b之间的关系是\(\__\_\)关系。

答案:不等四、解答题1. 证明:如果关系R是自反且传递的,则R一定是反自反的。

解答:假设关系R是自反的且传递的,即对于集合A中的任意元素x,都有(x, x) ∈ R,并且当(x, y) ∈ R和(y, z) ∈ R时,(x, z) ∈ R。

反证法:假设R不是反自反的,即存在一个元素a∈A,使得(a, a) ∉ R。

由于R是自反的,所以(a, a) ∈ R,与假设矛盾。

因此,R一定是反自反的。

答案完整证明了该结论。

2. 已知集合A={1, 2, 3},集合B={2, 3, 4},求集合A和B的笛卡尔积。

解答:集合A和B的笛卡尔积定义为{(a, b) | a∈A,b∈B}。

所以,集合A和B的笛卡尔积为{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、单项选择题(每题2分,共10分)1. 在集合{1,2,3}和{3,4,5}的笛卡尔积中,元素(3,4)属于()。

A. {1,2,3}B. {3,4,5}C. {1,2,3,4,5}D. {1,2,3}×{3,4,5}答案:D2. 命题“若x>2,则x>1”的逆否命题是()。

A. 若x≤2,则x≤1B. 若x≤1,则x≤2C. 若x≤1,则x≤2D. 若x≤2,则x≤1答案:C3. 函数f: A→B的定义域是集合A,值域是集合B的()。

A. 子集B. 真子集C. 任意子集D. 非空子集答案:D4. 以下哪个图是无向图()。

A. 有向图B. 无向图C. 完全图D. 树答案:B5. 以下哪个命题是真命题()。

A. 所有的马都是白色的B. 有些马是白色的C. 没有马是白色的D. 以上都不是答案:B二、填空题(每题2分,共10分)6. 集合{1,2,3}的子集个数为______。

答案:87. 命题“若x>0,则x>1”的逆命题是:若x>1,则______。

答案:x>08. 函数f: A→B中,若A={1,2},B={3,4},则f的值域可以是{3}或{4}或{3,4},但不能是______。

答案:{1,2}9. 在有向图中,若存在从顶点A到顶点B的有向路径,则称A到B是______的。

答案:可达10. 命题逻辑中,合取(AND)的符号是______。

答案:∧三、解答题(每题15分,共30分)11. 证明:若p∧q为真,则p和q都为真。

证明:根据合取(AND)的定义,p∧q为真当且仅当p和q都为真。

因此,若p∧q为真,则p和q都为真。

12. 给定函数f: A→B,其中A={1,2,3},B={4,5,6},且f(1)=4,f(2)=5,f(3)=6。

请找出f的值域。

答案:根据函数的定义,f的值域是其所有输出值的集合。

因此,f的值域为{4,5,6}。

(完整版)离散数学题目及答案

(完整版)离散数学题目及答案

数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。

C.2是偶数。

D.铅球是方的。

2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。

离散数学试题总汇及答案

离散数学试题总汇及答案

离散数学试题总汇及答案一、单项选择题(每题2分,共20分)1. 在集合{1, 2, 3, 4}中,子集{1, 2}的补集是()。

A. {3, 4}B. {1, 3, 4}C. {2, 3, 4}D. {1, 2, 3, 4}答案:A2. 命题“若x > 0,则x² > 0”的逆否命题是()。

A. 若x² ≤ 0,则x ≤ 0B. 若x² > 0,则x > 0C. 若x ≤ 0,则x² ≤ 0D. 若x² ≤ 0,则x < 0答案:C3. 函数f(x) = x² + 2x + 1的值域是()。

A. {x | x ≥ 0}B. {x | x ≥ 1}C. {x | x ≥ 2}D. {x | x ≥ -1}答案:B4. 以下哪个图是无向图()。

A. 有向图B. 无向图C. 有向树D. 无向树答案:B5. 以下哪个图是二分图()。

A. 完全图B. 非完全图C. 任意两个顶点都相连的图D. 任意两个顶点都不相连的图答案:C6. 以下哪个是哈密顿回路()。

A. 经过每个顶点恰好一次的回路B. 经过每个顶点至少一次的回路C. 经过每个顶点恰好两次的回路D. 经过每个顶点至少两次的回路答案:A7. 以下哪个是欧拉回路()。

A. 经过每条边恰好一次的回路B. 经过每条边至少一次的回路C. 经过每条边恰好两次的回路D. 经过每条边至少两次的回路答案:A8. 以下哪个是二进制数()。

A. 1010B. 1020C. 1102D. 1120答案:A9. 以下哪个是格雷码()。

A. 0101B. 1010C. 1100D. 1110答案:B10. 以下哪个是素数()。

A. 4B. 6C. 7D. 8答案:C二、填空题(每题2分,共20分)11. 集合{1, 2, 3}与{2, 3, 4}的交集是______。

答案:{2, 3}12. 命题“若x > 0,则x² > 0”的逆命题是:若x² > 0,则______。

(完整版)离散数学试题及答案,推荐文档

(完整版)离散数学试题及答案,推荐文档

11 设 A,B,R 是三个集合,其中 R 是实数集,A = {x | -1≤x≤1, xR}, B = {x | 0≤x < 2, xR},则
