高一下学期期中考试题

合集下载

湖北省宜昌市部分省级示范高中2023-2024学年高一下学期期中联考英语试题含答案

湖北省宜昌市部分省级示范高中2023-2024学年高一下学期期中联考英语试题含答案

宜昌市部分省级示范高中2024年春季学期期中考试高一年级英语试卷(答案在最后)命题学校:考试时间:120分钟满分:150分第一部分:听力(共两节,满分30分)第一节(共5小题;每小题 1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1.What would the man like to order?A.Some coffeeB.Some apple juice.C.A cup of tea.2.Which program does the man like best?A.SportsB.History.C.News.3.What is the probable relationship between the speakers?A.Salesgirl and customer.B.Wife and husband.C.Passenger and driver.4.Where does the conversation probably take place?A.In a ticket officeB.In a bankC.In a department store5.When did the fire probably break out?A.At about7.B.At about8.C.At about9.第二节(共15小题;每小题 1.5分,满分22.5分)听下面5段对话或独白。

每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。

每段对话或独白读两遍。

听第6段材料,回答第6、7题。

6.What does the man’s friend want to drink?A.Orange juice.k with sugar.C.Coffee with milk.7.How much should the man pay?A.10yuan.B.90yuan.C.100yuan.听第7段材料,回答第8、9题。

高一下学期期中考试语文试卷含答案(共3套)

高一下学期期中考试语文试卷含答案(共3套)

高一下学期期中考试语文试卷含答案(共3套)高一第二学期期中考试语文试题(满分:150分;考试时间:150分钟)(一)论述类文本阅读(本题共3小题,9分)文化软实力,是指一个国家或地区基于文化而具有的凝聚力、生命力、创新力、传播力和影响力。

“文化软实力”的说法源自XXX的软实力理论。

一般来说,软实力是一种隐形的力量,蕴含在文化、政治价值观、外交政策和国际形象四个载体中。

在这四个载体中,文化是核心,其他三个组成部分也都深深地烙上了文化的影子。

甚至有人直接把软实力解释成文化力。

基于此,文化软实力就有了广义和狭义之分,广义的文化软实力就是指“软实力”;狭义的文化软实力,则是构成软实力的文化要素。

文化软实力的形成必须依赖先进的文化,而这种文化只有与时俱进才能更好地服务于相应的时代和社会,才能更好地促进个人全面自由的发展,才能体现出强大的吸引力和感染力。

文化软实力的作用,主要体现在国内和国际两个方面。

在国内,它通过文化建设不断增强本国文化的认同感,抵御国外一些敌对文化理念的侵袭,增强国内民众的凝聚力。

通过吸收国外先进文化元素和不断改造本国文化中落后的成分,使本国文化更加适应当前形势,更好地指导经济建设,更好地彰显本国文化的强劲生命力。

在国际政治舞台上,兼容并蓄、富有活力的本国文化必将为国外受众所认可,使本国所奉行的理念得到传播,从而提升国家形象和影响力。

文化软气力产生于一定的文化资本。

这些资本包括国家价值寻求、社会理念、宗教崇奉、品德规范,还包括风俗惯、民族精神、国民素质、文学艺术等,还与教育、科技、文化财产的开展水平密切相干。

文化软气力产生的根本是人们对本国中心价值体系的认同和接受。

与传统手段相比,非强制手段是文化软气力完成的手段,而国家的综合国力是文化软气力的力量施展阐发形式。

在现实社会中,往往存在重器不重道的现象。

它表现在国家综合实力的建设上,就是重视提升硬实力而不重视提升文化软实力。

重视提升硬实力是对的,文化软实力也一定要以硬实力为基础。

人教版高一下学期期中考试数学试卷及答案解析(共五套)

人教版高一下学期期中考试数学试卷及答案解析(共五套)

人教版高一下学期期中考试数学试卷(一)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为312.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a 的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.参考答案一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.【答案】D【分析】根据共线向量的定义即可得结论.【解答】解:由题,点C是线段AB靠近点B的三等分点,=3=﹣3,所以选项A错误;=2=﹣2,所以选项B和选项C错误,选项D正确.故选:D.【知识点】平行向量(共线)、向量数乘和线性运算2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.【答案】D【分析】直接利用复数代数形式的乘除运算化简,然后利用共轭复数的概念得答案.【解答】解:∵z(3+i)=3+i2020,i2020=(i2)1010=(﹣1)1010=1,∴z(3+i)=4,∴z=,∴=,∴共轭复数的虚部为,故选:D.【知识点】复数的运算3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.【答案】C【分析】利用图形,求出数量积的向量,然后转化求解即可.【解答】解:由题意,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,可知=+=,=﹣=﹣2,所以•=()•(﹣2)=﹣2﹣2=1.故选:C.【知识点】平面向量数量积的性质及其运算4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i【答案】B【分析】利用错位相减法、等比数列的求和公式及其复数的周期性即可得出.【解答】解:设S=2i+3i2+4i3+ (2020i2019)∴iS=2i2+3i3+ (2020i2020)则(1﹣i)S=i+i+i2+i3+……+i2019﹣2020i2020.==i+==﹣2021+i,∴S==.故选:B.【知识点】复数的运算5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°【答案】B【分析】易知∠ABA1即为所求,再由△ABA1为等腰直角三角形,得解.【解答】解:因为AB∥CD,所以∠ABA1即为异面直线A1B与CD所成的角,因为△ABA1为等腰直角三角形,所以∠ABA1=45°.故选:B.【知识点】异面直线及其所成的角6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.【答案】C【分析】先利用正弦定理将已知等式中的边化角,再结合两角和公式与三角形的内角和定理,可推出sin B=2sin A;然后利用三角形的面积公式、正弦定理,即可得解.【解答】解:由正弦定理知,==,∵(a﹣2b)cos C=c(2cos B﹣cos A),∴(sin A﹣2sin B)cos C=sin C(2cos B﹣cos A),即sin A cos C+sin C cos A=2(sin B cos C+cos B sin C),∴sin(A+C)=2sin(B+C),即sin B=2sin A.∵△ABC的面积为a2sin,∴S=bc sin A=a2sin,根据正弦定理得,sin B•sin C•sin A=sin2A•sin,化简得,sin B•sin cos=sin A•cos,∵∈(0,),∴cos>0,∴sin==,∴=,即C=.故选:C.【知识点】正弦定理、余弦定理7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°【答案】B【分析】连接AB1,求出∠ACB1可判断选项A;连接B1D1,找出点B1在平面AD1C上的投影O,设直线B1C与平面AD1C所成的角为θ,由cosθ=可判断选项B;利用平移法找出选项C和D涉及的异面直线夹角,再进行相关运算,即可得解.【解答】解:连接AB1,∵△AB1C为等边三角形,∴∠ACB1=60°,即直线B1C与AC所成的角为60°,故选项A正确;连接B1D1,∵AB1=B1C=CD1=AD1,∴四面体AB1CD1是正四面体,∴点B1在平面AD1C上的投影为△AD1C的中心,设为点O,连接B1O,OC,则OC=BC,设直线B1C与平面AD1C所成的角为θ,则cosθ===≠,故选项B错误;连接BC1,∵AD1∥BC1,且B1C⊥BC1,∴直线B1C与AD1所成的角为90°,故选项C正确;∵AB⊥平面BCC1B1,∴AB⊥B1C,即直线B1C与AB所成的角为90°,故选项D正确.故选:B.【知识点】直线与平面所成的角、异面直线及其所成的角8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π【答案】A【分析】由题意可得AC⊥面EFBD,可得V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD,再由多面体ABCDEF 的体积为,可得矩形EFBD的高与正方形ABCD的边长之间的关系,再由题意可得矩形EFBD的对角线的交点为外接球的球心,进而求出外接球的半径,再由均值不等式可得外接球的半径的最小值,进而求出外接球的表面积的最小值.【解答】解:设正方形ABCD的边长为a,矩形BDEF的高为b,因为正方形ABCD,所以AC⊥BD,设AC∩BD=O',由因为平面ABCD与平面EFBD互相垂直,AC⊂面ABCD,平面ABCD∩平面EFBD=BD,所以AC⊥面EFBD,所以V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD=2•S EFBD•CO'=•a•b•a =a2b,由题意可得V ABCDEF=,所以a2b=2;所以a2=,矩形EFBD的对角线的交点O,连接OO',可得OO'⊥BD,而OO'⊂面EFBD,而平面ABCD⊥平面EFBD,平面ABCD∩平面EFBD=BD,所以OO'⊥面EFBD,可得OA=OB=OE=OF都为外接球的半径R,所以R2=()2+(a)2=+=+=++≥3=3×,当且仅当=即b=时等号成立.所以外接球的表面积为S=4πR2≥4π•3×=6π.所以外接球的表面积最小值为6π.故选:A.【知识点】球的体积和表面积二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.【答案】BC【分析】由已知利用余弦定理整理可得cos A=,对于A,若A=,可得b=<0,错误;对于B,若A=,可得b=>0,对于C,若A=,可得b=>0,对于D,若A=,可得c=0,错误,即可得解.【解答】解:因为在△ABC中,a2=b2+bc,又由余弦定理可得:a2=b2+c2﹣2bc cos A,所以b2+bc=b2+c2﹣2bc cos A,整理可得:c=b(1+2cos A),可得:cos A=,对于A,若A=,可得:﹣=,整理可得:b=<0,错误;对于B,若A=,可得:=,整理可得:b=>0,对于C,若A=,可得:cos==,整理可得:b=>0,对于D,若A=,可得:cos=﹣=,整理可得:c=0,错误.故选:BC.【知识点】余弦定理10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.【答案】ABC【分析】由向量的加减法法则、平面向量基本定理解决【解答】解:由,知A正确;由知B正确;由知C正确;由N为线段DC的中点知知D错误;故选:ABC.【知识点】向量数乘和线性运算、平面向量的基本定理11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为3【答案】BD【分析】通过复数的基本性质,结合反例,以及复数的模,判断命题的真假即可.【解答】解:当两个复数都是实数时,可以比较大小,所以A不正确;复数的实部与虚部都是0时,复数是0,所以B正确;反例z1=1,z2=i,满足z12+z22=0,所以C不正确;复数z满足|z|=1,则|z+2i|的几何意义,是复数的对应点到(0,﹣2)的距离,它的最大值为3,所以D正确;故选:BD.【知识点】复数的模、复数的运算、虚数单位i、复数、命题的真假判断与应用12.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°【答案】ABD【分析】在正方体ABCD﹣A1B1C1D1中,建立合适的空间直角坐标系,设正方体的棱长为2,根据空间向量的坐标运算,以及异面直线所成角的向量求法,逐项判断即可.【解答】解:在正方体ABCD﹣A1B1C1D1中,以点A为坐标原点,分别以AB,AD,AA1为x 轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为2,则A(0,0,0),A1(0,0,2),B(2,0,0),B1(2,0,2),C (2,2,0),D(0,2,0),D1(0,2,2),所以,故,故选项A正确;又,又,所以,,则,故选项B正确;,所以,因此与的夹角为120°,故选项C错误;因为E,F分别是BC,A1C的中点,所以E(2,1,0),F(1,1,1),则,所以,又异面直线的夹角大于0°小于等于90°,所以异面直线EF与DD1所成的角为45°,故选项D正确;故选:ABD.【知识点】异面直线及其所成的角三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.【分析】根据向量的几何意义可得P为BC的中点,再根据向量的数量积的运算和正方形的性质即可求出.【解答】解:由=(+),可得P为BC的中点,则|CP|=1,∴|PD|==,∴•=•(+)=﹣•(+)=﹣2﹣•=﹣1,故答案为:,﹣1.【知识点】平面向量数量积的性质及其运算14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.【答案】1【分析】设z1=a+bi,则z2=a﹣bi,(a,b∈R),根据两个复数相等的充要条件求出z1,z2,再由根与系数的关系求得p,q的值.【解答】解:由题意可知z1与z2为共轭复数,设z1=a+bi,则z2=a﹣bi,(a,b∈R 且b≠0),又,则a2﹣b2+2abi=a﹣bi,∴(2a+b)+(a+2b)i=1﹣i,∴,解得.∴z1=+i,z2=i,(或z2=+i,z1=i).由根与系数的关系,得p=﹣(z1+z2)=1,q=z1•z2=1,∴pq=1.故答案为:1.【知识点】复数的运算15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.【分析】由题意画出图形,找出三棱锥外接球的位置,求解三角形可得外接球的半径,再由棱锥体积公式求解.【解答】解:记BD的中点为M,连接A′M,CM,可得A′M2+CM2=A′C2,则∠A′MC=90°,则外接球的球心O在△A′MC的边A′C的中垂线上,且过正三角形BCD的中点F,且在与平面BCD垂直的直线m上,过点A′作A′E⊥m于点E,如图所示,设外接球的半径为R,则A′O=OC=R,,A′E=1,在Rt△A′EO中,A′O2=A′E2+OE2,解得R=.