高中物理法拉第电磁感应定律难点突破汇总
高考物理压轴题之法拉第电磁感应定律(高考题型整理,突破提升)附答案解析
高考物理压轴题之法拉第电磁感应定律(高考题型整理,突破提升)附答案解析一、法拉第电磁感应定律1.如图,匝数为N 、电阻为r 、面积为S 的圆形线圈P 放置于匀强磁场中,磁场方向与线圈平面垂直,线圈P 通过导线与阻值为R 的电阻和两平行金属板相连,两金属板之间的距离为d ,两板间有垂直纸面的恒定匀强磁场。
当线圈P 所在位置的磁场均匀变化时,一质量为m 、带电量为q 的油滴在两金属板之间的竖直平面内做圆周运动。
重力加速度为g ,求:(1)匀强电场的电场强度 (2)流过电阻R 的电流(3)线圈P 所在磁场磁感应强度的变化率 【答案】(1)mg q (2)mgdqR(3)()B mgd R r t NQRS ∆+=∆ 【解析】 【详解】 (1)由题意得:qE =mg解得mg qE =(2)由电场强度与电势差的关系得:UE d=由欧姆定律得:U I R=解得mgdI qR=(3)根据法拉第电磁感应定律得到:E Nt∆Φ=∆ BS t t∆Φ∆=∆∆根据闭合回路的欧姆定律得到:()E I R r =+ 解得:()B mgd R r t NqRS∆+=∆2.如图所示,面积为0.2m 2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面。
已知磁感应强度随时间变化的规律为B =(2+0.2t )T ,定值电阻R 1=6 Ω,线圈电阻R 2=4Ω求:(1)磁通量变化率,回路的感应电动势。
(2)a 、b 两点间电压U ab 。
【答案】(1)0.04Wb/s 4V (2)2.4V 【解析】 【详解】(1)由B =(2+0.2t )T 得磁场的变化率为0.2T/s Bt∆=∆ 则磁通量的变化率为:0.04Wb/s BS t t∆Φ∆==∆∆ 根据E nt∆Φ=∆可知回路中的感应电动势为: 4V BE nnS t t∆Φ∆===∆∆ (2)线圈相当于电源,U ab 是外电压,根据电路分压原理可知:1122.4V ab ER R R U =+=答:(1)磁通量变化率为0.04Wb/s ,回路的感应电动势为4V 。
高考物理法拉第电磁感应定律压轴难题知识归纳总结word
高考物理法拉第电磁感应定律压轴难题知识归纳总结word一、高中物理解题方法:法拉第电磁感应定律1.如图所示,在磁感应强度B =1.0 T 的有界匀强磁场中(MN 为边界),用外力将边长为L =10 cm 的正方形金属线框向右匀速拉出磁场,已知在线框拉出磁场的过程中,ab 边受到的磁场力F 随时间t 变化的关系如图所示,bc 边刚离开磁场的时刻为计时起点(即此时t =0).求:(1)将金属框拉出的过程中产生的热量Q ; (2)线框的电阻R .【答案】(1)2.0×10-3 J (2)1.0 Ω 【解析】 【详解】(1)由题意及图象可知,当0t =时刻ab 边的受力最大,为:10.02N F BIL ==可得:10.02A 0.2A 1.00.1F I BL ===⨯ 线框匀速运动,其受到的安培力为阻力大小即为1F ,由能量守恒:Q W =安310.020.1J 2.010J F L -==⨯=⨯(2) 金属框拉出的过程中产生的热量:2Q I Rt=线框的电阻:3222.010Ω 1.0Ω0.20.05Q R I t -⨯===⨯2.如图所示,ACD 、EFG 为两根相距L =0.5m 的足够长的金属直角导轨,它们被竖直固定在绝缘水平面上,CDGF 面与水平面夹角θ=300.两导轨所在空间存在垂直于CDGF 平面向上的匀强磁场,磁感应强度大小为B`=1T .两根长度也均为L =0.5m 的金属细杆ab 、cd 与导轨垂直接触形成闭合回路,ab 杆的质量m 1未知,cd 杆的质量m 2=0.1kg ,两杆与导轨之间的动摩擦因数均为μ3R =0.5Ω,导轨电阻不计.当ab 以速度v 1沿导轨向下匀速运动时,cd 杆正好也向下匀速运动,重力加速度g 取10m/s 2.(1)金属杆cd 中电流的方向和大小 (2)金属杆ab 匀速运动的速度v 1 和质量m 1【答案】I =5A 电流方向为由d 流向c; v 1=10m/s m 1=1kg 【解析】 【详解】(1)由右手定则可知cd 中电流方向为由d 流向c对cd 杆由平衡条件可得:μ=+0022安sin 60(cos 60)m g m g F=安F BLI联立可得:I =5A (2) 对ab: 由 =12BLv IR得 110m/s v = 分析ab 受力可得: 0011sin 30cos 30m g BLI m g μ=+解得: m 1=1kg3.如图甲所示,光滑且足够长的平行金属导轨MN 和PQ 固定在同一水平面上,两导轨间距L=0.2m ,电阻R=0.4Ω,导轨上停放一质量m=0.1kg 、电阻r=0.1Ω的金属杆,导轨电阻忽略不计,整个装置处在磁感应强度B=0.5T 的匀强磁场中,磁场的方向竖直向下,现用一外力F 沿水平方向拉杆,使之由静止开始运动,若理想电压表示数U 随时间t 变化关系如图乙所示。
法拉第电磁感应定律压轴题知识归纳总结
法拉第电磁感应定律压轴题知识归纳总结一、高中物理解题方法:法拉第电磁感应定律1.如图所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度L =1 m ,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g =10 m/s 2(忽略ab 棒运动过程中对原磁场的影响),求:(1) ab 棒1.5 s-2.1s 的速度大小及磁感应强度B 的大小; (2)金属棒ab 在开始运动的1.5 s 内,通过电阻R 的电荷量; (3)金属棒ab 在开始运动的1.5 s 内,电阻R 上产生的热量。
【答案】(1) v =7 m/s B =0.1 T (2) q =0.67 C (3)0.26 J 【解析】 【详解】(1)金属棒在AB 段匀速运动,由题中图象得:v =xt∆∆=7 m/s 根据欧姆定律可得:I =BLvr R+ 根据平衡条件有mg =BIL解得:B =0.1T(2)根据电量公式:q =I Δt根据欧姆定律可得:I =()R r t∆Φ+∆ 磁通量变化量ΔΦ=S t∆∆B 解得:q =0.67 C(3)根据能量守恒有:Q =mgx -12mv 2 解得:Q =0.455 J所以Q R =Rr R+Q =0.26 J 答:(1) v =7 m/s B =0.1 T (2) q =0.67 C (3)0.26 J2.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取210/g m s =.()1求0t =时棒所受到的安培力0F ;()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系式;()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .【答案】(1)00.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J 【解析】 【详解】 解:()1由图b 知:0.20.1T /s 2B t == 0t =时棒的速度为零,故回路中只有感生感应势为: 0.05V BE Ld t tΦ===感应电流为:0.25A EI R== 可得0t =时棒所受到的安培力:000.025N F B IL ==,方向水平向右;()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=故前3s 内导体棒静止不动,由平衡条件得: f BIL = 由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=- 联立解得: ()0.01252(3s)f t N t =-<;()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t =⨯=⨯=设3s 后到撤去外力F 时又运动了1s ,则有:11BLs q q I t R RΦ-=== 解得:16m s =此时ab 棒的速度设为1v ,则有:221012v v as -= 解得:14m /s v =此后到停止,由能量守恒定律得: 可得:21210.195J 2Q mv mgs μ=-=3.如图1所示,水平面上有两根足够长的光滑平行金属导轨MN 和PQ ,两导轨间距为l ,电阻均可忽略不计。
高考电磁学知识点与难点突破
高考电磁学知识点与难点突破在高考物理中,电磁学是一个重要且具有一定难度的部分。
掌握好电磁学的知识点和突破难点,对于在高考中取得优异成绩至关重要。
一、电磁学的基础知识点1、库仑定律库仑定律描述了真空中两个静止点电荷之间的相互作用力与它们电荷量的乘积成正比,与它们距离的平方成反比。