A-B = __________________________ , B-A = __________________________ ,
A∩B = __________________________ , . 13. 设集合 A={2, 3, 4, 5, 6},R 是 A 上的整除,则 R 以集合形式(列举法)记为___________ _______________________________________________________. 14. 设一阶逻辑公式 G = xP(x)xQ(x),则 G 的前束范式是__________________________
二、选择题
1. C. 2. D. 3. B. 4. B.
5. D. 6. C. 7. C.
8. A. 9. D. 10. B. 11. B.
第 5 页 共 18 页
13. {(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)}.
14. x(P(x)∨Q(x)). 15. 21.
16. (R(a)∧R(b))→(S(a)∨S(b)). 17. {(1, 3),(2, 2)}; {(1, 1),(1, 2),(1, 3)}.
8. 设命题公式 G=(P(QR)),则使公式 G 为真的解释有
__________________________,_____________________________,
__________________________.

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。

B. 如果今天是周一,那么明天是周三。

C. 如果今天是周一,那么明天是周四。

D. 如果今天是周一,那么明天是周五。

答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。

答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。

答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。

答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。

答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。

答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。

例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。

2. 解释什么是逻辑蕴含,并给出一个例子。

答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。

例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。

如果今天是周一,那么根据逻辑蕴含,明天必须是周二。

3. 请描述什么是二叉搜索树,并给出它的一个性质。

答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。

它的一个性质是中序遍历可以得到一个有序序列。

四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。

离散数学期末考试题及详细答案

离散数学期末考试题及详细答案

离散数学期末考试题及详细答案一、选择题(每题5分,共20分)1. 下列哪一项是图论中的基本概念?A. 集合B. 函数C. 映射D. 顶点答案:D2. 在逻辑中,下列哪一项表示合取?A. ∨B. ∧C. →D. ¬答案:B3. 以下哪个命题是真命题?A. p ∧ ¬pB. p ∨ ¬pC. p → ¬pD. ¬p → p答案:B4. 在集合论中,下列哪个符号表示集合的交集?A. ∪B. ∩C. ⊆D. ⊂答案:B二、填空题(每题5分,共20分)1. 如果一个图是无环的,则称该图为________。

答案:树2. 在布尔代数中,逻辑或运算的符号是________。

答案:∨3. 如果一个函数f: A → B,则称A为函数f的________。

答案:定义域4. 一个集合的子集个数是2的该集合元素个数次方,这个结论被称为________。

答案:幂集定理三、简答题(每题10分,共30分)1. 请简述图的邻接矩阵和邻接表的定义。

答案:邻接矩阵是一个二维数组,其元素表示图中两个顶点之间是否存在边。

邻接表是图的一种表示方法,其中每个顶点对应一个链表,链表中存储的是与该顶点相邻的顶点。

2. 什么是哥德尔不完备性定理?答案:哥德尔不完备性定理表明,在任何包含基本算术的一致形式系统内,都存在这样的命题:这个命题既不能被证明为真,也不能被证明为假。

3. 请解释什么是二元关系,并给出一个例子。

答案:二元关系是定义在两个集合上的一个子集,它包含所有满足特定条件的有序对。

例如,整数集合上的大于关系就是一个二元关系。

四、计算题(每题15分,共30分)1. 给定一个集合A={1,2,3,4},请计算集合A的幂集。

答案:集合A的幂集是{∅, {1}, {2}, {3}, {4}, {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}, {1,2,3}, {1,2,4}, {1,3,4},{2,3,4}, {1,2,3,4}}。