故三棱锥A﹣BCD的外接球的体积为.故答案为:.【知识点】球的体积和表面积16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.【分析】根据题意,该四面体内接于圆锥的内切球,通过内切球即可得到a的最大值.【解答】解:依题意,四面体可以在圆锥内任意转动,故该四面体内接于圆锥的内切球,设球心为P,球的半径为r,下底面半径为R,轴截面上球与圆锥母线的切点为Q,圆锥的轴截面如图:则OA=OB=,因为SO=,故可得:SA=SB==3,所以:三角形SAB为等边三角形,故P是△SAB的中心,连接BP,则BP平分∠SBA,所以∠PBO=30°;所以tan30°=,即r=R=×=,即四面体的外接球的半径为r=.另正四面体可以从正方体中截得,如图:从图中可以得到,当正四面体的棱长为a时,截得它的正方体的棱长为a,而正四面体的四个顶点都在正方体上,故正四面体的外接球即为截得它的正方体的外接球,所以2r=AA1=a=a,所以a=.即a的最大值为.故答案为:.【知识点】旋转体(圆柱、圆锥、圆台)四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.【分析】(1)直接利用余弦定理的应用求出结果;(2)利用余弦定理的应用建立等量关系式,进一步求出结果.【解答】解:(1)在四边形ABCD中,AD=BD=CD=1.若AB=,所以:cos∠ADB==,由于AB∥CD,所以∠BDC=∠ABD,即cos∠BDC=cos∠ABD=,所以BC2=BD2+CD2﹣2•BD•CD•cos∠BDC==,所以BC=.(2)设BC=x,则AB=2BC=2x,由余弦定理得:cos∠ADB==,cos∠BDC===,故,解得或﹣(负值舍去).所以.【知识点】余弦定理18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.【分析】(1)把z1,z2代入=+,利用复数代数形式的乘除运算化简求出,进一步求出z;(2)设z=a+bi(a,b∈R),利用复数的运算及(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,可得,又ω==i,|ω|=5,可得,即可得出a,b,再代入可得ω.【解答】解:(1)由z1=1﹣2i,z2=3+4i,得=+==,则z=;(2)设z=a+bi(a,b∈R),∵(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,∴.又ω===i,|ω|=5,∴.把a=3b代入化为b2=25,解得b=±5,∴a=±15.∴ω=±(i)=±(7﹣i).【知识点】复数的运算19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.【分析】(1)首项利用两角和的正切公式建立函数关系,进一步利用判别式确定函数的最大值;(2)利用两角和的正切公式建立函数关系,利用a的取值范围即可确定x的范围.【解答】解:(1)如图,作CD⊥AF于D,则CD=EF,设∠ACD=α,∠BCD=β,CD=x,则θ=α﹣β,在Rt△ACD和Rt△BCD中,tanα=,tanβ=,则tanθ=tan(α﹣β)==(x>0),令u=,则ux2﹣2x+1.25u=0,∵上述方程有大于0的实数根,∴△≥0,即4﹣4×1.25u2≥0,∴u≤,即(tanθ)max=,∵正切函数y=tan x在(0,)上是增函数,∴视角θ同时取得最大值,此时,x==,∴观察者离墙米远时,视角θ最大;(2)由(1)可知,tanθ===,即x2﹣4x+4=﹣a2+6a﹣4,∴(x﹣2)2=﹣(a﹣3)2+5,∵1≤a≤2,∴1≤(x﹣2)2≤4,化简得:0≤x≤1或3≤x≤4,又∵x>1,∴3≤x≤4.【知识点】解三角形20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.【分析】(I)利用复数的几何意义、向量的坐标运算性质、平行四边形的性质即可得出.(II)利用向量垂直与数量积的关系、模的计算公式、矩形的面积计算公式即可得出.【解答】解:(Ⅰ)依题点A对应的复数为﹣1,对应的复数为2+2i,得A(﹣1,0),=(2,2),可得B(1,2).又对应的复数为4﹣4i,得=(4,﹣4),可得C(5,﹣2).设D点对应的复数为x+yi,x,y∈R.得=(x﹣5,y+2),=(﹣2,﹣2).∵ABCD为平行四边形,∴=,解得x=3,y=﹣4,故D点对应的复数为3﹣4i.(Ⅱ)=(2,2),=(4,﹣4),可得:=0,∴.又||=2,=4.故平行四边形ABCD的面积==16.【知识点】复数的代数表示法及其几何意义21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.【分析】(1)推导出GC⊥BC,EC⊥BC,从而∠ECG=60°.连接DG,推导出DG⊥EF,由BC⊥EF,BC⊥CG,得BC⊥平面DEG,从而DG⊥BC,进而DG⊥平面ABCE,DG是四棱锥G ﹣ABCE的高,由此能求出四棱锥G﹣ABCE的体积.(2)取DE的中点H,连接BH、GH,则BH∥AE,∠GBH既是AE与BG所成角或其补角.由此能求出异面直线AE与BG所成角的大小.【解答】解:(1)由已知,有GC⊥BC,EC⊥BC,所以∠ECG=60°.连接DG,由CD=AB=1,CG=CF=2,∠ECG=60°,有DG⊥EF①,由BC⊥EF,BC⊥CG,有BC⊥平面DEG,所以,DG⊥BC②,由①②知,DG⊥平面ABCE,所以DG就是四棱锥G﹣ABCE的高,在Rt△CDG中,.故四棱锥G﹣ABCE的体积为:.(2)取DE的中点H,连接BH、GH,则BH∥AE,故∠GBH既是AE与BG所成角或其补角.在△BGH中,,,则.故异面直线AE与BG所成角的大小为.【知识点】异面直线及其所成的角、棱柱、棱锥、棱台的体积22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.【分析】(1)点F为BC的中点,设点D在平面ABC内的射影为O,连接OD,OC,取AC 的中点H,连接EH,由题意知EH⊥AC,EH⊥平面ABC,由题意知DO⊥平面ABC,得DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,从而OF∥平面EAC,平面DOF∥平面EAC,由此能证明DF∥平面EAC.(2)连接OH,由OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出直线AB与平面EBC所成角的余弦值.【解答】解:(1)点F为BC的中点,理由如下:设点D在平面ABC内的射影为O,连接OD,OC,∵AD=CD,∴OA=OC,∴在Rt△ABC中,O为AB的中点,取AC的中点H,连接EH,由题意知EH⊥AC,又平面EAC⊥平面ABC,平面EAC∩平面ABC=AC,∴EH⊥平面ABC,由题意知DO⊥平面ABC,∴DO∥EH,∴DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,又OF⊄平面EAC,AC⊂平面EAC,∴OF∥平面EAC,∵DO∩OF=O,∴平面DOF∥平面EAC,∵DF⊂平面DOF,∴DF∥平面EAC.(2)连接OH,由(1)可知OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立如图所示空间直角坐标系,则B(1,﹣1,0),A(﹣1,1,0),E(0,1,﹣),C(1,1,0),∴=(2,﹣2,0),=(0,2,0),=(﹣1,2,﹣),设平面EBC的法向量=(a,b,c),则,取a=,则=(,0,﹣1),设直线与平面EBC所成的角为θ,则sinθ===.∴直线AB与平面EBC所成角的余弦值为cosθ==.【知识点】直线与平面平行、直线与平面所成的角人教版高一下学期期中考试数学试卷(二)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.14.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.25.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.96.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R27.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π8.已知半球O与圆台OO'有公共的底面,圆台上底面圆周在半球面上,半球的半径为1,则圆台侧面积取最大值时,圆台母线与底面所成角的余弦值为()A.B.C.D.二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.下列有关向量命题,不正确的是()A.若||=||,则=B.已知≠,且•=•,则=C.若=,=,则=D.若=,则||=||且∥10.若复数z满足,则()A.z=﹣1+i B.z的实部为1 C.=1+i D.z2=2i11.如图,在平行四边形ABCD中,E,F分别为线段AD,CD的中点,AF∩CE=G,则()A.B.C.D.12.已知正方体ABCD﹣A1B1C1D1,棱长为2,E为线段B1C上的动点,O为AC的中点,P 为棱CC1上的动点,Q为棱AA1的中点,则以下选项中正确的有()A.AE⊥B1CB.直线B1D⊥平面A1BC1C.异面直线AD1与OC1所成角为D.若直线m为平面BDP与平面B1D1P的交线,则m∥平面B1D1Q三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知向量=(m,1),=(m﹣6,m﹣4),若∥,则m的值为.14.将表面积为36π的圆锥沿母线将其侧面展开,得到一个圆心角为的扇形,则该圆锥的轴截面的面积S=.15.如图,已知有两个以O为圆心的同心圆,小圆的半径为1,大圆的半径为2,点A 为小圆上的动点,点P,Q是大圆上的两个动点,且•=1,则||的最大值是.16.如图,在三棱锥A﹣BCD的平面展开图中,已知四边形BCED为菱形,BC=1,BF=,若二面角A﹣CD﹣B的余弦值为﹣,M为BD的中点,则CD=,直线AD与直线CM所成角的余弦值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.已知,.(1)若与同向,求;(2)若与的夹角为120°,求.18.已知a、b、c是△ABC中∠A、∠B、∠C的对边,a=4,b=6,cos A=﹣.(1)求c;(2)求cos2B的值.19.已知:复数z1与z2在复平面上所对应的点关于y轴对称,且z1(1﹣i)=z2(1+i)(i为虚数单位),|z1|=.(Ⅰ)求z1的值;(Ⅱ)若z1的虚部大于零,且(m,n∈R),求m,n的值.20.(Ⅰ)在复数范围内解方程|z|2+(z+)i=(i为虚数单位)(Ⅱ)设z是虚数,ω=z+是实数,且﹣1<ω<2.(1)求|z|的值及z的实部的取值范围;(2)设,求证:μ为纯虚数;(3)在(2)的条件下求ω﹣μ2的最小值.21.如图,直三棱柱A1B1C1﹣ABC中,AB=AC=1,,A1A=4,点M为线段A1A 的中点.(1)求直三棱柱A1B1C1﹣ABC的体积;(2)求异面直线BM与B1C1所成的角的大小.(结果用反三角表示)22.如图所示,在正方体ABCD﹣A1B1C1D1中,点G在棱D1C1上,且D1G=D1C1,点E、F、M分别是棱AA1、AB、BC的中点,P为线段B1D上一点,AB=4.(Ⅰ)若平面EFP交平面DCC1D1于直线l,求证:l∥A1B;(Ⅱ)若直线B1D⊥平面EFP.(i)求三棱锥B1﹣EFP的表面积;(ii)试作出平面EGM与正方体ABCD﹣A1B1C1D1各个面的交线,并写出作图步骤,保留作图痕迹.设平面EGM与棱A1D1交于点Q,求三棱锥Q﹣EFP的体积.答案解析一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【分析】直接利用复数的运算和几何意义的应用求出该点所表示的位置.【解答】解:设z=a+bi(a,b∈R),所以(2﹣i)(a+bi)=2a+b+(2b﹣a)i,由于对应的点在虚轴的正半轴上,所以,即,所以a<0,b>0.故该点在第二象限.故选:B.【知识点】复数的代数表示法及其几何意义2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.【答案】D【分析】利用平行四边形的性质以及向量相等的概念,再利用平面向量基本定理进行转化即可.【解答】解:因为ABCD为平行四边形,所以,故.故选:D.【知识点】平面向量的基本定理3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.1【答案】B【分析】根据平面向量的坐标表示和共线定理,列方程求出t的值.【解答】解:向量=(6t+3,9),=(4t+2,8),所以+=(6t+3,11),﹣=(4t+2,5).又(+)∥(﹣),所以5(6t+3)﹣11(4t+2)=0,解得t=﹣.故选:B.【知识点】平面向量共线(平行)的坐标表示4.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.2【答案】D【分析】先根据M,N满足的条件,将(+)•=0化成的表达式,从而判断出矩形ABCD为正方形;再将+=x+y,左边用表示出来,结合x+y =3,即可得NC+MC=4,最后借助于基本不等式求出MN的最小值.【解答】解:当M,N分别是边BC,DC的中点时,有(+)•===,所以AD=AB,则矩形ABCD为正方形,设,,则=.则x=2﹣λ,y=2﹣μ.又x+y=3,所以λ+μ=1.故NC+MC=4,则MN==(当且仅当MC=NC=2时取等号).故线段MN的最短长度为2.故选:D.【知识点】平面向量数量积的性质及其运算5.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.9【答案】B【分析】由题意画出图形,再由复数模的几何意义,数形结合得答案.【解答】解:由|z+3+4i|≤2,得z在复平面内对应的点在以Q(﹣3,﹣4)为圆心,以2为半径的圆及其内部.如图:|z﹣1﹣i|的几何意义为区域内的动点与定点P得距离,则M=|PQ|+2,m=|PQ|﹣2,则M﹣m=4.故选:B.【知识点】复数的运算6.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R2【答案】B【分析】设圆锥的底面半径为r,求得圆锥的高,由球的截面性质,运用勾股定理可得r,由圆锥的表面积公式可得所求.【解答】解:如图,设圆锥的底面半径为r,则圆锥的高为r,则R2=r2+(r﹣R)2,解得r=R,则圆锥的表面积为S=πr2+πr•2r=3πr2=3π(R)2=πR2,故选:B.【知识点】球内接多面体、旋转体(圆柱、圆锥、圆台)7.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π【答案】A【分析】先根据题意求得正四面体的体积,进而得到六面体的体积,再由图形的对称性得,内部的丸子要是体积最大,就是丸子要和六个面相切,设丸子的半径为R,则,由此求得R,进而得到答案.【解答】解:由题意可得每个三角形面积为,由对称性可知该六面体是由两个正四面体合成的,可得该四面体的高为,故四面体的体积为,∵该六面体的体积是正四面体的2倍,。