这个定律是电学的基础,为我们理解电荷之间的相互作用提供了关键的依据。
2、电场强度电场强度是用来描述电场强弱和方向的物理量。
它等于单位正电荷在电场中所受到的力。
通过电场强度,我们可以计算出电场中不同位置的电场力,进而分析电荷在电场中的运动情况。
3、电势和电势差电势是描述电场能的性质的物理量。
某点的电势等于单位正电荷在该点所具有的电势能。
而电势差则是两点之间电势的差值,也称为电压。
4、电容电容是表征电容器容纳电荷本领的物理量。
它与电容器的极板面积、极板间距离以及电介质的介电常数有关。
5、电流电流是电荷的定向移动形成的。
电流的大小等于单位时间内通过导体横截面的电荷量。
6、电阻和电阻率电阻反映了导体对电流的阻碍作用。
而电阻率则是材料本身的电学性质,与材料的种类、温度等因素有关。
7、欧姆定律欧姆定律指出,通过一段导体的电流与导体两端的电压成正比,与导体的电阻成反比。
8、电功和电功率电功是指电流做功的多少,电功率则表示电流做功的快慢。
二、电磁学中的重要定律1、法拉第电磁感应定律当穿过闭合回路的磁通量发生变化时,回路中就会产生感应电动势。
其大小与磁通量的变化率成正比。
2、楞次定律楞次定律用于判断感应电流的方向。
感应电流的磁场总是阻碍引起感应电流的磁通量的变化。
3、安培定则(右手螺旋定则)用于判断直线电流、环形电流和通电螺线管产生的磁场方向。
三、电磁学中的难点1、电场和磁场的综合问题在很多题目中,电场和磁场会同时存在,电荷或导体在这样的复合场中运动。
这需要我们综合运用电场和磁场的知识,分析受力情况和运动状态。
例如,带电粒子在电场和磁场中的偏转问题,需要分别考虑电场力和洛伦兹力的作用,运用牛顿运动定律和动能定理来求解。
法拉第电磁感应定律压轴难题知识归纳总结word
法拉第电磁感应定律压轴难题知识归纳总结word一、高中物理解题方法:法拉第电磁感应定律1.如图所示,电阻不计的相同的光滑弯折金属轨道MON 与M O N '''均固定在竖直平面内,二者平行且正对,间距为L =1m ,构成的斜面ONN O ''跟水平面夹角均为30α=︒,两侧斜面均处在垂直斜面向上的匀强磁场中,磁感应强度大小均为B =0.1T .t =0时,将长度也为L =1m ,电阻R =0.1Ω的金属杆ab 在轨道上无初速释放.金属杆与轨道接触良好,轨道足够长.重力加速度g =10m/s 2;不计空气阻力,轨道与地面绝缘. (1)求t =2s 时杆ab 产生的电动势E 的大小并判断a 、b 两端哪端电势高(2)在t =2s 时将与ab 完全相同的金属杆cd 放在MOO'M'上,发现cd 杆刚好能静止,求ab 杆的质量m 以及放上cd 杆后ab 杆每下滑位移s =1m 回路产生的焦耳热Q【答案】(1) 1V ;a 端电势高;(2) 0.1kg ;0.5J 【解析】 【详解】解:(1)只放ab 杆在导轨上做匀加速直线运动,根据右手定则可知a 端电势高;ab 杆加速度为:a gsin α=2s t =时刻速度为:10m/s v at ==ab 杆产生的感应电动势的大小:0.1110V 1V E BLv ==⨯⨯=(2) 2s t =时ab 杆产生的回路中感应电流:1A 5A 220.1E I R ===⨯ 对cd 杆有:30mgsin BIL ︒= 解得cd 杆的质量:0.1kg m = 则知ab 杆的质量为0.1kg放上cd 杆后,ab 杆做匀速运动,减小的重力势能全部产生焦耳热根据能量守恒定律则有:300.11010.5J 0.5J Q mgh mgs sin ==︒=⨯⨯⨯=2.如图甲所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度1L m =,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接一阻值为0.40R =Ω的电阻,质量为0.01m kg =、电阻为0.30r =Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g 取210/(m s 忽略ab 棒运动过程中对原磁场的影响).()1判断金属棒两端a 、b 的电势哪端高; ()2求磁感应强度B 的大小;()3在金属棒ab 从开始运动的1.5s 内,电阻R 上产生的热量.【答案】(1) b 端电势较高(2)0.1B T = (3) 0.26J 【解析】 【详解】()1由右手定可判断感应电流由a 到b ,可知b 端为感应电动势的正极,故b 端电势较高。
高中物理10大难点之七 法拉第电磁感应定律
难点之七 法拉第电磁感应定律一、难点形成原因1、关于表达式t nE ∆∆=φ此公式在应用时容易漏掉匝数n ,实际上n 匝线圈产生的感应电动势是串联在一起的,其次φ∆是合磁通量的变化,尤其变化过程中磁场方向改变的情况特别容易出错,并且感应电动势E 与φ、φ∆、t ∆∆φ的关系容易混淆不清。
2、应用法拉第电磁感应定律的三种特殊情况E=Blv 、ω221Bl E =、E=nBs ωsin θ(或E=nBs ωcos θ)解决问题时,不注意各公式应用的条件,造成公式应用混乱从而形成难点。
3、公式E=nBs ωsin θ(或E=nBs ωcos θ)的记忆和推导是难点,造成推导困难的原因主要是此情况下,线圈在三维空间运动,不少同学缺乏立体思维。
二、难点突破1、φ、φ∆、t ∆∆φ同v 、△v 、t v∆∆一样都是容易混淆的物理量,如果理不清它们之间的关系,求解感应电动势就会受到影响,要真正掌握它们的区别应从以下几个方面深入理解。
⑴导体切割磁感线产生的感应电动势E=Blv ,应用此公式时B 、l 、v 三个量必须是两两相互垂直,若不垂直应转化成相互垂直的有效分量进行计算,生硬地套用公式会导致错误。
有的注意到三者之间的关系,发现不垂直后,在不明白θ角含义的情况下用E=Blvsin θ求解,这也是不可取的。
处理这类问题,最好画图找B 、l 、v 三个量的关系,如若不两两垂直则在图上画出它们两两垂直的有效分量,然后将有效分量代入公式E=Blv 求解。
此公式也可计算平均感应电动势,只要将v 代入平均速度即可。
⑵导体棒以端点为轴在垂直于磁感线的匀强磁场中匀速转动,计算此时产生的感应电动势须注意棒上各点的线速度不同,应用平均速度(即中点位置的线速度)来计算,所以ω221Bl E =。
⑶矩形线圈在匀强磁场中,绕垂直于磁场的任意轴匀速转动产生的感应电动势何时用E=nBs ωsin θ计算,何时用E=nBs ωcos θ计算,最容易记混。
法拉第电磁感应定律压轴题知识归纳总结word
法拉第电磁感应定律压轴题知识归纳总结word一、高中物理解题方法:法拉第电磁感应定律1.如图所示,两彼此平行的金属导轨MN 、PQ 水平放置,左端与一光滑绝缘的曲面相切,右端接一水平放置的光滑“>”形金属框架NDQ ,∠NDQ=1200,ND 与DQ 的长度均为L ,MP 右侧空间存在磁感应强度大小为B 、方向竖直向上的匀强磁场.导轨MN 、PQ 电阻不计,金属棒与金属框架NDQ 单位长度的电阻值为r ,金属棒质量为m ,长度与MN 、PQ 之间的间距相同,与导轨MN 、PQ 的动摩擦因数为.现让金属棒从曲面上离水平面高h 的位置由静止释放,金属棒恰好能运动到NQ 边界处.(1)刚进入磁场时回路的电流强度i 0;(2)棒从MP 运动到NQ 所用的时间为t ,求导轨MN 、PQ 的长度s ;(3)棒到达NQ 后,施加一外力使棒以恒定的加速度a 继续向右运动,求此后回路中电功率的最大值p max .【答案】06(23)B ghi r =+;023(2)m gh umgt rS ++=();22max 4(23)P r =+ 【解析】 【详解】解:(1)金属棒从光滑绝缘曲面向下运动,机械能守恒,设刚进入MP 边界时,速度大小为0v ,则:2012mgh mv =解得:0v 2gh =刚进入磁场时产生的感应电动势:10e Bdv = 导轨宽度:3d L =回路电阻:(23)R Lr =+ 联立可得:06(23)B gh i r=+(2)设长度为S ,从MP 到NQ 过程中的任一时刻,速度为i v ,在此后无穷小的t ∆时间内,根据动量定理:22()ii B d v umg t m v R∑+∆=∑∆22(3(23)i i L t umg t m v Lr+∑∆=∑∆+2(23)i i v t umg t m v r∑∆+∑∆=∑∆+200(23)S umgt mv r+=+得:023(2)m gh umgt rS ++=() (3)金属棒匀加速运动,v at =切割磁感线的有效长度为:021'2cos60)tan 602l L at =⋅-︒( 产生感应电动势:E Bl v '=2212(cos60)tan 603()2E B L at at Ba L at t =⋅︒-︒⋅=-回路的瞬时电阻:2022121[2(cos60)tan 60(cos60)(23)()2cos602R r L at L at r L at =︒-+︒-=+- 功率:2222222222242222()[()]24(23)()(23)(23)E L L P at Lt a t R a a r L at r r===-+=--++-++ 金属棒运动到D 点,所需的时间设为t ',则有: 21122L at '= 解得:Lt a'=当2Lt t a '=<时, 22max 4(23)P r=+2.