离散数学试题总汇及答案

离散数学试题总汇及答案

离散数学试题总汇及答案一、单项选择题(每题2分,共20分)1. 在集合{1,2,3}和{3,4,5}的笛卡尔积中,元素(2,4)是否存在?A. 存在B. 不存在C. 无法确定D. 以上都不对2. 函数f: A→B是单射的,当且仅当对于任意的a1, a2∈A,若f(a1)=f(a2),则a1=a2。

A. 正确B. 错误C. 无法确定D. 以上都不对3. 以下哪个命题是真命题?A. 所有的狗都会游泳。

B. 有些狗不会游泳。

C. 所有的狗都不会游泳。

D. 以上都不是真命题。

4. 如果p蕴含q为假,那么p和q的真值可以是?A. p为真,q为假B. p为假,q为真C. p为真,q为真D. p为假,q为假5. 以下哪个图是连通图?A. 一个孤立点B. 两个不相连的点C. 一个包含三个点且每对点都相连的图D. 以上都不是连通图6. 在有向图中,如果存在从顶点u到顶点v的路径,那么称v是u的后继顶点。

A. 正确B. 错误C. 无法确定D. 以上都不对7. 以下哪个等价关系是集合{1,2,3}上的?A. {(1,1), (2,2), (3,3)}B. {(1,2), (2,1), (2,2), (3,3)}C. {(1,1), (2,3), (3,2), (3,3)}D. {(1,1), (2,2), (3,3), (1,3)}8. 以下哪个命题是假命题?A. 所有的鸟都有羽毛。

B. 有些鸟不会飞。

C. 所有的哺乳动物都是温血动物。

D. 以上都不是假命题。

9. 在图论中,一个图的生成树是包含图中所有顶点的最小连通子图。

A. 正确B. 错误C. 无法确定D. 以上都不对10. 如果命题p和q互为逆否命题,那么它们具有相同的真值。

A. 正确B. 错误C. 无法确定D. 以上都不对二、填空题(每题2分,共20分)1. 集合{1,2,3}和{3,4,5}的并集是________。

2. 函数f: A→B是满射的,当且仅当对于任意的b∈B,存在a∈A,使得f(a)=________。

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。

在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。

2. 下列哪个命题是真命题?A. 所有偶数都是整数。

B. 所有整数都是偶数。

C. 所有整数都是奇数。

D. 所有奇数都是整数。

答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。

选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。

二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。

答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。

如果输入为真,则输出为假;如果输入为假,则输出为真。

2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。

答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。

三、简答题1. 解释什么是等价关系,并给出一个例子。

答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。

例如,考虑整数集合上的“同余”关系。

对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。

这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。

2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。

一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案离散数学考试试题及答案离散数学是计算机科学和数学中的一门重要学科,它研究的是离散的结构和对象。

离散数学的理论和方法在计算机科学、信息科学、通信工程等领域具有广泛的应用。

下面将为大家提供一些离散数学考试试题及答案,希望对大家的学习和复习有所帮助。

1. 集合论题目(1) 设A={1,2,3,4,5},B={3,4,5,6,7},求A∪B的结果。

答案:A∪B={1,2,3,4,5,6,7}(2) 设A={1,2,3,4,5},B={3,4,5,6,7},求A∩B的结果。

答案:A∩B={3,4,5}(3) 设A={1,2,3,4,5},B={3,4,5,6,7},求A-B的结果。

答案:A-B={1,2}2. 图论题目(1) 给定一个无向图G,顶点集为V={A,B,C,D,E},边集为E={(A,B),(A,C),(B,D),(C,D),(D,E)},求该图的邻接矩阵。

答案:邻接矩阵为:A B C D EA 0 1 1 0 0B 1 0 0 1 0C 1 0 0 1 0D 0 1 1 0 1E 0 0 0 1 0(2) 给定一个有向图G,顶点集为V={A,B,C,D,E},边集为E={(A,B),(B,C),(C,D),(D,E),(E,A)},求该图的邻接表。

答案:邻接表为:A ->B ->C ->D ->E -> AB -> CC -> DD -> EE -> A3. 命题逻辑题目(1) 判断以下命题是否为永真式:(p∨q)∧(¬p∨r)∧(¬q∨¬r)。