上海中学2023-2024学年高一下学期期中考试英语试题(含答案)

上海中学2023-2024学年高一下学期期中考试英语试题(含答案)

上海中学2023学年第二学期期中考试英语试题高一______班学号______ 姓名______ 成绩______Ⅰ.Listening ComprehensionSection ADirections: In Section A, you will hear ten short conversations between two speakers. At the end of each conversation, a question will be asked about what was said. The conversations and the questions will be spoken only once. After you hear a conversation and a question about it, read the four possible answers on your paper, and decide which one is the best answer to the question you have heard.1.A.15 dollars. B.20 dollars. C.25 dollars. D.45 dollars.2.A.To the gallery. B.To the dentist’s.C.To her flat. D.To the garage.3.A.She was fired by the company. B.She broke the law.C.She is on leave right now. D.She is replacing the company’s website.4.A.Patient and doctor. B.Resident and government official.C.Customer and insurance agent. D.Boss and secretary.5.A.He was sitting opposite Mr. Johnson. B.He is planning a farewell party for Mr. Johnson.C.All the tasks that Mr. Johnson did failed. D.He is glad Mr. Johnson left the company.6.A.She prefers dogs to cats.B.She had a close relationship with the man’s daughter.C.She used to sorrow over her dog’s death.D.She is always in low spirits.7.A.The woman should get the chips herself. B.The woman shouldn’t eat chips.C.The woman used to have several heart attacks. D.The woman warned the man against heart attacks. 8.A.They plan to have the meeting in another place.B.The availability of the meeting room will be discussed.C.They have already had the meeting.D They will have the meeting sometime later.9.A.The car’s demand greatly exceeds supply.B.The woman has listed the car’s advantages.C.The woman received a car a month ago. D.The woman didn’t like the car.10.A.She won’t do the presentation.B.She needs to collect a lot of data for the presentation.C.She is still at an early stage of preparation for the presentation.D.The topic is most important for the presentation.Section BDirections: In Section B, you will hear two short passages and a longer conversation, and you will be asked some questions on the passages and the conversation. The passages and the conversation will be read twice, but thequestions will be spoken only once. When you hear a question, read the four possible answers on your paper and decide which one is the best answer to the question you’ve heard.Questions 11 through 13 are based on the following passage.11.A.The type of food you freeze. B.The way you warm up the frozen food.C.Whether the freezer bags are sealed. D.What temperature you set your freezer to. 12.A.Because they can be easily stocked.B.Because they fit well in the fridge.C.Because they come in different sizes and shapes. D.Because they help to keep the dry food dry 13.A.Prevent people from eating too much food.B.Stop people from removing food that hasn’t gone bad.C.Make people become cautious about eating unhealthy food.D.Make people become ambitious in making use of leftover food.Questions 14 through 17 are based on the following passage.14.A.Postpone retirement age. B.Involve more women in work.C.Hire more foreign workers. D.Attract workers with high salaries.15.A.Relieve pressure on human nursing care.B.Take care of children and the elderly.C.Finally replace humans in workforce. D.Give humans more time to r creative work. 16.A.Robots can’t do certain work. B.Some people don’t accept robots.C.The expenses for robots are still high. D.The functions of robots need improving.17.A.Japan struggles to fight workforce shortage.B.Japanese attitudes towards robots change a lot.C.Robots have played a major role in Japan’s industry.D.Robots can help in Japanese workforce shortage.Questions 18 through 20 are based on the following conversation.18.A.The cruise liner will provide all sorts of food and entertainment.B.Only half of the cabins will be filled up.C.The prices of unsold tickets will be reduced.D.Everyone will be able to afford the ticket.19.A.Book tickets as soon as they are available. B.Closely watch the changes of ticket prices C.Compare deals from different sources. D.Keep in contact with a travel age n you can trust. 20.A.Because cruise tours are only suitable for people who have much free time.B.Because he can work part-time to earn money to pay for the tour.C.Because doing price research and comparing takes time.D.Because he can sail shortly after buying the cheap ticket.Ⅱ.Grammar and VocabularySection A Multiple Choice21.No man is useless in this world ______ lightens the burden of someone else.A.which B.that C.who D.as22.______ be considered for the role of team leader in our upcoming project?A.Who do you suggest that should B.Who do you suggestC.Whom do you suggest should D.Do you suggest who should23.I’m now applying to graduate school, ______ means someday I’ll return to a profession ______people need to be nice to me in order to get what they want.A.which, as B.which, which C.which, where D.as, in which24.The reason ______ she gave for her resignation was ______ she wanted to pursue her passion for travel and exploration.A.that, that B.why, that C.why, because D./, because25.It might be years ______ we ______ the creation of artificial intelligence systems capable of true human-like cognition.A.since, made possible B.before, make possibleC.since, made possible that D.before, make it possible26.The budget for the project ended up being twice ______, causing unexpected financial strain on the company. A.how it intended to B.that it had intended toC.as it intended to D.what it was intended to27.It was ______ she took her first step onto foreign soil ______ signaled the beginning of a journey filled with unknown adventures and unforgettable experiences.A.the moment, that B.the moment, whenC.the moment when, that D.the moment when, which28.The complexities of the English language are ______ even native speakers cannot always communicate effectively, ______ almost every American learns on his first day in Britain.A.so that, as B.such that, as C.so that, with D.such that, in that29.His confidence and strong will clearly show that he is no longer ______ he used to be the first time ______ he undertook such a demanding task.A.who, when B.who, / C.what, / D.what, that30.It was not so much her talent ______ her perseverance and determination ______ motivated her to the top of her field.A but. that B.as, that C.nor, which D.like, which31.______ the children tracked mud all over them again.A.No sooner did he sweep the floors clean than B.Hardly had he sweep the floors clean whenC.Barely he had swept the floors clean than D.Scarcely had he swept the floors clean when32.Although the suspect insisted ______ alone during the time of the crime, the court still demanded ______ evidence to support his alibi.A.being at home, he should provide B.he be at home, he providedC.he was at home, be provide D.he was at home, he providing33.Visitors are permitted to take photographs for personal use only, ______ stated otherwise by the museum staff. A.though B.if C.as D.unless34.The recipe book features helpful ______, making it easier for learners to visualize the cooking process.A.explanation B.demonstrations C.illustrations D.presentations35.The heroic idea that ______ qualities such as excellence, generosity courage, loyalty and dignity is highly valued and modeled.A.embraces B.identifies C.examines D.criticizes36.______ by the work pressure, he has been experiencing serious physical symptoms of stress and had to turn to a therapist for help.A.Overwhelmed B.Disappointed C.Frustrated D.Shocked37.After witnessing her tireless dedication to practice every day, the parents were ______ her enthusiasm for playing the piano.A.concerned with B.committed to C.informed of D convinced of38.When we ______ the data further, we can identify specific trends and patterns that may not be evident at first glance.A.break up B.break out C.break through D.break down39.The temptation for a declining church to ______ old privileges is strong.A.hang on to B.settle for C.pass up D.sign for40.After signing the contract, every employee is ______ fulfill their duties and conform to the rules made by the company.A.reluctant to B.obliged to C.motivated to D.honored to41.Due to the long-term environmental and financial benefits, renewable energy technologies are ______ A.worthwhile to develop B.worth being developedC.worthy to be developed D.worthy of developingSection B VocabularyDirections: Complete the following passage by using the words in the box. Each word can only be used once. Note that there is one word more than you need.Stressed out? Get chewing: can a wellness rebrand make Americans buy gum again?When was the last time you saw someone chewing gum? 1998, maybe? 2007? Chances are, it probably wasn’t recently. Like high heels and affordable housing, chewing gum appears to be going 42Gum’s popularity has been fading globally thanks to increased competition from products like breath mints and mobile phones distracting us from impulse purchases while shopping. The pandemic, moreover, 43 ·accelerated gum’s decline.Even after people 44 from lockdown, sales didn’t recover. Gum sales worldwide in 2023 were 10% below 2018 figures. In the US, the drop has been particularly pronounced: last year 1.2 billion units of gum were sold in the US, 32% fewer than in 2018.However, chewing gum, in various forms, is one of the oldest habits there is. Stone age teenagers were chewing birch bar k tar possibly for pleasure, medicinal purposes, or to use it as a glue. Gum has also been loaded with culturalmeaning and the subject of various 45 panics. Some people believe it is a marker of the bad kids or a habit of the lower class.Despite a certain amount of social stigma(污名)attached to gum, it has - until relatively recently -been a wildly successful product. That’s thanks to William Wrigley Jr, who was a marketing and advertising genius. Wrigley always 46 to find a way to make gum relevant and insert it into consumer culture. For example, Wrigley advertised the idea that chewing gum was a health aid that would help digestion and would relieve stress.This year the Wrigley brand’s owner —Mars—came out with an ad campaign it hopes will revive gum’s 47 by positioning it as an almost instant stress reliever. Linking gum with wellness worked in the 1910s, but is it going to work now? Alex Hayes at the food consultancy is 48 optimistic. “The global well ness market is estimated to be worth more than $1.5 trillion, so it’s no surprise that Mars wants a piece of the pie,” Hayes says. “We’ve seen the success of categories such as tea promoting their products via functional 49 and messaging-teas for good sleep, mental clarity, stress relief, etc. So it comes as no surprise that Mars is risking the same 50 .” But he also notes, customers are increasingly worried about processed foods and are eager to move away from artificial 51 . There’s still ongoing discussion on just how effective repositioning chewable plastic as a health supplement is going to be. Ⅲ.Reading ComprehensionSection A ClozeDirections: For each blank in the following passage there are four words or phrases marked A, B, C and D. Fill in each blank with the word or phrase that best fits the context.It’s safe to say Jeremy Scott is having a lucky year. In March while working as a chauffeur, he told his boss about his plans to set up a driving business. By the end of the journey, Scott’s boss had offered to 52 his idea-a starting capital along with the gift of a £110,000 limousine(豪车)to kick start the business.Of course, there’s an element of luck to everyone’s career. Whether you’re a chief executive or an artist — your 53 won’t be based on hard work alone. For example, the place you were born 54 your education. It determines whether you learn to read, write or complete qualifications, which 55 limits your career choices.Many people believe success is down to talent and hard work, but “this is because most people underestimate the role of 56 ”, says psychologist Dr Elizabeth Nutt Williams. “We do a lot of work to prepare for ourcareers-education, training, taking advantage of mentoring-all of which tend to be in our control.” People don’t like to acknowledge the role of luck in their work, as it 57 this feeling of being in control, adds Williams.Everyone remembers working hard, so people are more likely to overestimate how much of their success is down to diligence than something much more 58 like luck.The reality of success (at least in terms of 59 )is less clear cut. In the UK, studies show where you are born is likely to determine how much you earn.2017 research found that there is a “class pay gap’’, where professional employers from 60 backgrounds are paid almost £7,000 less a year — despite having the same role, education and experience as colleagues from more privileged families. 61 , black graduates earn up to 23% less per hour than white university leavers, whereas woman in the UK earn 14% less on average than men.Socio-economic status also plays a big role in the 62 you enter. A recent study by the Debrett’s Foundation found seven in every 10 young people aged 16-25 use 63 to get their first job. While research has shown that less able, richer children are 35% more likely to become high earners than their brighter. poorer peers.The truth is: chance and coincidences 64 our careers more than we like to think. Realizing that parts of your career are out of your control sounds 65 , but being grateful for the role of luck in your career can actually make you more fortunate.This is because when you acknowledge the role of luck in your work, you become prepared to take advantage of more fortunate moments. “Chance events occur·but it is all about the individual’s 66 to see those events as possibilities and their willingness to take a risk,” says Williams.52.A.challenge B.adopt C.finance D.reject53.A.performances B.accomplishments C.assessments D.outcomes54.A.accounts for B.applies to C.makes up for D.depends on55.A.in reward B.after all C.in turn D.by nature56.A.chance B.accident C.education D.diligence57.A.emphasizes B.overlooks C.maintains D.weakens58.A.manageable B.vital C.slippery D.minor59.A.reputation B.income C.education D.occupation60.A.wealthier B.poorer C.unique D.diverse61.A.Nevertheless B.Contrarily C.Consequently D.Similarly62.A.profession B.circle C.community D.university63.A.certificates B.online platforms C.career fairs D.family connections64.A.contribute to B.result from C.add to D.hold back65.A.inspiring B.encouraging C.appealing D.discouraging66.A.reluctance B.eagerness C.readiness D.resolutionSection B Passages(A)When you think about coffee alternatives, garlic is probably one of the last things that comes to mind, but that is exactly the ingredient that one Japanese inventor used to create a drink that looks and tastes like coffee.74-year-old Yokitomo Shimotai, a coffee shop owner in Aomori Prefecture, Japan, claims that his unique “garlic coffee” is the result of a cooking blunder he made over 30 years ago, when he burned a steak and garlic while waiting tables at the same time. Intrigued by the burnt garlic’s smell, he mashed it up with a spoon and mixed it with hot water. The resulting drink looked and tasted a lot like coffee. Making a mental note of his discovery, Yokimoto carried on with his job and only started researching garlic coffee again after he retired.Committed to turning his weird drink into a commercial product, Yokitomo Shimotai spent years optimizing the formula, and about five years ago, he finally achieved a result he was satisfied with. To make his dissolvable garlic grounds, he roasts the cloves(蒜瓣)in an electric oven, and after they’ve cooled off, smashes them into fine particles and pac ks them in dripbags.“My drink is probably the world’s first of its kind,” the garlic coffee inventor told Kyodo News. “It contains no caffeine so it’s good for those who would like to drink coffee at night or pregnant women.”“The bitterness of burned garl ic apparently helps create the coffee-like flavor,” Shimotai adds. He claims that, although his garlic coffee does give off an aroma of roasted garlic, it doesn’t cause bad breath, because the garlic isthoroughly cooked. And if you can get past the smell, the drink apparently does taste a lot like actual coffee. If decaf isn’t good enough for you, and you’re in the mood for something new, you can try Yokitomo Shimotai’s garlic coffee at his shop, in the city of Ninohc, lwate Prefecture, or buy your own dripbags for just 324 yen($2.8). 67.Which word is the closest in meaning to the underlined word “blunder” in the second paragraph?A mistake B.show C.mixture D.brand68.Who is NOT suitable to drink garlic coffee?A.A student having trouble with sleep B.A woman bearing a baby.C.A cleaner working on a day shift. D.A young lady sick of garlic.69.Which of the following is NOT characteristic of garlic coffee?A.It is caffeine-free. B.Garlic powder dissolves in waterC.The burnt garlic create s bitterness. D.It is an improvement on a garlic dish.70.Which of the following can be used to describe Yokitomo Shimotai?A.Venturous and greedy B.Innovative and perseverantC.Hardworking and cautious D.Observant and helpful(B)71.By “how they stacked up” in paragraph 1, the author probably means “how they ______.”A.make sense to manufacturers B.get stuck in storesC are compared with each other D.are piled up together72.Which of the following devices favourably reacts to users?A.Dreampad pillow B.Eight sleep trackerC.Smart Nora Wireless Snoring Solution D.Nightingale Smart Home Sleep System73.Which of the following statements is true according to the passage?A.The Eight keeps the entire bed at the same temperature.B.The Nightinga, is an economical but perfect device.C.Soft music is applied to all these four devices.D.One in three people suffer from sleep problem.(C)One way to divide up the world is between people who like to explore new possibilities and those who stick to the tried and true. In fact, the tension between betting on a sure thing and taking a chance that something unexpected and wonderful might happen troubles human and nonhuman animals alike.Take songbirds, for example. The half-dozen finches(雀)resting at my desk feeder all summer know exactly what they’ll find there: black sunflower seed, and lots of it. Meanwhile, the warblers(莺)exploring the woods nearby don’t depend on this predictable food source in fine weather. As food hunters, they enjoy less exposure to predators and, as a bonus, the chance to meet the perfect mate flying from tree to tree.This “explore-exploit” trade-off(权衡)has prompted scores of lab studies, computer simulations and algorithms (算法), trying to determine which strategy brings in the greatest reward. Now a new study of human behavior in the real world, published last month in the journal Nature Communications, shows that in good times, there isn’t much of a difference between pursuing novelty and sticking to the status quo(原状). When the going gets tough. however, explorers are the winners.The new study, led by Shay O’Farrell and James Sanchirico, both of the Univ ersity of California, Davis, along with Orr Spiegel of Tel Aviv University, examined the routes and results of nearly 2,500 commercial fishing trips in the Gulf of Mexico over a period of 2.5 years. The study focused on “bottom longline” fishing, a system where hundreds of lines are attached to a horizontal bar that is then lowered to reach the sea bed. Dr. O’Farrell explained the procedure this way: Go to a location and put the line down. Stay for a few hours. The lines are a mile long and have a buoy (浮标)at either end. When they pull that up, they assess the catch, and then decide if they will stay or move on to a different spot.Over two years of collecting data under various climate conditions, the researchers discovered that the fishermen were fairly c onsistent. “The exploiters would go to a smaller set of locations over and over, and go with what theyknow,” Dr. O’Farrell said. The explorers would constantly try a wider range; they’d sample new places.In the long run, there wasn’t a huge difference in payoffs between the two groups, perhaps due to the sharing information between fishing crews, said Dr. O’Farrell. But in challenging times, the study’s message was clear: “You can try new things in the face of uncertainty.”74.The author takes the songbird as an example to indicate that ______.A.like birds, humans tend to be satisfied with the predictableB.some birds are used to looking for food instead of being fedC.there exist the conservative and the adventurous like humansD.birds choose different ways to look for food in different weather75.According to the third paragraph, people who mastered “explore-exploit” trade-off ______.A.will choose either to pursue novelty or keep the status quoB.are ready to risk in time of difficultyC.will be tough in good times and bad timesD.will grow to be experts in lab studies76.Which can be inferred from the new study led by Shay O’Farrell and James Sanchirico?A.The two groups react to the unexpected differently.B.The “explore-exploit” trade-off helps scientific research a lot.C.The exploiters are used to fishing based solely on their experience.D.The explorers tend to achieve more than the exploiters in the long run.77.Which of the following can be the best title for passage?A.How the Exploiter differs from the Explorer B.How to Become a Productive FishermanC.What is “Explore-Exploit” Trade-off D.When to take risks mattersSection CDirections: Read the following passage. Fill in each blank with a proper sentence given in the Each sentence can be used only once. Note that there are two more sentences than you need.The Maya loved cacao so much that they used the beans as currency. They also believed it is good for you—which many people still say today about cacao’s most famous byproduct, chocolate. 78 . While some have suggested that less than an ounce of dark chocolate might improve heart health, much of the research doesn’t involve eating actual chocolate but rather its components — flavanol, especially.79 . In a clinical trial of 21,000 adults, they found that the half of the group that took500mg of. cocoaflavanol supplements daily had a significantly lower risk of death from cardiovascular disease than those who had taken a placebo(安慰剂).Flavanols may also boost insulin sensitivity, according to some studies, which might be helpful in reducing the risk of type 2 diabetes(糖尿病). 80 . Those at risk of diabetes might be wise to choose a cacao-inspired supplement instead of eating chocolate—and the sugar it contains. Other research suggests that the flavanols found in cacao (also present in fruits, vegetables, and tea)could slow cognitive decline during aging, or even boost brain performance by improving blood flow to the cerebral cortex.What these findings mean for chocolate is limited, however. Participants would have had to eat multiple fat and sugar filled chocolate bars a day to source 500mg of flavanols. 81 . So understanding why certain types of chocolate are healthier than the rest is the focus of further research.Ⅳ.Fill in the BlanksHow sneaker culture took over the worldSneakers have come a long way from when they were first invented in 1860s England for the upper-class playing croquet(槌球)and tennis.Long worn for function 82 82 fashion, today sneakers have become an entire culture—both a form of self-expression and a high art found in museum exhibits and designer auction houses.83 transformed sneaker culture into a true phenomenon was the 1985 release of Nike’s Air Jordan 1s. In 1984, Michael Jordan was a talented rookie who had yet to play in a professional game. 84 that, Nike saw Jordan as the future of their brand, signing him to a five-year, $2.5 million endorsement(代言)deal. 85 Jordan matured into one of the greatest basketball players of all time, the sneaker’s popularity skyrocketed.Meanwhile, another cultural shift 86 (take)place with casual Fridays introduced in white-collar businesses. It was when men were allowed to put aside their suits and wear something one day a week that showed people who they really were.As sneakers became increasingly desired, footwear companies turned to 87 (generate)even more publicity by collaborating with celebrities and luxury brands, as well as releasing small batches of limited-edition shoes with eye-pop ping designs.Celebrities also started their collaborations with sneaker brands, which helped target a whole new demographic of people to experience sneaker culture. It was a blending of high and low fashion, 88 the shoe industry has never really seen before. A pair that Jordan wore in his legendary final NBA season 89 (sell )even for $2.2 mllion, making them the most expensive sneakers ever to appear at auction.By the mid-2010s, speakers 90 (become)solid gold status symbols. Wearing rare and cool sneakers became an expression of one’s social status. But not until recently, sneakers are finally getting their due as part of our cultural heritage—and particularly how Black culture has shaped that heritage. It took decades for the sneaker industry to recognize that 91 these Black athletes or artists that championed their products there would be no sneaker culture.Ⅴ.Translations92.结果看来这项传统的确值得传承给我们的后代。

北京市延庆区2023-2024学年高一下学期期中考试 英语试题(含解析)

北京市延庆区2023-2024学年高一下学期期中考试 英语试题(含解析)

延庆区2023—2024学年第二学期期中试卷高一英语2024.04本试卷共11页,二大部分,56道小题,满分100分。

考试时长90分钟。

试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

考试结束后,请将答题卡交回。

第一卷(共47分)Ⅰ. 完形填空(共15小题;每小题1分,共15分)阅读下面的短文,掌握其大意,从每题所给的A、B、C、D四个选项中,选出最佳选项,并在答题卡上将该项涂黑。

A Person Who Has Influenced My LifeThere is always a time in one’s life when a hero comes along. Someone who has inspired you can really help you learn what life is about.I remember it as if it was yesterday. I was fifteen years old that year. It was around eight o’clock one evening when my mother ___1___ a phone call from her brother-in-law, who told us my aunt was in hospital and that the doctor ___2___ them she would need an operation immediately. My family became very ___3___ about my aunt’s situation.While my aunt was in the hospital with special ___4___, my cousin Mark, who is mentally disabled, spent time with my family. Mark was seventeen at the time, and had been born with ___5___ mental disorders, which created a wide range of social and physical problems for him throughout everyday life. He never had any true friend because no one could re late to him. I must ___6___ that at the beginning I was filled with uncertainty as to how much of a burden my cousin would bring on my family. Now looking back it saddens me to see the ___7___ I once showed.Over the two weeks when Mark lived with my family, I probably ___8___ more about life and its meanings. Thinking back, I took ___9___ in daily life for granted, believing it would always be there. I never even thought about being able to do things like walking, brushing my teeth, or going to the bathroom on my own. Now I see how ____10____ I am to be able to do these things independently.Mark was seventeen, but learned on a nine-year-old level. Although his learning ability was slower than most, he could ____11____ learn. He explored ____12____ to do most of the things everyone else did.____13____ he did pretty well and succeeded in almost everything he tried to do. He ____14____ his illness and showed an ambition to love life. To him, having a successful life means achieving goals on his own terms and at his own ____15____.Mark is my hero, for his disability has forever formed my viewpoint on life.1. A. made B. missed C. received D. used2. A. promised B. informed C. showed D. begged3. A. worried B. happy C. indifferent D. careless4. A. care B. action C. purpose D. interest5. A. mild B. severe C. temporary D. moderate6. A. believe B. regret C. admit D. decide7. A. weakness B. ignorance C. relief D. mercy8. A. forgot B. heard C. ignored D. understood9. A. anything B. something C. nothing D. everything10. A. painful B. brave C. lucky D. successful11. A. seldom B. still C. hardly D. almost12. A. possibilities B. functions C. achievements D. difficulties13. A. Naturally B. Actually C. Obviously D. Accidentally14. A. depended on B. fought against C. suffered from D. focused on15. A. risk B. cost C. pace D. trialⅡ. 阅读理解(共16小题,每小题2分,共32分)第一节:阅读下列短文,从每题所给的A、B、C、D四个选项中,选出最佳选项,并在答题卡上将该项涂黑。

浙江省金兰教育合作组织2023-2024学年高一下学期期中考试语文试题

浙江省金兰教育合作组织2023-2024学年高一下学期期中考试语文试题

浙江省金兰教育合作组织2023-2024学年高一下学期期中考试语文试题一、现代文阅读阅读下面的文字,完成小题。

材料一:近些年,传统文化类作品“出圈”的例子比比皆是。

国画传世珍品《千里江山图》引发“故宫跑”,其山水图像与青绿色彩延展到服装、器具、装饰、舞美等众多领域;《中国诗词大会》以精彩的诗词接龙和“飞花令”,增强了节目的冲突感,在社会上掀起一波吟咏诗词的热潮;《国家宝藏》《上新了·故宫》等,邀请影视演员演绎文物故事,让历史文化得以鲜活呈现;在《唐宫夜宴》中,一众娇憨逗趣的“小姐姐”生动演绎来自唐朝的民俗风情,迅速俘获广大观众的心……传统戏曲、国风音乐、古典诗词、非遗工艺、古籍书画、民族民间舞蹈等,不断突破特定圈层,走向更广阔的受众,在社会上产生轰动效应,这让传统文化不再是“故纸堆”“老古董”,而是变得新潮、时尚、有趣味。

