山东淄博市2017年中考数学试题含答案

合集下载

2017年山东省淄博市博山区中考一模数学试卷(解析版)

2017年山东省淄博市博山区中考一模数学试卷(解析版)

2017年山东省淄博市博山区中考数学一模试卷一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的.每小题4分,错选、不选或选出的答案超过一个,均记零分.1.(4分)下列关系式正确的是()A.35.5°=35°5′B.35.5°=35°50′C.35.5°<35°5′D.35.5°>35°5′2.(4分)运用乘法公式计算(x+3)2的结果是()A.x2+9B.x2﹣6x+9C.x2+6x+9D.x2+3x+9 3.(4分)到三角形三个顶点的距离都相等的点是这个三角形的()A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三条边的垂直平分线的交点4.(4分)下列分式中,最简分式是()A.B.C.D.5.(4分)把多项式x2+ax+b分解因式,得(x+1)(x﹣3),则a,b的值分别是()A.a=2,b=3B.a=﹣2,b=﹣3C.a=﹣2,b=3D.a=2,b=﹣3 6.(4分)下列计算正确的是()A.=2B.=C.=x D.=x 7.(4分)点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙B.丙丁C.甲丙D.乙丁8.(4分)估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间9.(4分)已知关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,则m,n 的值为()A.m=1,n=﹣1B.m=﹣1,n=1C.D.10.(4分)如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°11.(4分)如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是()A.(2,﹣3)B.(2,3)C.(3,2)D.(3,﹣2)12.(4分)如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A.(1,﹣1)B.(﹣1,﹣1)C.(,0)D.(0,﹣)二、填空题:本题共5小题,满分20分,只要求填写最后结果,每小题填对得4分.13.(4分)若代数式x+2的值为1,则x等于.14.(4分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是.15.(4分)某几何体的三视图如图所示,则组成该几何体的小正方体的个数是.16.(4分)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD 的某一条边上,则等腰三角形AEP的底边长是.17.(4分)如图是由两个长方形组成的工件平面图(单位:mm),直线l是它的对称轴,能完全覆盖这个平面图形的圆面的最小半径是mm.三、解答题:本大题共7小题,共52分.解答要写出必要的文字说明、证明过程或演算步骤.18.(5分)如图,▱ABCD对角线AC、BD相交于点O,E,F分别是OA,OC 的中点,连接BE,DF.(1)根据题意,补全图形;(2)求证:BE=DF.19.(5分)已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.20.(8分)如图,在平面直角坐标系中,反比例函数y=(x>0)的图象上有一点A(m,4),过点A作AB⊥x轴于点B,将点B向右平移2个单位长度得到点C,过点C作y轴的平行线交反比例函数的图象于点D,CD=(1)点D的横坐标为(用含m的式子表示);(2)求反比例函数的解析式.21.(8分)在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 73258430 8215 7453 7446 67547638 6834 7326 6830 86488753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:步数分组统计表请根据以上信息解答下列问题:(1)求m,n的值;(2)补全频数发布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在哪一组?(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.22.(8分)如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度(结果保留根号)23.(9分)如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:思考:点M与AB的最大距离为,此时点P,A间的距离为;点M与AB的最小距离为,此时半圆M的弧与AB所围成的封闭图形面积为;探究:当半圆M与AB相切时,求的长.(注:结果保留π,cos35°=,cos55°=)24.(9分)设抛物线的解析式为y=ax2,过点B1(1,0)作x轴的垂线,交抛物线于点A1(1,2);过点B2(,0)作x轴的垂线,交抛物线于点A2;…;过点B n(()n﹣1,0)(n为正整数)作x轴的垂线,交抛物线于点A n,连接A nB n+1,得Rt△A n B n B n+1.(1)求a的值;(2)直接写出线段A n B n,B n B n+1的长(用含n的式子表示);(3)在系列Rt△A n B n B n+1中,探究下列问题:①当n为何值时,Rt△A n B n B n+1是等腰直角三角形?②设1≤k<m≤n(k,m均为正整数),问:是否存在Rt△A k B k B k+1与Rt△A m B m B m+1相似?若存在,求出其相似比;若不存在,说明理由.2017年山东省淄博市博山区中考数学一模试卷参考答案与试题解析一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的.每小题4分,错选、不选或选出的答案超过一个,均记零分.1.(4分)下列关系式正确的是()A.35.5°=35°5′B.35.5°=35°50′C.35.5°<35°5′D.35.5°>35°5′【解答】解:A、35.5°=35°30′,35°30′>35°5′,故A错误;B、35.5°=35°30′,35°30′<35°50′,故B错误;C、35.5°=35°30′,35°30′>35°5′,故C错误;D、35.5°=35°30′,35°30′>35°5′,故D正确;故选:D.2.(4分)运用乘法公式计算(x+3)2的结果是()A.x2+9B.x2﹣6x+9C.x2+6x+9D.x2+3x+9【解答】解:(x+3)2=x2+6x+9,故选:C.3.(4分)到三角形三个顶点的距离都相等的点是这个三角形的()A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三条边的垂直平分线的交点【解答】解:到三角形三个顶点的距离都相等的点是这个三角形的三条边的垂直平分线的交点,故选:D.4.(4分)下列分式中,最简分式是()A.B.C.D.【解答】解:A、原式为最简分式,符合题意;B、原式==,不合题意;C、原式==,不合题意;D、原式==,不合题意,故选:A.5.(4分)把多项式x2+ax+b分解因式,得(x+1)(x﹣3),则a,b的值分别是()A.a=2,b=3B.a=﹣2,b=﹣3C.a=﹣2,b=3D.a=2,b=﹣3【解答】解:∵x2+ax+b=(x+1)(x﹣3),∴a=1﹣3=﹣2,b=﹣3×1=﹣3,故选:B.6.(4分)下列计算正确的是()A.=2B.=C.=x D.=x【解答】解:A、=2,正确;B、=,故此选项错误;C、=﹣x,故此选项错误;D、=|x|,故此选项错误;故选:A.7.(4分)点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙B.丙丁C.甲丙D.乙丁【解答】解:甲:由数轴有,0<a<3,b<﹣3,∴b﹣a<0,甲的说法正确,乙:∵0<a<3,b<﹣3,∴a+b<0乙的说法错误,丙:∵0<a<3,b<﹣3,∴|a|<|b|,丙的说法正确,丁:∵0<a<3,b<﹣3,∴<0,丁的说法错误.故选:C.8.(4分)估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【解答】解:∵2=<=3,∴3<<4,故选:B.9.(4分)已知关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,则m,n 的值为()A.m=1,n=﹣1B.m=﹣1,n=1C.D.【解答】解:∵方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,∴,解得:,故选:A.10.(4分)如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°【解答】解:过点D作DE∥a,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故选:C.11.(4分)如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是()A.(2,﹣3)B.(2,3)C.(3,2)D.(3,﹣2)【解答】解:∵点A坐标为(0,a),∴点A在该平面直角坐标系的y轴上,∵点C、D的坐标为(b,m),(c,m),∴点C、D关于y轴对称,∵正五边形ABCDE是轴对称图形,∴该平面直角坐标系经过点A的y轴是正五边形ABCDE的一条对称轴,∴点B、E也关于y轴对称,∵点B的坐标为(﹣3,2),∴点E的坐标为(3,2).故选:C.12.(4分)如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A.(1,﹣1)B.(﹣1,﹣1)C.(,0)D.(0,﹣)【解答】解:菱形OABC的顶点O(0,0),B(2,2),得D点坐标为(1,1).每秒旋转45°,则第60秒时,得45°×60=2700°,2700°÷360=7.5周,OD旋转了7周半,菱形的对角线交点D的坐标为(﹣1,﹣1),故选:B.二、填空题:本题共5小题,满分20分,只要求填写最后结果,每小题填对得4分.13.(4分)若代数式x+2的值为1,则x等于﹣1.【解答】解:根据题意得:x+2=1,解得:x=﹣1,故答案为:﹣114.(4分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是x>3.【解答】解:当x>3时,x+b>kx+6,即不等式x+b>kx+6的解集为x>3.故答案为:x>3.15.(4分)某几何体的三视图如图所示,则组成该几何体的小正方体的个数是5.【解答】解:综合三视图,我们可得出,这个几何体的底层应该有4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为4+1=5个;故答案为:5.16.(4分)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD 的某一条边上,则等腰三角形AEP的底边长是5或4或5.【解答】解:如图所示:①当AP=AE=5时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=5;②当PE=AE=5时,∵BE=AB﹣AE=8﹣5=3,∠B=90°,∴PB==4,∴底边AP===4;③当P A=PE时,底边AE=5;综上所述:等腰三角形AEP的底边长为5或4或5;故答案为:5或4或5.17.(4分)如图是由两个长方形组成的工件平面图(单位:mm),直线l是它的对称轴,能完全覆盖这个平面图形的圆面的最小半径是50mm.【解答】解:如图,设圆心为O,连接AO,CO,∵直线l是它的对称轴,∴CM=30,AN=40,∵CM2+OM2=AN2+ON2,∴302+OM2=402+(70﹣OM)2,解得:OM=40,∴OC==50,∴能完全覆盖这个平面图形的圆面的最小半径是50mm.故答案为:50.三、解答题:本大题共7小题,共52分.解答要写出必要的文字说明、证明过程或演算步骤.18.(5分)如图,▱ABCD对角线AC、BD相交于点O,E,F分别是OA,OC 的中点,连接BE,DF.(1)根据题意,补全图形;(2)求证:BE=DF.【解答】(1)解:图象如图所示.(2)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵E,F分别是OA,OC的中点,∴OE=OA,OF=OC,∴OE=OF,在△BOE和△DOF中,,∴△BOE≌△DOF(SAS),∴BE=DF.19.(5分)已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.【解答】解:(1)根据题意得△=(﹣6)2﹣4(2m+1)≥0,解得m≤4;(2)根据题意得x1+x2=6,x1x2=2m+1,而2x1x2+x1+x2≥20,所以2(2m+1)+6≥20,解得m≥3,而m≤4,所以m的范围为3≤m≤4.20.(8分)如图,在平面直角坐标系中,反比例函数y=(x>0)的图象上有一点A(m,4),过点A作AB⊥x轴于点B,将点B向右平移2个单位长度得到点C,过点C作y轴的平行线交反比例函数的图象于点D,CD=(1)点D的横坐标为m+2(用含m的式子表示);(2)求反比例函数的解析式.【解答】解:(1)∵A(m,4),AB⊥x轴于点B,∴B的坐标为(m,0),∵将点B向右平移2个单位长度得到点C,∴点C的坐标为:(m+2,0),∵CD∥y轴,∴点D的横坐标为:m+2;故答案为:m+2;(2)∵CD∥y轴,CD=,∴点D的坐标为:(m+2,),∵A,D在反比例函数y=(x>0)的图象上,∴4m=(m+2),解得:m=1,∴点A的坐标为(1,4),∴k=4m=4,∴反比例函数的解析式为:y=.21.(8分)在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 73258430 8215 7453 7446 67547638 6834 7326 6830 86488753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:步数分组统计表请根据以上信息解答下列问题:(1)求m,n的值;(2)补全频数发布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在哪一组?(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.【解答】解:(1)由记录的数据可知,7500≤x<8500的有8430、8215、7638、7850这4个,即m=4;9500≤x<10500的有9865这1个,即n=1.(2)如图:(3)由于一共20个数据,其中位数是第10、11个数据的平均数,而第10、11个数据的平均数均落在B组,∴这20名“健步走运动”团队成员一天行走步数的中位数落在B组;(4)120×=48(人),答:估计其中一天行走步数不少于7500步的有48人.22.(8分)如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度(结果保留根号)【解答】解:(1)在Rt△DCE中,DC=4米,∠DCE=30°,∠DEC=90°,∴DE=DC=2米;(2)过D作DF⊥AB,交AB于点F,∵∠BFD=90°,∠BDF=45°,∴∠FBD=45°,即△BFD为等腰直角三角形,设BF=DF=x米,∵四边形DEAF为矩形,∴AF=DE=2米,即AB=(x+2)米,在Rt△ABC中,∠ABC=30°,∴BC====米,BD=BF=x米,DC=4米,∵∠DCE=30°,∠ACB=60°,∴∠DCB=90°,在Rt△BCD中,根据勾股定理得:2x2=+16,解得:x=4+4,则AB=(6+4)米.23.(9分)如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:思考:点M与AB的最大距离为,此时点P,A间的距离为2;点M与AB的最小距离为,此时半圆M的弧与AB所围成的封闭图形面积为﹣;探究:当半圆M与AB相切时,求的长.(注:结果保留π,cos35°=,cos55°=)【解答】解:发现:如图1,连接OP、OQ,∵AB=4,∴OP=OQ=2,∵PQ=2,∴△OPQ是等边三角形,∴∠POQ=60°,∴==,又∵半圆O的长为:π×4=2π,∴+=2π﹣π=,∴l=π;思考:如图2,过点M作MC⊥AB于点C,连接OM,∵OP=2,PM=1,∴由勾股定理可知:OM=,当C与O重合时,M与AB的距离最大,最大值为,连接AP,此时,OM⊥AB,∴∠AOP=60°,∵OA=OP,∴△AOP是等边三角形,∴AP=2,如图3,当Q与B重合时,连接DM,∵∠MOQ=30°,∴MC=OM=,此时,M与AB的距离最小,最小值为,设此时半圆M与AB交于点D,DM=MB=1,∵∠ABP=60°,∴△DMB是等边三角形,∴∠DMB=60°,∴扇形DMB的面积为:=,△DMB的面积为:MC•DB=××1=,∴半圆M的弧与AB所围成的封闭图形面积为:﹣;探究:当半圆M与AB相切时,此时,MC=1,如图4,当点C在线段OA上时,在Rt△OCM中,由勾股定理可求得:OC=,∴cos∠AOM==,∴∠AOM=35°,∵∠POM=30°,∴∠AOP=∠AOM﹣∠POM=5°,∴==,当点C在线段OB上时,此时,∠BOM=35°,∵∠POM=30°,∴∠AOP=180°﹣∠POM﹣∠BOM=115°∴==,综上所述,当半圆M与AB相切时,的长为或.24.(9分)设抛物线的解析式为y=ax2,过点B1(1,0)作x轴的垂线,交抛物线于点A1(1,2);过点B2(,0)作x轴的垂线,交抛物线于点A2;…;过点B n(()n﹣1,0)(n为正整数)作x轴的垂线,交抛物线于点A n,连接A nB n+1,得Rt△A n B n B n+1.(1)求a的值;(2)直接写出线段A n B n,B n B n+1的长(用含n的式子表示);(3)在系列Rt△A n B n B n+1中,探究下列问题:①当n为何值时,Rt△A n B n B n+1是等腰直角三角形?②设1≤k<m≤n(k,m均为正整数),问:是否存在Rt△A k B k B k+1与Rt△A m B m B m+1相似?若存在,求出其相似比;若不存在,说明理由.【解答】解:(1)如图1所示,∵点A1(1,2)在抛物线的解析式为y=ax2上,∴a=2;(2)如图2所示,A nB n=2x2=2×[()n﹣1]2=,B n B n+1=;(3)如图3所示,由Rt△A n B n B n+1是等腰直角三角形得A n B n=B n B n+1,则:=,2n﹣3=n,n=3,∴当n=3时,Rt△A n B n B n+1是等腰直角三角形,②依题意得,∠A k B k B k+1=∠A m B m B m+1=90°,有两种情况:i)当Rt△A k B k B k+1∽Rt△A m B m B m+1时,=,=,=,所以,k=m(舍去),ii)当Rt△A k B k B k+1∽Rt△B m+1B m A m时,=,=,=,∴k+m=6,∵1≤k<m≤n(k,m均为正整数),∴取或;当时,Rt△A1B1B2∽Rt△B6B5A5,相似比为:==64,当时,Rt△A2B2B3∽Rt△B5B4A4,相似比为:==8,所以:存在Rt△A k B k B k+1与Rt△A m B m B m+1相似,其相似比为64:1或8:1.。