如图为电磁驱动与阻尼模型,在水平面上有两根足够长的平行轨道PQ 和MN ,左端接有阻值为R 的定值电阻,其间有垂直轨道平面的磁感应强度为B 的匀强磁场,两轨道间距及磁场宽度均为L .质量为m 的金属棒ab 静置于导轨上,当磁场沿轨道向右运动的速度为v 时,棒ab 恰好滑动.棒运动过程始终在磁场范围内,并与轨道垂直且接触良好,轨道和棒电阻均不计,最大静摩擦力等于滑动摩擦力.(1)判断棒ab 刚要滑动时棒中的感应电流方向,并求此时棒所受的摩擦力f 大小; (2)若磁场不动,将棒ab 以水平初速度2v 运动,经过时间22mRt B L =停止运动,求棒ab运动位移x 及回路中产生的焦耳热Q ;(3)若t =0时棒ab 静止,而磁场从静止开始以加速度a 做匀加速运动,下列关于棒ab 运动的速度时间图像哪个可能是正确的?请分析说明棒各阶段的运动情况.【答案】(1)22B L vf R=;(2)22mvR x B L = 2Q mv =;(3)丙图正确 【解析】 【详解】(1)根据右手定则,感应电流方向a 至b依题意得,棒刚要运动时,受摩擦力等于安培力:f=F A又有F A =BI 1L ,1BLvI R=联立解得:22B L vf R=(2)设棒的平均速度为v ,根据动量定理可得:02Ft ft mv --=-又有F BIL =,BLvI R=,x vt = 联立得:22mvRx B L=根据动能定理有:()21022A fx W m v --=- 根据功能关系有:Q =W A 得:Q =mv 2 (3)丙图正确当磁场速度小于v 时,棒ab 静止不动;当磁场速度大于v 时,E=BLΔv ,棒ab 的加速度从零开始增加,a 棒<a 时,Δv 逐渐增大,电流逐渐增大,F A 逐渐增大,棒做加速度逐渐增大的加速运动; 当a 棒=a 时,Δv 保持不变,电流不变,F A 不变,棒ab 的加速度保持不变,开始做匀加速运动.3.如图甲所示,不计电阻的平行金属导轨竖直放置,导轨间距为L =0.4m ,上端接有电阻R =0.3Ω,虚线OO ′下方是垂直于导轨平面的匀强磁场,磁感强度B =0.5T 。
法拉第电磁感应定律重难点分析
第二节法拉第电磁感应定律重难点分析1.在闭合电路中,电流产生于电动势。
影响电流的大小有两个因素:一个是电路的电阻;一个是电源电动势。
电源电动势是更本质的因素。
在电磁感应现象中,能够将其它形式的能量转化为电能的部分是电源,描写电源的转化能力的物理量是感应电动势。
产生感应电流是由于闭合电路的磁通量发生变化,问题的实质应该是闭合电路的磁通量发生变化时,产生了感应电动势,在闭合电路里就有了感应电流。
因此,研究磁通量的变化与感应电动势的关系是研究电磁感应现象的本质的问题。
2.本节是通过观察实验得出法拉第电磁感应定律。
可以取上一节课所做的任意一个实验,或是全部实验。
演示切割速度不同时所产生的感应电流的大小;演示磁通量变化率(磁通量变化率是指磁通量变化的快慢或是磁通量变化的量值与所用时间的比值)不同时所产生的感应电流的大小。
在这里,要说明在电阻一定时,感应电流大小的变化反映的是感应电动势大小的变化。
通过实验得出,感应电动势的大小跟磁通量的变化率有关。
由精确的实验表明(课堂上并没有做):电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
这就是法拉第电磁感应定律。
3.得出法拉第电磁感应定律后,再推导切割磁感线时的感应电动势的大小计算。
首先推导在磁场中导线垂直切割磁感线时,导线和线框所组成的电路中,引起磁通量发生变化的是面积的变化,即可以将△φ=B△S=B(Lv△t S可以认为是导线所扫过的面积。
则法拉第电磁感应定律可以写成E=∆∆φt=BLv用这个公式可以计算切割磁感线时感应电动势的大小。
如果导线切割磁感线不是垂直切割,而是速度与磁场有夹角θ,可以利用矢量的分解合成的知识,将速度分解成与磁场平行和垂直两个分量。
平行分量不切割磁感线,不产生感应电动势,垂直分量大小是v sinθ,产生的电源电动势为E=BLv sinθ。
4.联系上节课,从能量的观点认识电磁感应现象,是一种能量的转化和守恒。
而电磁感应现象的定量关系依然存在着能量的转化和守恒的问题。
高中物理 10大难点强行突破 法拉第电磁感应定律
难点之七 法拉第电磁感应定律一、难点形成原因1、关于表达式tn E ∆∆=φ 此公式在应用时容易漏掉匝数n ,实际上n 匝线圈产生的感应电动势是串联在一起的,其次φ∆是合磁通量的变化,尤其变化过程中磁场方向改变的情况特别容易出错,并且感应电动势E 与φ、φ∆、t∆∆φ的关系容易混淆不清。
2、应用法拉第电磁感应定律的三种特殊情况E=Blv 、ω221Bl E =、E=nBs ωsin θ(或E=nBs ωcos θ)解决问题时,不注意各公式应用的条件,造成公式应用混乱从而形成难点。
3、公式E=nBs ωsin θ(或E=nBs ωcos θ)的记忆和推导是难点,造成推导困难的原因主要是此情况下,线圈在三维空间运动,不少同学缺乏立体思维。
二、难点突破1、φ、φ∆、t ∆∆φ同v 、△v 、tv ∆∆一样都是容易混淆的物理量,如果理不清它们之间的关系,求解感应电动势就会受到影响,要真正掌握它们的区别应从以下几个方面深入理解。
磁通量φ 磁通量变化量φ∆ 磁通量变化率t∆∆φ 物理 意义 磁通量越大,某时刻穿过磁场中某个面的磁感线条数越多某段时间穿过某个面的末、初磁通量的差值 表述磁场中穿过某个面的磁通量变化快慢的物理量 大小计算 ⊥=BS φ,⊥S 为与B 垂直的面积 12φφφ-=∆,S B ∆=∆φ或B S ∆=∆φ tS B t ∆∆=∆∆φ 或t B S t ∆∆=∆∆φ 若穿过某个面有方向相开始和转过1800时平面既不表示磁通量的大注意 反的磁场,则不能直接用⊥=BS φ,应考虑相反方向的磁通量相互抵消以后所剩余的磁通量 都与磁场垂直,穿过平面的磁通量是不同的,一正一负,△φ=2 BS ,而不是零 小,也不表示变化的多少,在φ—t 图象中用图线的斜率表示2、明确感应电动势的三种特殊情况中各公式的具体用法及应用时须注意的问题⑴导体切割磁感线产生的感应电动势E=Blv ,应用此公式时B 、l 、v 三个量必须是两两相互垂直,若不垂直应转化成相互垂直的有效分量进行计算,生硬地套用公式会导致错误。
法拉第电磁感应定律压轴难题知识归纳总结
法拉第电磁感应定律压轴难题知识归纳总结一、高中物理解题方法:法拉第电磁感应定律1.如图所示,竖直平面内两竖直放置的金属导轨间距为L1,导轨上端接有一电动势为E、内阻不计的电源,电源旁接有一特殊开关S,当金属棒切割磁感线时会自动断开,不切割时自动闭合;轨道内存在三个高度均为L2的矩形匀强磁场区域,磁感应强度大小均为B,方向如图。
一质量为m的金属棒从ab位置由静止开始下落,到达cd位置前已经开始做匀速运动,棒通过cdfe区域的过程中始终做匀速运动。
已知定值电阻和金属棒的阻值均为R,其余电阻不计,整个过程中金属棒与导轨接触良好,重力加速度为g,求:(1)金属棒匀速运动的速度大小;(2)金属棒与金属导轨间的动摩擦因数μ;(3)金属棒经过efgh区域时定值电阻R上产生的焦耳热。
【答案】(1);(2);(3)mgL2。
【解析】【分析】(1)金属棒到达cd位置前已经开始做匀速运动,根据平衡条件结合安培力的计算公式求解;(2)分析导体棒的受力情况,根据平衡条件结合摩擦力的计算公式求解;(3)根据功能关系结合焦耳定律求解。
【详解】(1)金属棒到达cd位置前已经开始做匀速运动,根据平衡条件可得:mg=BIL1,由于解得:;(2)由于金属棒切割磁感线时开关会自动断开,不切割时自动闭合,则在棒通过cdfe区域的过程中开关是闭合的,此时棒受到安培力方向垂直于轨道向里;根据平衡条件可得:mg=μF A,通过导体棒的电流I′=,则F A=BI′L1,解得μ=;(3)金属棒经过efgh 区域时金属棒切割磁感线时开关自动断开,此时导体棒仍匀速运动;根据功能关系可知产生的总的焦耳热等于克服安培力做的功,而W 克=mgL 2, 则Q 总=mgL 2,定值电阻R 上产生的焦耳热Q R =Q 总=mgL 2。
【点睛】对于电磁感应问题研究思路常常有两条:一条从力的角度,根据牛顿第二定律或平衡条件列出方程;另一条是能量,分析涉及电磁感应现象中的能量转化问题,根据动能定理、功能关系等列方程求解。
高中物理电磁学的教学难点突破
高中物理电磁学的教学难点突破高中物理中的电磁学部分一直是教学中的重点和难点,对于学生的逻辑思维和抽象理解能力要求较高。
在教学过程中,教师需要采取有效的方法来突破这些难点,帮助学生更好地掌握电磁学知识。