答案:是永真式。

(2) 给定命题p:如果天晴,那么我去游泳;命题q:我没有去游泳。

请判断以下命题的真假:(¬p∨q)∧(p∨¬q)。

答案:是真命题。

4. 关系代数题目(1) 给定关系R(A,B,C)和S(B,C,D),求R⋈S的结果。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题1. 下列哪个是由离散数学的基本概念组成的?A. 集合论和函数论B. 图论和逻辑C. 运算符和关系D. 全数论和数论答案:B2. 下列哪个是离散数学的一个应用领域?A. 数据结构和算法分析B. 微积分和线性代数C. 概率论和统计学D. 数值分析和微分方程答案:A3. 集合A={1, 2, 3},集合B={2, 3, 4},则A交B的结果是:A. {1, 2, 3, 4}B. {2, 3}C. {2}D. {1}答案:B4. 下列哪个是对于集合的补集运算的正确描述?A. A∪A' = ∅B. A∩A' = ∅C. A - A' = AD. A'∩B' = (A∪B)'答案:B5. 若命题p为真,命题q为假,则命题p→q的真值为:A. 真B. 假C. 不确定D. 无法确定答案:B二、填空题1. 对于命题“如果x是偶数,则x能被2整除”,其逆命题为________________。

答案:如果x不能被2整除,则x不是偶数。

2. 在一个完全图中,如果有12条边,则这个图有__________个顶点。

答案:6个顶点。

3. 设集合A={1, 2, 3, 4},则A的幂集的元素个数是__________。

答案:2^4=16个元素。

4. 设关系R={(-1, 0), (0, 1), (1, 0)},则R的逆关系是__________。

答案:R^(-1)={(0, -1), (1, 0), (0, 1)}。

5. 若集合A={1, 2, 3},集合B={2, 3, 4},则A的笛卡尔积B是__________。

答案:A×B={(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。

三、计算题1. 求集合A={1, 2, 3}和集合B={2, 3, 4}的并集。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案一、单项选择题(每题5分,共20分)1. 在离散数学中,以下哪个概念不是布尔代数的基本元素?A. 逻辑与B. 逻辑或C. 逻辑非D. 逻辑异或答案:D2. 下列哪个命题不是命题逻辑中的命题?A. 所有学生都是勤奋的B. 有些学生是勤奋的C. 学生是勤奋的D. 勤奋的学生答案:D3. 在集合论中,以下哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 以下哪个图不是无向图?A. 简单图B. 完全图C. 有向图D. 多重图答案:C二、填空题(每题5分,共20分)1. 如果一个命题的逆否命题为真,则原命题的________为真。

答案:逆命题2. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为________图。

答案:完全3. 一个集合的幂集是指包含该集合的所有________的集合。

答案:子集4. 如果一个函数的定义域和值域都是有限集合,那么这个函数被称为________函数。

答案:有限三、简答题(每题10分,共30分)1. 请简述什么是图的欧拉路径。

答案:欧拉路径是一条通过图中每条边恰好一次的路径。

2. 解释什么是二元关系,并给出一个例子。

答案:二元关系是指定义在两个集合之间的关系,它将第一个集合中的元素与第二个集合中的元素联系起来。

例如,小于关系就是一个二元关系。

3. 请说明什么是递归函数,并给出一个简单的例子。

答案:递归函数是一种通过自身定义来计算函数值的函数。

例如,阶乘函数就是一个递归函数,定义为:n! = n * (n-1)!,其中n! = 1当n=0时。

四、计算题(每题10分,共30分)1. 计算以下逻辑表达式:(P ∧ Q) ∨ ¬R答案:首先计算P ∧ Q,然后计算¬R,最后计算两者的逻辑或。

2. 给定集合A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。

答案:A ∪ B = {1, 2, 3, 4}3. 已知函数f(x) = 2x + 3,求f(5)。

《离散数学》试卷及答案精选全文完整版

《离散数学》试卷及答案精选全文完整版
解 设谓词Q(x):x是勤奋的;
H(x):x是身体健康的;
S(x):x是科学家
C(x):x是事业获得成功的人
置换规则。
3、设集合|A|=101,S ,且|S|为奇数,则这样的S有2101/2或2100个。
4、设mi是公式G的的主析取范式中的一个极小项,则mi的对偶式不一定是(填“是”/“不是”/“不一定是” ) G的主合取范式中的一个极大项。
5、由3个元素组成的有限集上所有的等价关系有5个
6、给定解释I如下: (1) Di:={2,3}; (2) a=3; (3) 函数f(x)为f(2)=2,f(3)=3; (4) 谓词:F(x)为F(2):=1,F(3):=0;G(x,y)为当i=j时,G(i,j):=1;当i≠j时,G(i,j):=0;其中i,j=2,3;
ac>0并且cu>0
若u>0,则c>0,a>0,因此有ac>0;
若u<0,则c<0,a<0, 也有ac>0;
因此有(a+bi)R(u+vi)
所以R在C*是传递的。所以R是C*上的等价关系。
2、在一阶逻辑自然推理系统F中,构造下面推理的证明。个体域是人的集合。
“每位科学家都是勤奋的,每个勤奋又身体健康的人在事业中都会获得成功。存在着身体健康的科学家。所以,存在着事业获得成功的人。”(15分)
2.设A={1,2,3…10},定义A上的二元关系R={<x,y>|x,y∈A∩x+y=10},试讨论R关于关系的五个方面的性质并说明理由(5分)
解答:R={<1,9>,<9,1>,<2,8>,<8, 2 >,<3,7>,<7,3>,<4,6>,<6, 4 >,<5, 5 >}