淄博中考试题及答案

淄博中考试题及答案

淄博中考试题及答案淄博市位于山东省中部,是山东省内重要的经济、文化中心之一。

每年,淄博市都会组织中考,以选拔优秀的初中毕业生,为他们提供更好的升学机会。

在本文中,将介绍淄博中考的一些常见试题及其答案。

一、语文试题阅读下面的短文,回答问题。

一头小猪给自己盖了一间房子,容易吗?轻轻松松?当然不是!小猪给自己盖房子是很不容易的事情我的朋友。

第一天,他大早起来,去了木材店,买了一车木头,然后,一顿劳累,搬着一块一块木头儿,一板一板地搭起了屋檐,再一连一连地盖起了墙壁,封了门窗,还弄了个大烟囱,最后顶上了一层楼。

他给自己盖房!辛苦吧!第二天,他不知从哪儿弄了一锅油漆,这用红色,那刷蓝色,那刷绿色。

你看他弄红色,不是要盖座城堡啦?我说:小猪小猪,用个粉色,不是更好看?粉的似乎有个过节的样子。

可木猪说,呵呵,红的也好看啊,别人家的房子是白色的,我家是红色的,我家的房子一定远远的看着会特别好看。

还真是实在。

如果你走在小猪家门口,你一定会看见一只欢快的小猪。

这只小猪,一头猪头,两只猪耳,两只猪脚,还有尖尖的、又尖又扁的小猪尾巴。

小猪对我说:小动物们都来走过我的新居,都夸我的新房子。

由此我知道:小猪是个快乐的小猪。

【问题1】小猪用了多长时间搭起了房子?a. 一天b. 两天c. 三天d. 四天【问题2】小猪为什么选择红色的油漆?a. 他喜欢红色b. 他想让自己的房子特别好看c. 他觉得红色远远看起来好看d. 没有提到【答案】问题1:c. 三天问题2:c. 他觉得红色远远看起来好看二、数学试题计算方程的解。

3x^2 - 7x + 2 = 0【答案】x = 1/3, x = 2/3三、英语试题选择正确的单词填空。

I have a ________ dog. His name is Max.a. bigb. smallc. talld. green【答案】a. big四、物理试题计算问题。

一个小车以5 m/s的速度行驶,经过10秒后速度变为15 m/s。

山东省淄博市沂源县2017年中考数学二模试卷(含解析)

山东省淄博市沂源县2017年中考数学二模试卷(含解析)