传统文化类作品何以频频“出圈”?首先,内容和形式创新是根本。

有学者提出,近年来“出圈”的传统表演艺术多以“熟悉嫁接陌生”的形式展现,形成“反差式创新”。

京剧、越剧、昆曲等传统戏曲,都有人们耳熟能详的精彩唱段,形成了固有的唱念做打表演程式,观众长期津津有味欣赏的就是一句唱词、一个身段里展现的韵味和风采。

但是,这也在一定程度上带来了套路化的弊病,观众容易产生审美疲劳。

因此,对传统艺术守正传承的同时,从内容到形式上的创新必不可少。

比如,白先勇推出青春版《牡丹亭》,在剧情、造型、服装、唱腔等诸多方面对传统昆曲进行改造,为昆曲创新开辟出新的道路。

此次爆火的《新龙门客栈》则在越剧创新上大胆尝试,在演出方式上推出一个新概念——环境式越剧,采用沉浸式场景,剧场是一间布满机关暗道的客栈,舞台与观众席融为一体,演员表演时可与观众互动,大大增强了戏剧观赏的体验感。

其次,形象传达必不可少。

触屏时代,信息传播以秒计时、以“短平快”为特点。

文艺作品要想在海量信息中脱颖而出,往往需要一个“高光时刻”、一位“亮点人物”、一套醒目的“包装”,这能大大提升作品的辨识度,让其在有限的时间里迅速吸引人的目光。

辽宁省大连市滨城高中联盟2023-2024学年高一下学期5月期中英语试题(含答案)

辽宁省大连市滨城高中联盟2023-2024学年高一下学期5月期中英语试题(含答案)

滨城高中联盟2023—2024学年度下学期高一期中考试英语试卷第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1.What food will the woman’s daughter avoid?A.Steaks. B.Onions. C.Ice cream.2.What is the probable relationship between the speakers?A.Salesperson and customer. B.Co-workers. C.A couple.3.What flight will the speakers be on?A.CJ875. B.CJ865. C.CJ930.4.Why is the man worried about his brother?A.His brother is too confident.B.His brother struggles to make friends.C.His brother’s friends will be a bad influence on him.5.What is the main topic of the conversation?A.Types of schools. B.Places to sleep. C.Online classes.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。

听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。

每段对话或独白读两遍。

安徽省合肥市六校联盟2023-2024学年高一下学期期中考试语文试题含答案

安徽省合肥市六校联盟2023-2024学年高一下学期期中考试语文试题含答案

合肥市普通高中六校联盟2023-2024学年第二学期期中联考高一年级语文试卷(答案在最后)(考试时间:150分钟满分:150分)命题学校:一、现代文阅读(34分)(一)现代文阅读I(本题共5小题,18分)阅读下面的文字,完成下面小题。

材料一:民族格局似乎总是反映着地理的生态结构,中华民族不是例外。

他们所聚居的这片大地是一块从西向东倾侧的斜坡,高度逐级下降。

东西落差如此显著的三级梯阶,南北跨度又达三十个纬度,温度和湿度的差距自然形成了不同的生态环境,给人文发展以严峻的桎梏和丰润的机会。

中华民族就是在这个自然框架里形成的。

生存在这片土地上的人最早的情况是怎样的?在中华大地上已陆续发现了人类直立人(猿人)、早期智人(古人)、晚期智人(新人)各进化阶段的人体化石,可以建立较完整的序列,说明了中国这片大陆应是人类起源的中心之一。

在人类进入文化初期,中华大地上北到黑龙江,西南到云南,东到台湾都已有早期人类在活动,并留下了石器。

很难想象在这种原始时代,分居在四面八方的人是同一来源,而且可以肯定的是,这些长期分隔在各地的人群必须各自发展他们的文化以适应如此不同的自然环境。

这些实物证据可以否定有关中华民族起源的一元论和外来说,而肯定多元论和本土说。

即使以上的论断还不够有说服力,考古学上有关新石器时代的丰富资料更有力地表明中华大地上当时已出现地方性的多种文化区。

如果我们认为同一民族集团的人大体上总得有一定的文化上的一致性,那么我们可以推定早在公元前六千年前,中华大地上已存在了分别聚居在不同地区的许多集团。

新石器时期各地不同的文化区可以作为我们认识中华民族多元一体格局的起点。

新石器时代中原两河(黄河和长江)流域中下游这个在生态条件上基本一致的地区的考古发现,已可以说明中华民族的先人在文明曙光时期,公元前五千年到公元前两千年之间的三千年中还是分散聚居在各地区,分别创造他们具有特色的文化,这是中华民族格局中多元的起点。

在这多元格局中,同时也在接触中出现了竞争机制,相互吸收比自己优秀的文化而不失其原有的个性。

河北省张家口市第一中学2024_2025学年高一生物下学期期中试题

河北省张家口市第一中学2024_2025学年高一生物下学期期中试题

张家口一中2024~2024学年度其次学期期中考试高一年级一般试验班生物试卷一、选择题(共50小题,1-40每小题1分,41-50每小题2分,共60分)1.下列杂交组合中,后代只有一种表现型的是()A. Aabb×aabbB. AAB b×aabbC. AABb×AaBbD. AAbb×AaBB2.下列a~d为细胞分裂不同时期的染色体部分变更示意图,依据精原细胞产生精子过程的变更依次进行排列,正确的是()A. a→c→d→bB. b→c→d→aC. c→b→d→aD. d→b→c→a3.黄色圆粒豌豆(YyRr)和黄色皱粒(Yyrr)杂交,后代中纯合子占后代的()A. 1/16B. 1/4C. 1/8D. 3/164. 某个体的基因型由n对等位基因构成,每对基因均为杂合子,且独立遗传,下列相关说法不正确的是()A.该个体能产生2n种配子B.该个体自交后代中纯合子所占比例为1/3nC.该个体自交后代有3n基因型D.该个体与隐性纯合子杂交后代会出现2n种基因型5. 关于如图的叙述,下列有关推断错误的是()A. 由F2的性状分别比可推想家兔毛色最可能受两对等位基因限制B. F1灰色个体基因型只有一种,而F2中灰色个体基因型可能有四种C. F2白色个体有两种基因型,能稳定遗传的个体占1/2D. F2黑色个体中能稳定遗传的个体占1/36. 下列有关测交的说法,错误的是()A. 一般通过测交来获得有优良性状新品种B. 通过测交来确定被测个体的遗传因子组成C. 通过测交得到的后代,有可能稳定遗传D. 测交亲本中必有隐性纯合体7. 在显微镜下视察细胞时,发觉一个细胞中有8条形态、大小各不相同的染色体排列在赤道板上,你认为此细胞处于()A. 有丝分裂中期B. 减数第一次分裂中期C. 减数其次次分裂中期D. 有丝分裂末期8. 下列不属于孟德尔选用豌豆作为遗传试验材料缘由的是()A. 豌豆花比较大,易于做人工杂交试验B. 豌豆具有易于区分的相对性状C. 豌豆子代数量多,便于统计D. 豌豆是单性花,易于操作9. 图为某高等哺乳动物的一个细胞示意图,该细胞属于()A. 卵原细胞B. 初级卵母细胞C. 次级卵母细胞D. 卵细胞10. 猫熊的精原细胞中有42条染色体,它的次级精母细胞处于后期时染色体组成最可能是()A. 20条常染色体+XB. 20条常染色体+YC. 40条常染色体+XYD. 40条常染色体+YY11. 图①②③④分别表示某哺乳动物细胞(2n)进行减数分裂的不同时期,其中a表示细胞数目.请推断b、c、d依次代表()A. 核DNA分子数、染色体数、染色单体数B. 染色体数、核DNA分子数、染色单体数C. 核DNA分子数、染色单体数、染色体数D. 染色单体数、染色体数、核DNA分子12. 小麦的抗锈病和不抗锈病是一对相对性状。

江苏省南通市海安高级中学2023-2024学年高一下学期期中考试语文试题

江苏省南通市海安高级中学2023-2024学年高一下学期期中考试语文试题

江苏省南通市海安高级中学2023-2024学年高一下学期期中考试语文试题一、现代文阅读阅读下面的文字,完成下面各小题。

材料一:《文选》由南朝梁武帝太子萧统组织当时文人集体编选,选录从周秦以迄齐梁130多位作家的作品,是我国现存最早的文学总集,影响深远。

王羲之《兰亭集序》书法和文采兼善,后世流传甚广,萧统却弃而不选,后世学者为此众说纷纭。

自班固《汉书》宣扬“汉承尧运”以来,正统论成为史学家们聚讼不已的大问题。

西周宗法社会所形成的以洛阳为中心的天下意识,是北方文化的重要内涵,并构成地域与政权合法性登合的现实意义。

南北对峙,南北孰为正统的争论从未中断,而彰显正统的重要方式,就是尊崇儒学——在思想文化上标榜己方为正统。

对于偏安江左的梁朝士人来说,他们不得不面临与消解传统北方文化中心与僻处江南之间的地理错位,要化解这种尴尬,就要争求思想文化之正统,《文选》及梁武帝时期多项学术文化工程的集中推进,即为此。

《文选》“序”类一共入选9篇序文,其中就有颜延之和王融同题的《三月三日曲水诗序》。

二者都为帝王组织下的文人集会所作,决定了文章是为歌功颂德、美颂盛世而作。

从集会地点来看,颜王二序所涉地点从字面上分别为“乐游苑”“芳林园”,实际都在南朝都城建康,但是作者无一例外地都只字不提“建康”“金陵”。

在创作心理上,作者均是将当时的都城建康比附为长安、洛阳,这正体现了一种“北方文化中心”意识,充满对皇权的美颂。

而王羲之《兰亭集序》所涉地点“会稽山阴之兰亭”,是非常具体的江南地名,没有任何政治蕴含和历史想象。

《兰亭集序》的内容,前半部分描绘士人欢聚场景,后半部分由欢乐现实转向对生命无常的思考,并说“一死生为虚诞,齐彭殇为妄作”,这正是士人对个体生命意义的思索和追寻。

因此,无论是从创作背景、序文内容还是地名所体现的价值指向来看,《兰亭集序》都不符合帝王期待的儒家诗教价值标准;而内容旨在美颂、形式典雅华美的颜、王二序,正契合了喜游宴赋诗、招揽文士和组织文学活动的梁武帝父子在政治、文化和心理等方面的多重需求。