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、单项选择题(每题2分,共10分)1. 集合A={1,2,3},集合B={2,3,4},则A∩B等于:A. {1,2,3}B. {2,3}C. {1,4}D. {3,4}答案:B2. 以下哪个命题是真命题?A. 所有天鹅都是白色的。

B. 有些天鹅不是白色的。

C. 所有天鹅都不是白色的。

D. 没有天鹅是白色的。

答案:B3. 函数f: A→B的定义域是A,值域是B,那么f是:A. 单射B. 满射C. 双射D. 既不是单射也不是满射答案:D4. 逻辑表达式(p∧q)→r的逆否命题是:A. ¬r→¬(p∧q)B. ¬r→¬p∨¬qC. r→(p∧q)D. ¬r∧¬p∨¬q答案:B5. 有限集合A={a, b, c}的子集个数为:A. 3B. 4C. 7D. 8答案:D二、填空题(每题3分,共15分)1. 如果一个关系R在集合A上是自反的,那么对于A中的每一个元素a,都有___________。

答案:(a, a)∈R2. 命题逻辑中,合取(AND)的逻辑运算符用___________表示。

答案:∧3. 在图论中,一个连通图是指图中任意两个顶点之间都存在___________。

答案:路径4. 集合{1, 2, 3}的幂集包含___________个元素。

答案:85. 如果一个函数f是单射,那么对于任意的x1, x2∈A,如果f(x1)=f(x2),则x1___________x2。

答案:=三、解答题(每题10分,共20分)1. 证明:若p是q的充分条件,q是r的充分条件,则p是r的充分条件。

证明:假设p成立,由于p是q的充分条件,所以q成立。

又因为q是r的充分条件,所以r成立。

因此,p成立可以推出r成立,即p是r的充分条件。

2. 给定一个有向图,其中包含顶点A、B、C、D,边为(A, B),(B, C),(C, D),(D, A),(A, C)。

离散数学考试和答案

离散数学考试和答案

离散数学考试和答案一、单项选择题(每题2分,共20分)1. 在集合{1, 2, 3}中,元素3的补集是()。

A. {1, 2}B. {1, 2, 4}C. {1, 2, 3}D. {4, 5, 6}答案:A2. 命题“若x>0,则x>1”的逆否命题是()。

A. 若x≤1,则x≤0B. 若x≤1,则x<0C. 若x>1,则x>0D. 若x≤0,则x≤1答案:A3. 若A={1, 2, 3},B={2, 3, 4},则A∩B=()。

A. {1, 2, 3}B. {2, 3}C. {1, 2}D. {3, 4}答案:B4. 以下哪个选项是二元关系的自反性质?()A. 对于所有元素x,xRxB. 对于所有元素x,xRyC. 对于所有元素x,yRxD. 对于所有元素x,xRy且yRx答案:A5. 以下哪个选项是二元关系的传递性质?()A. 对于所有元素x,y,z,如果xRy且yRz,则xRzB. 对于所有元素x,y,z,如果xRy且yRz,则xRyC. 对于所有元素x,y,z,如果xRy且yRx,则xRzD. 对于所有元素x,y,z,如果xRz且yRz,则xRy 答案:A6. 以下哪个选项是二元关系的反对称性质?()A. 对于所有元素x,y,如果xRy且yRx,则x=yB. 对于所有元素x,y,如果xRy且yRx,则x≠yC. 对于所有元素x,y,如果xRy且yRx,则x>yD. 对于所有元素x,y,如果xRy且yRx,则x<y答案:A7. 以下哪个选项是二元关系的对称性质?()A. 对于所有元素x,y,如果xRy,则yRxC. 对于所有元素x,y,如果xRy,则xRzD. 对于所有元素x,y,如果xRy,则zRy答案:A8. 以下哪个选项是二元关系的非自反性质?()A. 对于所有元素x,xRxB. 对于所有元素x,x≠RxC. 对于所有元素x,xRyD. 对于所有元素x,xRy且yRx答案:B9. 以下哪个选项是二元关系的非对称性质?()A. 对于所有元素x,y,如果xRy,则yRxB. 对于所有元素x,y,如果xRy,则yRyC. 对于所有元素x,y,如果xRy,则x≠y答案:D10. 以下哪个选项是二元关系的非传递性质?()A. 对于所有元素x,y,z,如果xRy且yRz,则xRzB. 对于所有元素x,y,z,如果xRy且yRz,则xRyC. 对于所有元素x,y,z,如果xRy且yRz,则xRxD. 对于所有元素x,y,z,如果xRy且yRz,则xRw 答案:D二、填空题(每题2分,共20分)1. 集合{1, 2, 3}的基数是______。