一、电磁学教学难点分析1、概念抽象电磁学中的许多概念,如电场、磁场、电磁波等,都非常抽象,难以通过直观的方式让学生理解。
学生往往只能通过公式和定义来记忆,而无法真正理解其本质和内涵。
2、物理规律复杂电磁学中的物理规律众多,如库仑定律、安培定律、法拉第电磁感应定律等,这些规律不仅形式复杂,而且相互关联,需要学生具备较强的综合分析能力才能灵活运用。
3、数学知识要求高电磁学涉及到大量的数学知识,如矢量运算、微积分等。
对于数学基础不够扎实的学生来说,这无疑增加了学习的难度。
4、实验操作难度大电磁学实验通常需要较为精密的仪器和复杂的操作步骤,实验现象也不总是明显直观,这使得学生在实验中难以获得准确的结果和深刻的理解。
二、教学难点突破策略1、巧用类比,化抽象为具体对于抽象的概念,教师可以采用类比的方法帮助学生理解。
例如,在讲解电场时,可以将电场类比为重力场,让学生理解电场力和重力的相似之处;在讲解磁场时,可以将磁场类比为水流的漩涡,帮助学生想象磁场的形态。
通过这样的类比,学生能够将抽象的概念与熟悉的事物联系起来,从而更好地理解。
2、加强直观教学利用多媒体资源,如动画、视频、模拟实验等,将抽象的电磁现象直观地展示给学生。
例如,通过动画演示电荷在电场中的运动轨迹,让学生清晰地看到电场对电荷的作用;通过视频展示电磁感应现象的产生过程,让学生直观地感受到磁场的变化如何产生电流。
此外,教师还可以在课堂上进行简单的演示实验,如用磁铁和导线演示电磁感应现象,让学生亲身感受电磁学的奇妙。
3、注重知识的系统性和逻辑性在教学过程中,教师要注重知识的系统性和逻辑性,帮助学生建立起清晰的知识框架。
例如,在讲解电磁感应定律时,可以先回顾法拉第的实验,引导学生思考感应电流产生的条件,然后逐步推导电磁感应定律的表达式。
最新高中物理10大难点强行突破之七法拉第电磁感应定律
难点之七 法拉第电磁感应定律一、难点形成原因1、关于表达式tn E ∆∆=φ 此公式在应用时容易漏掉匝数n ,实际上n 匝线圈产生的感应电动势是串联在一起的,其次φ∆是合磁通量的变化,尤其变化过程中磁场方向改变的情况特别容易出错,并且感应电动势E 与φ、φ∆、t∆∆φ的关系容易混淆不清。
2、应用法拉第电磁感应定律的三种特殊情况E=Blv 、ω221Bl E =、E=nBs ωsin θ(或E=nBs ωcos θ)解决问题时,不注意各公式应用的条件,造成公式应用混乱从而形成难点。
3、公式E=nBs ωsin θ(或E=nBs ωcos θ)的记忆和推导是难点,造成推导困难的原因主要是此情况下,线圈在三维空间运动,不少同学缺乏立体思维。
二、难点突破1、φ、φ∆、t∆∆φ同v 、△v 、t v ∆∆一样都是容易混淆的物理量,如果理不清它们之间的关系,求解感应电动势就会受到影响,要真正掌握它们的区别应从以下几个方面深入理解。
磁通量φ 磁通量变化量φ∆ 磁通量变化率t ∆∆φ 物理意义 磁通量越大,某时刻穿过磁场中某个面的磁感线条数越多某段时间穿过某个面的末、初磁通量的差值 表述磁场中穿过某个面的磁通量变化快慢的物理量 大小计算⊥=BS φ,⊥S 为与B 垂直的面积12φφφ-=∆,S B ∆=∆φ或B S ∆=∆φ t S B t ∆∆=∆∆φ 或t B S t ∆∆=∆∆φ注意 若穿过某个面有方向相反的磁场,则不能直接用⊥=BS φ,应考虑相反方向的磁通量相互抵消以后所剩余的磁通量开始和转过1800时平面都与磁场垂直,穿过平面的磁通量是不同的,一正一负,△φ=2 BS ,而不是零 既不表示磁通量的大小,也不表示变化的多少,在φ—t 图象中用图线的斜率表示 2、明确感应电动势的三种特殊情况中各公式的具体用法及应用时须注意的问题⑴导体切割磁感线产生的感应电动势E=Blv ,应用此公式时B 、l 、v 三个量必须是两两相互垂直,若不垂直应转化成相互垂直的有效分量进行计算,生硬地套用公式会导致错误。
“电磁感应”的教学中,最难的点有哪些,如何突破
“电磁感应”的教学中,最难的点有哪些,如何突破?电磁感应电路的分析与计算以其覆盖知识点多,综合性强,思维含量高,充分体现考生能力和素质等特点,成为历届高考命题的特点,根据平时的教学情况并结合这次培训学习内容,整理如下。
一、学习楞次定律时的难点难点一:感应电流的方向与原磁场的方向有什么关系,感应电流的方向与磁通量的变化有什么关系,很难找出。
突破方法:首先要认真做好演示实验,引导学生分析,是否可以通过一个中介——感应电流的磁场来描述感应电流与磁通量变化的关系? 而且实验前要让学生明确:感应磁场的方向(感应电流的磁场)、原磁场的方向(磁铁的磁场)、磁通量变化(闭合回路磁通量增多还是减少等问题)。
难点二:楞次定律的表述“阻碍”两字的意思:①阻碍不是阻止。
磁通量减少时感应电流的磁场与原磁场方向相同,阻碍原磁场的减弱,但原磁场毕竟还在减弱。
在直导线切割磁感线产生感应电流时,感应电流的出现一定阻碍切割磁感线的运动,但不是阻止这种运动,因为这种运动还在进行。
②阻碍不一定是反抗,阻碍还可能有补偿的意义。
当磁通量减少时感应电流的磁场就补偿原磁场的磁通量的减少。
这里关键是要知道阻碍的对象是磁场的变化而不是磁场。
③阻碍是能量守恒的必然结果,在电磁感应现象中克服感应电流的阻碍作用做多少功就有多少其它形式的能转化为感应电流的电能。
突破方法:引导学生从以下方面理解楞次定律:①从磁通量变化的角度理解,感应电流总要阻碍磁通量的变化。
(增反减同)②从导体所受到安培力角度理解,感应电流对应的安培力总是阻碍磁通量的变化。
③从能量守恒定律角度理解,感应电流产生则电能增加,是系统克服安培力做功的结果。
难点三:法拉第电磁定律的得出。
突破方法:观察与思考:在实验中,将条形磁铁从同一高度插入线圈中同一位置,快插入和慢插入磁通量、感应电流有什么相同和不同?思路:I=E/(R+r), 总电阻一定时,E 越大,I 越大, 指针偏转越大。
从而定性的得出法拉第电磁定律。
法拉第电磁感应定律的难点突破
法拉第电磁感应定律的难点突破阿米尔江.阿吉(克州三中物理教研组)一、难点形成原因1、关于表达式tn E ∆∆=φ 此公式在应用时容易漏掉匝数n ,实际上n 匝线圈产生的感应电动势是串联在一起的,其次φ∆是合磁通量的变化,尤其变化过程中磁场方向改变的情况特别容易出错,并且感应电动势E 与φ、φ∆、t∆∆φ的关系容易混淆不清。
2、应用法拉第电磁感应定律的三种特殊情况E=Blv 、ω221Bl E =、E=nBs ωsin θ 解决问题时,不注意各公式应用的条件,造成公式应用混乱从而形成难点。
3、公式E=nBs ωsin θ的记忆和推导是难点,造成推导困难的原因主要是此情况下,线圈在三维空间运动,不少同学缺乏立体思维。
二、难点突破1、φ、φ∆、t∆∆φ同v 、△v 、t v ∆∆一样都是容易混淆的物理量,如果理不清它们之间的关系,求解感应电动势就会受到影响,要真正掌握它们的区别应从以下几个方面深入理解。
2、明确感应电动势的三种特殊情况中各公式的具体用法及应用时须注意的问题⑴导体切割磁感线产生的感应电动势E=Blv ,应用此公式时B 、l 、v 三个量必须是两两相互垂直,若不垂直应转化成相互垂直的有效分量进行计算,生硬地套用公式会导致错误。
有的注意到三者之间的关系,发现不垂直后,在不明白θ角含义的情况下用E=Blvsin θ求解,这也是不可取的。
处理这类问题,最好画图找B 、l 、v 三个量的关系,如若不两两垂直则在图上画出它们两两垂直的有效分量,然后将有效分量代入公式E=Blv 求解。
此公式也可计算平均感应电动势,只要将v 代入平均速度即可。
⑵导体棒以端点为轴在垂直于磁感线的匀强磁场中匀速转动,计算此时产生的感应电动势须注意棒上各点的线速度不同,应用平均速度(即中点位置的线速度)来计算,所以ω221Bl E =。
⑶矩形线圈在匀强磁场中,绕垂直于磁场的任意轴匀速转动产生的感应电动势何时用E=nBs ωsin θ计算,何时用E=nBs ωcos θ计算,最容易记混。
高考物理法拉第电磁感应定律压轴难题知识归纳总结附答案