北京市2023-2024学年高一下学期期中考试数学试题含答案

北京市2023-2024学年高一下学期期中考试数学试题含答案

北京2023—2024学年第二学期期中练习高一数学(答案在最后)2024.04说明:本试卷共4页,共120分.考试时长90分钟.一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin120︒的值等于()A.12-B.12C.2D.2【答案】D 【解析】【分析】根据特殊角的三角函数值得到2,从而可求解.【详解】由题意可得sin1202︒=,故D 正确.故选:D.2.若角α的终边过点()4,3,则πsin 2α⎛⎫+= ⎪⎝⎭()A.45B.45-C.35D.35-【答案】A 【解析】【分析】根据余弦函数定义结合诱导公式计算求解即可.【详解】因为角α的终边过点()4,3,所以4cos 5α==,所以π4sin cos 25αα⎛⎫+== ⎪⎝⎭.故选:A3.已知扇形的弧长为4cm ,圆心角为2rad ,则此扇形的面积是()A.22cmB.24cm C.26cm D.28cm 【答案】B【解析】【分析】由条件结合弧长公式l R α=求出圆的半径,然后结合扇形的面积公式12S lR =可得答案.【详解】因为扇形的圆心角2rad α=,它所对的弧长4cm l =,所以根据弧长公式l R α=可得,圆的半径2R =,所以扇形的面积211424cm 22S lR ==⨯⨯=;故选:B .4.向量a ,b ,c在正方形网格中的位置如图所示,若向量c a b λ=+,则实数λ=()A.2-B.1-C.1D.2【答案】D 【解析】【分析】将3个向量的起点归于原点,根据题设得到它们的坐标,从而可求λ的值.【详解】如图,将,,a b c的起点平移到原点,则()()()1,1,0,1,2,1a b c ==-= ,由c a b λ=+可得()()()2,11,10,1λ=+-,解得2λ=,故选:D.5.下列四个函数中以π为最小正周期且为奇函数的是()A.()cos2f x x =B.()tan2x f x =C.()()tan f x x =- D.()sin f x x=【答案】C 【解析】【分析】根据三角函数的周期性和奇偶性对选项逐一分析,由此确定正确选项.【详解】对于A ,函数()cos2f x x =的最小正周期为π,因为()()()cos 2cos 2f x x x f x -=-==,所以()cos2f x x =为偶函数,A 错误,对于B ,函数()tan 2xf x =的最小正周期为2π,因为()()tan tan 22x x f x f x ⎛⎫-=-=-=- ⎪⎝⎭,所以函数()tan 2x f x =为奇函数,B 错误,对于C ,函数()()tan f x x =-的最小正周期为π,因为()()()tan tan f x x x f x -==--=-,所以函数()()tan f x x =-为奇函数,C 正确,对于D ,函数()sin f x x =的图象如下:所以函数()sin f x x =不是周期函数,且函数()sin f x x =为偶函数,D 错误,6.在ABC 中,4AB =,3AC =,且AB AC AB AC +=- ,则AB BC ⋅= ()A.16B.16- C.20D.20-【答案】B 【解析】【分析】将AB AC AB AC +=- 两边平方,即可得到0AB AC ⋅=,再由数量积的运算律计算可得.【详解】因为AB AC AB AC +=- ,所以()()22AB ACAB AC +=-,即222222AB AB AC AC AB AB AC AC +⋅+=-⋅+uu u r uu u r uuu r uuu r uu u r uu u r uuu r uuu r ,所以0AB AC ⋅= ,即AB AC ⊥ ,所以()220416AB BC AB AC AB AB AC AB ⋅=⋅-=⋅-=-=- .故选:B7.函数cos tan y x x =⋅在区间3,22ππ⎛⎫⎪⎝⎭上的图像为()A.B.C.D.【答案】C 【解析】【分析】分别讨论x 在3,,[,)22ππππ⎛⎫⎪⎝⎭上tan x 的符号,然后切化弦将函数化简,作出图像即可.【详解】因为3,22x ππ⎛⎫∈ ⎪⎝⎭,所以sin ,,23sin ,.2x x y x x πππ⎧-<<⎪⎪=⎨⎪≤<⎪⎩故选:C.8.已知函数()sin 24f x x π⎛⎫=+ ⎪⎝⎭,则“()ππ8k k α=+∈Z ”是“()f x α+是偶函数,且()f x α-是奇函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】【分析】首先求出()f x α+、()f x α-的解析式,再根据正弦函数的性质求出使()f x α+是偶函数且()f x α-是奇函数时α的取值,再根据充分条件、必要条件的定义判断即可.【详解】因为()sin 24f x x π⎛⎫=+⎪⎝⎭,则()sin 224f x x ααπ⎛⎫+=++ ⎪⎝⎭,()sin 224f x x ααπ⎛⎫-=-+ ⎪⎝⎭,若()f x α-是奇函数,则112π,Z 4k k απ-+=∈,解得11π,Z 82k k απ=-∈,若()f x α+是偶函数,则222π,Z 42k k αππ+=+∈,解得22π,Z 82k k απ=+∈,所以若()f x α+是偶函数且()f x α-是奇函数,则π,Z 82k k απ=+∈,所以由()ππ8k k α=+∈Z 推得出()f x α+是偶函数,且()f x α-是奇函数,故充分性成立;由()f x α+是偶函数,且()f x α-是奇函数推不出()ππ8k k α=+∈Z ,故必要性不成立,所以“()ππ8k k α=+∈Z ”是“()f x α+是偶函数,且()f x α-是奇函数”的充分不必要条件.故选:A9.已知向量,,a b c 共面,且均为单位向量,0a b ⋅= ,则a b c ++ 的最大值是()A.1+ B.C.D.1-【答案】A 【解析】【分析】根据题意,可设出向量,,a b c 的坐标,由于这三个向量都是单位向量,则向量,,a b c的终点都落在以坐标原点为圆心的单位圆上,作出示意图,由向量的性质可知,只有当c 与a b +同向时,a b c ++ 有最大值,求解即可.【详解】因为向量,,a b c 共面,且均为单位向量,0a b ⋅= ,可设()1,0a =,()0,1b = ,(),c x y = ,如图,所以2a b += ,当c 与a b +同向时,此时a b c ++ 有最大值,为21+.故选:A .10.窗花是贴在窗户玻璃上的贴纸,它是中国古老的传统民间艺术之一在2022年虎年新春来临之际,人们设计了一种由外围四个大小相等的半圆和中间正方形所构成的剪纸窗花(如图1).已知正方形ABCD 的边长为2,中心为O ,四个半圆的圆心均为正方形ABCD 各边的中点(如图2),若P 为 BC 的中点,则()PO PA PB ⋅+=()A .4B.6C.8D.10【答案】C 【解析】【分析】根据平面向量的线性运算将()PO PA PB ⋅+ 化为OA 、OB 、OP表示,再根据平面向量数量积的运算律可求出结果.【详解】依题意得||||2OA OB ==,||2OP =,3π4AOP =Ð,π4BOP =Ð,所以3π2||||cos 22(242OA OP OA OP ⋅=⋅=⨯-=- ,π2||||cos 22242OB OP OB OP ⋅=⋅=⨯= ,所以()PO PA PB ⋅+= ()OP OA OP OB OP -⋅-+- 22||OA OP OB OP OP =-⋅-⋅+ 222228=-+⨯=.故选:C二、填空题(本大题共5小题,每小题4分,共20分,把答案填在题中横线上)11.写出一个与向量()3,4a =-共线的单位向量_____________.【答案】34,55⎛⎫- ⎪⎝⎭(答案不唯一)【解析】【分析】先求出a r ,则aa±即为所求.【详解】5a ==所以与向量()3,4a =- 共线的单位向量为34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭.故答案为:34,55⎛⎫- ⎪⎝⎭(答案不唯一)12.已知函数()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图,则π3f ⎛⎫= ⎪⎝⎭__________.【解析】【分析】根据图象可得函数()f x 的最大值,最小值,周期,由此可求,A ω,再由5π212f ⎛⎫=⎪⎝⎭求ϕ,由此求得的解析式,然后求得π3f ⎛⎫⎪⎝⎭.【详解】由图可知,函数()f x 的最大值为2,最小值为2-,35ππ3π41234T =+=,当5π12x =时,函数()f x 取最大值2,又()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭所以2A =,32π3π44ω⨯=,所以2ω=,所以()()2sin 2f x x ϕ=+,又5π212f ⎛⎫=⎪⎝⎭,所以5π5π2sin 2126f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,由于πππ5π4π,22363ϕϕ-<<<+<,所以5πππ,623ϕϕ+==-,所以()π2sin 23f x x ⎛⎫=- ⎪⎝⎭,ππ2sin 33f ⎛⎫== ⎪⎝⎭.13.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象过点10,2⎛⎫ ⎪⎝⎭,则ϕ=__________.,若将函数()f x 图象仅向左平移π4个单位长度和仅向右平移π2个单位长度都能得到同一个函数的图象,则ω的最小值为__________.【答案】①.π6##1π6②.83##223【解析】【分析】由条件列方程求ϕ,再利用平移变换分别得到变换后的函数解析式,并根据相位差为2π,Z k k ∈求解;【详解】因为函数()()sin f x x ωϕ=+的图象过点10,2⎛⎫ ⎪⎝⎭,所以1sin 2ϕ=,又π2ϕ<,所以π6ϕ=,函数()πsin 6f x x ω⎛⎫=+⎪⎝⎭(0ω>)的图象仅向左平移π4个单位长度得到函数ππππsin sin 4646y x x ωωω⎡⎛⎫⎤⎛⎫=++=++ ⎪ ⎢⎥⎝⎭⎦⎝⎭⎣的图象,函数()πsin 6f x x ω⎛⎫=+⎪⎝⎭(0ω>)的图象仅向右平移π2个单位长度得到ππππsin sin 2626y x x ωωω⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,则ππππ2π4626k ωω⎛⎫⎛⎫+--+=⎪ ⎪⎝⎭⎝⎭(Z k ∈),化简得3π2π4k ω=(Z k ∈),解得83k ω=(Z k ∈),由于0ω>,所以当1k =时,ω取得最小值83,故答案为:π8,63.14.已知边长为2的菱形ABCD 中,π3DAB ∠=,点E 满足3BE EC = ,点F 为线段BD 上一动点,则AF BE ⋅的最大值为______.【答案】3【解析】【分析】建立如图平面直角坐标系,设BF BD λ= ,利用平面向量线性运算与数量积的坐标表示可得AF BE⋅关于λ的表达式,从而得解.【详解】如图,以A为原点建立平面直角坐标系,则(0,0),(2,0),A B C D ,因为3BE EC =,所以(33333,4444BE BC ⎛⎫=== ⎪ ⎪⎝⎭,由题意,设()01BF BD λλ=≤≤,则(()BF λλ=-=- ,则()()()2,02,AF AB BF λλ=+=+-=-,所以()3333324422AF BE λλ⋅=-+=+,因为01λ≤≤,所以当1λ=时,AF BE ⋅的最大值为3.故答案为:3.15.声音是由物体振动产生的声波.我们听到的每个音都是由纯音合成的,纯音的数学模型是函数sin y A t ω=.音有四要素,音调、响度、音长和音色.它们都与函数sin y A t ω=及其参数有关,比如:响度与振幅有关,振幅越大响度越大,振幅越小响度越小;音调与频率有关,频率低的声音低沉,频率高的声音尖锐.我们平时听到的乐音不只是一个音在响,而是许多音的结合,称为复合音.我们听到的声音对应的函数是111sin sin 2sin 3sin 4234y x x x x =++++⋯..给出下列四个结论:①函数1111sin sin 2sin 3sin 4sin1023410y x x x x x =++++⋯+不具有奇偶性;②函数()111sin sin2sin3sin4234f x x x x x =+++在区间ππ,88⎡⎤-⎢⎥⎣⎦上单调递增;③若某声音甲对应的函数近似为()11sin sin 2sin 323g x x x x =++,则声音甲的响度一定比纯音()1sin22h x x =的响度小;④若某声音乙对应的函数近似为()1sin sin 22x x x ϕ=+,则声音乙一定比纯音()1sin22h x x =更低沉.其中所有正确结论的序号是__________.【答案】②④【解析】【分析】对①,结合奇偶性的定义判断即可;对②,利用正弦型函数的单调性作出判断;对③,分别判断()(),g x h x 的振幅大小可得;对④,求出周期,可得频率,即可得出结论.【详解】对于①,令()1111sin sin2sin3sin4sin1023410F x x x x x x =++++⋯+,所以()()()()()()1111sin sin 2sin 3sin 4sin 1023410F x x x x x x -=-+-+-+-+⋯+-,所以()1111sin sin2sin3sin4sin1023410F x x x x x x -=-----⋅⋅⋅-,所以()()F x F x -=-,所以()F x 是奇函数,①错误;对于②,由ππ88x -≤≤可得,ππ244x -≤≤,3π3π388x -≤≤,ππ422x -≤≤,所以111sin ,sin2,sin3,234x x x x 都在ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,所以()111sin sin2sin3sin4234f x x x x x =+++在ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,所以函数()f x 在区间ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,②正确;对于③.因为()11sin sin 2sin 323g x x x x =++,所以π223g ⎛⎫= ⎪⎝⎭,所以()max 23g x ≥,即()g x 的振幅比()1sin22h x x =的振幅大,所以声音甲的响度一定比纯音()1sin22h x x =的响度大,所以③错误;对于④,因为()()()()112πsin 2πsin 24πsin sin 222x x x x x x ϕϕ+=+++=+=,所以函数()x ϕ为周期函数,2π为其周期,若存在02πα<<,使()()x x ϕϕα=+恒成立,则必有()()0ϕϕα=,()()110sin 0sin 00sin sin 222ϕϕααα∴=+===+,()sin 1cos 0αα∴+=,因为02πα<<,πα∴=,又()()()11πsin πsin 2πsin sin 222x x x x x ϕ+=+++=-+与()1sin sin 22x x x ϕ=+不恒相等,所以函数()1sin sin22x x x ϕ=+的最小正周期是2π,所以频率1112πf T ==而()h x 的周期为π,频率21πf =,12f f <,所以声音乙一定比纯音()1sin22h x x =更低沉,所以④正确.故答案为:②④.三、解答题(本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤)16.如图,在ABC 中,2BD DC = ,E 是AD 的中点,设AB a = ,AC b = .(1)试用a ,b 表示AD ,BE ;(2)若1a b == ,a 与b 的夹角为60︒,求AD BE ⋅ .【答案】(1)1233AD a b =+ ,5163BE a b =-+ (2)518-【解析】【分析】(1)利用向量加法减法的三角形法则及数乘运算即可求解;(2)根据(1)的结论,利用向量的数量积运算法则即可求解.【小问1详解】因为2BD DC = ,所以23BD BC = ,所以221)212(333333AB AC AB AB AC a b AD AB BD AB BC +-=+=+=+=+= .因为E 是AD 的中点,所以()11211()22323BE BA BD AB BC AB AC AB ⎛⎫=+=-+=-+- ⎪⎝⎭ 51516363AB AC a b =-+=-+ .【小问2详解】因为1a b == ,a 与b 的夹角为60︒,所以11cos ,1122a b a b a b ⋅==⨯⨯= ,由(1)知,1233AD a b =+ ,5163BE a b =-+ ,所以22125154233631899AD BE a b a b a a b b ⎛⎫⎛⎫⋅=+⋅-+=--⋅+ ⎪ ⎪⎝⎭⎝⎭541251892918=--⨯+=-.17.已知函数()π3sin 24f x x ⎛⎫=+⎪⎝⎭(1)求()f x 的最小正周期;(2)求函数()f x 的单调递增区间;(3)若函数()f x 在区间[]0,a 内只有一个零点,直接写出实数a 的取值范围.【答案】(1)()f x 的最小正周期为π,(2)函数()f x 的单调递增区间是3πππ,π88k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z ;(3)a 的取值范围为3π7π,88⎡⎫⎪⎢⎣⎭.【解析】【分析】(1)根据正弦型函数的周期公式求解即可;(2)利用正弦函数的单调区间结论求解;(3)求出()0f x =的解后可得a 的范围.【小问1详解】因为()π3sin 24f x x ⎛⎫=+ ⎪⎝⎭,所以函数()f x 的最小正周期2ππ2T ==;【小问2详解】由πππ2π22π242k x k -≤+≤+,Z k ∈,可得3ππππ88k x k -≤≤+,Z k ∈,所以函数()f x 的单调递增区间是3πππ,π88k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z ;【小问3详解】由π()3sin(204f x x =+=可得,π2π4x k +=,Z k ∈所以ππ28k x =-,Z k ∈,因为函数()f x 在区间[]0,a 上有且只有一个零点,所以3π7π88a ≤<,所以实数a 的取值范围为3π7π,88⎡⎫⎪⎢⎣⎭.18.已知()()()4,0,0,4,cos ,sin ,(0π)A B C ααα<<.(1)若OA OC += (O 为坐标原点),求OB 与OC 的夹角;(2)若⊥ AC BC ,求sin cos αα-的值.【答案】(1)OB 与OC 的夹角为π6,(2)sin cos 4αα-=【解析】【分析】(1)根据向量模长以及夹角的坐标公式计算即可;(2)由向量垂直得到数量积为0,进而得到1sin cos 4αα+=,通过平方得到2sin cos αα,进而可得()2sin cos αα-,再根据α的范围确定正负,开方得解.【小问1详解】因为()()()4,0,0,4,cos ,sin A B C αα,所以()()()4,0,0,4,cos ,sin OA OB OC αα=== ,所以()4cos ,sin OA OC αα+=+ ,由OA OC += ()224+cos sin 21αα+=,所以1cos 2α=,又0πα<<,,所以π3α=,13,22C ⎛⎫ ⎪ ⎪⎝⎭,设OB 与OC 的夹角为β()0πβ≤≤,则cos OB OC OB OC β⋅= 23342==,又0πβ≤≤,故OB 与OC 的夹角为π6,【小问2详解】由⊥ AC BC 得0AC BC ⋅= ,又()cos 4,sin AC αα=- ,()cos ,sin 4BC αα=- ,所以()()cos 4cos sin sin 40αααα-+-=,所以1sin cos 4αα+=,所以152sin cos 016αα-=<,又0πα<<,所以ππ2α<<,所以()21531sin cos 11616αα--=-=,所以sin cos 4αα-=.19.已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭,且()f x 图像的相邻两条对称轴之间的距离为π2,再从条件①、条件②、条件③中选择两个作为一组已知条件.(1)确定()f x 的解析式;(2)设函数()π24g x x ⎛⎫=+ ⎪⎝⎭,则是否存在实数m ,使得对于任意1π0,2x ⎡⎤∈⎢⎥⎣⎦,存在2π0,2x ⎡⎤∈⎢⎥⎣⎦,()()12m g x f x =-成立?若存在,求实数m 的取值范围:若不存在,请说明理由.条件①:()f x 的最小值为2-;条件②:()f x 图像的一个对称中心为5π,012⎛⎫ ⎪⎝⎭;条件③:()f x 的图像经过点5π,16⎛⎫- ⎪⎝⎭.注:如果选择多组条件分别解答,按第一个解答计分.【答案】(1)选①②,②③,①③答案都为()2sin(2)6f x x π=+,(2)存在m 满足条件,m 的取值范围为2,0⎤⎦.【解析】【分析】(1)先根据已知求出()f x 的最小正周期,即可求解ω,选条件①②:可得()f x 的最小值为A -,可求A .根据对称中心可求ϕ,即可得解函数解析式;选条件①③:可得()f x 的最小值为A -,可求A .根据函数()f x 的图象过点5π,16⎛⎫⎪⎝⎭,可求ϕ,可得函数解析式;选条件②③:根据对称中心可求ϕ,再根据函数()f x 的图象过点5π,16⎛⎫⎪⎝⎭,可求A 的值,即可得解函数解析式.(2)求出函数()f x ,()g x 在π0,2⎡⎤⎢⎥⎣⎦上的值域,再结合恒成立、能成立列式求解作答.【小问1详解】由于函数()f x 图像上两相邻对称轴之间的距离为π2,所以()f x 的最小正周期π2π2T =⨯=,所以2π2T ω==,此时()()sin 2f x A x ϕ=+.选条件①②:因为()f x 的最小值为A -,所以2A =.因为()f x 图象的一个对称中心为5π,012⎛⎫⎪⎝⎭,所以5π2π(Z)12k k ϕ⨯+=∈,所以56k ϕπ=π-,()k ∈Z ,因为||2ϕπ<,所以π6ϕ=,此时1k =,所以()2sin(2)6f x x π=+.选条件①③:因为()f x 的最小值为A -,所以2A =.因为函数()f x 的图象过点5π,16⎛⎫-⎪⎝⎭,则5π()16f =-,所以5π2sin()13ϕ+=-,即5π1sin()32ϕ+=-.因为||2ϕπ<,所以7π5π13π636ϕ<+<,所以5π11π36ϕ+=,所以π6ϕ=,所以()2sin(2)6f x x π=+.选条件②③:因为函数()f x 的一个对称中心为5π,012⎛⎫⎪⎝⎭,所以5π2π(Z)12k k ϕ⨯+=∈,所以5ππ(Z)6k k ϕ=-∈.因为||2ϕπ<,所以π6ϕ=,此时1k =.所以π()sin(26f x A x =+.因为函数()f x 的图象过点5π,16⎛⎫-⎪⎝⎭,所以5π(16f =-,所以5ππsin 136A ⎛⎫+=-⎪⎝⎭,11πsin 16A =-,所以2A =,所以()2sin(2)6f x x π=+.综上,不论选哪两个条件,()2sin(2)6f x x π=+.【小问2详解】由(1)知,()2sin(2)6f x x π=+,由20,2x π⎡⎤∈⎢⎥⎣⎦得:2ππ7π2,666x ⎡⎤+∈⎢⎥⎣⎦,2π1sin 2,162x ⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,因此[]2()1,2f x ∈-,由10,2x π⎡⎤∈⎢⎥⎣⎦得:1ππ5π2,444x ⎡⎤+∈⎢⎥⎣⎦,1πsin 2,142x ⎡⎤⎛⎫+∈-⎢⎥ ⎪⎝⎭⎣⎦,因此1()g x ⎡∈-⎣,从而1()1,g x m m m ⎡-∈---+⎣,由()()12m g x f x =-得:()()21f x g x m =-,假定存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()12m g x f x =-成立,即存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()21f x g x m =-成立,则[]1,1,2m m ⎡---+⊆-⎣,于是得112m m --≥-⎧⎪⎨-+≤⎪⎩,解得20m -≤≤,因此存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()12m g x f x =-成立,所以实数m的取值范围是2,0⎤⎦.20.对于定义在R 上的函数()f x 和正实数T 若对任意x ∈R ,有()()f x T f x T +-=,则()f x 为T -阶梯函数.(1)分别判断下列函数是否为1-阶梯函数(直接写出结论):①()2f x x =;②()1f x x =+.(2)若()sin f x x x =+为T -阶梯函数,求T 的所有可能取值;(3)已知()f x 为T -阶梯函数,满足:()f x 在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,且对任意x ∈R ,有()()2f T x f x T x --=-.若函数()()F x f x ax b =--有无穷多个零点,记其中正的零点从小到大依次为123,,,x x x ⋅⋅⋅;若1a =时,证明:存在b ∈R ,使得()F x 在[]0,2023T 上有4046个零点,且213240464045x x x x x x -=-=⋅⋅⋅=-.【答案】(1)①否;②是(2)2πT k =,*k ∈N (3)证明见解析【解析】【分析】(1)利用T -阶梯函数的定义进行检验即可判断;(2)利用T -阶梯函数的定义,结合正弦函数的性质即可得解;(3)根据题意得到()()F x T F x +=,()()F T x F x -=,从而取3344TT b f ⎛⎫=- ⎪⎝⎭,结合零点存在定理可知()F x 在(),1mT m T +⎡⎤⎣⎦上有且仅有两个零点:4T mT +,34T mT +,从而得解.【小问1详解】()2f x x =,则22(1)()(1)211f x f x x x x +-=+-=+≠;()1f x x =+,则(1)()11f x f x x x +-=+-=,故①否;②是.【小问2详解】因为()f x 为T -阶梯函数,所以对任意x ∈R 有:()()()()()sin sin sin sin f x T f x x T x T x x x T x T T +-=+++-+=+-+=⎡⎤⎣⎦.所以对任意x ∈R ,()sin sin x T x +=,因为sin y x =是最小正周期为2π的周期函数,又因为0T >,所以2πT k =,*k ∈N .【小问3详解】因为1a =,所以函数()()F x f x x b =--,则()()()()()()()F x T f x T x T b f x T x T b f x x b F x +=+-+-=+-+-=--=,()()()()()()()2F T x f T x T x b f x T x T x b f x x b F x -=----=+----=--=.取3344TT b f ⎛⎫=- ⎪⎝⎭,则有3330444TT T F f b ⎛⎫⎛⎫=--= ⎪ ⎪⎝⎭⎝⎭,30444T T T F F T F ⎛⎫⎛⎫⎛⎫=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由于()f x 在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,因此()()F x f x x b =--在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,结合()()F T x F x -=,则有()F x 在0,2T ⎡⎤⎢⎥⎣⎦上有唯一零点4T ,在,2T T ⎡⎤⎢⎥⎣⎦上有唯一零点34T .又由于()()F x T F x +=,则对任意k ∈Ζ,有044T T F kT F ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭,33044T T F kT F ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭,因此,对任意m ∈Z ,()F x 在(),1mT m T +⎡⎤⎣⎦上有且仅有两个零点:4T mT +,34T mT +.综上所述,存在3344TT b f ⎛⎫=- ⎪⎝⎭,使得()F x 在[]0,2023T 上有4046个零点,且14T x =,234T x =,354T x =,474T x =,L ,404580894T x =,404680914T x =,其中,2132404640452T x x x x x x -=-=⋅⋅⋅=-=.【点睛】关键点睛:本题解决的关键是充分理解新定义T -阶梯函数,从而在第3小问推得()()F x T F x +=,()()F T x F x -=,由此得解.。

