概率论卓相来岳嵘第五章习题解答

合集下载

概率论与数理统计习题册 第五章 答案

概率论与数理统计习题册 第五章  答案

P{X
>
4500}
=1−
P{X

4500}
= 1 − Φ⎜⎜⎝⎛
4500 − 4475 612.5
⎟⎟⎠⎞
≈ 1− Φ(1.01) = 1− 0.8413 = 0.1587
(2) P{4400
<
X
<
4500} = Φ⎜⎜⎝⎛
4500 − 4475 612.5
⎟⎟⎠⎞

Φ⎜⎜⎝⎛
4400 − 4475 612.5
E( Xi ) = 10× 0.4 + 9× 0.3 + 8× 0.2 + 7 × 0.05 + 6× 0.05 = 8.95 ,
D( Xi
)
=
E
(
X
2 i
)

( EX i
)2
=1.225 ,
设总分为 X ,则 X ~ N (500 × 8.95, 500 ×1.225) ,即 X ~ N (4475, 612.5) . 因此
n
∑ 解 设有 n 个数相加,X i 分别为每个数的舍入误差。记 X = Xi ,E( Xi ) = 0 , i =1
16
∑ D( Xi )
=
1 12
由定理一知,随机变量 Z
=
k =1
Xi − n⋅0 n / 12
近似地服从正态分布 N (0,1)
(1) 所求概率
P{ X ≤ 15} = P{−15 ≤ X ≤ 15} = P{ −15 < X < 15 } 55 55 55
P{| Xn − a |< 0.1} ≥ 0.95 的 n 的最小值应不小于自然数

概率论与数理统计》课后习题习题详解第五章

概率论与数理统计》课后习题习题详解第五章

习题解答习题5.11.设样本值如下:15, 20, 32, 26, 37, 18, 19, 43计算样本均值、样本方差、2阶样本矩及2阶样本中心矩.解 由样本均值的计算公式,有()8111152032263718194326.2588i i x x ===⨯+++++++=∑由样本方差的计算公式,有()28211102.2181i i s x x==-=-∑由2阶样本矩的计算公式,有82211778.58i i a x ===∑由2阶样本中心矩的计算公式,有()2821189.448i i b x x==-=∑2. 设总体~(12,4)X N ,125(,,,)X X X 是来自总体X 的样本,求概率12345{m a x (,,,,)12}P X X X X X >. 解 12345{m a x (,,,,)12}P X X X X X > []551311(0) 1()232=-Φ=-=3. 设总体X ~ P (λ),X 是容量为n 的样本的均值,求 ()E X 和 ()D X . 解 因总体X ~ P (λ),故有(),()E X D X λλ==,于是()()E X E X λ==()()D X D X n nλ== 4. 某保险公司记录的6n =起火灾事故的损失数据如下(单位:万元):1.86, 0.75, 3.21,2.45, 1.98, 4.12. 求该样本的经验分布函数.解 将样本观测值排序可得:0.751.86 1.982.453.21<<<<< 则经验分布函数为60, 0.751, 0.75 1.8661, 1.86 1.9831(), 1.98 2.4522, 2.45 3.2135, 3.21 4.1261, 4.12x x x F x x x x x <⎧⎪⎪≤<⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪⎪≤<⎪⎪≥⎩5.求标准正态分布的上侧0.01分位数和上侧0.48分位数 .解 由题知,X ~ (0,1)N ,求X 的上侧α分位数. 即求u α使满足{}P X u αα>=得{}1P X u αα≤=-即()1u ααΦ=-取0.01α=,查标准正态分布表得上侧0.01分位数为0.012.33u u α==取0.48α=,查标准正态分布表得上侧0.48分位数为0.480.05u u α==习题5.21.设总体~(8,36)X N ,129(,,,)X X X 是取自总体X 的样本,X 是样本均值,求{|7|2}P X -< .解 因~(8,36)X N ,且样本容量9n =,故36~(8,), ~(8,4)9X N X N 即 ,于是 9858{|7|2}{59}()()22P X P X ---<=<<=Φ-Φ (0.5)( 1.5)(0.5)(1.5)10.69150.933210.6247=Φ-Φ-=Φ+Φ-=+-=2.设 2~(9)X χ ,求λ使其满足()0.95P X λ<=解 由()0.95P X λ<=,得()0.05P X λ≥=,因为2~(9)X χ,所以查表可得20.05(9)16.919λχ==3. 设总体~(0,1X N ,1210(,,,)X X X 是取自总体X 的样本,求2221210()E X X X +++ 及2221210()D X X X +++ .解 由总体~(0,1)X N 可知~(0,1) (1,2,,10)i X N i = ,且1210,,,X X X 相互独立,于是22221210()~(10)X X X χ+++故有2221210()10E X X X +++= 2221210()21020D X X X +++=⨯=4. 设总体X ~ N (20 ,3),从中独立地抽取容量分别为10和15的两个样本,求它们的样本均值之差的绝对值大于0.3的概率.解 设这两个样本分别为1210,,,X X X 和1215,,,Y Y Y , 则对样本均值有101110i i X X ==∑ ~15131(20,),1015i i N Y Y ==∑~3(20,)15N依定理 X Y -~1(0,)2N ,所以{}0.3P X Y P ⎫->=>1P ⎫=-≤1=-ΦΦ(1210.6744⎡⎤=-Φ-=⎢⎥⎣⎦(查标准正态分布表可得)5.设X ~ t (12) ,(1) 求 a 使得()0.05P X a <=;(2)求 b 使得()0.99P X b >= 解 (1)由()0.05P X a <=利用t 分布的对称性可得()0.05P X a >-=,查表可得0.05(12) 1.7823 1.7823a t a -==⇒=-(2)由()0.99P X b >=得()0.01P X b ≤=,又由t 分布的对称性可得()0.01P X b >-=于是0.01(12) 2.6810 2.6810b t b -==⇒=-6.设~(8,12)X F ,求 λ 使得()0.01P X λ<=.解 由()0.01P X λ<= 得 ()0.99P X λ>=,于是查表可得0.990.0111(8,12)0.176(12,8) 5.67f f λ====习题5.31.设总体X ~ N (μ ,4),(X 1 ,X 2 ,… ,X 16)为其样本,2S 为样本方差,求: (1) P ()666.62<S ; (2) P ()865.4279.22<<S . 解 因为()221n S σ-~()21n χ-所以本题中2154S ~()215χ 则 (1) {}(){}22215156.666 6.6661524.997544P S P S P χ⎧⎫<=<⨯=<⎨⎬⎩⎭(){}211524.997510.050.95P χ=-≥=-=(2) {}221515152.279 4.865 2.279 4.865444P S P S ⎧⎫<<=⨯<<⨯⎨⎬⎩⎭(){}28.546251518.24375P χ=<<(){}(){}22158.546251518.24375P P χχ=>-≥0.900.250.6=-= 2. 总体2~(0,)X N σ,1225(,,,)X X X 是总体X 的样本,2X S 和分别是样本均值和样本方差,求λ,使5()0.99XP Sλ<=. 解 根据抽样分布定理知5~(24)X Xt S = 又由5()0.99XP Sλ<=得 5()0.01XP Sλ>= 故查表可得0.01(24) 2.4922t λ==3.设总体X ~ N (30 ,64),为使样本均值大于28的概率不小于0.9 ,样本容量n 至少应是多少?解 因为X ~(30,64)N , 所以样本均值X .~64(30,)N n因此X ()0,1N , 故{}{}28128P X P X >=-≤1X P ⎧⎫=-≤1⎛=-Φ ⎝0.9=Φ≥1.29≥,解得 27n ≥,所以n 至少应取27.*4.设总体X ~ N )16(1,μ 与总体Y ~ N )36(2,μ 相互独立,(X 1 ,X 2 ,… ,X 13)和(Y 1 ,Y 2 ,… ,Y 10)分别为来自总体X 和总体Y 的样本.试求两总体样本方差之比落入区间(0.159 ,1.058)内的概率.解 因为()221n S σ-~()21n χ-,所以本题中211216S ~()222912,36S χ~()29χ又因为21212222121291694936S S F S S ==~()12,9F从而221122229990.159 1.0580.159 1.058444S S P P S S ⎧⎫⎧⎫<<=⨯<<⨯⎨⎬⎨⎬⎩⎭⎩⎭(){}0.3577512,92.3805P F =<< 0.85=(查F 分布表*5. 设从两个正态总体~(4,1)~(6,1)X N Y N 和中分别独立地抽取两个样本1219(,,,)X X X 和1216(,,,)Y Y Y ,样本方差分别为2212S S 和.求λ,使2122()0.05S P S λ<=.解 根据抽样分布定理可知2122~(18,15)S F S 又由2122()0.05S P S λ<=可得2122()0.95S P S λ>=,于是查表可得0.950.0511(18,15)0.44(15,18) 2.27f f λ====*6.设总体X 与总体Y 相互独立,且都服从正态分布N (0 ,9),(X 1 ,X 2 ,… ,X 9)和(Y 1 ,Y 2 ,… ,Y 9)分别为来自总体X 和Y 的样本.试证明统计量T =∑∑==91291i ii iYX服从自由度为9的t 分布.证明 由正态分布的性质及样本的独立性知91ii X=∑~2(0,9)N得9119i i X =∑~(0,1)N 又因为i Y ~(0,9) (1,2,,9)N i =所以()22222291212913339Y Y Y Y Y Y ⎛⎫⎛⎫⎛⎫+++=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ~()29χ 由于两个总体X 和Y 是相互独立的,所以其相应的样本也是相互独立的,故 9119i i X =∑与92119i i Y =∑也相互独立,于是由t 分布的定义知991ii XX T ==∑∑ ~ ()9t综合练习五一、填空题1.设总体X 的一组样本观测值为1.4 ,2.3 ,1.8 ,3.4 ,2.7则样本均值 x= ( 2.32 ) ,样本方差 2s = ( 0.607 ) .2.设总体X 服从正态分布N (2 ,5),(X 1 ,X 2 ,… ,X 10)为其样本,则样本均值X 的分布为 ( 122N ⎛⎫⎪⎝⎭, ).3.设总体X 服从具有n 个自由度的2χ 分布,(X 1 ,X 2 ,… ,X n )为其样本,X为样本均值,则有 ()( )E X n = ,()( 2 )D X = .4.设总体X ~ N (μ ,2σ),(X 1 ,X 2 ,… ,X n )为其样本,X 、2S 分别为样本均值和样本方差,则有 X ~( 2N n σμ⎛⎫ ⎪⎝⎭, ),22)1(σS n - ~( 2(1)n χ- ),nSX μ- ~( t (n - 1) ).5.设总体X ~ N (1 ,4),(X 1 ,X 2 ,… ,X 5)为其样本,令T = 2543221)2()(X X X b X X a --+-则当a = (81 ) 、1()24b =时有T ~ 2χ(2) . 二、选择题1.设总体X ~ N (μ ,1),其中 μ 为未知参数,若(X 1 ,X 2 ,… ,X n )为来自总体X 的样本,则下列样本函数中( (b ) ) 不是统计量.(a )∑=ni i X1;(b )∑=-ni iX12)(μ ;(c) X 1 X 2 … X n ; (d )∑=ni i X12.2.设总体X ~ N (2 ,4),(X 1 ,X 2 ,… ,X 9)为其样本,X 为样本均值,则下列统计量中服从标准正态分布的是( (c ) ).(a ) X ; (b))2(43-X ; (c ))2(23-X ; (d ) )2(29-X . 3.设总体X ~ N (0 ,1),(X 1 ,X 2 ,… ,X 5)为其样本,令T = 2543221)(2)(3X X X X X +++则有T ~ ( (b ) ) .(a ) t (5) ; (b ) F (1 ,1) ; (c ) F (2 ,3) ; (d ) F (3 ,2) . 4.设总体X ~ N ⎪⎪⎭⎫ ⎝⎛410,,(X 1 ,X 2 ,… ,X 5)为其样本,令T=则有T ~( (d ) ).(a ) t (1) ; (b ) t (2) ; (c ) t (3) ; (d ) t (4) . 5.设总体X ~ N (0 ,1),(X 1 ,X 2 ,… ,X n )为其样本,X 、2S 分别是样本均值和样本标准差,则 ( (c ) ) .(a ) n X ~ N (0 ,1): (b ) X ~ N (0 ,1); (c )∑=ni i X 12 ~ 2χ(n ) ; (d )SX~ t (n - 1) . 6.设随机变量X 和Y 都服从标准正态分布,则 ( (c ) ) .(a ) Y X + 服从正态分布; (b ) 22Y X + 服从 2χ 分布;(c ) 2X 和 2Y 都服从 2χ 分布; (d )22Y X 服从F 分布.三、解答题1.设总体~(2,16)X N ,12(,,,)n X X X 是总体X 的样本,令2211ni i A X n ==∑,求2A 的数学期望2()E A .解 因为~(2,16)X N ,所以~(2,16) (1,2,,)i X N i n = ,则有 22()()()16420i i i E X D X E X =+=+= 于是22111()()2020n i i E A E X n n n===⨯⨯=∑2.设总体~(15,9),X N ,129(,,,)X X X 是总体X 的样本,X 是样本均值,.求常数c ,使()0.95.P X c ≤=解 根据抽样分布定理可知~(15,1)X N 又由()0.95P X c ≤=可得15()()0.951c P X c -≤=Φ= 查表可得15 1.645c -=,于是得16.645c =3.设一组数据20.5,15.5,30.2,20.5,18.6, 21.3,18.6,23.4来自于总体,X 求经验分布函数.解 将样本观测值排序可得:15.518.618.620.520.521.32<=<=<<< 则由定义可得经验分布函数为80, 15.51, 15.518.683, 18.620.585(), 20.521.386, 21.323.487, 23.430.081, 30.2x x x F x x x x x ≤⎧⎪⎪≤<⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪⎪≤<⎪⎪≥⎩4.设总体X ~ N (0 ,4),(X 1 ,X 2 ,… ,X 9)为其样本.求系数a 、b 、c ,使得T = 298762543221)()()(X X X X c X X X b X X a ++++++++服从 2χ 分布,并求其自由度.解 由于129,,,X X X 相互独立且来自总体X ~(0,4)N ,则由正态分布的线性运算性质有12X X +~(0,8)N ,345X X X ++~(0,12)N ,6789X X X X +++~(0,16)N于是,由2χ分布与正态分布的关系,有()()()22212345678981216X X X X X X X X X T ++++++=++ 服从2χ(3)分布,因此111,,81216a b c ===,自由度为3。

