舵机控制与程序
stm32控制舵机程序
stm32控制舵机程序章节标题:基于STM32的舵机控制程序设计第一章:引言(约250字)1.1 研究背景控制舵机是机器人、无人机、航空模型等众多领域的关键技术之一。
而STM32系列的微控制器以其高性能、低功耗和丰富的外设资源被广泛应用于嵌入式控制系统。
本章主要介绍了舵机的作用及其在控制系统中的重要性,同时说明了选择STM32微控制器作为控制舵机的硬件平台的原因。
第二章:控制理论(约250字)2.1 舵机原理舵机是一种能够根据外部输入信号控制角度的电动执行器。
其通过接收PWM信号来确定输出位置和角度,通常在0至180度之间运动。
本章介绍了舵机的工作原理,包括PWM控制信号的作用、舵机内部的反馈控制电路等内容。
2.2 PID控制理论PID控制是一种常用的闭环控制方法,能够根据反馈信号调整输出信号,通过比较实际输出与期望输出的差异来实现控制。
本章详细介绍了PID控制的原理和算法,并提出了使用PID控制舵机的基本思路。
第三章:硬件设计(约250字)3.1 系统框架在舵机控制系统中,使用STM32微控制器作为控制芯片,通过引脚与舵机进行连接,实现对舵机的控制。
本章主要介绍了硬件设计的系统框架,包括STM32微控制器的选择、电源设计、信号输入输出设计等。
3.2 电路原理图本章详细描述了电路原理图设计,包括电源管理模块、驱动电路等详细设计内容。
同时对于舵机的接线方式和引脚定义进行了说明。
第四章:软件设计(约250字)4.1 程序流程本章介绍了在STM32上开发舵机控制程序的流程,包括初始化舵机控制模块、设置PWM输出引脚、编写控制算法等。
4.2 PID算法实现详细描述了如何在STM32上实现PID控制算法,包括参数调整、误差计算、控制输出计算等步骤。
同时,结合实际舵机控制需求,对PID控制算法进行优化。
4.3 实验验证通过实验验证了基于STM32的舵机控制程序的有效性和性能优势。
通过与传统控制方法进行对比,并分析实验数据,评估了该程序的稳定性和响应速度。
舵机控制程序
//*************************************************************** **********//* *//* *************************舵机控制************************ * //* *//*************************************************************** **********#include "main.h"UINT8 Far_Line;UINT8 Near_Line;UINT8 Far_Value;UINT8 Near_Value;UINT16 OUT;UINT8 Angle_Far;UINT8 Angle_Start;//*************************************************************** **********//* *//* **********************图像滤波处理函数********************* * //* 函数:void ImageFilterII(UINT8 f_line)//* 函数功能:至多连续4行0可以做处理*//* 输入参数:无//*************************************************************** **********UINT8 IsStraight(UINT8 start_ln,UINT8 end_ln){UINT8 i;UINT8 flg = 0;for(i=start_ln;i<end_ln;i++){if(((GuideLine[i] - GuideLine[i+1] > 7)||(GuideLine[i] - GuideLine[i+1] < (-7)))||(GuideLine[i] == 0)){flg = 1;break;}}if(flg == 0) //是否为直线判定{return 1;}else{return 0;}}//*************************************************************** **********//* *//* **********************图像滤波处理函数********************* * //* 函数:void ImageFilterII(UINT8 f_line)//* 函数功能:至多连续4行0可以做处理*//* 输入参数:无//*************************************************************** **********void ImageFilterII(UINT8 f_line){UINT8 i,j;INT8 div;UINT8 start_ln,end_ln;j=0;Angle_Far = 22;for(i=1;i<f_line;i++){if((GuideLine[i]==0)&&(GuideLine[i-1]!=0)){j=i; //由有数据到无数据}if((GuideLine[i]==0)&&(GuideLine[i+1]!=0)) //由无数据到有数据{if((i-j < 4) //一般的滤波,最多滤除4行&&(GuideLine[j-1] - GuideLine[i+1] < 16)&&(GuideLine[j-1] - GuideLine[i+1] > (-16))){for(;j<i+1;j++){GuideLine[j]=(GuideLine[j-1]>>1)+(GuideLine[i+1]>>1);}}else if(i-j < 12) // 出现黑三角的判定{Angle_Far = j;// far_ln = 8 则要到18行才出现黑线// far_ln = 10 则要到19行才出现黑线// far_ln = 13 则要到21行才出现黑线// far_ln = 15 则要到23行才出现黑线// far_ln = 19 则要到25行才出现黑线start_ln = i + 1;if(f_line - i >= 4){end_ln = i + 4;}else{break;}if((IsStraight(start_ln,end_ln))&&(j > 7)){Angle_Start = 