2017年山东省淄博市沂源县中考数学二模试卷一、选择题(本大题共12小题,每小题4分,共48分)1.在实数0,﹣,,|﹣2|中,最小的是()A.B.﹣C.0 D.|﹣2|2.下面四个图形中,能判断∠1>∠2的是()A.B.C. D.3.如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移34.已知实数x、y同时满足三个条件:①3x﹣2y=4﹣p,②4x﹣3y=2+p,③x>y,那么实数p的取值范围是()A.p>﹣1 B.p<1 C.p<﹣1 D.p>15.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A .B .2C .D .6.如图,边长为(m+3)的正方形纸片,剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )A .m+3B .m+6C .2m+3D .2m+67.给出下列四个命题:(1)如果某圆锥的侧面展开图是半圆,则其轴截面一定是等边三角形;(2)若点A 在直线y=2x ﹣3上,且点A 到两坐标轴的距离相等,则点A 在第一或第四象限;(3)半径为5的圆中,弦AB=8,则圆周上到直线AB 的距离为2的点共有四个;(4)若A (a ,m )、B (a ﹣1,n )(a >0)在反比例函y=的图象上,则m <n . 其中,正确命题的个数是( )A .1个B .2个C .3个D .4个8.关于x 的方程(a ﹣5)x 2﹣4x ﹣1=0有实数根,则a 满足( )A .a ≥1B .a >1且a ≠5C .a ≥1且a ≠5D .a ≠59.如图,是一个带有方形空洞和圆形空洞的儿童玩具,如果用下列几何体作为塞子,那么既可以堵住方形空洞,又可以堵住圆形空洞的几何体是( )A .B .C .D .10.如图:E 是边长为1的正方形ABCD 的对角线BD 上一点,且BE=BC ,P 为CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BE 于点R ,则PQ+PR 的值是( )A.B.C.D.11.如图,已知点A是直线y=x与反比例函数y=(k>0,x>0)的交点,B是y=图象上的另一点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过点P作PM⊥x轴,PN⊥y轴,垂足分别为M,N.设四边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为()A.B.C.D.12.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A.①② B.②③ C.①③ D.①④二、填空题(本大题共5小题,每小题4分,共20分)13.据某市统计网消息,在全国第六次人口普查中显示,该市常住人口总数约为5400000人,将这个总人口数用科学记数法表示为.14.一组数据:1,3,2,3,1,0,2的中位数是.15.如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N 与点A重合,射线CP从CA处出发沿顺时针方向以每秒2度的速度旋转,CP与量角器的半圆弧交于点E,第35秒时,点E在量角器上对应的读数是度.16.在△ABC中,AB=12,AC=13,cos∠B=,则BC边长为.17.若函数y=mx2﹣6x+1(m是常数)的图象与x轴只有一个交点,m的值为.三、解答题(本大题共7小题,共52分)18.计算:﹣2×+()﹣1+(π﹣2017)0.19.尺规作图:如图,已知△ABC.求作△A1B1C1,使A1B1=AB,∠B1=∠B,B1C1=BC.(作图要求:写已知、求作,不写作法,不证明,保留作图痕迹)已知:求作:20.在一个不透明的盒子里,装有三个分别写有数字﹣1,0,1的乒乓球(形状,大小一样),先从盒子里随即取出一个乒乓球,记下数字后放回盒子,摇匀后再随即取出一个乒乓球,记下数字.(1)请用树状图或列表的方法求两次取出乒乓球上数字相同的概率;(2)求两次取出乒乓球上数字之积等于0的概率.21.如图,Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,连接CC′交斜边于点E,CC′的延长线交BB′于点F.(1)证明:△ACE∽△FBE;(2)设∠ABC=α,∠CAC′=β,试探索α、β满足什么关系时,△ACE与△FBE是全等三角形,并说明理由.22.华昌中学开学初在金利源商场购进A、B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌足球多花30元.(1)求购买一个A品牌、一个B品牌的足球各需多少元?(2)华昌中学响应习总书记“足球进校园”的号召,决定两次购进A、B两种品牌足球共50个,恰逢金利源商场对两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌足球的总费用不超过3260元,那么华昌中学此次最多可购买多少个B品牌足球?23.在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是:第一步:对折矩形纸片ABCD,使AD与BC重合,把纸片展开,得到折痕EF(如图1);第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2).请解答以下问题:(1)如图2,若延长MN交BC于P,△BMP是什么三角形?请证明你的结论;(2)在图2中,若AB=a,BC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP?(3)设矩形ABCD的边AB=2,BC=4,并建立如图3所示的直角坐标系.设直线BM′为y=kx,当∠M′BC=60°时,求k的值.此时,将△ABM′沿BM′折叠,点A是否落在EF上(E、F 分别为AB、CD中点),为什么?24.(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°,求证:AD•BC=AP•BP;(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=5,点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠CPD=∠A,设点P的运动时间为t(秒),当DC=4BC时,求t的值.2017年山东省淄博市沂源县中考数学二模试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分)1.在实数0,﹣,,|﹣2|中,最小的是()A.B.﹣C.0 D.|﹣2|【考点】2A:实数大小比较.【分析】首先把式子化简,根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.【解答】解:|﹣2|=2,∵四个数中只有﹣,﹣为负数,∴应从﹣,﹣中选;∵|﹣|>|﹣|,∴﹣<﹣.故选:B.2.下面四个图形中,能判断∠1>∠2的是()A.B.C. D.【考点】K8:三角形的外角性质.【分析】根据图象,利用排除法求解.【解答】解:A、∠1与∠2是对顶角,相等,故本选项错误;B、根据图象,∠1<∠2,故本选项错误;C、∠1是锐角,∠2是直角,∠1<∠2,故本选项错误;D、∠1是三角形的一个外角,所以∠1>∠2,故本选项正确.故选D.3.如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移3【考点】R7:坐标与图形变化﹣旋转;Q3:坐标与图形变化﹣平移.【分析】观察图形可以看出,Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可.【解答】解:根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE.故选:A.4.已知实数x、y同时满足三个条件:①3x﹣2y=4﹣p,②4x﹣3y=2+p,③x>y,那么实数p的取值范围是()A.p>﹣1 B.p<1 C.p<﹣1 D.p>1【考点】CB:解一元一次不等式组;98:解二元一次方程组.【分析】把p看成已知数,求得x,y的解,根据所给的不等式即可求得实数p的取值范围.【解答】解:①×3﹣②×2得:x=8﹣5p,把x=8﹣5p代入①得:y=10﹣7p,∵x>y,∴8﹣5p>10﹣7p,∴p>1.故选D.5.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A.B.2 C.D.【考点】M8:点与圆的位置关系;M5:圆周角定理.【分析】首先证明点P在以AB为直径的⊙O上,连接OC与⊙O交于点P,此时PC最小,利用勾股定理求出OC即可解决问题.【解答】解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴OP=OA=OB(直角三角形斜边中线等于斜边一半),∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC==5,∴PC=OC﹣OP=5﹣3=2.∴PC最小值为2.故选B.6.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3 B.m+6 C.2m+3 D.2m+6【考点】4G:平方差公式的几何背景.