高考物理法拉第电磁感应定律压轴难题知识归纳总结附答案一、高中物理解题方法:法拉第电磁感应定律1.如图所示,在磁感应强度B =1.0 T 的有界匀强磁场中(MN 为边界),用外力将边长为L =10 cm 的正方形金属线框向右匀速拉出磁场,已知在线框拉出磁场的过程中,ab 边受到的磁场力F 随时间t 变化的关系如图所示,bc 边刚离开磁场的时刻为计时起点(即此时t =0).求:(1)将金属框拉出的过程中产生的热量Q ; (2)线框的电阻R .【答案】(1)2.0×10-3 J (2)1.0 Ω 【解析】 【详解】(1)由题意及图象可知,当0t =时刻ab 边的受力最大,为:10.02N F BIL ==可得:10.02A 0.2A 1.00.1F I BL ===⨯ 线框匀速运动,其受到的安培力为阻力大小即为1F ,由能量守恒:Q W =安310.020.1J 2.010J F L -==⨯=⨯(2) 金属框拉出的过程中产生的热量:2Q I Rt=线框的电阻:3222.010Ω 1.0Ω0.20.05Q R I t -⨯===⨯2.如图甲所示,光滑导体轨道PMN 和P ′M ′N ′是两个完全一样的轨道,是由半径为r 的四分之一圆弧轨道和水平轨道组成,圆弧轨道与水平轨道在M 和M ′点相切,两轨道并列平行放置,MN 和M ′N ′位于同一水平面上,两轨道之间的距离为L ,PP ′之间有一个阻值为R 的电阻,开关K 是一个感应开关(开始时开关是断开的),MNN ′M ′是一个矩形区域内有竖直向上的磁感应强度为B 的匀强磁场,水平轨道MN 离水平地面的高度为h ,其截面图如图乙所示.金属棒a 和b 质量均为m 、电阻均为R ,在水平轨道某位置放上金属棒b ,静止不动,a 棒从圆弧顶端PP ′处静止释放后,沿圆弧轨道下滑,若两导体棒在运动中始终不接触,当两棒的速度稳定时,两棒距离2222mR grx B L=,两棒速度稳定之后,再经过一段时间,b 棒离开轨道做平抛运动,在b 棒离开轨道瞬间,开关K 闭合.不计一切摩擦和导轨电阻,已知重力加速度为g .求:(1)两棒速度稳定时的速度是多少? (2)两棒落到地面后的距离是多少?(3)从a 棒开始运动至b 棒离开轨道的过程中,回路中产生的焦耳热是多少? 【答案】(1)12gr v =2rhx ∆= (3) 12Q mgr =【解析】 【分析】 【详解】(1)a 棒沿圆弧轨道运动到最低点M 时,由机械能守恒定律得:2012mgr mv =解得a 棒沿圆弧轨道最低点M 时的速度02v gr =从a 棒进入水平轨道开始到两棒达到相同速度的过程中,两棒在水平方向受到的安培力总是大小相等,方向相反,所以两棒的总动量守恒.由动量守恒定律得:012mv mv =解得两棒以相同的速度做匀速运动的速度0122gr v v ==(2)经过一段时间,b 棒离开轨道后,a 棒与电阻R 组成回路,从b 棒离开轨道到a 棒离开轨道过程中a 棒受到安培力的冲量大小:2222A B L xI ILBt BL Rit R∆Φ===由动量定理:21A I mv mv --=解得22grv =由平抛运动规律得,两棒落到地面后的距离()1222h rh x v v g ∆=-= (3)由能量守恒定律可知,a 棒开始运动至b 棒离开轨道的过程中,回路中产生的焦耳热:220111(2)22Q mv m v =- 解得:12Q mgr =3.水平面上平行固定两长直导体导轨MN 和PQ ,导轨宽度L =2m ,空间存在竖直向下的匀强磁场,磁感应强度B =0.5T ,在垂直于导轨方向静止放置两根导体棒1和2,其中1的质量M =4kg,有效电阻R =0.6Ω,2的质量m =1kg ,有效电阻r =0.4Ω,现使1获得平行于导轨的初速度v 0=10m/s ,不计一切摩擦,不计其余电阻,两棒不会相撞.请计算:(1)初始时刻导体棒2的加速度a 大小. (2)系统运动状态稳定时1的速度v 大小.(3)系统运动状态达到稳定的过程中,流过导体棒1某截面的电荷量q 大小. (4)若初始时刻两棒距离d =10m ,则稳定后两棒的距离为多少? 【答案】(1)10m/s 2(2)8m/s (3)8C (4)2m 【解析】 【详解】解:(1)初始时:0E BLv =EI R r=+ 对棒2:F 安BIL ma ==解得:222010m/s B L v a R r==+(2)对棒1和2的系统,动量守恒,则最后稳定时:0()Mv m M v =+ 解得:8m/s v =(3)对棒2,由动量定理:BIL t mv ∆= ,其中q I t =∆ 解得:8C mvq BL== (4)由E t φ∆=∆ 、E I R r=+、 q I t =∆ 联立解得:BL xq R r R rφ∆∆==++又mvq BL=解得:22()mv R r x B L +∆=则稳定后两棒的距离:22()2m mv R r d d x d B L +'=-∆=-=4.如图甲所示,两根足够长、电阻不计的光滑平行金属导轨相距为L 1=1m,导轨平面与水平面成θ=30°角,上端连接阻值R =1.5Ω的电阻,质量为m =0.2Kg 、阻值r=0.5Ω的金属棒放在两导轨上,距离导轨最上端为L 2=4m,棒与导轨垂直并保持良好接触.整个装置处于一匀强磁场中,该匀强磁场方向与导轨平面垂直,磁感应强度大小随时间变化的情况如图乙所示.为保持ab 棒静止,在棒上施加了一平行于导轨平面的外力F ,g =10m/s 2求:(1)当t =1s 时,棒受到安培力F 安的大小和方向; (2)当t =1s 时,棒受到外力F 的大小和方向;(3)4s 后,撤去外力F ,金属棒将由静止开始下滑,这时用电压传感器将R 两端的电压即时采集并输入计算机,在显示器显示的电压达到某一恒定值后,记下该时刻棒的位置,测出该位置与棒初始位置相距2m,求棒下滑该距离过程中通过金属棒横截面的电荷量q. 【答案】(1)0.5N ;方向沿斜面向上(2)0.5N ,方向沿斜面向上(3)1.5C 【解析】 【分析】 【详解】(1)0-3s 内,由法拉第电磁感应定律得:122V BE L L t t∆Φ∆===∆∆ T =1s 时,F 安=BIL 1=0.5N 方向沿斜面向上(2)对ab 棒受力分析,设F 沿斜面向下,由平衡条件: F +mg sin30° -F 安=0 F =-0.5N外力F 大小为0.5N .方向沿斜面向上 (3)q =It ,EI R r =+;E t∆Φ=∆; 1∆Φ=BL S 联立解得1 1.512C 1.5C 1.50.5BL S q R r ⨯⨯===++5.如图为电磁驱动与阻尼模型,在水平面上有两根足够长的平行轨道PQ 和MN ,左端接有阻值为R 的定值电阻,其间有垂直轨道平面的磁感应强度为B 的匀强磁场,两轨道间距及磁场宽度均为L .质量为m 的金属棒ab 静置于导轨上,当磁场沿轨道向右运动的速度为v 时,棒ab 恰好滑动.棒运动过程始终在磁场范围内,并与轨道垂直且接触良好,轨道和棒电阻均不计,最大静摩擦力等于滑动摩擦力.(1)判断棒ab 刚要滑动时棒中的感应电流方向,并求此时棒所受的摩擦力f 大小; (2)若磁场不动,将棒ab 以水平初速度2v 运动,经过时间22mRt B L =停止运动,求棒ab 运动位移x 及回路中产生的焦耳热Q ;(3)若t =0时棒ab 静止,而磁场从静止开始以加速度a 做匀加速运动,下列关于棒ab 运动的速度时间图像哪个可能是正确的?请分析说明棒各阶段的运动情况.【答案】(1)22B L vf R=;(2)22mvR x B L = 2Q mv =;(3)丙图正确 【解析】 【详解】(1)根据右手定则,感应电流方向a 至b依题意得,棒刚要运动时,受摩擦力等于安培力:f=F A又有F A =BI 1L ,1BLvI R=联立解得:22B L vf R=(2)设棒的平均速度为v ,根据动量定理可得:02Ft ft mv --=-又有F BIL =,BLvI R=,x vt = 联立得:22mvRx B L=根据动能定理有:()21022A fx W m v --=- 根据功能关系有:Q =W A得:Q =mv 2 (3)丙图正确当磁场速度小于v 时,棒ab 静止不动;当磁场速度大于v 时,E=BLΔv ,棒ab 的加速度从零开始增加,a 棒<a 时,Δv 逐渐增大,电流逐渐增大,F A 逐渐增大,棒做加速度逐渐增大的加速运动; 当a 棒=a 时,Δv 保持不变,电流不变,F A 不变,棒ab 的加速度保持不变,开始做匀加速运动.6.现代人喜欢到健身房骑车锻炼,某同学根据所学知识设计了一个发电测速装置,如图所示。
高中物理电磁学难点突破策略
高中物理电磁学难点突破策略高中物理电磁学部分一直是学生学习的重点和难点。
电磁学知识不仅抽象、复杂,而且在实际应用中具有很高的要求。
为了帮助同学们更好地突破这一难点,提高学习效果,以下是一些有效的策略。
一、深入理解基本概念电磁学中的基本概念,如电场、磁场、电动势、磁感应强度等,是构建整个知识体系的基石。
对于这些概念,不能仅仅停留在死记硬背的层面,而要深入理解其内涵和物理意义。
以电场强度为例,它是描述电场强弱和方向的物理量。
可以通过类比的方法来理解,比如将电场比作一片力的“森林”,电场强度就是这片“森林”中力的“密集程度”。
而对于磁感应强度,要明确它是描述磁场强弱和方向的物理量,形象地说,就像是磁场的“力量大小”的标志。
为了加深对概念的理解,可以多做一些概念辨析的题目,从不同角度思考概念的本质,从而达到透彻掌握的目的。
二、熟练掌握公式定理电磁学中有众多的公式和定理,如库仑定律、法拉第电磁感应定律、安培定律等。
熟练掌握这些公式定理是解题的关键。
首先,要理解公式定理的推导过程。
知道公式是怎么来的,能够帮助我们更好地记住公式,并且在使用时更加灵活。
其次,要注意公式的适用条件和单位。
很多同学在解题时因为忽略了这些细节而导致错误。
例如,库仑定律只适用于真空中的点电荷,而在处理有介质的情况时,需要考虑介电常数。