概率论第五章习题解答

概率论第五章习题解答

概率论第五章习题解答第一篇:概率论第五章习题解答第五章习题解答1.设随机变量X的方差为2,则根据车比雪夫不等式有估计P{X-E(X)≥2}≤ 1/2.P{X-E(X)≥2}≤D(X)22=122.随机变量X和Y的数学期望分别为-2和2,方差分别为1和4,相关系数为-0.5,则根据车比雪夫不等式有估计P{X+Y≥6}≤1/12.P{X+Y≥6}=P{(X+Y)-[E(X)+E(Y)]≥6}≤D(X)62=1123.电站供应一万户用电.设用电高峰时,每户用电的概率为0.9,利用中心极限定理,(1)计算同时用电的户数在9030户以上的概率;(2)若每户用电200 w,电站至少应具有多大发电量才能以0.95的概率保证供电?解:⑴ 设X表示用电户数,则X~B(10000,0.9),n=10000,p=0.9,np=9000,npq=900由中心定理得X~N(9000,900)近似P{X>9030}=1-P{X≤9030}⎧X-90009030-9000⎫=1-P⎨≤⎬900900⎩⎭=1-Φ(1)=1-0.8413=0.1587⑵ 设发电量为Y,依题意P{200X≤Y}=0.95⎧X-9000Y-9000⎫⎪⎪200即 P⎨≤⎬=0.95900900⎪⎪⎩⎭-9000200Φ()=0.95900Y-9000200≈1.65900Y=1809900 4.某车间有150台同类型的机器,每台机器出现故障的概率都是0.02,设各台机器的工作是相互独立的,求机器出现故障的台数不少于2的概率.解:设X表示机器出故障的台数,则X:B(150,0.02)Ynp=3,npq=2.94 由中心定理得X~N(3,2.94)近似P{X≥2}=1-P{X<2}2-3⎫⎧X-3=1-P⎨<⎬2.942.94⎩⎭=1-P{X<-0.58 32}=Φ(0.5832)=0.7201 5.用一种对某种疾病的治愈率为80%的新药给100个患该病的病人同时服用,求治愈人数不少于90的概率.解:设X表示治愈人数,则X:B(100,0.8)其中n=100,p=0.8,np=80,npq=16P{X≥90}=1-P{X<90}⎧X-8090-80⎫=1-P⎨<⎬1616⎩⎭=1-Φ(2.5)=0.0062 6.设某集成电路出厂时一级品率为0.7,装配一台仪器需要100只一级品集成电路,问购置多少只才能以99.9%的概率保证装该仪器是够用(不能因一级品不够而影响工作).解:设购置n台,其中一级品数为X,X:B(n,0.7)p=0.7,np=0.7n,npq=0.21nP{X≥100}=1-P{X<100}⎧X-0.7n100-0.7n⎫=1-P⎨<⎬0.21n0.21n⎩⎭10 0-0.7n=1-Φ()0.21n=0.999故Φ(-100-0.7n0.21n)=0.999有-100-0.7n0.21n=3.1⇒n=121(舍)或n=1707.分别用切比雪夫不等式与隶莫弗—拉普拉斯中心极限定理确定:当掷一枚硬币时,需要掷多少次才能保证出现正面的频率在0.4~0.6之间的概率不小于90%.解:设掷n次,其中正面出现的次数为X,X:B(n,p),p=⑴由切贝雪夫不等式,要使得P⎨0.4<12⎧⎩X⎫<0.6⎬≥0.9成立n⎭D(X)X⎧X⎫⎧XX⎫25⎧⎫n由于P⎨0.4< <0.6⎬=P⎨-p<0.1⎬=P⎨-E()<0.1⎬≥1-=1-2nnnn0.1n⎩⎭⎩⎭⎩⎭只要1-25X⎧⎫<0.6⎬≥0.9成立≥0.9,就有P⎨0.4<nn⎩⎭从而⇒n≥250⑵中心极限定理,要使得P⎨0.4<⎧⎩X⎫<0.6⎬≥0.9成立n⎭由于X:N(0.5n,0.25n)近似X⎧0.4n-0.5nX-0.5n0.6n-0.5n⎫⎧⎫P⎨0.4<<0.6⎬=P{0.4n<X<0.6n} =P⎨<<⎬n0.25n0.25n0.25n⎩⎭⎩⎭X-0.5n⎧-0.1n=P⎨<<0.25n⎩0.25n所以Φ(0.1n⎫0.1n-0.1n0.1n=Φ()-Φ()=2Φ()-1>0.9⎬0.25n⎭0.25n0.25n0.25 n0.1n0.25n)>0.95查表0.1n0.25n>1.65⇒n≥688.某螺丝钉厂的废品率为0.01,今取500个装成一盒.问废品不超过5个的概率是多少?解:设X表示废品数,则X:B(500,0.01) p=0.01,np=5,npq=4.955-5⎫⎧X-5P{X≤5}=P⎨≤⎬=Φ(0)=0.54.95⎭⎩4.95第二篇:概率论第一章习题解答1.写出下列随机试验的样本空间:1)记录一个小班一次数学考试的平均分数(以百分制记分);2)一个口袋中有5个外形相同的球,编号分别为1、2、3、4、5,从中同时取出3个球;3)某人射击一个目标,若击中目标,射击就停止,记录射击的次数;4)在单位圆内任意取一点,记录它的坐标.解:1)设小班共有n 个学生,每个学生的成绩为0到100的整数,分别记为x1,x2,Λxn,则全班平均分为x=∑xi=1nin,于是样本空间为12100niS={0,,Λ,}={|i=0,1,2,3,Λ100n}nnnn32)所有的组合数共有C5=10种,S={123,124,125,134,135,145,234,235,245,345} 3)至少射击一次,S={1,2,3,Λ}4)单位圆中的坐标(x,y)满足x2+y2<1,S={(x,y)|x2+y2<1}2.已知A⊂B,P(A)=0.3,P(B)=0.5,求P(A),P(AB),P(AB)和P(AB).解 P(A)=1-P(A)=1-0.3=0.7 P(AB)=P(A)=0.3(因为A⊂B)P(AB)=P(B-A)=P(B)-P(A)=0.2P(AB)=P(B)=0.5(因为A⊂B,则B⊂A)3.设有10件产品,其中6件正品,4件次品,从中任取3件,求下列事件的概率:1)只有一件次品; 2)最多1件次品; 3)至少1件次品.12C4C 解 1)设A表示只有一件次品,P(A)=36.C102)设B为最多1件次品,则表示所取到的产品中或者没有次品,或者只有一件次312C6C4C品,P(B)=3+36.C10C103)设C表示至少1件次品,它的对立事件为没有一件次品,3C6P(C)=1-P(C)=1-3C104.盒子里有10个球,分别标有从1到10的标号,任选3球,记录其号码.(1)求最小号码为5的概率.(2)求最大号码为5的概率.解1)若最小号码为5,则其余的2个球必从6,7,8,9,10号这5个球中取得。