【分析】由于边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积公式,可以求出剩余部分的面积,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.【解答】解:依题意得剩余部分为(m+3)2﹣m2=(m+3+m)(m+3﹣m)=3(2m+3)=6m+9,而拼成的矩形一边长为3,∴另一边长是=2m+3.故选:C.7.给出下列四个命题:(1)如果某圆锥的侧面展开图是半圆,则其轴截面一定是等边三角形;(2)若点A在直线y=2x﹣3上,且点A到两坐标轴的距离相等,则点A在第一或第四象限;(3)半径为5的圆中,弦AB=8,则圆周上到直线AB的距离为2的点共有四个;(4)若A(a,m)、B(a﹣1,n)(a>0)在反比例函y=的图象上,则m<n.其中,正确命题的个数是()A.1个B.2个C.3个D.4个【考点】M2:垂径定理;F8:一次函数图象上点的坐标特征;G6:反比例函数图象上点的坐标特征;I6:几何体的展开图.【分析】本题综合性较强,要根据对称性一一分析得出.【解答】解:根据对称性可知.(1)如果某圆锥的侧面展开图是半圆,则其轴截面一定是等边三角形,正确;(2)如果点A到两坐标轴的距离相等,那么点A是y=x与y=2x﹣3的交点,是(3,3),在第一象限,或点A是y=﹣x与y=2x﹣3的交点,是(1,﹣1),在第四象限.则点A在第一或第四象限是正确的;(3)半径为5的圆中,弦AB=8,则弦心距是3,圆周上到直线AB的距离为2的点是平行于AB,弦心距是2的弦与圆的交点.再加上垂直于弦AB的半径与圆的交点共3个,故其错误;(4)若A(a,m)、B(a﹣1,n)(a>0)在反比例函y=的图象上,而a与a﹣1的不能确定是否同号,即A,B不能确定是否在同一象限内,故m与n的大小关系无法确定.故错误.故选:B.8.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5【考点】AA:根的判别式.【分析】由于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,那么分两种情况:(1)当a﹣5=0时,方程一定有实数根;(2)当a﹣5≠0时,方程成为一元二次方程,利用判别式即可求出a的取值范围.【解答】解:分类讨论:①当a﹣5=0即a=5时,方程变为﹣4x﹣1=0,此时方程一定有实数根;②当a﹣5≠0即a≠5时,∵关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根∴16+4(a﹣5)≥0,∴a≥1.∴a的取值范围为a≥1.故选:A.9.如图,是一个带有方形空洞和圆形空洞的儿童玩具,如果用下列几何体作为塞子,那么既可以堵住方形空洞,又可以堵住圆形空洞的几何体是()A. B.C.D.【考点】U1:简单几何体的三视图.【分析】根据从正面看得到的图形是主视图,从上边看得到的图形是俯视图,可得答案.【解答】解:圆柱从上边看是一个圆,从正面看是一个正方形,既可以堵住方形空洞,又可以堵住圆形空洞,故选:B.10.如图:E是边长为1的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BE于点R,则PQ+PR的值是()A.B.C.D.【考点】LE:正方形的性质;KH:等腰三角形的性质.【分析】连接BP,过C作CM⊥BD,利用面积法求解,PQ+PR的值等于C点到BE的距离,即正方形对角线的一半.【解答】解:连接BP,过C作CM⊥BD,如图所示:∵BC=BE,∴S△BCE=S△BPE+S△BPC=BC×PQ+BE×PR=BC×(PQ+PR)=BE×CM,∴PQ+PR=CM,∵四边形ABCD是正方形,∴∠BCD=90°,CD=BC=1,∠CBD=∠CDB=45°,∴BD==,∵BC=CD,CM⊥BD,∴M为BD中点,∴CM=BD=,即PQ+PR值是.故选:C.11.如图,已知点A是直线y=x与反比例函数y=(k>0,x>0)的交点,B是y=图象上的另一点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过点P作PM⊥x轴,PN⊥y轴,垂足分别为M,N.设四边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】根据点P的位置,分①点P在OA上时,四边形OMPN为正方形;②点P在反比例函数图象AB段时,根据反比例函数系数的几何意义,四边形OMPN的面积不变;③点P在BC 段,设点P运动到点C的总路程为a,然后表示出四边形OMPN的面积,最后判断出函数图象即可得解.【解答】解:设点P的运动速度为v,①由于点A在直线y=x上,故点P在OA上时,四边形OMPN为正方形,四边形OMPN的面积S=(vt)2,②点P在反比例函数图象AB时,由反比例函数系数几何意义,四边形OMPN的面积S=k;③点P在BC段时,设点P运动到点C的总路程为a,则四边形OMPN的面积=OC•(a﹣vt)=﹣OC•vt+OC•a,纵观各选项,只有B选项图形符合.故选:B.12.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A.①② B.②③ C.①③ D.①④【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】求出BE=2AE,根据翻折的性质可得PE=BE,再根据直角三角形30°角所对的直角边等于斜边的一半求出∠APE=30°,然后求出∠AEP=60°,再根据翻折的性质求出∠BEF=60°,根据直角三角形两锐角互余求出∠EFB=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半可得EF=2BE,判断出①正确;利用30°角的正切值求出PF=PE,判断出②错误;求出BE=2EQ,EF=2BE,然后求出FQ=3EQ,判断出③错误;求出∠PBF=∠PFB=60°,然后得到△PBF是等边三角形,判断出④正确.【解答】解:∵AE=AB,∴BE=2AE,由翻折的性质得,PE=BE,∴∠APE=30°,∴∠AEP=90°﹣30°=60°,∴∠BEF===60°,∴∠EFB=90°﹣60°=30°,∴EF=2BE,故①正确;∵BE=PE,∴EF=2PE,∵EF>PF,∴PF<2PE,故②错误;由翻折可知EF⊥PB,∴∠EBQ=∠EFB=30°,∴BE=2EQ,EF=2BE,∴FQ=3EQ,故③错误;由翻折的性质,∠EFB=∠EFP=30°,∴∠BFP=30°+30°=60°,∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,∴∠PBF=∠PFB=60°,∴△PBF是等边三角形,故④正确;综上所述,结论正确的是①④.故选:D.二、填空题(本大题共5小题,每小题4分,共20分)13.据某市统计网消息,在全国第六次人口普查中显示,该市常住人口总数约为5400000人,将这个总人口数用科学记数法表示为 5.4×106.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5400000用科学记数法表示为:5.4×106,故答案为:5.4×106.14.一组数据:1,3,2,3,1,0,2的中位数是 2 .【考点】W4:中位数.【分析】7个数据,按次序排列后,中位数应是第4个数.【解答】解:有7个数,按次序排列后,第四个数是2,所以中位数是2.故答案为2.15.如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N 与点A重合,射线CP从CA处出发沿顺时针方向以每秒2度的速度旋转,CP与量角器的半圆弧交于点E,第35秒时,点E在量角器上对应的读数是140 度.【考点】M5:圆周角定理.【分析】首先连接OE,由∠ACB=90°,根据圆周角定理,可得点C在⊙O上,即可得∠EOA=2∠ECA,又由∠ECA的度数,继而求得答案.【解答】解:连接OE,∵∠ACB=90°,∴点C在以AB为直径的圆上,即点C在⊙O上,∴∠EOA=2∠ECA,∵∠ECA=2°×35=70°,∴∠AOE=2∠ECA=2×70°=140°.∵量角器0刻度线的端点N与点A重合,∴点E在量角器上对应的读数是140,故答案为:140.16.在△ABC中,AB=12,AC=13,cos∠B=,则BC边长为7或17 .【考点】T7:解直角三角形.【分析】根据在△ABC中,AB=12,AC=13,cos∠B=,可以利用余弦定理求得BC的长,从而可以解答本题.【解答】解:∵在△ABC中,AB=12,AC=13,cos∠B=,cos∠B=,∴解得BC=7或BC=17.故答案为:7或17.17.若函数y=mx2﹣6x+1(m是常数)的图象与x轴只有一个交点,m的值为0或9 .【考点】HA:抛物线与x轴的交点.【分析】分m=0和m≠0两种情况考虑,当m=0时,一次函数与x轴只有一个交点;当m≠0时,由二次函数图象与x轴只有一个交点结合根的判别式即可得出关于m的一元一次方程,解之即可得出m的值.综上即可得出结论.【解答】解:当m=0时,直线y=﹣6x+1与x轴只有一个交点;当m≠0时,∵二次函数y=mx2﹣6x+1(m是常数)的图象与x轴只有一个交点,∴二元一次方程mx2﹣6x+1=0有两个相同的根,∴△=(﹣6)2﹣4m=36﹣4m=0,解得:m=9.