法拉第电磁感应定律中的电动势是一个瞬时值还是平均值,要根据具体问题进行判断。
同时,要通过大量的练习来熟练运用公式定理。
只有在实际解题中不断运用,才能真正掌握它们。
三、构建知识框架电磁学的知识体系庞大且相互关联。
构建一个清晰的知识框架,有助于将零散的知识点整合起来,形成系统的认识。
可以从电场和磁场的产生、性质、相互作用等方面入手,建立起一个宏观的框架。
比如,电场由电荷产生,磁场由电流产生;电场对电荷有力的作用,磁场对电流和运动电荷有力的作用;电磁感应现象则是电场和磁场相互转化的重要体现。
在这个框架中,不断填充具体的知识点,如电场强度的计算方法、磁场的高斯定理、楞次定律等。
高中物理_难点重点_电磁感应_2_法拉第电磁感应定律
法拉第电磁感应定律一、感应电动势 在电磁感应现象中产生的电动势叫感应电动势, 产生感应电动势的那部分导体相当于电源,其电阻相当于电源内电阻.电动势是标量,为了区别反电动势,可以约定电动势的方向就是电源内部电流的方向.二、感应电动势的大小1.法拉第电磁感应定律(1)内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.(2)公式:nt ∆ΦE =∆ (3)公式说明①上式适用于回路中磁通量发生变化的情形,回路不一定闭合.②感应电动势E 的大小与磁通量的变化率成正比,而不是与磁通量的变化量成正比,更不是与磁通量成正比.要注意t ∆Φ∆与ΔФ和Φ三个量的物理意义各不相同,且无大小上的必然关系.③当∆Φ由磁场变化引起时,t ∆∆Φ常用t B S ∆∆来计算;当∆Φ由回路面积变化引起时,t ∆∆Φ常用t S B ∆∆来计算. ④由tn E ∆∆Φ=算出的是时间t ∆内的平均感应电动势,一般并不等于初态与末态电动势的算术平均值. 磁通量Φ 磁通量变化ΔΦ磁通量变化率ΔФ/Δt 物理 意义 某时刻穿过磁场中某个面的磁感线条数穿过某个面的磁通量随时间的变化量 穿过某个面的磁通量随时间变化的快慢 大小计算 Φ=B.S,S 为与B 垂直的面积,不垂直时,取S 在与B 垂直方向上的投影ΔΦ=Φ1-Φ2 ΔΦ=B ·ΔS ΔΦ=S ·ΔB t S B t ∆∆=∆∆Φ. t S t ∆∆B =∆∆Φ 注意 当穿过某个面有方向相反的磁场时,则不能直接用Φ=B ·S .应考虑相反方向的磁通量抵消以后所剩余的磁通量 开始和转过1800时平面都与磁场垂直,穿过平面的磁通量是不同的,一正一负,ΔΦ=2B ·S 而不是零 既不表示磁通量的大小也不表示变化的多少.在Φ-t 图像中,用图线切线的斜率表示附注 线圈平面与磁感线平行时,Φ=0,ΔФ/Δt 最大,线圈平面与磁感线垂直时,Φ最大,ΔФ/Δt 为零2.导体切割磁感线产生的感应电动势(1)公式:E=BL v sin θ(2)对公式的理解①公式只适用于一部分导体在匀强磁场中做切割磁感线运动时产生的感应电动势的计算,其中L 是导体切割磁感线的有效长度,θ是矢量B 和v 方向间的夹角,且L 与磁感线保持垂直(实际应用中一般只涉及此种情况).②若θ=900,即B ⊥v 时,公式可简化为E=BL v ,此时,感应电动势最大;若θ=00,即B ∥V 时,导体在磁场中运动不切割磁感线,E=0.③若导体是曲折的,则L 应是导体的有效切割长度,即是导体两端点在B 、v 所决定平面的垂线上的投影长度.④公式E=BL v 中,若v 为一段时间内的平均速度,则E 亦为这段时间内感应电动势的平均值;若v 为瞬时速度,则E 亦为该时刻感应电动势的瞬时值.⑤直导线绕其一端在垂直匀强磁场的平面内转动,产生的感应电动势运用公式E=BL v 计算时,式中v 是导线上各点切割速度的平均值,20L v ω+= ,所以122L ωE = 3.反电动势:反电动势对电路中的电流起削弱作用.三、公式n t ∆ΦE =∆和sin Lv θE =B 的比较 1.E= n t∆∆Φ求的是回路中Δt 时间内的平均电动势.2.E=BL v sin θ既能求导体做切割磁感线运动的平均电动势,也能求瞬时电动势.v 为平均速度,E 为平均电动势;v 为瞬时速度,E 为瞬时电动势.其中L 为有效长度.(1)E=BL v 的适用条件:导体棒平动垂直切割磁感线,当速度v 与磁感线不垂直时,要求出垂直于磁感线的速度分量. (2)122L ωE =B 的适用条件:导体棒绕一个端点垂直于磁感线匀速转动切割磁感线.(3)E=nBSωsinωt 的适用条件:线框绕垂直于匀强磁场方向的一条轴从中性面开始转动,与轴的位置无关.若从与中性面垂直的位置开始计时,则公式变为E=nBS ωcos ωt3.公式n t ∆ΦE =∆和E=BL v sinθ是统一的,前者当Δt →0时,E 为瞬时值,后者v 若代入平均速度v ,则求出的是平均值.一般说来,前者求平均感应电动势更方便,后者求瞬时电动势更方便.四、直导线感应电动势直导体绕其一点在垂直匀强磁场的平面内以角速度ω转动,切割磁感线,产生的感应电动势的大小为:(1)以中点为轴时 Ε=0(2)以端点为轴时 122L ωE =B (平均速度取中点位置线速度v =ωL/2)(3)以任意点为轴时122()122L L ωE =B -(与两段的代数和不同)1. 关于电路中感应电动势的大小,下列说法正确的是( )A.穿过电路的磁通量越大,感应电动势就越大B.电路中磁通量的改变量越大,感应电动势就越大C.电路中磁通量改变越快,感应电动势就越大D.若电路中某时刻磁通量为零,则该时刻感应电流一定为零2. 如图所示,接有灯泡L的平行金属导轨水平放置在匀强磁场中,一导体杆与两导轨良好接触并做往复运动,其运动情况与弹簧振子做简谐运动的情况相同.图中O位置对应于弹簧振子的平衡位置,P,Q两位置对应于弹簧振子的最大位移处.若两导轨的电阻不计,则( )A.杆由O到P的过程中,电路中电流变大B.杆由P到Q的过程中,电路中电流一直变大C.杆通过O处时,电路中电流方向将发生改变D.杆通过O处时,电路中电流最大3. 如图所示,圆形线圈中串联了一个平行板电容器,圈内有磁场,磁通量Φ随时间按正弦规律变化.以垂直纸面向里的磁场为正,从t=0开始,在平行板电容器中点释放一个电子,若电子运动中不会碰到板,关于电子在一个周期内的加速度的判断正确的是( )A.第二个T/4内,加速度方向向上,大小越来越小B.第二个T/4内,加速度方向向上,大小越来越大C.第三个T/4内,加速度方向向下,大小越来越大D.第三个T/4内,加速度方向向下,大小越来越小4. 穿过一个电阻为1Ω的单匝闭合线圈的磁通量,始终是每1s均匀地减少2Wb,则A.线圈中的感应电动势一定是每秒减少2VB.线圈中的感应电动势一定是2VC.线圈中的感应电流一定是每秒减少2AD.线圈中的感应电流一定是2A5. 将一条形磁铁缓慢或者快速插入到闭合线圈中的同一位置处,不发生变化的物理量是( )A.磁通量的变化量B.磁通量的变化率C.感应电流的大小D.流过导体横截面的电荷量6. 一直升飞机停在南半球的地磁极上空,该处地磁场的方向竖直向上,磁感应强度为B,直升飞机螺旋桨叶片的长度为L,螺旋桨转动的频率为f,顺着地磁场的方向看螺旋桨,螺旋桨按顺时针方向转动.螺旋桨叶片的近轴端为a,远轴端为b,如图9-2-7所示.如果忽略a到转轴中心线的距离,用E表示每个叶片中的感应电动势,则( )A.Ε=πfL2B,且a点电势低于b点电势B.Ε=2πfL2B,且a点电势低于b点电势C.Ε=πfL2B,且a点电势高于b点电势D.Ε=2πfL2B,且a点电势高于b点电势7. 如图所示,在匀强磁场中固定放置一根串接一电阻R的直角形金属导轨aOb(在纸面内),磁场方向垂直纸面朝里,另有两根金属导轨c、d分别平行于Oa、Ob放置.保持导轨接触良好,金属导轨的电阻不计.现经历以下四个过程:①以速率v移动d,使它与Ob的距离增大一倍;②再以速率v移动c,使它与Oa的距离减小一半;③然后,再以速率2v移动c,使它回到原处;④最后以速率2v移动d,使它也回到原处.设上述四个过程中通过电阻R的电荷量的大小依次为Q1、Q2、Q3和Q4,则( )A.Q1=Q2=Q3=Q4B.Q1=Q2=2Q3=2Q4C.2Q1=2Q2=Q3=Q4 C.Q1≠Q2=Q3≠Q48. 一个200匝、面积为20cm2的线圈,放在磁场中, 磁场的方向与线圈平面成300角, 若磁感应强度在0.05s内由0.1T 增加到0.5T,则0.05s始末通过线圈的磁通量分别为W b和Wb;在此过程中穿过线圈的磁通量的变化量为Wb;磁通量的平均变化率为 Wb/s;线圈中的感应电动势的大小为 V.9. 如图所示,A、B两个闭合线圈用同样导线制成,匝数均为10匝,半径r A=2r B,图示区域内有磁感应强度均匀减小的匀强磁场,则A、B线圈中产生的感应电动势之比为E A:E B= ,两线圈中产生的感应电流之比为I A:I B= .1. 如图所示,导线全部为裸导线,半径为r的圆环内有垂直于平面的匀强磁场,磁感应强度为B,一根长度大于2r的导线MN以速度v在圆环上无摩擦地自左端匀速滑到右端.电路的固定电阻为R,其余电阻不计.试求MN从圆环的左端滑到右端的过程中,电阻R上的电流的平均值及通过的电荷量.2. 如图所示,边长为a的正方形闭合线框ABCD在匀强磁场中绕AB边匀速转动,磁感应强度为B,初始时刻线框所在平面与磁感线垂直,经过t时间转过1200角,求:(1)线框内感应电动势在t时间内的平均值;(2)转过1200角时感应电动势的瞬时值.3.如图所示,矩形线圈abcd由n=50匝组成,ab边长L1=0.4m,bc边长L2 =0.2m,整个线圈的电阻R=2Ω,在B=0.1T的匀强磁场中,以短边中点的连线为轴转动,ω=50rad/s,求:(1)线圈从图示位置转动900过程中的平均电动势;(2)线圈转过900时的瞬时电动势.4. 如图所示,长为6m的导体AB在磁感强度B=0.1T的匀强磁场中,以AB上的一点O为轴,沿着顺时针方向旋转。