1; //出现了黑三角for(;j<=i;j++){GuideLine[j] = (GuideLine[j-1]>>1)+(GuideLine[i+1]>>1);}}else{for(;j<f_line;j++){GuideLine[j+1] = 0;}break; //跳出整个程序}}else{for(;j<f_line;j++){GuideLine[j+1] = 0;}break; //跳出整个程序}}}UINT8 TEST_CTL_FLG;UINT8 Last_far_ln;UINT8 p1=0;UINT8 p2=0;UINT8 p3=0;UINT8 p4=0;UINT8 d1=0;UINT8 d2=0;UINT8 d3=0;UINT8 d4=0;UINT8 Lv1=0;UINT8 Lv2=0;UINT8 Lv3=0;UINT8 Lv4=0;UINT8 sL=0;UINT8 rL=0;//*************************************************************** **********//* *//* **********************图像滤波处理函数********************* * //* 函数:void ImageFilterII(UINT8 f_line)//* 函数功能:至多连续4行0可以做处理*//* 输入参数:无//*************************************************************** **********void PID_NEW(UINT8 near_ln,UINT8 far_ln,UINT8 filter_line){struct _Car *temp1;UINT8 i;UINT8 p,d;temp1 = &Car;ImageFilterII(filter_line);while(GuideLine[far_ln]==0) //处理行没有提取黑线{far_ln--;if(far_ln==0)break;}TEST_CTL_FLG = 0;Far_Line = far_ln;Far_Value = GuideLine[far_ln];Near_Value = GuideLine[near_ln];//黑三角检测和控制if(Angle_Start == 1) //进入三角{TEST_CTL_FLG = 1;if((Angle_Far >= 22)&&(far_ln >= 22)){Angle_Start = 0;}if(far_ln < 20){goto loop;}}temp1->CtrlPar.Lst_Erro = GuideLine[near_ln] - VIDEO_CENTER; //近线偏差temp1->CtrlPar.Erro = GuideLine[far_ln] - VIDEO_CENTER; //远线偏差temp1->CtrlPar.Dif_Erro = temp1->CtrlPar.Erro - temp1->CtrlPar.Lst_Erro; //远线偏差减近线偏差if(far_ln>Lv1){TEST_CTL_FLG = 2;temp1->CtrlPar.Dty_Erro = ((p1*(temp1->CtrlPar.Erro))>>4)+ ((d1*(temp1->CtrlPar.Dif_Erro))>>4); }else if(far_ln>Lv2) //弯道上的转角{//分段控制,增大弯道转角????TEST_CTL_FLG = 3;//远线偏差加远线偏差减近线偏差(弯道时起加大偏转作用)p=p2;d=d2;if(far_ln>Lv3){TEST_CTL_FLG = 4;p=p3; //大S弯交接入口d=d3;}if(far_ln>Lv4){ TEST_CTL_FLG = 5; //大S弯交接处p=p4;d=d4;}temp1->CtrlPar.Dty_Erro = ((p*(temp1->CtrlPar.Erro))>>4)+ ((d*(temp1->CtrlPar.Dif_Erro))>>4);}temp1->CtrlPar.Dty_Out =STEER_DTY_CENTER + temp1->CtrlPar.Dty_Erro;if(Straight_Cnt>12) //直道刚进入弯道;值越大,越提前入弯{if(far_ln<sL) //判断是否最远行太近{TEST_CTL_FLG = 6;if(temp1->CtrlPar.Dty_Out > STEER_DTY_CENTER){temp1->CtrlPar.Dty_Out = STEER_DTY_MAX ;}else if(temp1->CtrlPar.Dty_Out < STEER_DTY_CENTER){temp1->CtrlPar.Dty_Out = STEER_DTY_MIN ;}}}else if(Straight_Cnt<=12) //已经在弯道{if(far_ln <= rL){TEST_CTL_FLG = 7;if(temp1->CtrlPar.Dty_Out > STEER_DTY_CENTER) //如果太近判断之前舵机转向直接偏到最大{temp1->CtrlPar.Dty_Out = STEER_DTY_MAX;}else if(temp1->CtrlPar.Dty_Out < STEER_DTY_CENTER){temp1->CtrlPar.Dty_Out = STEER_DTY_MIN;}}}loop:if(temp1->CtrlPar.Dty_Out > STEER_DTY_MAX){temp1->CtrlPar.Dty_Out = STEER_DTY_MAX;}else if(temp1->CtrlPar.Dty_Out < STEER_DTY_MIN){temp1->CtrlPar.Dty_Out = STEER_DTY_MIN;}SetDirection(temp1->CtrlPar.Dty_Out);OUT = temp1->CtrlPar.Dty_Out;}//*************************************************************** **********//* *//* **********************S道处理函数********************* *//* 函数:void PID_S()//* 函数功能:S道处理*//* 