综上所述:m的值为0或9.故答案为:0或9.三、解答题(本大题共7小题,共52分)18.计算:﹣2×+()﹣1+(π﹣2017)0.【考点】79:二次根式的混合运算;6E:零指数幂;6F:负整数指数幂.【分析】先把各二次根式化简为最简二次根式,然后根据零指数幂、负整数指数幂的意义计算即可.【解答】解:原式=4﹣2×+2+1=+3.19.尺规作图:如图,已知△ABC.求作△A1B1C1,使A1B1=AB,∠B1=∠B,B1C1=BC.(作图要求:写已知、求作,不写作法,不证明,保留作图痕迹)已知:求作:【考点】N3:作图—复杂作图.【分析】正确写出已知、求作.然后先画出角,再截取两边长及连线得出三角形.【解答】解:已知:△ABC.求作△A1B1C1,使A1B1=AB,∠B1=∠B,B1C1=BC.△A1B1C1就是所求作的三角形.20.在一个不透明的盒子里,装有三个分别写有数字﹣1,0,1的乒乓球(形状,大小一样),先从盒子里随即取出一个乒乓球,记下数字后放回盒子,摇匀后再随即取出一个乒乓球,记下数字.(1)请用树状图或列表的方法求两次取出乒乓球上数字相同的概率;(2)求两次取出乒乓球上数字之积等于0的概率.【考点】X6:列表法与树状图法.【分析】(1)列举出所有情况,看两次取出乒乓球上数字相同的情况占总情况的多少即可;(2)两次取出乒乓球上数字之积等于0的情况占总情况的多少即可.【解答】解:(1)共有9种情况,两次取出乒乓球上数字相同的情况有3种,所以概率是;(2)两次取出乒乓球上数字之积等于0的情况有5种,所以概率是.21.如图,Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,连接CC′交斜边于点E,CC′的延长线交BB′于点F.(1)证明:△ACE∽△FBE;(2)设∠ABC=α,∠CAC′=β,试探索α、β满足什么关系时,△ACE与△FBE是全等三角形,并说明理由.【考点】S8:相似三角形的判定;KB:全等三角形的判定;R2:旋转的性质.【分析】(1)欲证△ACE∽△FBE,通过观察发现两个三角形已经具备一组角对应相等,即∠AEC=∠FEB,此时,再证∠AC′C=∠ABB′即可.(2)欲证△ACE≌△FBE,由(1)知△ACE∽△FBE,只需证明CE=BE,由已知可证∠ABC=∠BCE=α,即证β=2α时,△ACE≌△FBE.【解答】(1)证明:∵Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,∴AC=AC′,AB=AB′,∠CAB=∠C′AB′,∴∠CAB+∠BAC′=∠C′AB′+∠BA C′,即∠CAC′=∠BAB′,∴∠ABB′=∠AB′B=∠ACC′=∠AC′C,∴∠ACC′=∠ABB′,又∵∠AEC=∠FEB,∴△ACE∽△FBE.(2)解:当β=2α时,△ACE≌△FBE.在△ACC′中,∵AC=AC′,∴∠ACC′===90°﹣α,在Rt△ABC中,∠ACC′+∠BCE=90°,即90°﹣α+∠BCE=90°,∴∠BCE=α,∵∠ABC=α,∴∠ABC=∠BCE,∴CE=BE,由(1)知:△ACE∽△FBE,∴∠BEF=∠CEA,∠FBE=∠ACE,又∵CE=BE,∴△ACE≌△FBE.22.华昌中学开学初在金利源商场购进A、B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌足球多花30元.(1)求购买一个A品牌、一个B品牌的足球各需多少元?(2)华昌中学响应习总书记“足球进校园”的号召,决定两次购进A、B两种品牌足球共50个,恰逢金利源商场对两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌足球的总费用不超过3260元,那么华昌中学此次最多可购买多少个B品牌足球?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【分析】(1)设一个A品牌的足球需x元,则一个B品牌的足球需(x+30)元,根据购买A 品牌足球数量是购买B品牌足球数量的2倍列出方程解答即可;(2)设此次可购买a个B品牌足球,则购进A牌足球(50﹣a)个,根据购买A、B两种品牌足球的总费用不超过3260元,列出不等式解决问题.【解答】解:(1)设一个A品牌的足球需x元,则一个B品牌的足球需(x+30)元,由题意得=×2解得:x=50经检验x=50是原方程的解,x+30=80答:一个A品牌的足球需50元,则一个B品牌的足球需80元.(2)设此次可购买a个B品牌足球,则购进A牌足球(50﹣a)个,由题意得50×(1+8%)(50﹣a)+80×0.9a≤3260解得a≤31∵a是整数,∴a最大等于31,答:华昌中学此次最多可购买31个B品牌足球.23.在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是:第一步:对折矩形纸片ABCD,使AD与BC重合,把纸片展开,得到折痕EF(如图1);第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2).请解答以下问题:(1)如图2,若延长MN交BC于P,△BMP是什么三角形?请证明你的结论;(2)在图2中,若AB=a,BC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP?(3)设矩形ABCD的边AB=2,BC=4,并建立如图3所示的直角坐标系.设直线BM′为y=kx,当∠M′BC=60°时,求k的值.此时,将△ABM′沿BM′折叠,点A是否落在EF上(E、F 分别为AB、CD中点),为什么?【考点】FI:一次函数综合题.【分析】(1)连接AN,可证△ABN为等边三角形,可求得∠ABM=∠NBM=30°,则可求得∠PBM=∠BMP=60°,可证得△BMP为等边三角形;(2)由题意可知BC>BP,在Rt△BNP中,可求得a=BPcos30°,则可找到a、b满足的关系;(3)在Rt△ABM′中可求得AM′的长,则可求得M′的坐标,代入直线y=kx可求得k的值;设△ABM′沿BM′折叠后点A在矩形OADC内的对应点为A′,过A′作A′H⊥BC于点H,在△A′BH中可求得A′H、BH的长,可求得A′点的坐标,进行判断即可.【解答】解:(1)△BMP是等边三角形,证明如下:如图1,连接AN,∵EF垂直平分AB,∴AN=BN,由折叠可知AB=BN,∴AN=AB=BN,∴△ABN为等边三角形,∴∠ABN=60°,∴∠PBN=30°,∵∠ABM=∠NBM=30°,∠BNM=∠A=90°,∴∠BPN=60°,∠MBP=∠MBN+∠PBN=60°,∴∠BMP=60°,∴∠MBP=∠BMP=∠BPM=60°,∴△BMP为等边三角形;(2)要在矩形纸片ABCD上剪出等边三角形BMP,则BC≥BP,在Rt△BNP中,BN=BA=a,∠PBN=30°,∴=cos30°,∴BP==a,∴b≥a,即当b≥a时,在矩形上能剪出这样的等边三角形BMP;(3)∵∠M′BC=60°,∴∠ABM′=90°﹣60°=30°,在Rt△ABM′中,tan∠ABM′=,∴tan30°=,解得AM′=,∴M′(,2),代入y=kx中,可求得k=;如图2,设△ABM′沿BM′折叠后,点A落在矩形ABCD内的点为A′,过A′作A′H⊥BC 于点H,由折叠的性质可知∠A′BM′=∠ABM′=30°,A′B=AB=2,∴∠A′BH=∠M′BH﹣∠A′BM′=30°,在Rt△A′BH中,A′H=A′B=1,BH=,∴A′(,1),∴A′落在EF上.24.(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°,求证:AD•BC=AP•BP;(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=5,点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠CPD=∠A,设点P的运动时间为t(秒),当DC=4BC时,求t的值.【考点】SO:相似形综合题.【分析】(1)如图1,由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(2)如图2,由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(3)如图3,过点D作DE⊥AB于点E,根据等腰三角形的性质可得AE=BE=3,根据勾股定理可得DE=4,由题可得DC=DE=4,则有BC=5﹣4=1.易证∠DPC=∠A=∠B.根据AD•BC=AP•BP,就可求出t的值.【解答】解:(1)如图1,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠ADP=∠BPC,∴△ADP∽△BPC,∴=,∴AD•BC=AP•BP;(2)结论AD•BC=AP•BP仍然成立.理由:如图2,∵∠BPD=∠DPC+∠BPC,∠BPD=∠A+∠ADP,∴∠DPC+∠BPC=∠A+∠ADP.∵∠DPC=∠A=∠B=θ,∴∠BPC=∠ADP,∴△ADP∽△BPC,∴=,∴AD•BC=AP•BP;(3)如图3,∵DC=4BC,又∵AD=BD=5,∴DC=4,BC=1,,由(1)、(2)的经验可知AD•BC=AP•BP,∴5×1=t(6﹣t),解得:t1=1,t2=5,∴t的值为1秒或5秒.。