高中物理法拉第电磁感应定律压轴难题知识归纳总结附答案
高中物理法拉第电磁感应定律压轴难题知识归纳总结附答案一、高中物理解题方法:法拉第电磁感应定律1.如图,匝数为N 、电阻为r 、面积为S 的圆形线圈P 放置于匀强磁场中,磁场方向与线圈平面垂直,线圈P 通过导线与阻值为R 的电阻和两平行金属板相连,两金属板之间的距离为d ,两板间有垂直纸面的恒定匀强磁场。
当线圈P 所在位置的磁场均匀变化时,一质量为m 、带电量为q 的油滴在两金属板之间的竖直平面内做圆周运动。
重力加速度为g ,求:(1)匀强电场的电场强度 (2)流过电阻R 的电流(3)线圈P 所在磁场磁感应强度的变化率 【答案】(1)mg q (2)mgd qR(3)()B mgd R r t NQRS ∆+=∆ 【解析】 【详解】 (1)由题意得:qE =mg解得mg qE =(2)由电场强度与电势差的关系得:UE d=由欧姆定律得:U I R=解得mgdI qR=(3)根据法拉第电磁感应定律得到:E Nt∆Φ=∆ BS t t∆Φ∆=∆∆根据闭合回路的欧姆定律得到:()E I R r =+ 解得:()B mgd R r t NqRS∆+=∆2.两间距为L=1m 的平行直导轨与水平面间的夹角为θ=37° ,导轨处在垂直导轨平面向下、 磁感应强度大小B=2T 的匀强磁场中.金属棒P 垂直地放在导轨上,且通过质量不计的绝缘细绳跨过如图所示的定滑轮悬吊一重物(重物的质量m 0未知),将重物由静止释放,经过一 段时间,将另一根完全相同的金属棒Q 垂直放在导轨上,重物立即向下做匀速直线运动,金 属棒Q 恰好处于静止状态.己知两金属棒的质量均为m=lkg 、电阻均为R=lΩ,假设重物始终没有落在水平面上,且金属棒与导轨接触良好,一切摩擦均可忽略,重力加速度g=l0m/s 2,sin 37°=0.6,cos37°=0.8.求:(1)金属棒Q 放上后,金属棒户的速度v 的大小;(2)金属棒Q 放上导轨之前,重物下降的加速度a 的大小(结果保留两位有效数字); (3)若平行直导轨足够长,金属棒Q 放上后,重物每下降h=lm 时,Q 棒产生的焦耳热.【答案】(1)3m/s v = (2)22.7m/s a = (3)3J 【解析】 【详解】(1)金属棒Q 恰好处于静止时sin mg BIL θ=由电路分析可知E BLv = ,2E I R= , 代入数据得,3m/s v =(2)P 棒做匀速直线运动时,0sin m g BIL mg θ=+, 金属棒Q 放上导轨之前,由牛顿第二定律可得00sin ()m g mg m m a θ-=+代入数据得,22.7m/s a =(3)根据能量守恒可得,0sin m gh mgh Q θ=+总 由于两个金属棒电阻串联,均为R ,可知Q 棒产生的焦耳热为3J 2Q Q ==总3.如图所示,间距为l 的平行金属导轨与水平面间的夹角为α,导轨间接有一阻值为R 的电阻,一长为l 的金属杆置于导轨上,杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ,导轨处于匀强磁场中,磁感应强度大小为B ,方向垂直于斜面向上,当金属杆受到平行于斜面向上大小为F 的恒定拉力作用,可以使其匀速向上运动;当金属杆受到平行于斜面向下大小为2F的恒定拉力作用时,可以使其保持与向上运动时大小相同的速度向下匀速运动,重力加速度大小为g ,求:(1)金属杆的质量;(2)金属杆在磁场中匀速向上运动时速度的大小。
高考物理压轴题之法拉第电磁感应定律(高考题型整理,突破提升)含详细答案
高考物理压轴题之法拉第电磁感应定律(高考题型整理,突破提升)含详细答案一、法拉第电磁感应定律1.如图所示,垂直于纸面的匀强磁场磁感应强度为B。
纸面内有一正方形均匀金属线框abcd,其边长为L,总电阻为R,ad边与磁场边界平行。
从ad边刚进入磁场直至bc边刚要进入的过程中,线框在向左的拉力作用下以速度v匀速运动,求:(1)拉力做功的功率P;(2)ab边产生的焦耳热Q.【答案】(1)P=222B L vR(2)Q=234B L vR【解析】【详解】(1)线圈中的感应电动势E=BLv 感应电流I=E R拉力大小等于安培力大小F=BIL 拉力的功率P=Fv=222 B L v R(2)线圈ab边电阻R ab=4R 运动时间t=L vab边产生的焦耳热Q=I2R ab t =23 4B L vR2.如图所示,在垂直纸面向里的磁感应强度为B的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd,线框平面垂直于磁感线。
线框以恒定的速度v沿垂直磁场边界向左运动,运动中线框dc 边始终与磁场右边界平行,线框边长ad =l ,cd =2l ,线框导线的总电阻为R ,则线框离开磁场的过程中,求:(1)线框离开磁场的过程中流过线框截面的电量q ; (2)线框离开磁场的过程中产生的热量 Q ; (3)线框离开磁场过程中cd 两点间的电势差U cd . 【答案】(1)22Bl q R =(2) 234B l vQ R=(3)43cd Blv U =【解析】 【详解】(1)线框离开磁场的过程中,则有:2E B lv =E I R = q It =l t v=联立可得:22Bl q R=(2)线框中的产生的热量:2Q I Rt=解得:234B l vQ R=(3) cd 间的电压为:23cd U IR = 解得:43cd BlvU =3.如下图所示,MN 、PQ 为足够长的光滑平行导轨,间距L =0.5m.导轨平面与水平面间的夹角θ= 30°,NQ 丄MN ,N Q 间连接有一个3R =Ω的电阻,有一匀强磁场垂直于导轨平面,磁感应强度为01B T =,将一根质量为m =0.02kg 的金属棒ab 紧靠NQ 放置在导轨上,且与导轨接触良好,金属棒的电阻1r =Ω,其余部分电阻不计,现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与NQ 平行,当金属棒滑行至cd 处时速度大小开始保持不变,cd 距离NQ 为 s=0.5 m ,g =10m/s 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难点之七 法拉第电磁感应定律一、难点形成原因1、关于表达式tnE ∆∆=φ此公式在应用时容易漏掉匝数n ,实际上n 匝线圈产生的感应电动势是串联在一起的,其次φ∆是合磁通量的变化,尤其变化过程中磁场方向改变的情况特别容易出错,并且感应电动势E 与φ、φ∆、t∆∆φ的关系容易混淆不清。
2、应用法拉第电磁感应定律的三种特殊情况E=Blv 、ω221Bl E =、E=nBs ωsin θ(或E=nBs ωcos θ)解决问题时,不注意各公式应用的条件,造成公式应用混乱从而形成难点。
3、公式E=nBs ωsin θ(或E=nBs ωcos θ)的记忆和推导是难点,造成推导困难的原因主要是此情况下,线圈在三维空间运动,不少同学缺乏立体思维。
二、难点突破1、φ、φ∆、t∆∆φ同v 、△v 、tv ∆∆一样都是容易混淆的物理量,如果理不清它们之间的关系,求解感应电动势就会受到影响,要真正掌握它们的区别应从以下几个方面深入理解。
磁通量φ磁通量变化量φ∆磁通量变化率t∆∆φ物理 意义磁通量越大,某时刻穿过磁场中某个面的磁感线条数越多某段时间穿过某个面的末、初磁通量的差值表述磁场中穿过某个面的磁通量变化快慢的物理量大小 计算⊥=BS φ,⊥S 为与B 垂直的面积12φφφ-=∆,SB ∆=∆φ或B S ∆=∆φ tS Bt∆∆=∆∆φ 或tB St∆∆=∆∆φ注 意若穿过某个面有方向相反的磁场,则不能直接用⊥=BS φ,应考虑相反方向的磁通量相互抵消以后所剩余的磁通量开始和转过1800时平面都与磁场垂直,穿过平面的磁通量是不同的,一正一负,△φ=2 BS ,而不是零既不表示磁通量的大小,也不表示变化的多少,在φ—t 图象中用图线的斜率表示2、明确感应电动势的三种特殊情况中各公式的具体用法及应用时须注意的问题⑴导体切割磁感线产生的感应电动势E=Blv ,应用此公式时B 、l 、v 三个量必须是两两相互垂直,若不垂直应转化成相互垂直的有效分量进行计算,生硬地套用公式会导致错误。