输入参数:无//*************************************************************** **********UINT8 S_C=30;UINT8 S_C1=0;UINT8 S_P=12;UINT8 S_D=0;void PID_S(){struct _Car *temp1;temp1 = &Car;if(S_C1==1) S_C=StartNum;//方案选择temp1->CtrlPar.Lst_Erro = GuideLine[0] - VIDEO_CENTER; //近线偏差temp1->CtrlPar.Erro = VIDEO_CENTER-GuideLine[S_C]; //远线偏差temp1->CtrlPar.Dif_Erro = temp1->CtrlPar.Erro - temp1->CtrlPar.Lst_Erro; //远线偏差减近线偏差temp1->CtrlPar.Dty_Erro = ((S_P*(temp1->CtrlPar.Erro))>>4) +((S_D*(temp1->CtrlPar.Dif_Erro))>>4);temp1->CtrlPar.Dty_Out = STEER_DTY_CENTER +temp1->CtrlPar.Dty_Erro;if(Straight_Cnt>12){if(StartNum<20) //判断是否最远行太近{TEST_CTL_FLG = 8;if(temp1->CtrlPar.Dty_Out > STEER_DTY_CENTER){temp1->CtrlPar.Dty_Out = STEER_DTY_MAX ;}else if(temp1->CtrlPar.Dty_Out < STEER_DTY_CENTER){temp1->CtrlPar.Dty_Out = STEER_DTY_MIN ;}}}if(temp1->CtrlPar.Dty_Out > STEER_DTY_MAX) {temp1->CtrlPar.Dty_Out = STEER_DTY_MAX;}else if(temp1->CtrlPar.Dty_Out < STEER_DTY_MIN) {temp1->CtrlPar.Dty_Out = STEER_DTY_MIN;}SetDirection(temp1->CtrlPar.Dty_Out);}。
按键控制舵机程序
按键控制舵机程序章节一:引言按键控制舵机是一种常见的控制方法,它通过按键的状态改变来控制舵机的位置。
这种方法简单易行,占用资源较少,因此在各种智能设备和机器人中被广泛应用。
本论文将介绍按键控制舵机的基本原理、软硬件实现方法以及应用案例。
通过本论文的学习,读者将能够了解到如何使用按键控制舵机,并可以根据实际需求进行灵活的应用和扩展。
章节二:按键控制舵机的原理按键控制舵机的原理是通过读取按键的状态来判断是否需要调整舵机的位置。
一般来说,按键有两个状态:按下和松开。
当按键被按下时,电路会输出低电平,舵机会根据低电平的信号调整位置;当按键被松开时,电路会输出高电平,舵机将保持当前位置。
在实际中,可以通过使用数字输入引脚读取按键的状态,然后与设定的阈值进行比较来判断按键是否被按下。
章节三:按键控制舵机的软硬件实现方法按键控制舵机的软硬件实现方法主要包括硬件电路和软件编程两个方面。
硬件电路部分,需要使用数字输入引脚来读取按键的状态,将读取到的状态与设定的阈值进行比较,从而确定舵机是否需要调整位置。
同时,还需要使用PWM(脉冲宽度调制)信号来控制舵机的位置。
可以通过连接Arduino等主控板和舵机,使用适当的电阻分压电路来实现读取按键状态的功能,然后将逻辑电平转化为舵机可以接受的PWM信号。
软件编程部分,需要使用相应的编程语言来控制舵机。
以Arduino为例,可以使用Arduino IDE编写程序。
首先需要定义数字输入引脚来读取按键状态,并使用digitalRead函数来获取其状态。
接着,需要用digitalWrite函数生成PWM信号,通过analogWrite函数将得到的PWM值传输给舵机的控制引脚。
通过不断循环检测按键的状态,根据实际需求来控制舵机的位置。
章节四:按键控制舵机的应用案例按键控制舵机有广泛的应用场景。
一种典型的应用案例是机器人的手臂控制。
通过使用按键控制舵机,可以灵活地控制机器人的手臂动作,实现抓取、放置等功能。
51单片机 舵机控制程序
51单片机舵机控制程序题目:基于51单片机的舵机控制程序设计与实现第一章:引言1.1 研究背景51单片机是一种广泛应用于嵌入式系统中的微控制器,具有成本低、功耗低、可靠性高等优点。
而舵机是一种能够控制角度的电机装置,广泛应用于机器人、航模和自动化设备等领域。
本章旨在探讨基于51单片机的舵机控制程序设计与实现的意义和必要性。
1.2 研究目的本研究的主要目的在于设计并实现一套稳定、高效的舵机控制程序,为使用51单片机的嵌入式系统提供角度控制功能。
通过本研究,可以提高舵机控制的精度和稳定性,拓展舵机的应用领域。
第二章:51单片机舵机控制程序的设计2.1 硬件设计根据舵机的控制特点,我们需要通过PWM信号控制舵机转动的角度。
在硬件设计上,我们需要使用51单片机的定时器功能产生PWM信号,并通过IO口输出给舵机。
具体的设计方案包括选择合适的定时器、设置定时器的工作模式和频率等。
2.2 软件设计在软件设计上,我们需要通过编写51单片机的控制程序实现舵机的控制。
具体的设计流程包括:(1)初始化:设置定时器的工作模式和频率,配置IO口的输出模式。
(2)角度控制:根据舵机的角度范围和控制精度,将目标角度转换为占空比,并通过PWM信号控制舵机转动到目标角度。
(3)稳定性优化:通过对定时器周期和占空比的调整,优化舵机的稳定性,减小舵机的误差。
第三章:51单片机舵机控制程序的实现3.1 硬件搭建在实现阶段,我们需要根据硬件设计方案选购相应的硬件元件,并将其搭建成一个完整的舵机控制系统。
具体的搭建过程包括:(1)选购舵机和51单片机等硬件元件,并连接相关的信号线。
(2)按照硬件设计方案,搭建并调试舵机控制系统。
3.2 软件编写在软件实现阶段,我们需要使用51单片机的编程语言(如C语言或汇编语言)编写舵机控制程序,并通过编译和烧录等步骤将程序下载到51单片机中。
具体的编写过程包括:(1)按照软件设计方案,编写舵机控制程序的相关函数和逻辑。
四个舵机的机械手的控制程序
unsigned int num;