概率论与数理统计第五章习题参考答案

概率论与数理统计第五章习题参考答案

F = S甲2 ~ F (4,4) S乙2

P⎪⎨⎧ ⎪⎩
S甲2 S乙2
<
F 1−
0.05
(4,4)
U
2
S甲2 S乙2
>
F0.05
2
(4,4)⎪⎬⎫ ⎪⎭
=
0.05
查表得: F0.05 (4,4) = 9.6,
2
F 1−
0.05
2
(4,4)
=
1 F0.025 (4,4)
=
0.1042

故拒绝域为 (0, 0.142) U (9.6, + ∞) .
54 67 68 78 70 66 67 70 65 69 问患者与正常人的脉搏有无显著差异(患者的脉搏可视为服从正态分布。α = 0.05 ) 解:设患者的脉搏为 X , 计算其样本均值与样本方差分别为 x = 67.4, s = 5.93
在检验水平α = 0.05 下,检验假设 H 0 : µ = µ0 = 72 H1 : µ ≠ µ0 = 72
问两台机器的加工精度是否有显著差异(α = 0.05 )?
解:在检验水平α = 0.05 下,检验假设 H 0 : µ1 = µ 2
H1 : µ1 ≠ µ2
因为
µ1,µ
2,σ
12,σ
2 2
均未知,且不知
σ
12与σ
2 2
是否相等,
故先检验假设 H 0′
:
σ
2 1
=
σ
2 2
,
H
1′
:
σ
2 1

σ
2 2

H1 : µ1 ≠ µ2
当假设 H 0 为真时,取检验统计量

概率论与数理统计第五章课后习题及参考答案

概率论与数理统计第五章课后习题及参考答案

概率论与数理统计第五章课后习题及参考答案1.用切比雪夫不等式估计下列各题的概率.(1)废品率为03.0,1000个产品中废品多于20个且少于40个的概率;(2)200个新生儿中,男孩多于80个而少于120个的概率(假设男孩和女孩的概率均为5.0).解:(1)设X 为1000个产品中废品的个数,则X ~)1000,03.0(B ,有30)(=X E ,1.29)(=X D ,由切比雪夫不等式,得)3040303020()4020(-<-<-=<<X P X P )103010(<-<-=X P )1030(<-=X P 709.0101.2912=-≥.(2)设X 为200个新生儿中男孩的个数,则X ~)200,5.0(B ,有100)(=X E ,50)(=X D ,由切比雪夫不等式,得)10012010010080()12080(-<-<-=<<X P X P )2010020(<-<-=X P )20100(<-=X P 87205012=-≥.2.一颗骰子连续掷4次,点数总和记为X ,估计)1810(<<X P .解:设i X 为该骰子掷第i 次出现的点数,则61)(==k X P i ,6,,2,1 =i ,6,,2,1 =k .27)654321(61)(=+++++=i X E ,691)654321(61)(2222222=+++++=i X E ,35)]([)()(22=-=i i i X E X E X D ,4,3,2,1=i .因为4321X X X X X +++=,且1X ,2X ,3X ,4X 相互独立,故有14)(=X E ,335)(=X D .由切比雪夫不等式,得)1418141410()1810(-<-<-=<<X P X P )4144(<-<-=X P )414(<-=X P 271.0433512=-≥.3.袋装茶叶用及其装袋,每袋的净重为随机变量,其期望值为100g ,标准差为10g ,一大盒内装200袋,求一盒茶叶净重大于5.20kg 的概率.解:设i X 为一袋袋装茶叶的净重,X 为一盒茶叶的净重,由题可知∑==2001i i X X ,100)(=i X E ,100)(=i X D ,200,,2,1 =i .因为1X ,2X ,…,200X 相互独立,则20000)()(2001==∑=i i X E X E ,20000)()(2001==∑=i i X D X D .)()(20500)()(()20500(2001X D X E X D X E X P X P i i ->-=>∑=)1020020000205001020020000(⋅->⋅-=X P )2251020020000(>⋅-=X P 由独立同分布的中心极限定理,1020020000⋅-X 近似地服从)1,0(N ,于是0002.0)5.3(1)2251020020000(=Φ-≈>⋅-X P .4.有一批建筑用木桩,其80%的长度不小于3m .现从这批木桩中随机取出100根,试问其中至少有30根短于3m 的概率是多少?解:设X 为100根木桩中短于3m 的根数,则由题可知X ~)2.0,100(B ,有20)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)30(1)30(<-=≥X P X P )42030(1)()((1-Φ-=-Φ-=X D X E X 0062.0)5.2(1=Φ-=.5.某种电器元件的寿命服从均值为100h 的指数分布.现随机选取16只,设它们的寿命是相互独立的.求这16只元件寿命总和大于1920h 的概率.解:设i X 为第i 只电器元件的寿命,由题可知i X ~)01.0(E ,16,,2,1 =i ,且1X ,2X ,…,16X 相互独立,则100)(=i X E ,10000)(=i X D .记∑==161i i X X ,则1600)()(161==∑=i i X E X E ,160000)()(161==∑=i i X D X D .))()(1920)()(()1920(X D X E X D X E X P X P ->-=>)400160019204001600(->-=X P )8.04001600(>-=X P ,由独立同分布的中心极限定理,1600-X 近似地服从)1,0(N ,于是2119.0)8.0(1)8.04001600(=Φ-=>-X P .6.在数值计算中中,每个数值都取小数点后四位,第五位四舍五入(即可以认为计算误差在区间]105,105[55--⨯⨯-上服从均匀分布),现有1200个数相加,求产生的误差综合的绝对值小于03.0的概率.解:设i X 为每个数值的误差,则i X ~)105,105(55--⨯⨯-U ,有0)(=i X E ,1210)(8-=i X D ,1200,,2,1 =i .从而0)()(12001==∑=i i X E X E ,61200110)()(-===∑i i X D X D .由独立同分布的中心极限定理,X 近似地服从)10,0(6-N ,于是)03.0(<X P ))()(03.0)()((X D X E X D X E X P -≤-=12101200003.0121012000(44--⋅-≤⋅-=X P 9974.01)3(2=-Φ=.7.某药厂断言,该厂生产的某药品对医治一种疑难的血液病治愈率为8.0.医院检验员任取100个服用此药的病人,如果其中多于75个治愈,就接受这一断言,否则就拒绝这一断言.(1)若实际上此药对这种病的治愈率是8.0,问接受这一断言的概率是多少?(2)若实际上此药对这种病的治愈率是7.0,问接受这一断言的概率是多少?解:设X 为100个服用此药的病人中治愈的个数,(1)由题可知X ~)8.0,100(B ,则80)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 48075(1))()((1-Φ-=-Φ-=X D X E X 8944.0)25.1(=Φ=.(2)由题可知X ~)7.0,100(B ,则70)(=X E ,21)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 217075(1)()((1-Φ-=-Φ-=X D X E X 1379.0)09.1(1=Φ-=.8.一射手在一次射击中,所得环数的分布律如下表:X678910P 05.005.01.03.05.0求:(1)在100次射击中环数介于900环与930环之间的概率是多少?(2)超过950环的概率是多少?解:设X 为100次射击中所得的环数,i X 为第i 次射击的环数,则∑==1001i i X X ,15.9)(=i X E ,95.84)(2=i X E ,2275.1)]([)()(22=-=i i i X E X E X D ,100,,2,1 =i .由1X ,2X ,…,100X 相互独立,得915)()(1001==∑=i i X E X E ,75.122)()(1001==∑=i i X D X D .由独立同分布的中心极限定理,75.122915-X 近似地服从)1,0(N ,于是(1))930900(≤≤X P ))()(930)()()()(900(X D X E X D X E X X D X E P -≤-≤-=75.12291593075.12291575.122915900(-≤-≤-=X P )75.1221575.122915(≤-=X P 823.01)35.1(2=-Φ≈.(2))950(>X P ))()(950)()((X D X E X D X E X P ->-=75.122915950)()((->-=X D X E X P 001.0)1.3(1=Φ-≈.9.设有30个电子元件1A ,2A ,…,30A ,其寿命分别为1X ,2X ,…,30X ,且且都服从参数为1.0=λ的指数分布,它们的使用情况是当i A 损坏后,立即使用1+i A (29,,2,1 =i ).求元件使用总时间T 不小于350h 的概率.解:由题可知i X ~)1.0(E ,30,,2,1 =i ,则10)(=i X E ,100)(=i X D .记∑==301i i X T ,由1X ,2X ,…,30X 相互独立,得300)()(301==∑=i i X E T E ,3000)()(301==∑=i i X D T D .))()(350)()(()350(T D T E T D T E T P T P ->-=>30103003503010300(⋅->⋅-=T P )91.03010300(>⋅-≈T P ,由独立同分布的中心极限定理,3010300⋅-T 近似地服从)1,0(N ,于是1814.0)91.0(1)91.03010300(=Φ-=>⋅-T P .10.大学英语四级考试,设有85道选择题,每题4个选择答案,只有一个正确.若需要通过考试,必须答对51道以上.试问某学生靠运气能通过四级考试的概率有多大?解:设X 为该学生答对的题数,由题可知X ~41,85(B ,则25.21)(=X E ,9375.15)(=i X D ,85,,2,1 =i .由棣莫弗—拉普拉斯中心极限定理,近似地有9375.1525.21-X ~)1,0(N ,得)8551(≤≤X P ))()(85)()()()(51(X D X E X D X E X X D X E P -≤-≤-=)9375.1525.21859375.1525.219375.1525.2151(-≤-≤-=X P 0)45.7()97.15(=Φ-Φ=.即学生靠运气能通过四级考试的概率为0.。