离散数学期末考试试题及答案

离散数学期末考试试题及答案

离散数学期末考试试题及答案一、选择题(每题5分,共25分)1. 设A={1,2,3,4,5},B={2,3,5,7,11},则A∩B等于()A. {1,2,3,4,5}B. {2,3,5}C. {1,4}D. {2,3,5,7,11}2. 下面哪一个图是连通图?()A. 无向图B. 有向图C. 平面图D. 连通图3. 若一个图G有n个顶点,e条边,则以下哪个条件是图G 为连通图的必要条件?()A. n ≥ eB. n ≤ eC. n = eD. n + e = 24. 在一个简单图中,若每个顶点的度数都等于n-1,则该图是()A. 无向图B. 有向图C. 完全图D. 平面图5. 以下哪一个命题是正确的?()A. 每个图都有欧拉回路B. 每个连通图都有哈密顿回路C. 每个图都有哈密顿路径D. 每个连通图都有欧拉路径二、填空题(每题5分,共25分)6. 设A={a,b,c},B={1,2,3},则A×B的结果是______。

7. 一个连通图的生成树包含______条边。

8. 在一个n阶完全图中,任意两个不同顶点之间的距离是______。

9. 一个图G的顶点集为V,边集为E,则图G的邻接矩阵表示为______。

10. 在一个简单图中,若每个顶点的度数都等于n-1,则该图的边数是______。

三、判断题(每题5分,共25分)11. 一个图的子图包含原图的所有顶点和边。

()12. 一个连通图的所有顶点都连通。

()13. 在一个简单图中,每个顶点的度数都小于等于n-1。

()14. 每个图都有哈密顿路径。

()15. 一个图G的生成树是原图G的子图。

()四、解答题(共50分)16. (10分)设A={1,2,3,4,5},B={2,3,5,7,11},求A∪B 和A-B。

17. (10分)证明:一个连通图的每个顶点的度数都大于等于2。

18. (10分)给定一个图G,顶点集V={a,b,c,d,e},边集E={ab,bc,cd,de,ac,ad},求图G的所有连通分支。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个选项表示“属于”关系?A. ⊆B. ⊂C. ∈D. ⊇答案:C2. 以下哪个命题是真命题?A. p ∧ ¬pB. p ∨ ¬pC. p → ¬pD. ¬(p → q) → p答案:B3. 以下哪个选项是命题逻辑中的德摩根定律?A. ¬(p ∨ q) = ¬p ∧ ¬qB. ¬(p ∧ q) = ¬p ∨ ¬qC. ¬(p → q) = p ∧ ¬qD. ¬(p ∨ q) = ¬p ∨ ¬q答案:A4. 以下哪个选项是命题逻辑中的蕴含等价?A. p → q ≡ ¬p ∨ qB. p → q ≡ ¬q → ¬pC. p → q ≡ p ∨ ¬qD. p → q ≡ ¬p ∧ q答案:A5. 以下哪个选项是关系的性质?A. 反身性B. 对称性C. 传递性D. 所有选项都是答案:D6. 以下哪个选项是图论中的有向图?A. 无向图中的边没有方向B. 有向图中的边有方向C. 混合图中的边既有方向也有无方向D. 所有选项都是答案:B7. 在图论中,以下哪个选项是树的性质?A. 树是无环的B. 树是连通的C. 树是无向图D. 所有选项都是答案:D8. 以下哪个选项是布尔代数的基本运算?A. 与(AND)B. 或(OR)C. 非(NOT)D. 所有选项都是答案:D9. 以下哪个选项是组合数学中的排列?A. 从n个不同元素中取出m个元素的组合B. 从n个不同元素中取出m个元素的排列C. 从n个相同元素中取出m个元素的组合D. 从n个相同元素中取出m个元素的排列答案:B10. 以下哪个选项是集合论中的幂集?A. 一个集合的所有子集的集合B. 一个集合的所有真子集的集合C. 一个集合的所有超集的集合D. 一个集合的所有子集的个数答案:A二、简答题(每题10分,共30分)1. 简述命题逻辑中的等价命题是什么?答案:等价命题是指两个命题在所有可能的真值赋值下都具有相同真值的命题。