有的注意到三者之间的关系,发现不垂直后,在不明白θ角含义的情况下用E=Blvsin θ求解,这也是不可取的。
处理这类问题,最好画图找B 、l 、v 三个量的关系,如若不两两垂直则在图上画出它们两两垂直的有效分量,然后将有效分量代入公式E=Blv 求解。
此公式也可计算平均感应电动势,只要将v 代入平均速度即可。
⑵导体棒以端点为轴在垂直于磁感线的匀强磁场中匀速转动,计算此时产生的感应电动势须注意棒上各点的线速度不同,应用平均速度(即中点位置的线速度)来计算,所以ω221Bl E =。
⑶矩形线圈在匀强磁场中,绕垂直于磁场的任意轴匀速转动产生的感应电动势何时用E=nBs ωsin θ计算,何时用E=nBs ωcos θ计算,最容易记混。
其实这两个公式的区别是计时起点不同,记住两个特殊位置是关键。
当线圈转至中性面(即线圈平面与磁场垂直的位置)时E=0,当线圈转至垂直中性面的位置(即线圈平面与磁场平行)时E=nBs ω。
这样,线圈从中性面开始计时感应电动势按E=nBs ωsin θ规律变化,线圈从垂直中性面的位置开始计时感应电动势按E=nBs ωcos θ规律变化。
并且用这两个公式可以求某时刻线圈的磁通量变化率△φ/△t ,不少同学没有这种意识。
推导这两个公式时,如果能根据三维空间的立体图准确画出二维空间的平面图,问题就会迎刃而解。
另外,tnE ∆∆=φ求的是整个闭合回路的平均感应电动势,△t →0的极限值才等于瞬时感应电动势。
当△φ均匀变化时,平均感应电动势等于瞬时感应电动势。
但三种特殊情况中的公式通常用来求感应电动势的瞬时值。
4、典型例例1: 关于感应电动势,下列说法正确的是( ) A .穿过回路的磁通量越大,回路中的感应电动势就越大 B .穿过回路的磁通量变化量越大,回路中的感应电动势就越大 C .穿过回路的磁通量变化率越大,回路中的感应电动势就越大D .单位时间内穿过回路的磁通量变化量越大,回路中的感应电动势就越大【审题】题目考查内容非常明确,主要考查感应电动势E 与磁通量φ、磁通量变化量φ∆、磁通量变化率t∆∆φ之间的关系。
【解析】感应电动势E 的大小与磁通量变化率t∆∆φ成正比,与磁通量φ、磁通量变化量φ∆无直接联系。
A 选项中磁通量φ很大时,磁通量变化率t∆∆φ可能很小,这样感应电动势E 就会很小,故A 错。
B 选项中φ∆很大时,若经历时间很长,磁通量变化率t∆∆φ仍然会很小,感应电动势E 就很小,故B 错。
D 选项中单位时间内穿过回路的磁通量变化量即磁通量变化率t∆∆φ,它越大感应电动势E 就越大,故D 对。
答案:CD【总结】感应电动势的有无由磁通量变化量φ∆决定,φ∆≠0是回路中存在感应电动势的前提,感应电动势的大小由磁通量变化率t ∆∆φ决定,t∆∆φ越大,回路中的感应电动势越大,与φ、φ∆无关。
例2:一个面积S=4×10-2m 2,匝数N=100的线圈,放在匀强磁场中,磁场方向垂直线圈平面,磁场的磁感应强度B 随时间变化规律为△B /△t=2T/s ,则穿过线圈的磁通量变化率t∆∆φ为 Wb/s ,线圈中产生的感应电动势E=V 。
【审题】磁通量的变化率t∆∆φ与匝数N 无关,因为磁通量表示穿过某一面积的磁感线条数,穿过一匝线圈和穿过N 匝线圈的磁感线条数是一样的。
这样,一段时间内磁通量的变化一匝线圈和N 匝线圈是一样的,所以t∆∆φ不受匝数N 的影响。
而感应电动势除与t∆∆φ有关外还与匝数N 有关,因为产生感应电动势的过程中,每一匝线圈都相当于一个电源,线圈匝数越多,意味着串联的电源越多,说明E 与N 有关。
【解析】根据磁通量变化率的定义得t∆∆φ= S △B /△t=4×10-2×2 Wb/s=8×10-2Wb/s由E=N △φ/△t 得E=100×8×10-2V=8V 答案:8×10-2;8【总结】计算磁通量φ=BScos θ、磁通量变化量△φ=φ2-φ1、磁通量变化率△φ/△t 时不用考虑匝数N ,但在求感应电动势时必须考虑匝数N ,即E=N △φ/△t 。
同样,求安培力时也要考虑匝数N ,即F=NBIL ,因为通电导线越多,它们在磁场中所受安培力就越大,所以安培力也与匝数N 有关。
例3:如图7-1所示,两条平行且足够长的金属导轨置于磁感应强度为B 的匀强磁场中,B 的方向垂直导轨平面。
两导轨间距为L ,左端接一电阻R ,其余电阻不计。
长为2L 的导体棒ab 如图所示放置, 开始时ab 棒与导轨垂直,在ab 棒绕a 点紧贴导轨滑倒的过程中,通过电阻R 的电荷量是 。
【审题】求通过电阻R 的电荷量首先须求出通过电阻R 的平均电流,由于电阻R 已知,因此根据法拉第电磁感应定律求出这一过程的平均感应电动势是解题关键。
【解析】tBL tLL L B tS BtE ∆=∆-∙=∆∆=∆∆=23421222φtR2BL 3R E I 2∆==∴RBL t I q 232=∆=答案:RBL 232【总结】用E=N △φ/△t 求的是平均感应电动势,由平均感应电动势求闭合回路的平均电流。
而电路中通过的电荷量等于平均电流与时间的乘积,即RNt tRNt I q φφ∆=∆∆∆=∆=,注意这个式子在不同情况下的应用。
例4:如图7-2所示,在竖直向下的匀强磁场中,将一水平放置的金属棒以水平速度V 0抛出,设整个过程中,棒的取向不变,不计空气阻力,则金属棒运动过程中产生的感应电动势的大小变化情况应是( )A .越来越大B .越来越小C .保持不变D .无法判断【审题】金属棒运动过程中速度越来越大,但产生感应电动势的有效切割速度仅仅是速度的水平分量V 0,而在金属棒运动过程中V 0是不变的。
【解析】导体切割磁感线产生的感应电动势E=Blv ,金属棒运动过程中B 、l 和v 的有效分量均不变,所以感应电动势E 不变,故选C 。
答案:C【总结】应用感应电动势的计算公式E=Blv 时,一定要注意B 、l 、v 必须两两垂直,若不垂直要取两两垂直的有效分量进行计算。
例5:如图7-3所示,长为L 的金属棒ab ,绕b 端在垂直于匀强磁场的平面内以角速度ω匀速转动,磁感应强度为B ,求ab 两端的电势差。
【审题】ab 两端的电势差等于金属棒切割磁感线产生的感应电动势,因此,只要求出感应电动势即可。
本题是导体棒转动切割磁感线产生感应电动势的情况,棒上各点的速率不相等,由v=ωr 知,棒上各点的线速度跟半径成正比,图7-1图7-2故可用棒的中点的速率作为平均切割速率代入公式E=Blv 求解。
本题也可以设△t 时间ab 棒扫过的扇形面积为△S ,根据E=n △φ/△t 求解。
【解析】解法一:E=Blv=BL ωL/2=BL 2ω/2 解法二:E=n △φ/△t= B △S/△t=t t L B ∆∆∙/212ω= BL 2ω/2∴22ωBL E U ab ==答案:BL 2ω/2【总结】若用E=Blv 求E ,则必须先求出平均切割速率;若用E=n △φ/△t 求E ,则必须先求出金属棒ab 在△t 时间扫过的扇形面积,从而求出磁通量的变化率。
例6:如图7-4所示,矩形线圈abcd 共有n 匝,总电阻为R ,部分置于有理想边界的匀强磁场中,线圈平面与磁场垂直,磁感应强度大小为B 。
让线圈从图示位置开始以ab 边为轴匀速转动,角速度为ω。
若线圈ab 边长为L 1,ad 边长为L 2,在磁场外部分为2L 52,则⑴线圈从图示位置转过530时的感应电动势的大小为 。
⑵线圈从图示位置转过1800的过程中,线圈中的平均感应电流为 。
⑶若磁场没有边界,线圈从图示位置转过450时的感应电动势的大小为 ,磁通量的变化率为 。
【审题】磁场有边界时,线圈abcd 从图示位置转过530的过程中,穿过线圈的磁通量始终没有变化,所以此过程感应电动势始终为零;在线圈abcd 从图示位置转过1800的过程中,初末状态磁通量大小不变,但方向改变,所以2121L BL 56L 53BL2=∙=φ∆。
磁场没有边界时,线圈abcd 从图示位置转动产生的感应电动势按E=nBs ωsin θ规律变化,即E=nBL 1L 2ωsin ωt ,t 时刻磁通量的变化率△φ/△t=E/n=BL 1L 2ωsin ωt 。
【解析】⑴线圈从图示位置转过530时的感应电动势的大小为零。
⑵线圈从图示位置转过1800的过程中,πωωπφ56562121L nBL L BL n tnE ==∆∆=∴RL nBL RE I πω5621==⑶若磁场没有边界,线圈从图示位置转过450时的感应电动势 E=nBL 1L 2ωsin ωt=ω21L nBL 22此时磁通量的变化率2221ωφL BL n E t==∆∆答案:0;R5L nBL 621πω;ω21L nBL 22,2221ωL BL【总结】本题考查了三个知识点:①感应电动势的产生由△φ决定,△φ=0则感应电动势等于零;②磁通量的变图7-3图7-4化量的求法,开始和转过1800时平面都与磁场垂直,△φ=2 BS ,而不是零;③线圈在匀强磁场中绕垂直于磁场的轴转动产生感应电动势的表达式及此过程中任一时刻磁通量的变化率的求法。