概率论与数理统计第五章习题解答

概率论与数理统计第五章习题解答

第五章 假设检验与一元线性回归分析 习题详解解:这是检验正态总体数学期望μ是否为提出假设:0.32:,0.32:10≠=μμH H由题设,样本容量6n =, 21.12=σ,1.121.10==σ,所以用U 检验当零假设H 0成立时,变量:)1,0(~61.10.320N X n X U -=-=σμ 因检验水平05.0=α,由05.0}|{|=≥λU P ,查表得96.1=λ 得到拒绝域: 96.1||≥u计算得: 6.31)6.318.310.326.310.306.32(61=+++++⨯=x89.061.10.326.310-=-=-=n x u σμ因 0.89 1.96u =<它没有落入拒绝域,于是不能拒绝H 0,而接受H 0,即可以认为0.32=μ,所以可以认为这批机制砖的平均抗断强度μ显着为32.0kg/cm 2。

解:这是检验正态总体数学期望μ是否大于10提出假设:10:,10:10>≤μμH H 即:10:,10:10>=μμH H由题设,样本容量5n =,221.0=σ,1.01.020==σ,km x 万1.10=,所以用U 检验当零假设H 0成立时,变量:)1,0(~51.010N X n X U -=-=σμ 因检验水平05.0=α,由05.0}{='≥λU P ,查表得64.1'=λ 得到拒绝域: 64.1≥u 计算得: 24.251.0101.100=-=-=n x u σμ 因 2.24 1.64u =>它落入拒绝域,于是拒绝零假设 H 0,而接受备择假设H 1,即可认为10>μ所以可以认为这批新摩托车的平均寿命μ有显者提高。

解:这是检验正态总体数学期望μ是否小于240提出假设:240:,240:10<≥μμH H即:240:,240:10<=μμH H由题设,样本容量6n =,6252=σ,256250==σ,220=x ,所以用U 检验当零假设H 0成立时,变量:)1,0(~625240N X n X U -=-=σμ 因检验水平05.0=α,由05.0}{='-≤λU P ,查表得64.1'=λ 得到拒绝域: 64.1-≤u 计算得:959.16252402200-=-=-=n x u σμ 因 1.959 1.64u =-<-它落入拒绝域,于是拒绝H 0,而接受H 1,即可以认为240<μ 所以可以认为今年果园每株梨树的平均产量μ显着减少。