unsigned char temp;
sbit p10=P1^0;
sbit p11=P1^1;
sbit p12=P1^2;
sbit p13=P1^3;
kpg();
void sm();
void fxg();
{
if(num<j) p10=1;
else p10=0;
if(num==190)
{
num=0;
temp++;
}
}
}
void du2(unsigned int i,unsigned int j)
{
while(temp<20)
{
num=0;
temp=0;
du1(4,13);
num=0;
temp=0;
du2(4,0);
num=0;
temp=0;
}
}
void sm()
{
du3(1,19);
}
void fxg()
{
du1(13,16);//夹吸管
num=0;
temp=0;
du2(0,19);//抽出水杯
num=0;
temp=0;
du2(0,19);//翻转习吸管
num=0;
temp=0;
du2(0,19);//重新插入水杯
num=0;
temp=0;
du1(13,16);//放开吸管
num=0;
{
while(temp<20)
轮船舵机操作手册
轮船舵机操作手册一、前言操作轮船舵机是一项关键而复杂的工作,需要经过专门的培训和掌握操作手册中的指导原则。
本文将介绍轮船舵机的操作手册,旨在帮助操作人员正确、安全地进行舵机操作。
二、舵机操作流程1. 舵机准备在进行舵机操作之前,首先要确保舵机设备处于正常工作状态。
检查并确认所操作的舵机设备是否无故障、是否与电源连接良好。
2. 角度调整根据实际航行需求,调整舵机的角度。
通常情况下,调整舵机的角度应根据导航计划和船舶的航行状况进行调整。
3. 操纵舵轮将舵轮正向或反向转动,控制舵机实现船舶的转向。
需要注意的是,舵轮的操作应该平稳而有力,以确保船舶能够按照预期的航向转向。
4. 观察舵机指示在操纵舵轮时,应密切观察舵机指示表或仪表板上的相关信号。
舵机指示表常常显示舵角度、方向和舵机运行状态等信息,操作人员应及时了解并根据这些信息做出相应的操作调整。
5. 舵机操作记录在进行舵机操作时,操作人员应做好相关记录,包括舵机的操作时间、舵角度以及其他重要信息。
这些记录对于后续的航行数据分析和船舶运行管理非常重要。
三、常见操作问题及解决方法1. 舵机异常运行如果舵机出现异常运行情况,如发生卡滞或失灵等,应立即停止操纵舵轮,并向有关部门报告。
同时,可以尝试使用备用舵机或采用备用操纵方式进行操作。
2. 舵角过大或过小在调整舵机角度时,要注意避免舵角过大或过小。
舵角过大可能导致船舶突然转向,产生危险;而舵角过小则可能导致船舶无法按预期航行。
因此,在操作过程中要根据实际需要进行适当的调整,确保船舶航行的平稳性和安全性。
3. 操纵失误在操作舵机时,操作人员可能会出现操纵失误,导致船舶偏离原本的航行方向。
此时,应立即纠正错误操作,并调整舵机使船舶回到正确的航行轨迹上。
四、操作注意事项1. 了解舵机设备的工作原理和相关操作规程在进行舵机操作之前,操作人员应仔细学习舵机设备的工作原理和相关操作规程,确保对舵机设备有充分的了解。
2. 遵循操作程序和规定操作人员应严格遵循舵机的操作程序和规定,按照操作手册中的指导原则进行舵机操纵,确保船舶的安全航行。
控制舵机的程序
控制舵机的程序第一章:简介舵机是一种常见的电动设备,它可以通过控制信号来精确控制舵轴的位置。
舵机广泛应用于机器人、航模、船模等领域,其重要性不言而喻。
本论文将介绍控制舵机的程序设计方法,并通过实验验证其有效性。
第二章:舵机控制原理舵机的控制原理是基于PWM (Pulse Width Modulation) 脉宽调制技术。
通过改变控制信号的脉宽,可以实现舵轴的位置控制。
一般情况下,控制信号的周期为20ms,脉宽范围一般为0.5ms~2.5ms,其中1.5ms为中性位置。
通过将控制信号的脉宽变小或变大,可以让舵轴向左或向右旋转。
第三章:舵机控制程序设计本章将介绍一种基于Arduino开发板的舵机控制程序设计方法。
首先,通过引入Servo库,可以方便地控制舵机。
然后,需要定义舵机的连接引脚,并创建一个Servo对象。
接下来,通过调用Servo对象的attach方法将舵机与指定引脚绑定。
在loop循环中,可以使用Servo对象的write方法来设置舵机的位置,值为0~180之间。
最后,可以通过串口监视器来控制舵机的位置。
第四章:实验结果与讨论为了验证舵机控制程序的有效性,进行了一系列实验。
实验结果表明,通过调整控制信号的脉宽,可以实现舵轴的精确控制。
在使用舵机控制程序时,可以根据需要进行相应的调整,以实现目标位置的控制。
此外,通过使用串口监视器,可以方便地调试和观察舵机的输出情况。
综上所述,舵机控制程序设计是一种有效的方法,可以满足舵轴位置精确控制的需求。
总结本论文介绍了控制舵机的程序设计方法,并通过实验验证了其有效性。
舵机控制程序可以方便地实现舵轴位置的精确控制,可以广泛应用于机器人、航模、船模等领域。
通过调整控制信号的脉宽,可以实现舵轴的旋转。
通过使用串口监视器,可以方便地调试和观察舵机的输出情况。
通过本论文的研究,可以为舵机控制程序的设计和开发提供参考。
第三章:舵机控制程序设计(续)在舵机控制程序设计中,除了基本的舵机位置控制外,我们还可以进一步优化程序,以满足更高级的控制需求。
stm32控制舵机的程序
stm32控制舵机的程序第一章:引言在现代机械系统领域,舵机是一种常见的旋转执行器,经常用于控制机械装置的运动。
舵机通过接收控制信号来控制旋转角度,具有精准定位、快速响应和稳定性好的特点,因此在无人机、机器人、摄像头稳定器等领域广泛应用。
然而,要实现舵机的精确控制,需要使用专门的硬件电路和相应的控制算法。
本论文将介绍一种基于STM32单片机控制舵机的方法。
第二章:STM32舵机控制原理2.1 舵机的工作原理舵机是一种综合了伺服电机和反馈控制系统的特殊电机。
它由电机、位置反馈装置和控制电路组成。
当控制信号输入到控制电路中时,电机根据信号的宽度来确定要旋转的角度,位置反馈装置则用于检测电机的实际位置。
2.2 STM32控制舵机的原理STM32单片机是一类功能强大且易于使用的微控制器,具有高性能、低功耗和丰富的外设资源。
为了控制舵机,我们需要将STM32的IO口与舵机的控制信号线相连接,并在程序中通过设置IO口的高低电平来生成PWM(脉宽调制)信号,从而控制舵机的角度。
第三章:STM32舵机控制程序设计在本章中,我们将介绍具体的STM32舵机控制程序设计步骤。