山东省德州市2023-2024学年高一下学期期中考试 数学含答案

山东省德州市2023-2024学年高一下学期期中考试 数学含答案

高一数学试题(答案在最后)2024.4本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1-2页,第Ⅱ卷3-4页,共150分,测试时间120分钟.注意事项:选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,不能答在测试卷上.第Ⅰ卷选择题(共58分)一、选择题(本题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.)1.设x ∈R ,向量(1,)a x =r ,(2,1)b =r,若a b ⊥r r ,则x =()A .2B .12C .12-D .2-2.已知复数z 满足(14z +=(i 是虚数单位),则||z =()A .2B .4C .8D .163.已知02παβ<<<,且5cos()13αβ-=,4cos 25β=,则cos()αβ+=()A .3365-B .1665-C .5665D .63654.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若3a =,3A π=,sin 2sin C B =,则ABC △的面积是()A .32B .2C .94D .45.若23||||||3a b a b b +=-=r r r r r ,则a b -r r 与b r 的夹角是()A .6πB .3πC .23πD .56π6.在Rt ABC △中,2AB AC ==,,BC AC 边上的两条中线AM ,BN 相交于点P ,则MPN ∠的余弦值是()A .105-B .1010-C .1010D .1057,数学家欧拉在1765年提出定理:三角形的外心,重心,垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称为三角形的欧拉线,该定理被称为欧拉线定理,设点O ,G ,H 分别为三角形ABC 的外心,重心,垂心,则()A .1233AG AO AH=-uuu r uuu r uuu r B .1233AG AO AH=+uuu r uuu r uuu rC .2133AG AO AH=-uuu r uuu r uuu r D .2133AG AO AH=+uuu r uuu r uuu r 8.在锐角ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若3B π=,sin sin sin B C b A ac =2取值范围是()A .21,52⎛⎫⎪⎝⎭B .21,52⎡⎫⎪⎢⎣⎭C .22,53⎡⎫⎪⎢⎣⎭D .22,53⎛⎫⎪⎝⎭二、选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.设z 为非零复数(i 是虚数单位),下列命题正确的是()A .若||z z =,则z 为正实数B .若2z ∈R ,则z ∈R C .若210z +=,则iz =±D .若0z z +=,则z 为纯虚数10.下列命题中正确的是()A .若,a b r r是单位向量,则a b=r r B .若(0)a b b ≠∥r r r,则存在唯一的实数λ,使得a b λ=r rC .若向量a r 和b r ,满足||1a =r ,||||2b a b =+=r r r ,则||a b -=r rD .若向量(1,3)a =-r ,(3,0)b =r ,则a r 在b r 方向上投影的数量是10-11.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,以下命题中正确的是()A .若9a =,10b =,3A π=,则符合条件的三角形有两个B .若22tan tan a b A B=,则ABC △为等腰或直角三角形C .若2sin ABC S b B =△,则cos B 的最小值为54D .若3A π=,BC =BC 边上的高为1,则符合条件的三角形有两个第Ⅱ卷非选择题(共92分)三、填空题(本题共3小题,每小题5分,共15分)12.已知,2παπ⎛⎫∈⎪⎝⎭,2sin 2cos 21αα=-,则tan 2α=___________.13.若O 为ABC △的外心,且2BO BA BC =+uu u r uu r uu u r ,则AB BC ⋅=uu u r uu u r___________.14.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,满足(1cos )(2cos )a B b A +=-,sin cos sin B A C =,且16AB AC ⋅=uu u r uuu r ,则b =___________;若在线段AB 上存在动点P 使得2||||CA CBCP x y CA CB =+uu r uu ruu r uu r uu r ,则xy 的最大值为___________.(第一空2分,第二空3分)四、解答题(本题共5小题,共77分,解答应写出必要的文字说明、证明过程或演算步骤.)15.(本小题满分13分)已知θ为三角形的一个内角,i 为虚数单位,复数cos isin z θθ=+,且2z z +在复平面上对应的点在实轴上.(1)求θ;(2)设2,i z z ,21z z ++在复平面上对应的点分别为A ,B ,C ,求ABC △的面积.16.(本小题满分15分)已知平面上三点A ,B ,C ,且(0,4)A ,(,3)B k -,(2,0)C .(1)若A ,B ,C 不构成三角形,求实数k 应满足的条件;(2)若ABC △为针角三角形,求k 的取值范围.17.(本小题满分15分)已知函数()sin (sin )1f x x x x =+-,x ∈R .(1)若31(),0,222f πθθ⎛⎫=-∈ ⎪⎝⎭,求tan θ的值;(2)若存在0,2x π⎡⎤∈⎢⎥⎣⎦,使等式2[()]()0f x f x m ++=成立,求实数m 的取值范围.18.(本小题满分17分)如图所示,在扇形AOB 中,AOB ∠为锐角,四边形OMPN 是平行四边形,点P 在弧»AB 上,点M ,N分别在线段OA ,OB 上,OP =,6OA OB ⋅=uu r uu u r,记POB θ∠=.(1)当6πθ=时,求OP NB ⋅uu u r uu u r ;(2)请写出阴影部分的面积S 关于θ的函数关系式,并求当θ为何值时,S 取得最小值.19.(本小题满分17分)在ABC △中,角A ,B ,C 的对边分别为,,a b c ,sin sin cos cos cos cos sin C B B AB A C--=+.(1)若236ABC S c =△,求证:23c b =;(2)若2DC BD =uuu r uu u r ,求||||AD BD uuu ruu u r 的最大值.高一数学试题参考答案一、选择题(本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.)1.D2.A3.C4.B5.D6.B7.D8.A二、选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.ACD10.BC11.ABD三、填空题(本题共3小题,每小题5分,共15分)12.4313.014.4,32四、解答题(本题共5小题,共77分,解答应写出必要的文字说明、证明过程或演算步骤.)15.解:(1)22(cos sin )cos 2sin 2z i i θθθθ=+=+Q ,2(cos 2cos )(sin 2sin )z z i θθθθ+=+++,因为2z z +在复平面上对应的点在实轴上,所以sin 2sin 2sin cos sin 0,(0,)θθθθθθπ+=+=∈,所以1cos 2θ=-,2;3πθ=(2)由(1)知:sin 2θ=,21z =-+,所以11i i i 2222z ⎛⎫=-+=-- ⎪⎝⎭,213313i i 44222z =--=--所以2131311i i 02222z z ++=-+--=.在复平面上对应的点分别为(A -,31,22B ⎛⎫-- ⎪⎝⎭,(0,0)C ,所以2AC =,1BC =,1(022CA CB ⎛⎫⋅=-⋅-= ⎪⎝⎭uu r uu r 所以,CA CB ⊥uu r uu r ,所以,12112ABC S =⨯⨯=△.16.解:(1)由题可知,(2,3)BC k =-uu u r ,(2,4)AC =-uuu r,三点A ,B ,C 不构成三角形,得A ,B ,C 三点共线,所以4(2)230k ---⨯=,解得72k =.(注:利用AB uu u r求解,同样得分)(2)当C 为钝角时,0AC BC ⋅<uuu r uu u r,所以2(2)3(4)0k ⨯-+⨯-<,解得4k >-且72k ≠,当A 为钝角时,(,7)AB k =-uu u r ,(2,4)AC =-uuu r,0AB AC ⋅<uu u r uuu r,即(,7)(2,4)0k -⋅-<,2280k +<,所以14k <-.当B 为钝角时,(,7)BA k =-uu r ,(2,3)BC k =-uu u r,(,7)(2,3)0BA BC k k ⋅=-⋅-<uu r uu u r,22210k k -+<,无解.所以14k <-或4k >-且72k ≠.17.解:(1)()sin (sin )1f x x x x =+-2sin cos 1x x x =+-1cos 2212xx -=+-1sin 262x π⎛⎫=--⎪⎝⎭131()sin 26222f πθθ⎛⎫=--=- ⎪⎝⎭,sin 262πθ⎛⎫-= ⎪⎝⎭,02πθ<<,52666πππθ-<-<,所以263ππθ-=或23π,即4πθ=或512π,当4πθ=时,tan tan 14πθ==,当512πθ=时,tan tan46tan tan 2461tan tan 46ππππθππ+⎛⎫=+==+ ⎪⎝⎭-(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,52666x πππ-≤-≤,则111sin 2622x π⎛⎫-≤--≤ ⎪⎝⎭,即11()2f x -≤≤,令()t f x =,112t -≤≤,关于t 的方程20t t m ++=在11,2⎡⎤-⎢⎥⎣⎦上有解,即2m t t -=+在11,2⎡⎤-⎢⎥⎣⎦上有解,当112t -≤≤时,21344t t -≤+≤,由1344m -≤-≤,得3144m -≤≤,即实数m 的取值范围是31,44⎡⎤-⎢⎥⎣⎦.18.解:(1)根据题意,||||cos cos 6OA OB OA OB AOB AOB ⋅=∠=∠=uur uu u r uur uu u r,1cos 2AOB ∠=因为AOB ∠为锐角,所以,3AOB π∠=,6πθ=,四边形OMPN 是平行四边形,所以,OPM △为等腰三角形,OP =2OM ON ==,||||cos 2)662OP NB OP NB π⋅=⋅=-⨯=uu u r uu u r uu u r uu u r .(2)由题可知,在PMO △中,OP =23PMO π∠=,MPO θ∠=,3MOP πθ∠=-,则由正弦定理sin sin sin OP OM PMPMO MPO MOP==∠∠∠,sin sin 3OM PMπθθ==⎛⎫- ⎪⎝⎭,故可得4sin OM θ=,4sin 3PM πθ⎛⎫=-⎪⎝⎭,1sin 2PMO S OM MP PMO =⨯⨯⨯∠△14sin 4sin 232πθθ⎛⎫=⨯⨯-⨯ ⎪⎝⎭sin 3πθθ⎛⎫=- ⎪⎝⎭sin cos cos sin 33ππθθθ⎛⎫=- ⎪⎝⎭26πθ⎛⎫=+- ⎪⎝⎭,03πθ⎛⎫<< ⎪⎝⎭,所以,AOB OMPNS S S =-扇形平行四边形226ππθ⎛⎫=-++ ⎪⎝⎭,03πθ⎛⎫<< ⎪⎝⎭,当6πθ=时,sin 216πθ⎛⎫+= ⎪⎝⎭,此时S取得最小值2π-.19.解:(1)sin sin cos cos cos cos sin C B B AB A C--=+(sin sin )sin (cos cos )(cos cos )C B C B A B A -=+-222sin sin sin cos cos C B C B A-=-()222sin sin sin 1sin 1sin C B C B A-=---由正弦定理得222c b a bc +-=,2221cos 22c b a A bc +-==,0A π<<,所以3A π=,21sin 26ABC S bc A c ==△,所以23c b =.(2)2DC BD =uuu r uuu r ,11()33BD BC AC AB ==-uu ur uu u r uuu r uu u r ,又2133AD AB BD AB AC =+=+uuu r uu u r uu u r uu u r uuu r ,所以1|2|||31||||3AB AC AD BD AC AB +==-uu u r uuu ruuu r uu u r uuu r uu u r ,令0bt c=>,所以||||AD BD ===uuu r uu u r ,1=≤==+.当且仅当1t =取等号,所以||||AD BD uuu r uu u r1+.。

河南省青铜鸣大联考2023-2024学年高一下学期4月期中考试数学试题

河南省青铜鸣大联考2023-2024学年高一下学期4月期中考试数学试题
河南省青铜鸣大联考 2023-2024 学年高一下学期 4 月期中考
试数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.在四边形 ABCD 中, AC

BD
交于点
O
,且
uuur AO
uuur uuur uuur = OC,BO,= OD
【分析】利用复数模求出 a ,再利用复数的除法求解即得.
【详解】依题意,| z |= a2 + (2 - a)2 = 2a2 - 4a + 4 = 2 ,解得 a = 1 ,则 z = 1+ i ,
所以
2
z -
i
=
1+ i 2-i
=
(1+ i)(2 + i) (2 - i)(2 + i)
=
1+ 3i 5
+
uuur 3OB
+
uuur tOC
=
r 0
(t
Î
R
),V AOB
的面积为
V
ABC
面积的
1
.
2
(1)求 t 的值; (2)若 O 为VABC 的垂心,求 cosÐ ACB 的值.
试卷第51 页,共33 页
1.D
参考答案:
【分析】由题意,根据相等向量的概念和向量的模,结合矩形的判定定理即可求解.
uuur uuur uuur uuur uuur uuur 【详解】由 AO = OC, BO = OD, AC = BD ,
,结合共轭复数的概念与
复数的乘法运算即可求解.
【详解】由 z1 = z2,得 (x + 2 y) + ( y + 2)i = (2x - y) + (x - y)i ,