概率论第五章 习题解答

概率论第五章 习题解答

第五章 数理统计的基础知识I 教学基本要求1、理解总体、个体、样本、统计量、样本均值和样本方差的概念,会根据样本数据计算样本均值和样本方差;2、了解经验分布函数的概念,了解直方图、茎叶图的作法;3、了解2χ分布、t 分布、F 分布的定义,会查表计算分位数;4、了解正态总体的常用抽样分布.II 习题解答A 组1、某学校学生会进行问卷调查了解大学生使用手机的情况,该项研究中总体和样本各是什么?解:该项研究中总体是该学校全体大学生;样本是该学校被问卷调查的大学生.2、为了解经济系管理专业本科毕业生工作后的就业情况,调查了某地区30名2010年毕业的管理专业本科生工作后的月薪情况.该项研究中总体和样本各是什么?样本容量是多少?解:总体是该地区2010年毕业的经济系管理专业本科生的月薪;样本是被调查的30名2010年毕业的经济系管理专业本科生的月薪;样本容量是30.3、某厂生产的晶体管的使用寿命服从指数分布,为了解其平均寿命,从中抽出n 件产品检测,什么是总体、样本?样本的分布是什么?解:总体是该厂生产的晶体管的寿命,其分布是指数分布()E λ;样本是从该厂抽出的n 个晶体管的寿命;记第i 个晶体管的寿命为i x ,则~()i x E λ(1,2,,)i n =,样本的分布为∑==-=-∏ni iix nni x ee11λλλλ.4、某工厂通过抽样调查得到5名工人一周内生产的产品数为149、156、160、138、149.求样本均值和样本方差?解:样本均值5111(149156160138149)150.455i i x x ===++++=∑;样本方差52211()51i i s x x ==--∑ 2221[(149150.4)(156150.4)(149150.4)]70.34=-+-++-=.5、假设某地区30名2010年毕业的管理专业本科生工作后的月薪数据如下: 1909 2086 2120 1999 2320 2091 2071 2081 2132 2336 2572 1825 1914 1992 2232 1950 1775 2203 2025 2096 2224 2044 1871 2164 1971 1950 1866 1738 1967 1808 作频率分布表(分6组)以及画出频率直方图?解:最大值为2572,最小值为1738,组距近似为140617382572≈-=d ,其频数频6、设总体2~(,)X N μσ,假如要以0.9606的概率保证偏差||0.1x μ-<,问当20.25σ=时,样本容量应取多大?解:设样本容量为n ,则2~(,)x N nσμ,于是(||0.1)210.9606x p x p μ-<=<=Φ-=1735187520152155 2295 2435 x2575(0.98035⇒Φ= 查正态分布表得06.25≈n,从而106.09n ≈,故n 取106. 7、从一个正态总体),(~2σμN X 中抽取容量为10的样本,且(||4)0.02p x μ->=,求σ?解:因为2~(,)x N nσμ,故(||4)|2[10.02x p x p μ->=>=-Φ=0.99⇒Φ=,查正态分布表得33.2104=σ,解得 5.43σ=.8、设在总体),(~2σμN X 抽取一个容量为16的样本,这里μ、2σ均未知,求22(1.664)s p σ≤?解:因为222(1)~(1)n s n χσ--及16n =,所以222215(1.664)(24.96)0.95s s p p σσ≤=≤=.9、设总体~(,16)X N μ,1x 、2x 、…、10x 为取自该总体的样本,已知2()0.1p s a >=,求常数a ?解:因为222(1)~(1)n s n χσ--、10n =、4σ=,所以2299()1()0.11616s p s a p a >=-≤=,即299()0.91616s p a ≤=查自由度为9的2χ分布表得,914.68416a =,所以26.105a =. 10、设总体),(~2σμN X ,1x 、2x 、…、n x 为取自该总体的样本,求:(1) 22(())p x n σμ-≤;(2) 当样本容量很大时,222(())s p x nμ-≤;(3) 当样本容量等于6时,222(())3s p x μ-≤? 解:(1) 2222()(())(1)x p x p n n σμμσ--≤=≤,易知222()~(1)x nμχσ-,查自由度为1的2χ分布表,得22(())0.6826p x nσμ-≤=;(2) 当样本容量很大时,22()x s nμ-近似服从)1(2χ,所以22222()(())(2)0.8426s x p x p n s nμμ--≤=≤=;(3) 因为当样本容量等于6~(5)x t ,所以2222(())4)(|2)0.93S x x p x p p μ-≤=≤=≤=.11、设1x 、2x 、…、10x 为取自总体~(0,0.09)X N 的样本,求1021( 1.44)ii p x=>∑?解:因为10221()~(10)0.3i i x χ=∑,所以10101022221111.44( 1.44)(())1(()16)0.10.30.30.3i i i i i i x x p x p p ===>=>=-≤=∑∑∑ 查自由度为10的2χ分布表得,1021(()16)0.90.3i i x p =≤=∑.12、设1x 、2x 、…、n x 是取自总体2~(,)X N μσ的样本,x 为样本均值,又记22111()1n i i s x x n ==--∑、22211()n i i s x x n ==-∑、22311()1n i i s x n μ==--∑、22411()n i i s x n μ==-∑,则服从分布(1)t n -的随机变量T =__ _____ .x Bx Cx Dx解:~(0,1)x N 、2222~(1)ns n χσ-,又x 与22s 独立,故~(1)x x t n =-.13、若~()T t n ,则2T 服从什么分布?解:设T =~(0,1)X N 、2~()Y n χ,且X 和Y 独立,则 22~(1)X χ,且2X 和Y 独立,从而22~(1,)/X T F n Y n=.B 组1、设1x 、2x 、…、9x 为取自总体~(0,4)X N 的样本,求常数a 、b 、c 使得222123456789()()()Q a x x b x x x c x x x x =++++++++服从2χ分布,并求其自由度? 解:~(0,1)N~(0,1)N~(0,1)N 且三者独立,故2222~(3)χ++,从而 18a =、112b =、116c =.2、设有k 个正态总体2~(,)i i X N μσ,从第i 个总体中抽取容量为i n 的样本1i x 、2i x 、…、i in x ,且各组样本间相互独立,记11in i ijj ix xn ==∑(1,2,,)i k =、12k n n n n =+++,求22111()in k iji i j W xx σ===-∑∑的分布?解:因为221222()(1)~(1)in iji j i i i xx n s W n χσσ=--==-∑,且22(1)i i n s σ-(1,2,,)i k =相互独立,故22111()in k iji i j W xx σ===-∑∑221(1)ki i i n s σ=-=∑21~((1))ki i n χ=-∑,而11(1)kkiii i n n k n k ==-=-=-∑∑,故222111()~()in k ij ii j W xx n k χσ===--∑∑. 3、设随机变量X 、Y 相互独立且都服从标准正态分布,而1x 、2x 、…、9x 和1y 、2y 、…、9y 分别是取自总体X 、Y 的相互独立的简单随机样本,求统计量Z =分布?解:因为129~(0,9)x x x N +++,故129~(0,1)3x x x N +++,而2222129~(9)y y y χ+++,又因129x x x +++与222129y y y +++独立,所以~(9)Z t =. 4、设总体2~(,)X N μσ,从中取出样本1x 、2x 、…、n x 、1n x +,记11nn i i x x n ==∑、2211()1n ni ni s x x n ==--∑~(1)t n -. 证明:因为21~(,)n x N u σ+,211~(,)n n i i x x N n nσμ==∑,且1n x +与n x 独立,故21(1)~(0,)n n n x x N n σ++-,又因222(1)~(1)n n s n χσ--且2n s 与1n n s x +-独立,故~(1)t n -.5、设总体~(0,4)X N ,而1x 、2x 、…、15x 为取自该总体的样本,则随机变量22212102221112152()x x x Y x x x +++=+++服从的分布? 解:因为~(0,1)2i x N ,故22~(1)4i x χ(1,2,,15)i =,再由1x 、2x 、…、15x 独立,故22221210~(10)4x x x χ+++、2222111215~(5)4x x x χ+++,所以22212102221210222222111215*********~(10,5)2()54x x x x x x Y F x x x x x x ++++++==++++++. 6、设总体~(0,1)X N ,1x 、2x 、…、n x 为取自该总体的样本,求52126(1)5ii nii x n V x===-∑∑(5)n >的分布?解:因为5221~(5)ii xχ=∑、226~(5)nii x n χ=-∑,且521ii x =∑与26nii x=∑独立,故55221122665(1)~(5,5)5(5)iii i nniii i xx n V F n xn x=====-=--∑∑∑∑.。

概率论第五章习题解答(全)

概率论第五章习题解答(全)

10 ) 1 0.90 n 12

(
10 ) 0.95 ,查表得 (1.64) 0.95 n 12
n 443 。

10 1.64 ,解得 n 12
即最多可有 443 个数相加,可使得误差总和的绝对值小于 10 的概率不小于 0.90。 4、 设各零件的重量都是随机变量, 它们相互独立, 且服从相同的分布, 其数学期望为 0.5kg, 圴方为 0.1kg,问 5000 只零件的总重量超过 2510kg 的概率是多少? 解 设每只零件的重量为 X i , i 1, 2, ,5000 ,由独立同分布的中心极限定理知
100
i
, 则 X b(100, 0.9) 。 由德莫弗――拉普拉斯定理知,
X 100 0.9 近 100 0.9 0.1
2 10000 i 1
X
i
索赔总金额不超过 2700000 美元的概率
P{ X 2700000} 1` P{ X 270000}
10000
1 P{
X
i 1
i
280 10000
800 100
2700000 2800000 } 80000
10000
1 P{
2 2
X
i 1
16
i

于是随机变量
Z
Xi n
i 1
16
2 n

X
i 1
16
i
1600
10000 16
X 1600 近似的服从 N (0,1) 400
P{ X 1920} P{
X 1600 1920 1600 X 1600 } P{ 0.8} 400 400 400 X 1600 1 P{ 0.8} 1 (0.8) = 1 0.7881 0.2119 . 400

概率论与数理统计 第五章 概率数理统计

概率论与数理统计 第五章 概率数理统计

概率论与数理统计第五章概率数理统计例题
10. 设总体 X 的密度 f(x)=2������ ������ − 最大似然验估计量。
1
(������−μ ) ������
λ>0,λ、μ 均为未知参数,������1 ,������2 ,… , ������������ 为样本,求 λ、μ 的
11. 设总体 X 的密度 f(x)=
15. 设某种病发病的年龄服从正态分布 N (μ,δ2 ) , 随机抽取 10 名患者, 记下年龄������1 ,������2 ,… , ������10 , 10 10 2 计算 ������ =1 ������������ =210, ������ =1 ������������ =4510,问显著水平 α=0.05 下可否认为该病发病的平均年龄 为 18 岁。
������������ +1 −������ ������ ������ ������ +1
~t(n-1)。
概率论与数理统计第五章概率数理统计例题
4. 设总体 X~N(μ, δ2 ) (δ>0) ������1 ,������2 ,… , ������2������ (n>2) 是 X 的一组简单随机样本, 设������=2������ ������=
求������1 ,������2 ,… , ������������ 为样本观测值,求 a 的矩估计量和最大似然估计量。
概率论与数理统计第五章概率数理统计例题
������ ������
13. 设总体 X 的密度为 f(x)=
k −1 !
������ ������−1 ������ −β x 0 < x ,β<0 为未知参数,k>0,为已知参数, x≤0 0