3.1 硬件连接首先,需要将舵机的控制信号线连接至STM32单片机的某个IO口。
具体连接方式可以参考相关的舵机控制电路图。
3.2 建立工程使用Keil等开发工具,根据STM32型号建立一个新工程,并配置好相应的时钟和引脚设置。
3.3 编写程序在主函数中,需要先初始化IO口,并配置为输出模式。
然后编写一个循环,不断改变IO口的电平状态,以产生PWM信号。
根据舵机的角度范围(一般为0到180度),通过改变IO口电平的时间间隔和占空比,可以控制舵机旋转到相应的角度。
3.4 烧录程序最后,将生成的可执行程序烧录到STM32单片机中,然后连接电源即可运行舵机控制程序。
第四章:实验结果与分析为了验证上述STM32舵机控制程序的有效性,我们进行了一系列实验。
实验结果表明,通过控制不同的PWM信号,可以实现对舵机的精确控制,使其旋转到相应的角度。
舵机控制程序
在机器人机电控制系统中,舵机控制效果是性能的重要影响因素。
舵机可以在微机电系统和航模中作为基本的输出执行机构,其简单的控制和输出使得单片机系统非常容易与之接口。
舵机是一种位置伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。
其工作原理是:控制信号由接收机的通道进入信号调制芯片,获得直流偏置电压。
它内部有一个基准电路,产生周期为20ms,宽度为1.5ms 的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。
最后,电压差的正负输出到电机驱动芯片决定电机的正反转.当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动.舵机的控制信号是PWM信号,利用占空比的变化改变舵机的位置。
一般舵机的控制要求如图1所示。
图1 舵机的控制要求单片机实现舵机转角控制可以使用FPGA、模拟电路、单片机来产生舵机的控制信号,但FPGA成本高且电路复杂。
对于脉宽调制信号的脉宽变换,常用的一种方法是采用调制信号获取有源滤波后的直流电压,但是需要50Hz(周期是20ms)的信号,这对运放器件的选择有较高要求,从电路体积和功耗考以上的控制电压的变化虑也不易采用.5mV就会引起舵机的抖动,对于机载的测控系统而言,电源和其他器件的信号噪声都远大于5mV,所以滤波电路的精度难以达到舵机的控制精度要求。
也可以用单片机作为舵机的控制单元,使PWM信号的脉冲宽度实现微秒级的变化,从而提高舵机的转角精度。
单片机完成控制算法,再将计算结果转化为 PWM信号输出到舵机,由于单片机系统是一个数字系统,其控制信号的变化完全依靠硬件计数,所以受外界干扰较小,整个系统工作可靠。
单片机系统实现对舵机输出转角的控制,必须首先完成两个任务:首先是产生基本的PWM 周期信号,本设计是产生20ms的周期信号;其次是脉宽的调整,即单片机模拟PWM信号的输出,并且调整占空比。
当系统中只需要实现一个舵机的控制,采用的控制方式是改变单片机的一个定时器中断的初值,将20ms分为两次中断执行,一次短定时中断和一次长定时中断.这样既节省了硬件电路,也减少了软件开销,控制系统工作效率和控制精度都很高。
舵机控制程序简单
舵机控制程序简单第一章:引言(约200字)舵机是一种用于控制机械系统位置和速度的装置,广泛应用于各种机器人和自动化系统中。
它具有速度快、响应灵敏、精确度高等特点,因此在诸多领域都发挥着重要作用。
本论文将介绍一种简单的舵机控制程序,目的是实现对舵机位置的精确控制。
第二章:舵机控制原理(约300字)舵机控制基于脉宽调制(PWM)技术,即通过调整PWM信号的高电平时间来控制舵机的位置。
一般情况下,舵机可以控制在0到180度的范围内,其中90度为中间位置。
通过发送特定脉冲宽度的PWM信号,舵机可以定位到所需的位置。
舵机的输入信号通常为20ms周期的PWM信号,其高电平时间在0.5ms到2.5ms之间,对应着舵机位置的0到180度。
第三章:舵机控制程序设计(约400字)在设计舵机控制程序时,需要利用控制器(如Arduino)和相应的编程语言(如C++)来实现。
首先,需要将舵机控制引脚连接到控制器上,并设置控制引脚为输出模式。
然后,在主循环中,使用控制语句来发送特定脉宽的PWM信号来控制舵机位置。
可以根据需求设置不同的脉宽值,以达到精确控制舵机位置的目的。
例如,如果想将舵机定位到90度,可以发送1.5ms的高电平脉宽信号。
在程序设计中,可以使用函数来简化代码,使得控制舵机的过程更加清晰和灵活。
例如,可以设计一个函数用于设置舵机位置,用户只需调用该函数并输入目标位置即可。
同时,还可以添加对舵机位置范围的判断,以确保用户输入的位置在舵机可控范围内。
第四章:实验结果与讨论(约300字)通过编写舵机控制程序并进行实验,我们可以得到舵机精确控制位置的效果。
试验中,我们设定舵机定位到90度,并观察实际位置是否与设定位置一致。
实验结果表明,舵机在良好的控制条件下,能够实现较高的位置控制精度。
然而,由于舵机本身的特性和控制器的限制,可能存在一定的位置偏移和响应延迟。
在论文中,我们还会探讨一些可能影响舵机控制效果的因素,如控制器的采样率、舵机的质量和机械结构等。
舵机角度控制程序
舵机角度控制程序摘要:舵机是一种能够控制角度的装置,在机器人、无人机等领域具有广泛应用。
舵机角度控制程序是实现舵机精确控制的关键。
本文设计了一种舵机角度控制程序,通过四个章节的介绍,详细阐述了程序的原理和实现方法。
实验结果表明,该角度控制程序能够实现精确的舵机角度控制。
第一章引言介绍舵机在机器人领域的应用情况,并提出舵机角度控制程序的研究意义和目的。
概述舵机角度控制程序的四个设计步骤。
第二章舵机角度控制原理介绍舵机的基本结构和工作原理。
阐述如何通过改变控制信号的占空比来控制舵机的角度。
具体讲解舵机角度与控制信号占空比之间的关系,并通过数学模型加以说明。
第三章舵机角度控制程序设计详细介绍舵机角度控制程序的设计方法。
首先介绍舵机角度测量的原理和方法,包括传感器的选择和数据采集。
然后介绍如何根据测量得到的角度信息计算控制信号的占空比。
最后描述舵机角度控制的算法,包括舵机角度调整和舵机保持稳定的方法。
第四章实验结果与分析介绍使用舵机角度控制程序进行的实验,包括实验设置和实验结果。
通过实验数据分析,验证舵机角度控制程序的有效性和精确性。
对实验中的不足进行总结,并提出改进措施。