北京市2023-2024学年高一下学期期中考试数学试题含答案

北京市2023-2024学年高一下学期期中考试数学试题含答案

2023—2024学年度第二学期北京市高一数学期中考试试卷(答案在最后)一、选择题(本大题共10小题,每小题4分,共40分)1.11πsin3的值为()A.2B.2-C.2D.2【答案】A 【解析】【分析】利用诱导公式及特殊角的三角函数值计算可得.【详解】11πππsin sin 4πsin 3332⎛⎫=-=-=-⎪⎝⎭.故选:A2.下列函数中,最小正周期为π且是偶函数的是()A.πsin 4y x ⎛⎫=+ ⎪⎝⎭B.tan y x =C.cos 2y x =D.sin 2y x=【答案】C 【解析】【分析】由三角函数的最小正周期公式和函数奇偶性对选项一一判断即可得出答案.【详解】对于A ,πsin 4y x ⎛⎫=+⎪⎝⎭的最小正周期为:2π2π1T ==,故A 不正确;对于B ,tan y x =的最小正周期为:ππ1T ==,tan y x =的定义域为ππ,Z 2x x k k ⎧⎫≠+∈⎨⎬⎩⎭,关于原点对称,令()tan f x x =,则()()()tan tan f x x x f x -=-=-=-,所以tan y x =为奇函数,故B 不正确;对于C ,cos 2y x =的最小正周期为:2ππ2T ==,令()cos 2g x x =的定义域为R 关于原点对称,则()()()cos 2cos 2g x x x g x -=-==,所以cos 2y x =为偶函数,故C 正确;对于D ,sin 2y x =的最小正周期为:2ππ2T ==,sin 2y x =的定义域为R ,关于原点对称,令()sin 2h x x =,则()()()sin 2sin 2h x x x h x -=-=-=-,所以sin 2y x =为奇函数,故D 不正确.故选:C .3.设向量()()3,4,1,2a b ==- ,则cos ,a b 〈〉=()A.5-B.5C.5-D.5【答案】D 【解析】【分析】根据给定条件,利用向量夹角的坐标表示求解即得.【详解】向量()()3,4,1,2a b ==-,则cos ,5||||a b a b a b ⋅〈〉==.故选:D4.在△ABC 中,已知1cos 3A =,a =,3b =,则c =()A.1B.C.2D.3【答案】D 【解析】【分析】直接利用余弦定理求解即可【详解】因为在△ABC 中,1cos 3A =,a =,3b =,所以由余弦定理得2222cos a b c bc A =+-,2112963c c =+-⨯,得2230c c --=,解得3c =,或1c =-(舍去),故选:D5.函数()()sin f x A x =+ωϕ(其中0A >,0ω>,0ϕπ<<)的图像的一部分如图所示,则此函数的解析式是()A.()3sin 42f x x ππ⎛⎫=+⎪⎝⎭ B.3()3sin 44f x x ππ⎛⎫=+⎪⎝⎭C.()3sin 84f x x ππ⎛⎫=+ ⎪⎝⎭ D.3()3sin 84f x x ππ⎛⎫=+⎪⎝⎭【答案】C 【解析】【分析】根据图象可以求出最大值,结合函数的零点,根据正弦型函数的最小正周期公式,结合特殊值法进行求解即可.【详解】由函数图象可知函数的最大值为3,所以3A =,由函数图象可知函数的最小正周期为4(62)16⨯-=,因为0ω>,所以24(62)168ππωω⨯-==⇒=,所以()3sin 8f x x πϕ⎛⎫=+ ⎪⎝⎭,由图象可知:(2)3f =,即3sin 32()2()4424k k Z k k Z ππππϕϕπϕπ⎛⎫+=⇒+=+∈⇒=+∈ ⎪⎝⎭,因为0ϕπ<<,所以令0k =,所以4πϕ=,因此()3sin 84f x x ππ⎛⎫=+ ⎪⎝⎭,故选:C6.函数ππ()sin(2),[0,]62f x x x =+∈的最大值和最小值分别为()A.11,2-B.31,2-C.1,12- D.1,1-【答案】A 【解析】【分析】根据给定条件,求出相位的范围,再利用正弦函数的性质求解即得.【详解】由π[0,2x ∈,得ππ7π2[,666x +∈,则当ππ262x +=,即π6x =时,max ()1f x =,当π7π266x +=,即π2x =时,min 1()2f x =-,所以所求最大值、最小值分别为11,2-.故选:A7.已知向量,,a b c在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c +⋅= ()A.2B.2- C.1 D.1-【答案】B 【解析】【分析】根据给定信息,利用向量数量的运算律,结合数量积的定义计算得解.【详解】依题意,π3π|||2,||2,,,,,44a b c a b b c a c ===〈〉=⊥〈〉= ,因此3π||||cos2(242a c a c ⋅==⨯-=-,0b c ⋅= ,所以()2a b c a c b c +⋅=⋅+⋅=-.故选:B8.在ABC 中,已知cos cos 2cos a B b A c A +=,则A =()A.π6B.π4C.π3 D.π2【答案】C 【解析】【分析】根据给定条件,利用正弦定理边化角,再逆用和角的正弦求出即得.【详解】在ABC 中,由cos cos 2cos a B b A c A +=及正弦定理,得sin cos sin cos 2sin cos A B B A C A +=,则sin()2sin cos A B C A +=,即sin 2sin cos C C A =,而sin 0C >,因此1cos 2A =,而0πA <<,所以π3A =.故选:C9.已知函数()()π2sin 03⎛⎫=+> ⎪⎝⎭f x x ωω,则“()f x 在π0,3⎡⎤⎢⎥⎣⎦上既不是增函数也不是减函数”是“1ω>”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】以π3x ω+为整体结合正弦函数的性质可得12ω>,进而根据充分、必要条件分析判断.【详解】因为π0,3x ⎡⎤∈⎢⎥⎣⎦且0ω>,则ππππ,3333x ωω⎡⎤+∈+⎢⎥⎣⎦,若()f x 在π0,3⎡⎤⎢⎣⎦上既不是增函数也不是减函数,则2πππ33ω+>,解得12ω>,又因为()1,+∞1,2⎛⎫+∞ ⎪⎝⎭,所以“()f x 在π0,3⎡⎤⎢⎥⎣⎦上既不是增函数也不是减函数”是“1ω>”的必要不充分条件.故选:B.10.如图,正方形ABCD 的边长为2,P 为正方形ABCD 四条边上的一个动点,则PA PB ⋅的取值范围是()A.[]1,2-B.[]0,2 C.[]0,4 D.[]1,4-【答案】D 【解析】【分析】建立平面直角坐标系,分点P 在CD 上,点P 在BC 上,点P 在AB 上,点P 在AD 上,利用数量积的坐标运算求解.【详解】解:建立如图所示平面直角坐标系:则()()0,2,2,2A B ,当点P 在CD 上时,设()(),002Px x ≤≤,则()(),2,2,2PA x PB x =-=--,所以()()224133,4PA PB x x x ⎡⎤⋅=-+=-+∈⎣⎦ ;当点P 在BC 上时,设()()2,02P yy ≤≤,则()()2,2,0,2PA y PB y =-=-,所以()220,4PA PB y ⎡⎤⋅=-∈⎣⎦ ;当点P 在AB 上时,设()(),202Px x ≤≤,则()(),0,2,0PA x PB x ==-,所以()()22111,0PA PB x x x ⎡⎤⋅=-=--∈-⎣⎦ ;当点P 在AD 上时,设()()0,02P y y ≤≤,则()()0,2,2,2PA y PB y=-=--,所以()220,4PA PB y ⎡⎤⋅=-∈⎣⎦ ;综上:PA PB ⋅的取值范围是[]1,4-.故选:D二、填空题(本大题共5小题,每小题5分,共25分)11.已知圆的半径为2,则60 的圆心角的弧度数为__________;所对的弧长为__________.【答案】①.π3##1π3②.2π3##2π3【解析】【分析】利用度与弧度的互化关系,弧长计算公式求解即可.【详解】60 的圆心角的弧度数为ππ601803⨯=;所对的弧长为π2π233⨯=.故答案为:π3;2π312.已知向量()2,3a =- ,(),6b x =- .若//a b ,则a =r __________,x =__________.【答案】①.②.4【解析】【分析】利用坐标法求出向量的模,再根据向量共线的坐标表示求出x .【详解】因为向量()2,3a =- ,所以a == ,又(),6b x =- 且//a b ,所以()326x =-⨯-,解得4x =.;4.13.若函数()sin f x A x x =的一个零点为π3,则A =__________;将函数()f x 的图象向左至少平移__________个单位,得到函数2sin y x =的图象.【答案】①.1②.π3##1π3【解析】【分析】利用零点的意义求出A ;利用辅助角公式化简函数()f x ,再借助平移变换求解即得.【详解】函数()sin f x A x x =的一个零点为π3,得ππsin 033A =,解得1A =;则π()sin 2sin()3f x x x x =-=-,显然πππ(2sin[()]2sin 333f x x x +=+-=,所以()f x 的图象向左至少平移π3个单位,得到函数2sin y x =的图象.故答案为:1;π314.设平面向量,,a b c 为非零向量,且(1,0)a = .能够说明“若a b a c ⋅=⋅ ,则b c = ”是假命题的一组向量,b c的坐标依次为__________.【答案】(0,1),(0,1)-(答案不唯一)【解析】【分析】令向量,b c 与向量a 都垂直,且b c ≠即可得解.【详解】令(0,1),(0,1)b c ==- ,显然0a b a c ⋅==⋅,而b c ≠ ,因此(0,1),(0,1)b c ==- 能说明“若a b a c ⋅=⋅ ,则b c = ”是假命题,所以向量,b c的坐标依次为(0,1),(0,1)-.故答案为:(0,1),(0,1)-15.已知函数()2cosπ1xf x x =+,给出下列四个结论:①函数()f x 是奇函数;②函数()f x 有无数个零点;③函数()f x 的最大值为1;④函数()f x 没有最小值.其中,所有正确结论的序号为__________.【答案】②③【解析】【分析】根据偶函数的定义判断①,令()0f x =求出函数的零点,即可判断②,求出函数的最大值即可判断③,根据函数值的特征判断④.【详解】函数()2cosπ1xf x x =+的定义域为R ,又22cos(π)cos π()()()11x x f x f x x x --===-++,所以()2cosπ1xf x x =+为偶函数,故①错误;令2cos ππ1()0cos π0ππ(Z)(Z)122x f x x x k k x k k x ==⇒=⇒=+∈⇒=+∈+,所以函数()f x 有无数个零点,故②正确;因为cos π1x ≤,当ππ(Z)x k k =∈,即(Z)x k k =∈时取等号,又因为211x +≥,当且仅当0x =时取等号,所以有21011x <≤+,当且仅当0x =时取等号,所以有2cos π11x x ≤+,当且仅当0x =时取等号,因此有()2cos π11xf x x =≤+,即()()max 01f x f ==,故③正确;因为()2cosπ1xf x x =+为偶函数,函数图象关于y 轴对称,只需研究函数在()0,∞+上的情况即可,当x →+∞时2101x →+,又1cosπ1x -≤≤,所以当x →+∞时()0f x →,又()()max 01f x f ==,当102x <<时cos π0x >,210x +>,所以()0f x >,当1322x <<时1cos π0x -≤<,210x +>,所以()0f x <,当1x >时212x +>,0cos π1x ≤≤,所以()12f x <,又()112f =-,102f ⎛⎫= ⎪⎝⎭,302f ⎛⎫= ⎪⎝⎭,且()f x 为连续函数,所以()f x 存在最小值,事实上()f x 的图象如下所示:由图可知()f x 存在最小值,故④错误.故答案为:②③三、解答题(本大题共6小题,共85分)16.在平面直角坐标系xOy 中,角θ以Ox 为始边,终边经过点()1,2--.(1)求tan θ,tan2θ的值;(2)求πsin ,cos ,cos 4θθθ⎛⎫+⎪⎝⎭的值.【答案】(1)tan 2θ=,4tan 23θ=-(2)sin 5θ-=,cos 5θ=,π10cos 410θ⎛⎫+=⎪⎝⎭【解析】【分析】(1)由三角函数的定义求出tan θ,再由二倍角正切公式求出tan 2θ;(2)由三角函数的定义求出sin θ,cos θ,再由两角和的余弦公式计算可得.【小问1详解】因为角θ以Ox 为始边,终边经过点()1,2--,所以2tan 21θ-==-,则222tan 224tan 21tan 123θθθ⨯===---.【小问2详解】因为角θ以Ox 为始边,终边经过点()1,2--,所以sin 5θ-==,cos 5θ==,所以πππcos cos cos sin sin 444θθθ⎛⎫+=- ⎪⎝⎭2520555210221⎛⎫- =⨯-⨯=⎪ ⎪⎝⎭.17.已知平面向量,,2,3,a b a b a == 与b的夹角为60 ,(1)求22,,a b a b ⋅;(2)求(2)(3)a b a b -⋅+的值:(3)当x 为何值时,xa b -与3a b +rr 垂直.【答案】(1)4,9,3;(2)4-;(3)3013x =.【解析】【分析】(1)利用数量积的定义计算即得.(2)利用数量积的运算律计算即得.(3)利用垂直关系的向量表示,数量积的运算律求解即得.【小问1详解】向量,,2,3,a b a b a == 与b 的夹角为60 ,所以2222|4,|9,3||||c |os 0|6a a b b a b a b ===⋅=== .【小问2详解】依题意,2222(2)(3)2352233534a b a b a b a b -⋅+=-+⋅=⨯-⨯+⨯=- .【小问3详解】由()(3)0xa b a b -⋅+= ,得223(31)4273(31)13300xa b x a b x x x -+-⋅=-+-=-= ,解得3013x =,所以当3013x =时,xa b - 与3a b +r r 垂直.18.已知函数()sin2cos2f x x x =+.(1)求(0)f ;(2)求函数()f x 的最小正周期及对称轴方程;(3)求函数()f x 的单调递增区间.【答案】(1)1;(2)π,ππ,Z 82k x k =+∈;(3)()3πππ,πZ 88k k k ⎡⎤-++∈⎢⎥⎣⎦.【解析】【分析】(1)代入计算求出函数值.(2)(3)利用辅助角公式化简函数()f x ,再结合正弦函数的图象与性质求解即得.【小问1详解】函数()sin2cos2f x x x =+,所以(0)sin0cos01f =+=.【小问2详解】函数π())4f x x =+,所以函数()f x 的最小正周期2ππ2T ==;由ππ2π,Z 42x k k +=+∈,解得ππ,Z 82k x k =+∈,所以函数()f x 图象的对称轴方程为ππ,Z 82k x k =+∈.【小问3详解】由πππ2π22π,Z 242k x k k -+≤+≤+∈,得3ππππ,Z 88k x k k -+≤≤+∈,所以函数()f x 的单调递增区间是()3πππ,πZ 88k k k ⎡⎤-++∈⎢⎥⎣⎦.19.在△ABC 中,7a =,8b =,再从条件①、条件②这两个条件中选择一个作为已知.(1)求A ∠;(2)求ABC 的面积.条件①:3c =;条件②:1cos 7B =-.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1)选①②答案相同,3A π∠=;(2)选①②答案相同,ABC 的面积为【解析】【分析】(1)选①,用余弦定理得到cos A ,从而得到答案;选②:先用余弦定理求出3c =,再用余弦定理求出cos A ,得到答案;(2)选①,先求出sin 2A =,使用面积公式即可;选②:先用sin sin()C A B =+求出sin C ,再使用面积公式即可.【小问1详解】选条件①:3c =.在△ABC 中,因为7a =,8b =,3c =,由余弦定理,得222cos 2b c a A bc+-=64949283+-=⨯⨯12=.因为()0,πA ∈,所以π3A ∠=;选条件②:1cos 7B =-由余弦定理得:222249641cos 2147a cbc B ac c +-+-===-,解得:3c =或5-(舍去)由余弦定理,得222cos 2b c a A bc+-=64949283+-=⨯⨯12=.因为()0,πA ∈,所以π3A ∠=;【小问2详解】选条件①:3c =由(1)可得sin 2A =.所以ABC 的面积11sin 8322S bc A ==⨯⨯=选条件②:1cos 7B =-.由(1)可得1cos 2A =.因为sin sin[()]C A B =π-+sin()A B =+sin cos cos sin A B A B=+11()72=-+⨯3314=,所以ABC 的面积11sin 7822S ab C ==⨯⨯=..20.已知函数()2π2cos cos 213f x x x ⎛⎫=+-- ⎪⎝⎭.(1)求π6f ⎛⎫ ⎪⎝⎭的值;(2)求函数()f x 的在[]0,π上单调递减区间;(3)若函数()f x 在区间[]0,m 上有且只有两个零点,求m 的取值范围.【答案】(1)32(2)π7π,1212⎡⎤⎢⎥⎣⎦(3)3564π,π⎡⎫⎪⎢⎣⎭【解析】【分析】(1)利用二倍角公式及和差角公式化简函数解析式,再代入计算可得;(2)由x 的取值范围求出π23x +的范围,再根据正弦函数的性质得到ππ3π2232x ≤+≤,解得即可;(3)由x 的取值范围求出π23x +的范围,再根据正弦函数的性质得到不等式组,解得即可.【小问1详解】因为()2π2cos cos 213f x x x ⎛⎫=+-- ⎪⎝⎭ππcos2cos2cossin 2sin 33x x x =++3cos2sin 222x x =+1cos2sin 222x x ⎫=+⎪⎪⎭π23x ⎛⎫=+ ⎪⎝⎭,所以πππ2π3266332f ⎛⎫⎛⎫=⨯+== ⎪ ⎪⎝⎭⎝⎭.【小问2详解】当[]0,πx ∈时ππ7π2,333x ⎡⎤+∈⎢⎥⎣⎦,令ππ3π2232x ≤+≤,解得π7π1212x ≤≤,所以函数()f x 的在[]0,π上的单调递减区间为π7π,1212⎡⎤⎢⎥⎣⎦.【小问3详解】当[]0,x m ∈时,πππ2,2333x m ⎡⎤+∈+⎢⎥⎣⎦,又函数()f x 在区间[]0,m 上有且只有两个零点,所以π2π23π3m ≤<+,解得5π4π63m ≤<,即m 的取值范围为3564π,π⎡⎫⎪⎢⎣⎭.21.某地进行老旧小区改造,有半径为60米,圆心角为π3的一块扇形空置地(如图),现欲从中规划出一块三角形绿地PQR ,其中P 在 BC 上,PQ AB ⊥,垂足为Q ,PR AC ⊥,垂足为R ,设π0,3PAB α⎛⎫∠=∈ ⎪⎝⎭;(1)求PQ ,PR (用α表示);(2)当P 在BC 上运动时,这块三角形绿地的最大面积,以及取到最大面积时α的值.【答案】(1)60sin PQ α=,π60sin 3PR α⎛⎫=- ⎪⎝⎭(2)三角形绿地的最大面积是平方米,此时π6α=【解析】【分析】(1)利用锐角三角函数表示出PQ 、PR ;(2)依题意可得2π3QPR ∠=,则1sin 2PQR S PQ PR QPR =⋅⋅⋅∠ ,利用三角恒等变换公式化简,再结合正弦函数的性质求出最大值.【小问1详解】在Rt PAQ 中,π0,3PAB ∠α⎛⎫=∈ ⎪⎝⎭,60AP =,∴sin 60sin PQ AP αα==(米),又π3BAC ∠=,所以π3PAR α∠=-,在Rt PAR 中,可得πsin 60sin 3PR PAR AP α⎛⎫==-⎪⎝⎭∠(米).【小问2详解】由题可知2π3QPR ∠=,∴PQR 的面积1sin 2PQR S PQ PR QPR =⋅⋅⋅∠1π2π60sin 60sin sin 233αα⎛⎫=⨯⨯-⨯ ⎪⎝⎭πsin3αα⎛⎫=- ⎪⎝⎭ππsin cos cos sin 33ααα⎛⎫=- ⎪⎝⎭112cos 222αα⎫=+-⎪⎪⎭π1sin 262α⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦,又π0,3α⎛⎫∈ ⎪⎝⎭,526πππ,66α⎛⎫+∈ ⎪⎝⎭,∴当ππ262α+=,即π6α=时,PQR 的面积有最大值即三角形绿地的最大面积是π6α=.。