概率论第四、五章课后习题答案

概率论第四、五章课后习题答案

第四章 随机变量的数字特征2.某产品的次品率为0.1,检验员每天检验4次,每次随机地取10件产品进行检验,如发现其中的次品数多于1,就去调整设备。

以X 表示一天中调整设备的次数,试求E (X )。

(设诸产品是否为次品是相互独立的。

)解:先求检验一次,决定需要调整设备的概率。

设抽检出次品件数为Y ,则Y ~b (10,0.1).记需调整设备一次的概率为p ,则2639.01.09.01109.01}1{}0{1)1(910=⨯⨯⎪⎪⎭⎫ ⎝⎛--==-=-=>=Y P Y P Y P p 又因各次检验结果相互独立,故)2639.0,4(~b X X 的分布律为于是0556.12639.0444)1(43)1(62)1(41)(43223=⨯==⨯+-⨯+-⨯+-⨯=p pp p p p p p X E以后将会知道若X ~b (n ,p ),则np X E =)(.6.(1)设随机变量X 的分布律为求)53(),(),(22+XE X E X E(2)设)(~λπX ,求)11(+X E解:(1)E (X )=(-2)⨯0.4+0⨯0.3+2⨯0.3=-0.2 由关于随机变量函数的数学期望的定理,知E (X 2)=(-2)2⨯0.4+02⨯0.3+22⨯0.3=2.8E (3X 2+5)=[3⨯ (-2)2+5]⨯0.4+[3⨯ 02+5]⨯0.3+[3⨯22+5]⨯0.3=13.4如利用数学期望的性质,则有E (3X 2+5)=3E (X 2)+5=3⨯2.8+5=13.4(2)因)(~λπX ,故!}{k ek X P k λλ-==)1(1)1()1!(!)!1()!1(}{11)11(1100λλλλλλλλλλλλλλλλ--∞=-∞=-∞=+-∞=-∞=-=-=-==+=+==+=+∑∑∑∑∑eeej ej ek ek ek X P k X E j jj jk k k k k7. (1)设随机变量X 的概率密度为⎩⎨⎧≤>=-0,00,)(x x e x f x求(I)Y =2X ;(II) Y =e -2X 的数学期望(2)设随机变量n X X X ,,2,1 相互独立,且都服从(0,1)上的均匀分布,(I)求},,max{2,1n X X X U =的数学期望;(II)求},,min{2,1n X X X V =的数学期望。

大学概率论——第五章 习题解 ppt课件

大学概率论——第五章 习题解 ppt课件

大学概率论——第五章 习题解
8、有一批建筑房屋用的木柱,其中80%的长度
不小于3m,现在从这批木柱中随机地取出100根, 问其中至少有30根短于3m的概率是多少? 解:利用拉普拉斯中心极限定理
从一批木柱中随机地取出100根,不放回抽样 近似的看作放回抽样。对100根母猪长度测量
看成进行100次贝努里试验,设随机变量
X={6000粒种子中的良种数}
大学概率论——第五章 习题解
精品资料
• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”
10.9214 0.0786
大学概率论——第五章 习题解
7、计算机在进行加法时,将每个加数舍入最靠近
它的整数,设所有舍入误差是独立的,且在(-0.5,0.5) 上服从均匀分布,1)若将1500个数相加,问误差总
和的绝对值超过15的概率是多少?2)最多可有多少 个数相加使得误差总和的绝对值小于10的概率不小于
大学概率论——第五章 习题解
P159 3、某计算机系统有120个终端,每个终端 有5%的时间在使用,若各个终端使用与否是相互 独立的,试求有10个或更多终端在使用的概率。
解:设 X i 1 2 0 个 终 端 中 第 i 个 终 端 在 使 用
则 Xi ~B120,0.05 EX1200.05 0 .6 D X 1 2 00 .0 50 .9 5 5 .7
n 12
Pn 10 P( n 10 )
n/12 n/12
P( 10 n 10 )

概率论第五章习题答案

概率论第五章习题答案

数理统计习题答案习题5.1解答1. 设总体服从()λP 分布,试写出样本n X X X ,,,21 的联合分布律.解:()的分布律为:即X P X ,~λ ()!k e k X P k λλ-==, ,,,2,1,0n k =n X X X ,,,21 的联合分布律为:()n n x X x X x X P ===,,,2211 = ()()()n n x X P x X P x X P === 2211=nx x x x e x e x e nλλλλλλ---⋅2121=λλn n xx x e x x x n-+++!!!2121, n i n x i ,,2,1,,,2,1,0 ==2. 设总体X 服从()1,0N 分布,试写出样本n X X X ,,,21 的联合分布密度. 解:()1,0~N X ,即X 分布密度为:()2221x e x p -=π,+∞<<-∞xn X X X ,,,21 的联合分布密度为:()∏==ni inx p x x x p 121*)(,...,=22222221212121n x x x eee--⋅-πππ=()}21exp{2122∑=--n i i x n π n i x i ,,2,1, =+∞<<∞-. 3. 设总体X 服从()2,σμN 分布,试写出样本n X X X ,,,21 的联合分布密度. 解:()2,~σμN X ,即X 分布密度为:()x p =()}2exp{2122σμσπ--x ,∞<<∞-xn X X X ,,,21 的联合分布密度为:()()∏==ni i n x p x xx p 121*,...,=()})(21exp{211222∑--⋅⋅=-ni i n n x μσσπ, n i x i ,,2,1, =+∞<<∞-.4. 根据样本观测值的频率分布直方图可以对总体作什么估计与推断? 解:频率分布直方图反映了样本观测值落在各个区间长度相同的区间的频率大小,可以估计X 取值的位置与集中程度,由于每个小区间的面积就是频率,所以可以估计或推断X 的分布密度. 5. 略. 6. 略.习题5.2解答1. 观测5头基础母羊的体重(单位:kg)分别为53.2,51.3,54.5,47.8,50.9,试计算这个样本观测值的数字特征:(1)样本总和,(2)样本均值,(3)离均差平方和,(4)样本方差,(5)样本标准差,(6)样本修正方差,(7)样本修正标准差,(8)样本变异系数,(9)众数,(10)中位数,(11)极差,(12)75%分位数.解:设9.50,8.47,5.54,3.51,2.5354321=====x x x x x()7.257151=∑=i ix,()54.51251==∑=i ixx(3) ss =()2512512x n xx xi ii i-=-∑∑===13307.84-5×51.542=25.982(4)2s =()∑=-51251i i x x =51ss =5.1964, (5)s =2.28; (6)s s * =ss n 11-=6.4955 (7)*s =2.5486; (8)cv =100⨯*xs =4.945;(9)每个数都是一个,故没有众数. (10)中位数为3x =51.3; (11)极差为54.5-47.8=6.7;(12)0.75分位数为53.2.2. 观测100支金冠苹果枝条的生长量(单位:cm)得到频数表如下:组下限 19.5 24.5 29.5 34.5 39.5 44.5 49.5 54.5 59.5 组上限 24.5 29.5 34.5 39.5 44.5 49.5 54.5 59.5 64.5 组中值 22 27 32 37 42 47 52 57 62频数 8 11 13 18 18 15 10 4 3试计算这个样本观测值的数字特征:(1)样本总和,(2)样本均值,(3)离均差平方和,(4)样本方差,(5)样本标准差,(6)样本修正方差,(7)样本修正标准差,(8)样本变异系数,(9)众数,(10)中位数,(11)极差,(12)75%分位数.解:设组中值依次为921,,,x x x ,频数依次为921,,,n n n ,=+++=921n n n n 100,()=∑=911i ii x n 3950;()=+=∑=919112i ii xn n n x 39.5;()()=-=-=∑∑==29129123x n xn x x n ss i ii i i i 25.39100166300⨯-=10275;()==ss s 100142102.75; ()=s 510.137;()=-=*ss n s 1162103.788 ()=*s 710.188;()=⨯=*1008xs cv 25.79;()42379或众数是(),50210=n ;中位数为5.3924237=+;()11极差为:62-22=40;()4775.0,83,6812621521分位数为∴=+++=+++n n n n n n .3.略.4. 设n x x x ,,,21 是一组实数,a 和b 是任意非零实数,bax y i i -=(n i ,,1 =),x 、y 分别为i x 、i y 的均值,2xs =∑-iix xn2)(1,2ys =1n()y y i i-∑2,试证明:① b a x y -=;② 222b s s x y =. 解①:∑∑==-==ni i ni i b a x ny ny 1111= ()∑=-ni i a x bn11= ⎪⎪⎭⎫ ⎝⎛-∑=n i i na x nb 11=b a x -; ②2y s =1n∑-ii y y 2)(=∑=⎪⎪⎭⎫⎝⎛---ni i b a x b a x n121=∑=⎪⎪⎭⎫⎝⎛-ni i b x x n121=221x s b .1.求分位数(1)()8205.0x ,(2)()12295.0x 。