结论本文设计了一种舵机角度控制程序,通过对舵机的角度进行测量和控制信号的调整,实现了舵机的精确控制。
实验结果表明,该程序具有较高的精确性和稳定性。
在实际应用中,该程序可以广泛用于机器人、无人机等领域。
未来的研究可进一步完善该程序,提高控制精度和响应速度。
第一章引言舵机是一种能够精确控制角度的装置,广泛应用于机器人、无人机、航空航天等领域。
舵机角度控制程序的研究对于实现精确的运动控制具有重要意义。
本章节将介绍舵机角度控制程序的研究背景和意义,并概述了论文的研究内容和结构。
机器人和无人机等自动化设备在实际应用中,需要完成各种复杂的任务和动作。
而舵机作为实现机器人关键部件之一,负责控制机器人的各种运动。
舵机角度控制程序是指导舵机实现精确控制的关键程序。
stc舵机控制程序
stc舵机控制程序章节一:引言在机器人领域中,动态响应和高精度控制是实现复杂任务的关键要素。
舵机作为一种常见的执行器,广泛应用于机器人的关节和末端执行器控制中。
而STC舵机控制程序则是控制舵机的必要工具,能够实现舵机的准确控制和高效响应。
本文将介绍STC舵机控制程序的设计原理和实现方法。
首先,我们将介绍舵机的原理和工作方式,然后阐述了STC舵机控制程序的设计目标和功能要求。
接下来,我们将详细讨论STC舵机控制程序的设计框架和算法,最后通过实验验证了该程序的性能和效果。
章节二:舵机原理和工作方式舵机是一种能够精确控制旋转角度的电机,通常由电机、减速器和角度反馈装置组成。
舵机通过接收控制信号来驱动电机,通过角度反馈装置准确地感知当前位置,从而实现精确控制。
舵机一般具有高精度和较大的扭矩输出能力。
章节三:STC舵机控制程序的设计(一)设计目标和功能要求:STC舵机控制程序的设计旨在实现舵机的准确控制和高效响应,保证机器人系统的运动平稳和稳定性。
根据实际应用需求,我们考虑到舵机的位置控制和扭矩控制两个关键要素。
(二)设计框架:STC舵机控制程序的设计框架包括三个主要模块:舵机控制信号生成模块、舵机位置控制模块和舵机扭矩控制模块。
其中,舵机控制信号生成模块负责生成控制信号,位置控制模块根据信号实现位置控制,扭矩控制模块根据实际需求实现扭矩控制。
(三)算法设计:STC舵机控制程序中的算法主要包括PID控制算法和扭矩控制算法。
PID控制算法通过对反馈信号进行比例、积分和微分运算来实现位置控制。
扭矩控制算法通过对电机输入电流进行控制来实现扭矩控制。
在算法设计中,我们考虑了舵机的非线性特性和动态响应,通过参数调整和反馈控制实现了良好的控制效果。
章节四:实验与结果分析为了验证STC舵机控制程序的性能和效果,我们进行了一系列实验。
实验结果表明,STC舵机控制程序在位置控制和扭矩控制方面均具有较高的准确性和稳定性。
同时,该程序具有较快的响应速度和较低的误差,能够满足机器人系统的实际需求。
51控制舵机程序
51控制舵机程序章节一:引言(约200字)舵机是一种广泛应用于机器人、航空模型、无人机等控制系统中的关键部件。
其通过控制电流使舵盘旋转,从而实现控制机械臂、舵面等部件的运动。
51单片机作为一种常用的微控制器,具备处理速度快、成本低、易编程等优点,被广泛应用于舵机控制。
本文旨在介绍利用51单片机控制舵机的主要方法和步骤,并通过实验验证舵机控制效果。
章节二:51单片机舵机控制原理(约300字)51单片机通过PWM(脉冲宽度调制)技术来控制舵机。
PWM波形的占空比决定了舵机的位置。
当占空比为0%时,舵机处于最左转位置;当占空比为100%时,舵机处于最右转位置;当占空比为50%时,舵机处于中间位置。
通过改变占空比大小可以控制舵机的角度。
章节三:51单片机舵机控制程序设计(约300字)首先,需要通过51单片机的GPIO口与舵机连接,将舵机的控制线连接到51单片机的PWM输出口。
接下来,在主程序中初始化PWM相关参数,例如PWM的频率、占空比等。
然后,在主循环中,通过改变PWM占空比的值,实现对舵机位置的控制。
可以通过控制PWM值的增减来控制舵机的角度。
章节四:实验验证与结果分析(约200字)实验中,我们使用51单片机和舵机进行舵机控制实验。
通过改变PWM占空比大小,我们可以观察到舵机位置的变化。
实验结果显示,随着PWM占空比的增加,舵机的角度逐渐增加,反之亦然。
通过实验验证,说明了51单片机可以有效地控制舵机的运动。
综上所述,本文介绍了51单片机控制舵机的原理、程序设计步骤,并通过实验证明了其控制效果。
通过本文的研究,可以为舵机控制的相关研究提供参考和借鉴。
章节一:引言(约200字)舵机是一种广泛应用于机器人、航空模型、无人机等控制系统中的关键部件。
其通过控制电流使舵盘旋转,从而实现控制机械臂、舵面等部件的运动。
51单片机作为一种常用的微控制器,具备处理速度快、成本低、易编程等优点,被广泛应用于舵机控制。
如何用单片机控制舵机及程序详细
如何用单片机控制舵机及程序详细舵机概述舵机最早出现在航模运动中。
在航空模型中,飞行机的飞行姿态是通过调节发动机和各个控制舵面来实现的。
举个简单的四通飞机来说,飞机上有以下几个地方需要控制:1.发动机进气量,来控制发动机的拉力(或推力);2.副翼舵面(安装在飞机机翼后缘),用来控制飞机的横滚运动;3.水平尾舵面,用来控制飞机的俯仰角;4.垂直尾舵面,用来控制飞机的偏航角;遥控器有四个通道,分别对应四个舵机,而舵机又通过连杆等传动元件带动舵面的转动,从而改变飞机的运动状态。
舵机因此得名:控制舵面的伺服电机。
不仅在航模飞机中,在其他的模型运动中都可以看到它的应用:船模上用来控制尾舵,车模中用来转向等等。
由此可见,凡是需要操作性动作时都可以用舵机来实现。
舵机工作原理一般来讲,舵机主要由以下几个部分组成,舵盘、减速齿轮组、位置反馈电位计5k、直流电机、控制电路板等。
工作原理:控制电路板接受来自信号线的控制信号(具体信号待会再讲),控制电机转动,电机带动一系列齿轮组,减速后传动至输出舵盘。
舵机的输出轴和位置反馈电位计是相连的,舵盘转动的同时,带动位置反馈电位计,电位计将输出一个电压信号到控制电路板,进行反馈,然后控制电路板根据所在位置决定电机的转动方向和速度,从而达到目标停止。
舵机的基本结构是这样,但实现起来有很多种。
例如电机就有有刷和无刷之分,齿轮有塑料和金属之分,输出轴有滑动和滚动之分,壳体有塑料和铝合金之分,速度有快速和慢速之分,体积有大中小三种之分等等,组合不同,价格也千差万别。
例如,其中小舵机一般称作微舵,同种材料的条件下是中型的一倍多,金属齿轮是塑料齿轮的一倍多。
需要根据需要选用不同类型。