2017年山东省淄博市中考数学试卷(含答案解析版)

2017年山东省淄博市中考数学试卷(含答案解析版)
.(分)(淄博)设△的面积为. 如图,分别将,边等分,,是其分点,连接, 交于点,得到四边形,其面积 . 如图,分别将,边等分,,,,是其分点,连 接,交于点,得到四边形,其面积 ; 如图,分别将,边等分,,,,,,是 其分 点,连接 , 交于点 ,得到 四边形 , 其面积 ;
年山东春季高考语文模拟试卷及答案(三)
、(﹣)÷(﹣),故错误; 故选.
【点评】本题考查了同底数幂的乘法、除法、积的乘方和幂的乘方,掌握 运算法则是解题的关键.
.(分)(淄博)若分式
的值为零,则的值是
()
..﹣ .± .
【考点】:分式的值为零的条件.
【分析】直接利用分式的值为零,则分子为零,分母不为零,进而得出答
案.
【解答】解:∵分式
的值为零,
直 角 三 角 形 求 得 , 根 据 △ △ △ 即 可 得 出
年山东春季高考语文模拟试卷及答案(三)
. 【解答】解:如图,作⊥于, ∵△是等边三角形, ∴∠, ∴ , 连接,则△△△, ∴ , ∵, ∴ , 故答案为: .
【点评】本题考查了等边三角形的性质,解直角三角函数以及三角形面积 等,根据△△△即可得出是解题的关键.
按照这个规律进行下去,若分别将,边()等分,,得到
四边形,其面积