概率论与数理统计+第五章+大数定律及中心极限定理+练习题答案

概率论与数理统计+第五章+大数定律及中心极限定理+练习题答案

〖填空题〗例5.1(棣莫佛-拉普拉斯定理) 设某种电气元件不能承受超负荷试验的概率为0.05.现在对100个这样的元件进行超负荷试验,以X 表示不能承受试验而烧毁的元件数,则根据中心极限定理{}≈≤≤105X P.分析 不能承受试验而烧毁的元件数X ~),(p n B .根据棣莫佛-拉普拉斯定理,X 近似服从正态分布),(npq np N ,其中n =100,p =0.05,q =0.95.因此{}.4890.0)0()29.2(29.275.45075.451075.450105105=-≈⎭⎬⎫⎩⎨⎧≤-≤=⎭⎬⎫⎩⎨⎧-≤-≤=⎭⎬⎫⎩⎨⎧-≤-≤-=≤≤ΦΦX X npq np npq np X npq np X P P P P例5.2(棣莫佛-拉普拉斯定理)设试验成功的概率p =20%,现在将试验独立地重复进行100次,则试验成功的次数介于16和32次之间的概率Q ≈ .分析 以n ν表示100次独立重复试验成功的次数,则)20.0 100(~,B nν,且4)1(20=-===p np np n n ννD E ,.因此试验成功的次数介于16和32次之间的概率{}[][],84.08413.019987.0)1(1)3()1()3(42032420420163216=--=--=--≈⎭⎬⎫⎩⎨⎧-≤-≤-=≤≤=ΦΦΦΦννn n Q P P 其中)(u Φ是标准正态分布函数.例5.3(棣莫佛-拉普拉斯定理) 将一枚均匀对称的硬币接连掷10000次,则正面恰好出现5000次的概率≈α.分析 正面出现的次数ν)5.0 , 10000(~B ,2500,5000==ννD E .根据局部定理,有008.025012D 1}5000{≈=≈==ππνναP .例5.10(辛钦大数定律) 将一枚色子重复掷n 次,则当∞→n 时,n 次掷出点数的算术平均值n X 依概率收敛于 7/2 .分析 设n X X X ,,,21 是各次掷出的点数,它们显然独立同分布,每次掷出点数的数学期望等于7/2.因此,根据辛钦大数定律,n X 依概率收敛于7/2.5.2. (1)121;(2)90;(3)21;(4)))((λλ-Φx n〖选择题〗例5.11(中心极限定理) 设随机变量n X X X ,,,21 相互独立,n n X X X S +++= 21,则根据列维-林德伯格中心极限定理,当n 充分大时n S 近似服从正态分布,只要n X X X ,,,21(A) 有相同期望和方差. (B) 服从同一离散型分布.(C) 服从同一指数分布. (D) 服从同一连续型分布. [ C ]分析 应选(C ).列维-林德伯格中心极限定理的条件是:随机变量n X ,,X ,X 21相互独立同分布, 并且其数学期望和方差存在.由于有相同的数学期望未必有相同分布,可见(A)不满足定理条件.满足(B)和(D)的随机变量i X 的数学期望或方差未必存在,故(B)和(D)也不满足定理条件.于是,只有(C)成立(指数分布的数学期望和方差都存在).例5.14(大数定律)下列命题正确的是(A) 由辛钦大数定律可以得出切比雪夫大数定律. (B) 由切比雪夫大数定律可以得出辛钦大数定律. (C) 由切比雪夫大数定律可以得出伯努利大数定律.(D) 由伯努利大数定律可以得出切比雪夫大数定律. [ C ]分析 应选(C ).切比雪夫大数定律的条件是:随机变量 ,,,,21n X X X 两两独立,并且存在常数C ,使),,,2,1( n i C X i=≤D ;这样的常数C 对于选项(C )存在.伯努利大数定律可以表述为:假设随机变量 ,,,,21n X X X 独立同服从参数为p 的0-1分布,则p X n ni i n =-∑=∞→11lim P ;对于服从参数为p 的0-1分布随机变量 ,,,,21n X X X ,显然),,,2,1(41)1( n i p p X i =≤-=D .从而满足服从切比雪夫大数定律的条件.此外,(A ),(B )和(D )显然不成立.5.1. (1)A ;(2)C ;(3)C ;(4)A〖计算题〗例5.16(棣莫佛-拉普拉斯定理) 设n ν是n 次伯努利试验成功的次数,p (0<p <1)是每次试验成功的概率,n f n n ν=是n 次独立重复试验成功的频率,设n 次独立重复试验中,成功的频率f n 对概率p 的绝对偏差不小于Δ的概率{}α∆=≥-p f n P . (5.10)试利用中心极限定理,(1) 根据∆和n 求α的近似值; (2) 根据α和n 估计∆的近似值; (3) 根据α∆和估计n . 解 变量n ν服从参数为),(p n 的二项分布.记p q -=1,则由(5.7)知,当n 充分大时nν近似服从正态分布),(npq np N .因此,近似地有{}{},,~)1,0(~α∆ν∆ν∆να=≥≈⎭⎬⎫⎩⎨⎧≥-=⎭⎬⎫⎩⎨⎧≥-=≥--u U pq n npqnp p n p f N npqnpU n n n n n P P P P(5.11)其中U 是服从)1,0(N 的随机变量,而αu 是)1,0(N 水平α双侧分位数(附表2).故(5.12)(1) 已知n 和∆,求α.利用附表1,可以由(5.11)求出α的值(附表1).例如,若(5.12)式左侧等于1.96,则05.0≈α.亦可由下式求α的近似值.有. 12 1 ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=⎭⎬⎫⎩⎨⎧<-≈⎭⎬⎫⎩⎨⎧≥-=pq n pq n U pq n npq np n ∆Φ∆∆ναP P (5.13) 进而由)1,0(N 分布函数)(x Φ的数值表(附表1)最后求出α的值.(2) 已知n 和α,求∆.由(*)和41≤pq ,可见nu n pqu 2αα∆≤≈; (5.14) (3) 已知α和∆,求n .由(5.12)和pq ≤1/4,可见2⎪⎭⎫⎝⎛≈∆αu pq n 或2241⎪⎭⎫ ⎝⎛≥⎪⎭⎫ ⎝⎛≥∆∆ααu pq u n . (5.15)例5.17(棣莫佛-拉普拉斯定理) 假设某单位交换台有n 部分机,k 条外线,每部分机呼叫外线的概率为p .利用中心极限定理,解下列问题:(1) 设n =200,k =30,p =0.12,求每部分机呼叫外线时能及时得到满足的概率α的近似值. (2) 设n =200,p =0.12,问为使每部分机呼叫外线时能及时得到满足的概率α≥95%,至少需要设置多少条外线?(3) k =30,p =0.12,问为使每部分机呼叫外线时能及时得到满足的概率α≥95%,最多可以容纳多少部分机?解 设n ν——n 部分机中同时呼叫外线的分机数,k ——外线条数,则n ν服从参数为(n , p )的二项分布,=np24,npq =21.12.当n 充分大时,根据棣莫佛-拉普拉斯中心极限定理,近似地)1 ,0(~N npqnpU n n -=ν.(1) 设n =200,k =30,p =0.12,每部分机呼叫外线时能及时得到满足的概率{}(). 9049.031.112.21243012.21243030≈=⎪⎭⎫⎝⎛-≈⎭⎬⎫⎩⎨⎧-≤-=≤=ΦΦνναnpqnp n n P P (2) 设n =200,p =0.12,k ——至少需要设置的外线条数,则{}.,; 31.562412.216449.1 1.644912.212495.012.212412.2124≈+⨯≥≥-≥⎪⎭⎫⎝⎛-≈⎭⎬⎫⎩⎨⎧-≤-=≤=k k k k npq np k n n ΦνναP P即至少需要设置32外线.(3) 设k =30,p =0.12,且每部分机呼叫外线时能及时得到满足的概率≥α95%.由{}95.01056.012.0301056.012.03030≥⎪⎭⎫⎝⎛-≈⎭⎬⎫⎩⎨⎧-≤-=≤=n n n n npq np n n ΦνναP P , 6449.11056.012.030≥-n n.09004857.70144.0 6449.11056.012.0302=+-≥-n n nn,,它有两个实根:3310431,7972.18821==n n ;经验证33104312=n 为增根,由此得n ≈188.797,即最多可以容纳188部分机.例5.20(列维-林德伯格定理) 设n X X X ,,,21 是独立同分布随机变量,n X 是其算术平均值.考虑概率{}α∆μ=≥-n X P , (5.16)其中μ=iX E ()n i .,2,1 =,()0>∆∆和α(0<α<1)是给定的实数.试利用中心极限定理,根据给定的,(1) ∆和n ,求α的近似值; (2) α和n ,求∆的近似值;(3)α∆和,估计n .解 式(5.16)中的三个数),,(α∆n 相互联系又相互制约:其中的任意两个可以完全决定第三个.不过,明显地表示出它们之间的关系一般并不容易.假如n 充分大,则利用(5.9)式可以(近似地)表示出α∆,,n 之间的关系.易见μ=nX E ,X n 2σ=D .(1) 已知∆和n ,求α-1的近似值:{}⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛≈⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤-=≤-=-σ∆Φσ∆Φσ∆σμ∆μαn n n n X X n n P P 1. (2) 已知α和n ,求∆的近似值.由(5.17)式可得nu σ∆α ≈.(3) 已知α∆和,求n 的近似值.由(5.18)有2⎪⎭⎫⎝⎛≈∆σαu n .例5.21(列维-林德伯格定理) 某保险公司接受了10000电动自行车的保险,每辆每年的保费为12元.若车丢失,则车主得赔偿1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:(1) 亏损的概率α;(2) 一年获利润不少于40000元的概率β; (3) 一年获利润不少于60000元的概率γ.解 设X 为需要赔偿的车主人数,则需要赔偿的金额为X Y1.0=(万元);保费总收入C =12万元.易见,随机变量X 服从参数为(n ,p )的二项分布,其中 n =10000,p =0.006;60==np X E ,)1(p np X -=D =59.64.由棣莫佛-拉普拉斯定理知,随机变量X 近似服从正态分布)64.59,60(N ;随机变量Y 近似服从正态分布)5964.0,6(N .(1) 保险公司亏损的概率{}0)77.7(177.75964.065964.06125964.0612≈-=⎭⎬⎫⎩⎨⎧>-=⎭⎬⎫⎩⎨⎧->-=>=ΦαY Y Y P P P .(2) 保险公司一年获利润不少于4万元的概率{}{}.9952.0)59.2(5964.0685964.068412=≈⎭⎬⎫⎩⎨⎧-≤-=≤=≥-=ΦβY Y Y P P P (3) 保险公司一年获利润不少于6万元的概率{}{}.5.0)0(05964.066612=≈⎭⎬⎫⎩⎨⎧≤-=≤=≥-=ΦγY Y Y P P P例5.22(棣莫佛-拉普拉斯定理) 假设伯努利试验成功的概率为5%.利用中心极限定理估计,进行多少次试验才能以概率80%使成功的次数不少于5次.解 设n 是所需试验的次数,每次试验成功的概率p =0.05.以n ν表示n 次伯努利试验成功的次数,则),(~p n B nν,npq np n n ==ννD E ,,其中p q -=1;由棣莫佛-拉普拉斯定理,知对于充分大的n ,随机变量n ν近似服从正态分布),(npq np N .查)1,0(N 分位数表,可见()()8416.018416.080.0--==ΦΦ.因此{}().8416.01)1(51)1(5)1(5.080.0--=⎪⎪⎭⎫⎝⎛---≈⎭⎬⎫⎩⎨⎧--≥--=≥=ΦΦννp np np p np np p np np n n P P.,),(025)8416.010()1(8416.058416.0)1(522222≈++--≈--≈--n n p p np np p np np将05.0=p 代入上列方程,的关于n 的一元二次方程:0255354.00025.02≈+-n n ,其根为79.6837.14521==n n ,.经验证79.682=n 为增根,舍去2n ,取37.1451461=>=n n .于是,至少需要进行146次试验才能以概率80%保障成功的次数不少于5次.例5.26(列维-林德伯格定理) 生产线组装每件产品的时间服从指数分布.统计资料表明,每件产品的平均组装时间为10分钟.假设各件产品的组装时间互不影响.试利用中心极限定理,(1) 求组装100件产品需要15到20小时的概率Q ;(2) 求以概率0.95在16个小时内最多可以组装产品的件数. 解 以)100,,2,1( =iX i 表示第i 件产品的组装时间.由条件知)100,,2,1( =i X i 独立同服从指数分布.由指数分布的数字特征和条件“每件产品的平均组装时间为10分钟”,可见10=i X E ;由于i X 服从指数分布,可见()2210==i i X X E D .(1) 因为n =100充分大,故由列维-林德伯格定理,知100件产品组装的时间10021X X X T n +++= 近似服从()210100 10100⨯⨯,N ,因此{}.8156.0)8413.01(9973.0)1( )2( 21010010100112009002=--=--≈⎭⎬⎫⎩⎨⎧≤⨯⨯-≤-=≤≤=ΦΦT T Q n n P P(2) 16小时即960分钟.需要求满足{}95.0960=≤n T P 的n .由列维-林德伯格定理,知当n 充分大时,n nX X X T +++= 21近似服从()nn N 210 10,,故由{}, 101096010109601010960950⎪⎭⎫⎝⎛-≈⎭⎬⎫⎩⎨⎧-≤-=≤=n n n n n n T T .n n ΦP P 可见95.0)645.1( ≈Φ.因此645.11010960≈-nn. (*)由此得关于n 的一元二次方程09606025.1947010022≈+-n n ,其解为53.11318.8121≈≈n n ,,其中53.1132≈n 不满足式(*),因此53.1132≈n 为增根,故应舍去.于是,以概率0.95在16个小时内最多可以组装81~82件产品.例5.27(列维-林德伯格定理) 将n 个观测数据相加时,首先对小数部分按“四舍五入”舍去小数位后化为整数.试利用中心极限定理估计,(1) 试当n =1500时求舍位误差之和的绝对值大于15的概率;(2) 估计数据个数n 满足何条件时,以不小于90%的概率,使舍位误差之和的绝对值小于10的数据个数n .解 设)1500,,2,1( =iX i 是第i 个数据的舍位误差;由条件可以认为)1500,,2,1( =i X i 独立且都在区间]5.0 5.0[,-上服从均匀分布,从而12/10==i i X X D E ,.记n n X X X S +++= 21为n 个数据的舍位误差之和,则12/0n S S n n==D E ,.根据列维-林德伯格中心极限定理,当n 充分大时n S 近似服从)12/0(n N ,.记)(x Φ为)1,0(N 分布函数.(1) 由于12n S n近似服从标准正态分布,可见{}.1802.02)]34.1(1[34.112/150012/15001512/150015150015001500=⨯-≈⎭⎬⎫⎩⎨⎧>=⎭⎬⎫⎩⎨⎧>=>ΦS S S P P P(2) 数据个数n 应满足条件:{}.90.012/1012/10=⎭⎬⎫⎩⎨⎧≤=≤n n S S n n P P 由于12n S n近似服从)1,0(N ,可见51.4436449.11210 6449.112/102≈⎪⎪⎭⎫ ⎝⎛≈,n . 于是,当n >443时,才能使误差之和的绝对值小于10的概率不小于90%. 〖证明题〗例5.35(棣莫佛-拉普拉斯定理) 利用列维-林德伯格定理,证明棣莫佛-拉普拉斯定理.证明 设随机变量n X X X ,,,21 相互独立,同服从0-1分布;,,,,,npq S np S X X X S n i pq X p X n n n n i i ==+++====D E D E 21),,2,1(其中p q-=1. n X X X ,,,21 满足列维-林德伯格定理的条件:n X X X ,,,21 独立同分布且数学期望和方差存在,当n 充分大时近似地n n X X X S +++= 21~),(npq np N .4.55(证明不等式) 设X 是任一非负(离散型或连续型)随机变量,已知X的数学期望存在,而0>ε是任意实数,证明不等式{}εεXX E P ≤≥.证明 (1) 设X 是离散型随机变量,其一切可能值为}{i x ,则{}.}{1}{}{}{11εεεεεεεXx X x x X x x Xx XX iiii x i i x i ix i x i E P P P P P ==≤=≤====≥∑∑∑∑≥≥≥(2) 设X 是连续型随机变量,其概率密度为)(x f ,则{}.d )(1d )(1d )(0εεεεεεXx x f x x x f x x x f X E P ≤≤≤=≥⎰⎰⎰∞∞∞例4.00(切比雪夫不等式) 设事件A 出现的概率为=p 0.5,试利用切比雪夫不等式,估计在1000次独立重复试验中事件A 出现的次数在450到550次之间的概率α. 解 设n ν是1000次独立重复试验中事件A 出现的次数,则.,),,2505.010005005.010005.0 1000(~2=⨯==⨯=X X B n D E ν由用切比雪夫不等式,知{}{}.9.050250150|550|5504502=-≥≤-=≤≤=n n νναP P 例5.3. 设随机变量X 的数学期望为μ,方差为2σ,(1)利用切比雪夫不等式估计:X 落在以μ为中心,σ3为半径的区间 内的概率不小于多少?(2)如果已知),(~2σμN X ,对上述概率,你是否可得到更好的估计?解:(1)()()()0.88899131)3()3(222=-=-≥<-=<-σσσσμσX D X P X E X P (2)()()⎪⎪⎭⎫⎝⎛<-=<-DX DX X E X P X E X P σσ3)3( ()0.99743322=≈⎪⎪⎭⎫⎝⎛<-=⎰∞--dt e DX X E X P t例5.4. 利用切比雪夫不等式来确定,当抛掷一枚均匀硬币时,需抛多少次,才能保证 正面出现的频率在0.4至0.6之间的概率不小于90%,并用正态逼近去估计同一问题。