江苏省梅村高级中学2023-2024学年高一下学期期中考试英语试卷(含答案)

江苏省梅村高级中学2023-2024学年高一下学期期中考试英语试卷(含答案)

江苏省梅村高级中学2024年春学期高一期中质量检测英语学科一、听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C 三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1. Why does the man apologize to the womanA. He pressed the wrong button.B. He dropped her iPad.C. He broke her purse.2. What will the man do nextA. Have a get-together.B. Visit a company.C. Attend a meeting.3. What is the relationship between the speakersA. Father and daughter.B. Mother and son.C. Brother and sister.4. How does the man feel about the womanA. Bored.B. Surprised.C. Annoyed.5. What are the speakers talking aboutA. Shopping lists.B. Eating habits.C. Cooking methods.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。

听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。

每段对话或独白读两遍。

听第6段材料,回答第6、7题。

6. Who is the man asking forA. Eric.B. Laura.C. Heather.7. What will the woman do in about 20 minutesA. Pass on a message.B. Make a phone call.C. Go shopping.听第7段材料,回答第8、9 题。

高一下学期期中考试数学试题(解析版)

高一下学期期中考试数学试题(解析版)
【答案】
【解析】
【分析】由已知得 在 中利用正弦定理求得 在 中利用余弦定理即可得解.
【详解】在 中已知
在 中
由正弦定理得
在 中
利用余弦定理知 .
故答案为:
16.如图四棱锥 的底面四边形ABCD为正方形四条侧棱 点E和F分别为棱BC和PD的中点.若过A、E、F三点的平面与侧面PCD的交线线段长为 则该四棱锥的外接球的体积为___________.
【小问1详解】
如图:
在 上取一点N使得 连接CNEN则 则
又∵ ∴四边形 是平行四边形
∴ 且 .
同理四边形DNEA是平行四边形∴ 且
又 且 ∴ 且
∴四边形CNEB是平行四边形
∴ 且
∴ 且
∴四边形 平行四边形从而BE F四点共面;
【小问2详解】
由(1)知 平面 平面
∴ 平面 ①
取BG中点为I连接 则G是 H是 ∴ ∥HG
【详解】解:由 得
即 正确;
令 满足 但不满足 错误;


又 正确;
正确.
故选:ACD.
10.下列说法正确的是()
A.对于任意两个向量 若 且 与 同向则
B.已知 为单位向量若 则 在 上的投影向量为
C.设 为非零向量则“ ”是“存在负数 使得 ”的必要不充分条件
D. 则 与 的夹角是锐角
【答案】BC
的最小值为
所以 的长度范围是
故选:B
二、多选题:本题共4小题每小题5分共20分.在每小题给出的选项中有多项符合题目要求.全部选对的得5分部分选对的得2分有选错的得0分.
9.已知 且 .下列说法正确的是()
A.若 则 B.若 则
C. D.

2023-2024学年河南省郑州市十校联考高一下学期期中考试地理试题(解析版)

2023-2024学年河南省郑州市十校联考高一下学期期中考试地理试题(解析版)

河南省郑州市十校联考2023-2024学年高一下学期期中考试试题考试时间:75分钟分值:100分注意事项:本试卷分试题卷和答题卡两部分。

考生应首先阅读试题卷上的文字信息,然后在答题卡上作答(答题注意事项见答题卡)。

在试题卷上作答无效。

一、选择题(本题共16小题,每题3分,共48分。

在每小题给出的四个选项中,只有一项是符合要求的。

)黑河—腾冲一线是我国重要的人口地理分界线,也被称为“胡焕庸线”。

该线东侧人口密度较大,西侧人口密度较小。

下图示意我国人口分布,完成下面小题。

1.对我国人口分布特点的原因分析合理的是()A.东北三省气候寒冷,人口稀少B.东部、东南部地处平原,人口稠密C.渭河平原开发时间早,人口稠密D.西北部矿产资源匮乏,人口稀少2.我国西藏面积广大,人口密度小,却不能采取鼓励人口增长的政策,主要原因是()A.对外开放程度较低B.人均消费水平过高C.人口受教育水平低D.环境承载力较低〖答案〗1.C 2.D〖解析〗【1题详析】根据图示和所学知识可知,我国人口地理分界线以东为人口密集区,以西人口较为稀疏。

我国东北三省中辽宁、吉林人口密度大,A错误;东部、东南部以平原、丘陵为主,B错误;渭河平原地形平坦,水源条件好,历史上开发时间早,人口稠密,C正确;西北地区矿产资源丰富,D错误;ABD错误,C正确,故选C。

【2题详析】西藏自治区,地处青藏高原,地势高峻,气候高寒,自然条件恶劣,故人口密度小,由于生态环境脆弱,环境承载力小,不宜采取鼓励人口增长的政策,主要原因是自然环境恶劣,环境承载力小,故D选项正确。

西藏地区经济欠发达,人均消费水平较低,B错误;对外开放程度低和人口受教育水平低的地区人口的自然增长应该会比较快,与题目不相符,AC错误;ABC选项错误。

故选D。

我国地级市一般由市辖区和其他县级行政区组成。

下图示意我国某地级市2010年和2020年的常住人口数量。

该市的常住人口变化状况在全国具有一定的代表性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

忻州一中2009-2010学年度第二学期期中考试高一生物试题命题人师锦绣一.选择题:每小题1.5分,只有一个选项正确。

1.细胞结构和生命活动的物质基础是A.C、H、O、N、P、S等元素 B.分子和化合物C.水和无机盐D.有机大分子2.下列哪一项不属于细胞膜的功能A.控制物质进出细胞B.将胰岛细胞形成的胰岛素,分泌到细胞外C.提高细胞内化学反应的速率D.作为系统的边界,维持细胞内环境的稳定3.噬菌体、蓝藻和酵母菌都具有的物质或结构是A.细胞壁 B.细胞膜C.线粒体 D.核酸4.假定将甲、乙两个植物细胞分别放入蔗糖溶液和甘油溶液中,两种溶液均比细胞液的浓度高,蔗糖分子不能透过膜,甘油分子可以较快地透过膜,在显微镜下连续观察甲、乙两细胞的变化是A.甲乙两细胞发生质壁分离后,不发生质壁分离复原B.甲乙两细胞发生质壁分离,但乙细胞随后又发生质壁分离复原C.甲乙两细胞发生质壁分离,但随后甲细胞发生质壁分离复原D.甲乙两细胞发生质壁分离,后又均发生质壁分离复原5.下列关于细胞核的说法,不正确的是A.细胞核是遗传物质贮存和复制的场所B.细胞核控制细胞的代谢和遗传C.细胞核位于细胞的正中央,所以它是细胞的控制中心D.DNA主要存在于细胞核内6. 在实验条件下,测试某种恒温动物离体细胞的呼吸强度(E)受温度变化的影响,正确结果是下图中的7.有丝分裂间期细胞中发生复制的变化,其中复制的结果是A.DNA含量不变,染色体数目加倍B.DNA含量加倍,染色体数目不变C.DNA和染色体都加倍D.DNA和染色体数都不变8.水稻体细胞有12对染色体,在有丝分裂中期,细胞内的染色体数和结构是①12条②24条③48条④每条染色体含有一条染色单体⑤每条染色体含有两条染色单体A.①④ B.②④C.②⑤ D.③⑤9.细胞有丝分裂中,染色单体的形成和分离分别发生在A.间期和前期 B.间期和后期C.前期和中期 D.前期和间期10.在细胞有丝分裂过程中,DNA含量相同而染色体数目不同的时期是A.间期、前期 B.前期、中期C.前期、后期 D.间期、中期11.分化的细胞能够再恢复到原来状态的是A.根毛细胞 B.人体表细胞C.种皮细胞 D.A、B、C都不是12.生物膜的“蛋白质—脂质—蛋白质”静态结构模型不能解释下列哪种现象A.细胞膜是细胞的边界B.溶于脂质的物质能够优先通过细胞膜C.变形虫的变形运动D.细胞膜中的磷脂分子呈双层排列在膜中间13.下列四支试管中分别含有不同化学物质和活性酵母菌细胞制备物。

在适宜温度下,会产生CO2的试管有①葡萄糖+细胞膜已破裂的细胞②葡萄糖+线粒体③丙酮酸+线粒体④葡萄糖+细胞质基质A.①② B.①③④C.②③④ D.①④14.细胞衰老是一种正常的生命现象。

人的细胞在衰老过程中不会出现的变化是A.细胞内有些酶活动性降低 B.细胞内色素减少C.细胞内水分减少 D.细胞内呼吸速度减慢15.关于细胞凋亡的说法,不正确的是A.细胞凋亡就是细胞不正常死亡B.细胞凋亡发生在多细胞生物生命历程的各个时期C.红细胞的正常死亡过程就是细胞凋亡D.细胞凋亡对于生物体完成正常发育,维持内环境稳定和抵御外因干扰起重要作用16.某动物的精子细胞中有染色体16条,则在该动物的初级精母细胞中存在的染色体数、四分体数、染色单体数、DNA分子数分别是A.32、16、64、64 B.32、8、32、64C.16、8、32、32 D.16、0、32、3217.雌蛙的卵巢中有初级卵母细胞6 000个,从理论上计算,经减数分裂所生成的卵细胞和极体数分别是A.6 000和6 000 B.6 000和18 000C.6 000和24 000 D.12 000和12 00018.下面是初级精母细胞进行减数分裂的几个步骤,其正确顺序是①联会②同源染色体分离③交叉互换④染色体复制⑤细胞质分裂A.④③①②⑤B.④①③②⑤C.④②①③⑤D.①④②③⑤19.人的性别在下面的哪一时期形成A.卵细胞形成时B.受精卵形成时C.精子形成时D.胚胎发育过程中20.基因分离定律的实质是A.F2出现性状分离B.F1性状分离比为3∶1C.等位基因随同源染色体分开而分离D.测交后代性状分离比为1∶121.欲观察细胞减数分裂过程,可选用的材料是A.马蛔虫受精卵B.成熟花粉粒C.小鼠睾丸D.叶芽22.下列叙述中,正确的是A.两个纯合子杂交后代必是纯合子B.两个杂合子杂交后代必是杂合子C.纯合子自交后代都是纯合子D.杂合子自交后代都是杂合子23.一个基因型为AaBb的卵原细胞(按自由组合定律遗传)假定产生了一个基因组合为AB的卵细胞。

则随之产生的三个极体的基因组合应为A.Ab、aB、ab B.AB、ab、abC.ab、ab、ab D.AB、AB、AB24.一对杂合子的黑毛豚鼠交配,生出四只豚鼠。

它们的表现型及数量可能是A.全部黑色或全部白色B.三黑一白或一黑三白C.两黑两白D.以上任何一种25.已知豌豆的高茎对矮茎是显性,欲知一高茎豌豆的基因型,最佳办法是A.让它与另一纯种高茎豌豆杂交B.让它与另一杂种高茎豌豆杂交C.让它与另一株矮茎豌豆杂交D.让它进行自花授粉26.与有丝分裂相比,减数分裂过程中染色体最显著的变化之一是A.染色体移向细胞两极 B.同源染色体联会C.有纺缍体形成D.着丝点分开27.下列关于基因和染色体在减数分裂过程中行为变化的描述,错误的是A.同源染色体分离的同时,等位基因也随之分离B.非同源染色体自由组合,使所有非等位基因之间也发生自由组合C.染色单体分开时,复制而来的两个基因也随之分开D.非同源染色体数量越多,非等位基因组合的种类也越多28.下列关于性染色体的叙述,正确的是A.性染色体上的基因都可以控制性别B.性别受性染色体控制而与基因无关C.女儿的性染色体必有一条来自父亲D.性染色体只存在于生殖细胞中29. 赫尔希和蔡斯的工作表明A.病毒中有DNA,但没有蛋白质 B.细菌中有DNA,但没有蛋白质C.遗传物质包括蛋白质和DNA D.遗传物质是DNA30.孟德尔的遗传规律不适合原核生物,原因是A.原核生物无核物质 B.原核生物无遗传物质C.原核生物无完善的细胞器 D.原核生物主要进行无性生殖31.下列对基因型和表现型关系的叙述,错误的是A.表现型相同,基因型不一定相同B.在相同的生活环境中,基因型相同,表现型一定相同C.基因型相同,表现型不一定相同D.在相同的生活环境中,表现型相同,基因型一定相同32.格里菲思进行了肺炎双球菌转化实验,下列哪一项不是格里菲思实验的意义A.提出了“转化因子”的概念B.证实了DNA是遗传物质C.奠定了艾弗里实验的基础D.开辟了用微生物研究遗传学的新途径33.在细胞学水平上研究生物的有丝分裂、减数分裂和受精作用及其相互关系发现,下列哪一种结构的数量在生物的传种接代过程中,始终保持稳定A.细胞核B.染色体C.DNA D.蛋白质34.1928年格里菲思做的肺炎双球菌转化实验,成功地表明了A.DNA是遗传物质B.DNA是主要的遗传物质C.已经加热杀死的S型细菌中,含有能促成R型细菌发生转化的活性物质D.已经加热杀死的S型细菌,其中的DNA已失去活性而蛋白质仍具有活性35.用15N、32P、35S标记噬菌体,让其去侵染细菌,在产生的子代噬菌体组成结构中,能够找到的放射性元素为A.可在外壳中找到15N、35S B.可在DNA中找到15N、32PC.可在外壳中找到15N D.可在外壳中找到15N、32P、35S 36.下列遗传中,肯定不是血友病遗传的是A B C D37.有关噬菌体侵染细菌实验的叙述不正确...的是A.赫尔希和蔡斯的实验方法是同位素示踪法B.用含32P的培养基直接培养噬菌体,即可将噬菌体的DNA用32P标记上C.用被32P标记的噬菌体与细菌混合一段时间后离心,结果沉淀物的放射性很高D.噬菌体侵染细菌实验能将DNA与蛋白质分开,单独观察它们各自的作用38.关于DNA分子空间结构的叙述,不正确的是A.两条主链之间为互补碱基对B.磷酸和核糖纵向交替连接C.主链排列在空间结构的外侧D.反向平行方式盘旋成双螺旋39.生化实验测定表明,DNA分子的碱基比率(A+T)/(G+C)的比值,及碱基序列存在着种间差异,这说明DNA的分子结构具有A.相对的稳定性B.可变性C.多样性D.特异性40.在制作DNA双螺旋结构模型时,如果要求一种颜色代表一种物质,则至少需要准备几种颜色的塑料片A.3种B.4种C.5种D.6种二.填空题:共40分。

41.右图是高等动物细胞的亚显微结构示意图,据图回答下列问题([]中填入数字符号,________中填上适当的文字)。

(9分)(1)与菠菜叶肉细胞相比,该细胞没有的结构有________、________和________;(2)如果这是人的骨髓造血干细胞,和肌肉细胞或神经细胞相比,它具有不断进行________的能力,和该过程关系最密切的细胞器是[]________。

(3)若这是昆虫的飞行肌细胞,则该细胞中的细胞器[]________较多,因为该细胞的生理活动需要________多。

42. 番茄中红果、黄果是一对相对性状,D控制显性性状,d控制隐性性状,如下图所示,根据遗传图解回答下列问题:(7分)(1)红果、黄果中显性性状是_____________。

(2)F1红果的基因型是_______,F2红果的基因型及比例是___________________。

(3)P的两个个体的杂交相当于___________(交配类型)。

(4)F1黄果植株自交后代表现型是___________,基因型是__________。

43.下图表示某种生物的细胞内染色体及DNA相对量变化的曲线图。

根据此曲线图回答下列问题:(注:横坐标各个区域代表细胞分裂的各个时期,区域的大小和各个时期所需的时间不成比例) (10分)(1)图中代表染色体相对数量变化的曲线是______。

(2)图中8处发生的生理过程叫_________________。

(3)细胞内含有染色单体的区间是________和_________。

(4)若该生物体细胞中染色体数为20条,则一个细胞核中的DNA分子数在4—6时期为____条。

(5)等位基因分离发生在__________区间代表的时期,发生非等位基因自由组合的区间是_____。

(6)以该生物体细胞中的两对同源染色体为例,在答卷纸的方框中画出该生物细胞处于6—7时期的细胞分裂示意图。

44.烟草花叶病毒(TMV)和车前草病毒(HRV)都能感染烟草叶片,但二者致病病斑不同,如图A。

有人用这两种病毒做实验,具体步骤和结果如右图所示,请分析B图中(a)、(b)、(c)三个实验结果回答下列问题:(14分)(1)a表示用TMV的感染烟叶,结果。

相关文档
最新文档