离散数学考试题及详细参考答案

离散数学考试题及详细参考答案

离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。

b)我今天进城,除非下雨。

c)仅当你走,我将留下。

2.用谓词逻辑把下列命题符号化a)有些实数不是有理数b)对于所有非零实数x,总存在y使得xy=1。

c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.二、简答题(共6道题,共32分)1.求命题公式(P→(Q→R))↔(R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。

(5分)2.设个体域为{1,2,3},求下列命题的真值(4分)a)∀x∃y(x+y=4)b)∃y∀x (x+y=4)3.求∀x(F(x)→G(x))→(∃xF(x)→∃xG(x))的前束范式。

(4分)4.判断下面命题的真假,并说明原因。

(每小题2分,共4分)a)(A⋃B)-C=(A-B) ⋃(A-C)b)若f是从集合A到集合B的入射函数,则|A|≤|B|5.设A是有穷集,|A|=5,问(每小题2分,共4分)a)A上有多少种不同的等价关系?b)从A到A的不同双射函数有多少个?6.设有偏序集<A,≤>,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)f g图17.已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数S;P(S);N,N n;P(N);R,R×R,{o,1}N(写出即可)(6分)三、证明题(共3小题,共计40分)1.使用构造性证明,证明下面推理的有效性。

(每小题5分,共10分)a)A→(B∧C),(E→⌝F)→⌝C, B→(A∧⌝S)⇒B→Eb)∀x(P(x)→⌝Q(x)), ∀x(Q(x)∨R(x)),∃x⌝R(x) ⇒∃x⌝P(x)2.设R1是A上的等价关系,R2是B上的等价关系,A≠∅且B≠∅,关系R满足:<<x1,y1>,<x2,y2>>∈R,当且仅当< x1, x2>∈R1且<y1,y2>∈R2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学 考试题 (后附详细答案 )
一、命题符号化(共 6 小题,每小题 3 分,共计 18 分) 1. 用命题逻辑把下列命题符号化 a) 假如上午不下雨,我去看电影,否则就在家里读书或看报。 设 P 表示命题“上午下雨” , Q表示命题“我去看电影” , R表示命题“在家里读书” ,S 表示
命题“在家看报” ,命题符号化为: ( P? Q) (P ? R S)
a) 证 ( 1) B
P(
( 2) B→(A ∧
(3) A
∧S
附加条件 ) S) P
T(1)(2) I
(4) A
T(3) I
(5) A
→(B ∧ C) P
(6) B (7) C (8) (E (9) (10) E (11) E (12) B b) 证 (1) (2) (3) (4) Q(c) (5) Q(c) (6) (7) P(c) (8) (9)
x y z((F(x) → G(x)) → (F(y) →
4. 判断下面命题的真假,并说明原因。 (每小题 2 分,共 4 分)
a) (A B )- C=(A-B) (A-C)
b) 若 f 是从集合 A 到集合 B 的入射函数,则 |A| ≤ |B|
a) 真命题。 因为( A B )- C=( A B) ~C=( A ~C) (B ~C)=(A-C ) ( B-C )
( ( P Q R) (P
Q
R)) (( P Q R) ( P
Q R) )
(P
Q
R) ( P
Q R) 这是主合取范式
公式的所有成真赋值为 000,001,010,100,101,111, 故主析取范式为
( P Q R ( P Q R ( P Q R (P Q R (P Q R
(P Q R
2. 设个体域为 {1,2,3} ,求下列命题的真值( a) x y(x+y=4) b) y x (x+y=4) a) T b) F
b) 我今天进城,除非下雨。
设 P 表示命题“我今天进城” ,Q表示命题“天下雨” ,命题符号化为:
c) 仅当你走,我将留下。