概率论第五章习题答案

概率论第五章习题答案

ˆ = min(x , x ,L, x ) 。 然函数 L 取得最大值,从而知 θ 1 2 n
16.设总体 X 的概率分布为
X
0
1
2θ (1 − θ )
2
3
P
θ2
θ2
1 − 2θ
其中 θ
1 (0 < θ < ) 是未知参数,利用总体 X 的如下样本值 3,1,3,0,3,1,2, 2
3,求 θ 的矩估计值和极大似然估计值。
2 答案与提示:由于 X ~ N ( 3} = 0.1336
3.设 X 1 , X 2 , L , X n 为来自总体 X ~ P (λ ) 的一个样本, X 、 S 2 分别为样本均值 和样本方差。求 DX 及 ES 2 。 答案与提示:此题旨在考察样本均值的期望、方差以及样本方差的期望与总体 期望、总体方差的关系,显然应由定理 5-1 来解决这一问题。
8.设 X 1 , X 2 , L , X n 为来自正态总体 X ~ N ( µ , σ 2 ) 的一个样本, µ 已知,求 σ 2 的极大似然估计。 答案与提示:设 x1 , x 2 , L, x n 为样本 X 1 ,X 2 ,L ,X n 的一组观察值。则似然函数 为
( xi − µ ) 2 2σ
15.设某种元件的使用寿命 X 的概率密度为
⎧2e −2( x −θ ), x > θ , f ( x;θ ) = ⎨ 0 , x θ ≤ ⎩
其中 θ > 0 为未知参数。又设 x1,x 2, L,x n 是 X 的一组样本观察值,求 θ 的极大似然 估计值。 答案与提示: 构造似然函数 L(θ ) = ∏ 2e
第五章 习题参考答案与提示
第五章 数理统计初步习题参考答案与提示
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档