舵机的PWM信号1.PWM信号的定义PWM信号为脉宽调制信号,其特点在于他的上升沿与下降沿之间的时间宽度。
具体的时间宽窄协议参考下列讲述。
我们目前使用的舵机主要依赖于模型行业的标准协议,随着机器人行业的渐渐独立,有些厂商已经推出全新的舵机协议,这些舵机只能应用于机器人行业,已经不能够应用于传统的模型上面了。
舵机控制原理程序
舵机控制原理程序舵机控制原理程序第一章:引言舵机是一种用于控制机械装置位置和角度的装置,广泛应用于机器人、模型飞机、船舶等领域。
舵机的控制原理程序是通过向舵机发送特定的控制信号,使其转动到指定位置。
本论文将深入研究舵机控制的基本原理和编程方法。
第二章:舵机的工作原理舵机主要由电机、减速装置、位置反馈装置和控制电路组成。
电机通过齿轮传动将动力传递给舵盘或舵翼,位置反馈装置可以感知舵盘或舵翼的实际位置,将位置信息反馈给控制电路。
控制电路通过与位置要求进行比较,生成控制信号,控制舵盘或舵翼的位置和角度。
第三章:舵机控制的编程方法舵机控制的编程方法主要包括舵机PWM信号的生成和控制程序的编写。
PWM(脉冲宽度调制)信号是一种周期性的方波信号,通过改变方波的占空比来控制舵机的转动角度。
编程方法可分为硬件控制和软件控制两种。
硬件控制:通过外部电路将PWM信号传输给舵机,如使用单片机的IO口和计时器模块来生成PWM信号。
首先,将单片机的IO口配置为输出模式,然后设置计时器模块的工作方式和频率,最后根据要求计算占空比,并将占空比写入计时器的寄存器中,以生成PWM信号。
软件控制:通过软件方式生成PWM信号,即模拟PWM信号的工作原理。
在主程序中,设定一个周期性的计时器,然后在计时器中断中,根据要求计算舵机需要转动的角度,将舵机需要转动的位置信息转换为相应的占空比,并将占空比输出到舵机的控制引脚上,实现对舵机的控制。
第四章:实验与结果分析为了验证编程方法的正确性和稳定性,我们设计了一个舵机控制的实验。
首先,搭建好舵机控制电路,然后根据编程方法编写控制程序,通过生成PWM信号来控制舵机的转动角度。
实验结果表明,舵机能够按照设定的要求转动到指定的位置,控制精度较高。
综合以上所述,本论文主要研究了舵机控制的基本原理和编程方法,在硬件控制和软件控制两方面进行了详细的介绍和分析,并通过实验验证了编程方法的正确性和稳定性。
舵机控制的研究对于提高机械装置的控制精度和稳定性具有重要的意义。
舵机控制流程图
常规舵机控制流程图1.5ms脉宽)舵机电路方框图0.5—2.5ms舵机说明1,电机经过变速(减速)后连接到电位器柄旋转2,输入脉冲宽度为0.5—2.5ms,周期为3ms—20ms(数字舵机的脉冲周期因不同的客户使用的周期不同,常用为10ms;模拟舵机周期为20ms.)3,脉冲宽度,表示电位器转动的角度不同(即舵臂角度不同) 4,电机转速为14000/分钟,减速比为250:1,要求舵角转速为0.10-0.2S/60度(此部份与电机转速有关,程序方面需注意及时扫描电位器角度而给电机改变不同供电方式),扫描不及时易出现舵臂回抖现象.5,脉冲宽度不变的情况下,能锁住电机.6,堵转4秒钟后,电机进入低压供电(或PWM少占空比)工作模式,堵转一旦去除,电机供电进入正常模式.程序其它要求(因客户要求不同,需做不同类型的舵机)1,马达供电PWM(周期或占空比可调)2,电位器角度识别精度可调(1023分,255分,511分..)3,舵转动角度可调(-90 +90度)参考电路图:VR15KR1220C4104123J1CON3VDDS11G12S23G24D25D26D17D18U1UD4606GS11G12S23G24D25D26D17D18U2UD4606GVDDVDDVSS1P3.0/SCL2SDA/P3.13VPP/P3.24ADC8/P005ADC9/P016ADC10/P027ADC11/P038ADC12/P049ADC13/P0510ADC14/P0611ADC0/P1012ADC1/P1113ADC2/P1214ADC3/P1315ADC4/P1416ADC5/P1517ADC6/P1618ADC7/P1719VDD20U3SC51P5708SN+C210uin3G1o u t2U4XC6206-33+C310USinSin3.3V3.3VR3220KR4220K A-+MG1MOTOR SERVO R21KC1104o u t1o u t2o u t3o u t4o u t1o u t2o u t3o u t4mo ter正转1111反转111111STOP STOPSTOP 电机正转电机反转舵机角度及脉冲宽度关系:不良舵机现象:1,堵转保护人为堵转电机时,约3秒后电机进入低电流(即低压,占空比少)供电方式,用以降低电机损耗而保护舵机.堵转一旦去除,电机需立即进入正常供电方式.不良现象:A,无保护功能B,堵转去除后电机不能马上进入正常状态2,马达抖动轻微外力作用舵臂时,因电位器角度有此而有细微变化(如:0.02度)下,马达转动以校正角度差.不良现象:A,马达校正时力度过大在,是出现抖动现象.(如角度差与电机供电时间或PWM没有建立关系;全压供电方式)堵转保护流程图无刷舵机控制流程图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、概述
舵机最早出现在航模运动中。
在航空模型中,飞行机的飞行姿态是通过调节发动机和各个控制舵面来实现的。
举个简单的四通飞机来说,飞机上有以下几个地方需要控制:
1.发动机进气量,来控制发动机的拉力(或推力);
2.副翼舵面(安装在飞机机翼后缘),用来控制飞机的横滚运动;
3.水平尾舵面,用来控制飞机的俯仰角;
4.垂直尾舵面,用来控制飞机的偏航角;
遥控器有四个通道,分别对应四个舵机,而舵机又通过连杆等传动元件带动舵面的转动,从而改变飞机的运动状态。
舵机因此得名:控制舵面的伺服电机。
不仅在航模飞机中,在其他的模型运动中都可以看到它的应用:船模上用来控制尾舵,车模中用来转向等等。
由此可见,凡是需要操作性动作时都可以用舵机来实现。
2、结构和控制
一般来讲,舵机主要由以下几个部分组成,舵盘、减速齿轮组、位置反馈电位计5k、直流电机、控制电路板等。
工作原理:控制电路板接受来自信号线的控制信号(具体信号待会再讲),控制电机转动,电机带动一系列齿轮组,减速后传动至输出舵盘。
舵机的输出轴和位置反馈电位计是相连的,舵盘转动的同时,带动位置反馈电位计,电位计将输出一个电压信号到控制电路板,进行反馈,然后控制电路板根据所在位置决定电机的转动方向和速度,从而达到目标停止。