【考点】:规律型:图形的变化类;:三角形的面积. 【 分 析 】 先 连 接 , , , 依 据 ∥ ,
,可得△∽△,且
,根据
相 似 三 角 形 的 面 积 之 比 等 于 相 似 比 的 平 方 , 即 可 得 到 △ △ ,依据是的中点,即可得出 △ △ ×
.( 分 )( 淄 博 ) 如 图 , 在 △ 中 , ∠ ,,,∠,∠的平分线相交于点 ,过点作∥交于点,则的长为( )

中考数学试题-一元一次方程和二元一次方程组试题

中考数学试题-一元一次方程和二元一次方程组试题

中考试题专题之6-一元一次方程和二元一次方程组试题及答案一、选择1、(四川省内江市)若关于x ,y 的方程组⎩⎨⎧=+=-n my x m y x 2的解是⎩⎨⎧==12y x ,则n m -为( )A .1B .3C .5D .22、(桂林市、百色市)已知是二元一次方程组的解,则的值为( ).A .1B .-1C . 2D .33、(淄博市)家电下乡是我国应对当前国际金融危机,惠农强农,带动工业生产,促进消费,拉动内需的一项重要举措.国家规定,农民购买家电下乡产品将得到销售价格13%的补贴资金.今年5月1日,甲商场向农民销售某种家电下乡手机20部.已知从甲商场售出的这20部手机国家共发放了2340元的补贴,若设该手机的销售价格为x 元,以下方程正确的是( )A .2013%2340x ⋅=B .20234013%x =⨯C .20(113%)2340x -=D .13%2340x ⋅=4、(齐齐哈尔市)一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有( )A .4种B .3种C .2种D .1种5、(吉林省)A 种饮料B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( )A .2(1)313x x -+=B .2(1)313x x ++=C .23(1)13x x ++=D .23(1)13x x +-=6、(深圳市)班长去文具店买毕业留言卡50张,每张标价2元,店老板说可以按标价九折优惠,则班长应付( )A .45元B .90元C .10元D .100元7、(桂林百色)已知是二元一次方程组的解,则的值为( ). 21x y =⎧⎨=⎩71ax by ax by +=⎧⎨-=⎩a b -21x y =⎧⎨=⎩71ax by ax by +=⎧⎨-=⎩a b -A .1B .-1C . 2D .38、(江西)方程组233x y x y -=⎧⎨+=⎩,的解是( )A .12x y =⎧⎨=⎩,. B .21x y =⎧⎨=⎩,. C .11x y =⎧⎨=⎩,. D .23x y =⎧⎨=⎩,. 9、(日照)若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,则k 的值为 A.43-B.43C.34D.34-10、(福州)二元一次方程组2,0x y x y +=⎧⎨-=⎩的解是( ) A .0,2.x y =⎧⎨=⎩ B .2,0.x y =⎧⎨=⎩ C .1,1.x y =⎧⎨=⎩ D .1,1.x y =-⎧⎨=-⎩11、(长沙)已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长可能是( )A .4cmB .5cmC .6cmD .13cm12、(台湾)已知有10包相同数量的饼干,若将其中1包饼干平分给23名学生,最少剩3片。