设 P 表示命题“你走” , Q表示命题“我留下” ,命题符号化为: Q→ P
2. 用谓词逻辑把下列命题符号化
a) 有些实数不是有理数 设 R(x) 表示“ x 是实数”, Q(x) 表示“ x 是有理数”,命题符号化为:
x P(x)
EG(8)
2. 设 R1 是 A 上的等价关系, R2 是 B 上的等价关系, A ≠ 且 B≠ ,关系 R 满足: <<x 1,y1>,<x 2,y2>> ∈ R,当且仅当 < x 1, x 2>∈ R1 且 <y 1,y2>∈ R2。试证明: R 是 A × B 上的 等价关系。( 10 分)
b) 真命题。因为如果 f 是从集合 A 到集合 B 的入射函数,则 |ranf|=|A| ,且 ranf 命题成立。
B, 故
5. 设 A 是有穷集, |A|=5 ,问(每小题 a) A 上有多少种不同的等价关系? b) 从 A 到 A 的不同双射函数有多少个? a) 52 b) 5!=120
2 分,共 4 分)
7. 已知有限集 ቤተ መጻሕፍቲ ባይዱ={a 1,a 2, …,a n},N 为自然数集合, R 为实数集合,求下列集合的基数 S;P(S);N,N n;P(N);R,R × R,{o,1} N(写出即可) (6 分 )
K[S]=n; K[P(S)]= 2n ; K[N]=
,K[{0,1} N]=
0,K[N n]=
0, K[P(N)]= ; K[R]= , K=[R × R]=
6. 设有偏序集 <A, ≤ >,其哈斯图如图 1,求子集 B={b,d,e} 的最小元,最大元、极大元、
极小元、上界集合、下界集合、上确界、下确界,
(5 分 )
f
g
d
e
b
c
a
图1
B 的最小元是 b,无最大元、 极大元是 d 和 e、极小元是 b、上界集合是 {g} 、下界集合是 {a,b} 、 上确界是 g、下确界是 b.
x(R(x)
Q(x)) 或
x(R(x) →Q(x))
Q→P 或 P→ Q
b) 对于所有非零实数 x,总存在 y 使得 xy=1 。
设 R(x) 表示“ x 是实数”, E(x,y) 表示“ x=y ” ,f(x,y)=xy,
x(R(x)
E(x,0) → y(R(y)
E(f(x,y),1))))
命题符号化为:
c) f 是从 A 到 B 的函数当且仅当对于每个 a∈A 存在唯一的 b∈B ,使得 f(a)=b. 设 F(f) 表示 “f 是从 A 到 B 的函数” , A(x) 表示“ x∈ A ”, B(x) 表示“ x∈ B”,E(x,y) 表示“ x=y”,
命题符号化为: F(f) ? a(A(a) → b(B(b) E(f(a),b) c(S(c) E(f(a),c) → E(a,b))))
三、证明题(共 3 小题,共计 40 分)
1. 使用构造性证明,证明下面推理的有效性。 (每小题 5 分,共 10 分) a) A→ (B ∧ C),(E → F) → C, B → (A ∧ S) B→E
b) x(P(x) → Q(x)),
x(Q(x) ∨ R(x)) , x R(x)
x P(x)
4 分)
3. 求 x(F(x) → G(x)) → ( xF(x) → xG(x)) 的前束范式。 ( 4 分)
x(F(x) → G(x)) →( xF(x) → xG(x))
x(F(x) →G(x)) → ( yF(y) → zG(z))
x(F(x) →G(x)) → y z(F(y) → G(z)) G(z)))
∧C
T(4)(5) I
T(6) I
→ F) → C P
(E→ F) T(7)(8) I
∧F
T(9) E
T(10) I
→E
CP
x R(x)
P
R(c)
ES(1)
x(Q(x) ∨ R(x)) P
∨ R(c) US(3)
T(2)(4) I
x(P(x) → Q(x)) P
→ Q(c) US(6)
P(c)
T(5)(7) I
二、简答题(共 6 道题,共 32 分)
1. 求命题公式 (P → (Q→ R)) (R→ (Q→ P)) 的主析取范式、主合取范式,并写出所有成真赋 值。( 5 分)
(P→ (Q→ R)) (R→ (Q→ P)) ( P
Q R) (P
Q
R)
(( P
Q R)→(P
Q
R)) ((P
Q
R) →( P
Q R)).
相关文档
最新文档