舵机的基本结构是这样,但实现起来有很多种。
例如电机就有有刷和无刷之分,齿轮有塑料和金属之分,输出轴有滑动和滚动之分,壳体有塑料和铝合金之分,速度有快速和慢速之分,体积有大中小三种之分等等,组合不同,价格也千差万别。
例如,其中小舵机一般称作微舵,同种材料的条件下是中型的一倍多,金属齿轮是塑料齿轮的一倍多。
需要根据需要选用不同类型。
舵机的输入线共有三条,红色中间,是电源线,一边黑色的是地线,这辆根线给舵机提供最基本的能源保证,主要是电机的转动消耗。
电源有两种规格,一是4.8V,一是6.0V,分别对应不同的转矩标准,即输出力矩不同,6.0V对应的要大一些,具体看应用条件;另外一根线是控制信号线,Futaba的一般为白色,JR的一般为桔黄色。
另外要注意一点,SANWA的某些型号的舵机引线电源线在边上而不是中间,需要辨认。
但记住红色为电源,黑色为地线,一般不会搞错。
舵机的控制信号为周期是20ms的脉宽调制(PWM)信号,其中脉冲宽度从0.5ms-2.5ms,相对应舵盘的位置为0-180度,呈线性变化。
也就是说,给它提供一定的脉宽,它的输出轴就会保持在一个相对应的角度上,无论外界转矩怎样改变,直到给它提供一个另外宽度的脉冲信号,它才会改变输出角度到新的对应的位置上。
舵机内部有一个基准电路,产生周期20ms,宽度1.5ms的基准信号,有一个比较器,将外加信号与基准信号相比较,判断出方向和大小,从而产生电机的转动信号。
由此可见,舵机是一种位置伺服的驱动器,转动范围不能超过180度,适用于那些需要角度不断变化并可以保持的驱动当中。
比方说机器人的关节、飞机的舵面等。
常见的舵机厂家有:日本的Futaba、JR、SANW A等,国产的有北京的新幻想、吉林的振华等。
现举Futaba S3003来介绍相关参数,以供大家设计时选用。
之所以用3003是因为这个型号是市场上最常见的,也是价格相对较便宜的一种(以下数据摘自Futaba产品手册)。
尺寸(Dimensions):40.4×19.8×36.0 mm
重量(Weight):37.2 g
工作速度(Operating speed):0.23 sec/60°(4.8V)
0.19 sec/60°(6.0V)
输出力矩(Output torque):3.2 kg.cm (4.8V)
4.1 kg.cm (6.0V)
由此可见,舵机具有以下一些特点:
>体积紧凑,便于安装;
>输出力矩大,稳定性好;
>控制简单,便于和数字系统接口;
正是因为舵机有很多优点,所以,现在不仅仅应用在航模运动中,已经扩展到各种机电产品中来,在机器人控制中应用也越来越广泛。
3、用单片机来控制
正是舵机的控制信号是一个脉宽调制信号,所以很方便和数字系统进行接口。
只要能产生标准的控制信号的数字设备都可以用来控制舵机,比方PLC、单片机等。
这里介绍利用51系列单片机产生舵机的控制信号来进行控制的方法,编程语言为C51。
之所以介绍这种方法只是因为笔者用2051实现过,本着负责的态度,所以敢在这里写出来。
程序用的是我的四足步行机器人,有删改。
单片机并不是控制舵机的最好的方法,希望在此能起到抛砖引玉的作用。
2051有两个16位的内部计数器,我们就用它来产生周期20 ms的脉冲信号,根据需要,改变输出脉宽。
基本思路如下(请对照下面的程序):
我用的晶振频率为12M,2051一个时钟周期为12个晶振周期,正好是1/1000 ms,计数器每隔1/1000 ms计一次数。
以计数器1为例,先设定脉宽的初始值,程序中初始为1.5ms,在for循环中可以随时通过改变a值来改变,然后设定计数器计数初始值为a,并置输出p12为高位。
当计数结束时,触发计数器溢出中断函数,就是void timer0(void) interrupt 1 using1 ,在子函数中,改变输出p12为反相(此时跳为低位),在用20000(代表20ms周期)减去高位用的时间a,就是本周期中低位的时间,c=20000-a,并设定此时的计数器初值为c,直到定时器再次产生溢出中断,重复上一过程。
# include <reg52.h>
#define uchar unsigned char
#define uint unsigned int
uint a,c;
sbit p12=P1^2;
void timer0(void) interrupt 1 using 1
{p12=!p12;
c=20000-c;
TH0=-(c/256); TL0=-(c%256);
if(c>=500&&c<=2500)c=a;
else c="20000-a"; }
void main(void)
{TMOD=0x11;
p12=1;
a=1500;
c=a;
TH0=-(a/256); TL0=-(a%256);
EA=1;
ET0=1; TR0=1;EX0=1;EX1=1;
ET1=1; TR1=1;
PX0=0;PX1=0;PT1=1;PT0=1;for(;;)
{
/*在这个for循环中,可以根据程序需要
在任何时间改变a值来改变脉宽的输
出时间,从而控制舵机*/
}
}
因为在脉冲信号的输出是靠定时器的溢出中断函数来处理,时间很短,因此在精度要求不高的场合可以忽略。
因此如果忽略中断时间,从另一个角度来讲就是主程序和脉冲输出是并行的,因此,只需要在主程序中按你的要求改变a值,例如让a从500变化到2500,就可以让舵机从0度变化到180度。
另外要记住一点,舵机的转动需要时间的,因此,程序中a值的变化不能太快,不然舵机跟不上程序。
根据需要,选择合适的延时,用一个a递增循环,可以让舵机很流畅的转动,而不会产生像步进电机一样的脉动。
这些还需要实践中具体体会。
舵机的速度决定于你给它的信号脉宽的变化速度。
举个例子,t=0试,脉宽为0.5ms,t=1s时,脉宽为1.0ms,那么,舵机就会从0.5ms对应的位置转到1.0ms对应的位置,那么转动速度如何呢?一般来讲,3003的最大转动速度在4.8V时为0.23s/60度,也就是说,如果你要求的速度比这个快的话,舵机就反应不过来了;如果要求速度比这个慢,可以将脉宽变化值线性到你要求的时间内,做一个循环,一点一点的增加脉宽值,就可以控制舵机的速度了。
当然,具体这一点一点到底是多少,就需要做试验了,不然的话,不合适的话,舵机就会向步进电机一样一跳一跳的转动了,尝试改变这“一点”,使你的舵机运动更平滑。
还有一点很重要,就是舵机在每一次脉宽值改变的时候总会有一个转速由零增加再减速为零的过程,这就是舵机会产生像步进电机一样运动的原因。