淄博中考数学试题及答案

淄博中考数学试题及答案

淄博中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2x + 3 = 7x - 1B. 3x - 5 = 2x + 3C. 4x + 2 = 6x - 4D. 5x - 7 = 3x + 1答案:B2. 计算下列哪个表达式的值等于10?A. 2(3x + 4)B. 3(2x - 1)C. 4(5x - 2)D. 5(4x + 3)答案:A3. 已知函数y = 2x + 3,当x = 2时,y的值是多少?A. 7B. 8C. 9D. 10答案:A4. 以下哪个图形是轴对称图形?A. 平行四边形C. 等腰三角形D. 不规则多边形答案:C5. 一个圆的半径是5厘米,那么它的周长是多少?A. 10π厘米B. 20π厘米C. 30π厘米D. 40π厘米答案:B6. 一个长方体的长宽高分别为3cm、4cm、5cm,那么它的体积是多少?A. 12立方厘米B. 24立方厘米C. 30立方厘米D. 60立方厘米答案:C7. 以下哪个选项是等腰三角形?A. 两边长分别为3cm和5cmB. 两边长分别为4cm和4cmC. 两边长分别为5cm和6cmD. 三边长分别为3cm、4cm、5cm答案:B8. 一个等差数列的首项为2,公差为3,那么第5项是多少?B. 14C. 11D. 8答案:A9. 以下哪个选项是二次函数?A. y = 2x + 3B. y = x^2 - 4x + 4C. y = 3x - 2D. y = 5x答案:B10. 一个直角三角形的两条直角边长分别为3cm和4cm,那么斜边的长度是多少?A. 5cmB. 6cmC. 7cmD. 8cm答案:A二、填空题(每题3分,共15分)11. 已知一个数的平方是25,那么这个数是______。

答案:±512. 一个数的绝对值是4,那么这个数是______。

答案:±413. 一个数的立方根是2,那么这个数是______。

山东省淄博市中考数学真题试题(含解析)(2021年整理)

山东省淄博市中考数学真题试题(含解析)(2021年整理)

山东省淄博市2018年中考数学真题试题(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(山东省淄博市2018年中考数学真题试题(含解析))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为山东省淄博市2018年中考数学真题试题(含解析)的全部内容。

山东省淄博市2018年中考数学真题试题一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(4分)计算的结果是()A.0 B.1 C.﹣1 D.2.(4分)下列语句描述的事件中,是随机事件的为()A.水能载舟,亦能覆舟B.只手遮天,偷天换日C.瓜熟蒂落,水到渠成D.心想事成,万事如意3.(4分)下列图形中,不是轴对称图形的是()A.B.C.D.4.(4分)若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A.3 B.6 C.8 D.95.(4分)与最接近的整数是()A.5 B.6 C.7 D.86.(4分)一辆小车沿着如图所示的斜坡向上行驶了100米,其铅直高度上升了15米.在用科学计算器求坡角α的度数时,具体按键顺序是( )A.B.C.D.7.(4分)化简的结果为( )A.B.a﹣1 C.a D.18.(4分)甲、乙、丙、丁4人进行乒乓球单循环比赛(每两个人都要比赛一场),结果甲胜了丁,并且甲、乙、丙胜的场数相同,则丁胜的场数是()A.3 B.2 C.1 D.09.(4分)如图,⊙O的直径AB=6,若∠BAC=50°,则劣弧AC的长为()A.2πB.C.D.10.(4分)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.11.(4分)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()A.4 B.6 C.D.812.(4分)如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为()A.B.C.D.二、填空题(每题4分,共5个小题,满分20分,将直接填写最后结果)13.(4分)如图,直线a∥b,若∠1=140°,则∠2= 度.14.(4分)分解因式:2x3﹣6x2+4x= .15.(4分)在如图所示的平行四边形ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,点D 落在△ABC所在平面内的点E处,且AE过BC的中点O,则△ADE的周长等于.16.(4分)已知抛物线y=x2+2x﹣3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位,平移后的抛物线于x轴交于C,D两点(点C在点D的左侧),若B,C是线段AD的三等分点,则m的值为.17.(4分)将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是.三、解答题(本大题共7小题,共52分.解答应写出文字说明、证明过程或演算步骤。

山东省淄博市2017年中考数学一模试卷(含解析)

山东省淄博市2017年中考数学一模试卷(含解析)

2017年山东省淄博市临淄中考数学一模试卷一、选择题1.下列各等式中正确的是()A. =±2 B.2+=2C.a2﹣a﹣2=(a+1)(a﹣2)D.(a m)n=a m+n2.某学习小组7位同学,为玉树地重灾区捐款,捐款金额分别为:5元,10元,6元,6元,7元,8元,9元,则这组数据的中位数与众数分别为()A.6,6 B.7,6 C.7,8 D.6,83.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()A. B.C.D.4.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1 B.﹣1 C.1或﹣1 D.5.观察图中尺规作图痕迹,下列说法错误的是()A.OE是∠AOB的平分线B.OC=ODC.点C、D到OE的距离不相等 D.∠AOE=∠BOE6.将矩形纸片ABCD按如图所示的方式折叠,恰好得到菱形AECF.若AB=3,则菱形AECF 的面积为()A.1 B.2 C.2 D.47.如图,在平面直角坐标系中,点A,B的坐标分别为(1,0),(0,2),某抛物线的顶点坐标为D(﹣1,1)且经过点B,连接AB,直线AB与此抛物线的另一个交点为C,则S△BCD:S△ABO=()A.8:1 B.6:1 C.5:1 D.4:18.当ab>0时,y=ax2与y=ax+b的图象大致是()A.B. C.D.9.如图,在梯形ABCD中,AD∥BC,对角线AC与BD相交于点O,如果S△ACD:S△ABC=1:2,那么S△AOD:S△BOC是()A.1:3 B.1:4 C.1:5 D.1:610.如图,在平面直角坐标系中,△ABC绕某一点P旋转一定的角度得到△A′B′C′,根据图形变换前后的关系可得点P的坐标为()A.(0,1)B.(1,﹣1)C.(0,﹣1)D.(1,0)11.甲、乙两车沿同一平直公路由A地匀速行驶(中途不停留),前往终点B地,甲、乙两车之间的距离S(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.下列说法:①甲、乙两地相距210千米;②甲速度为60千米/小时;③乙速度为120千米/小时;④乙车共行驶3小时,其中正确的个数为()A.1个B.2个C.3个D.4个12.如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B 运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.二、填空题13.如果一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数为.14.一种甲型H1N1流感病毒的直径约为0.00000078m,数0.00000078用科学记数法表示为.15.如图,A(4,0),B(3,3),以AO,AB为边作平行四边形OABC,则经过C点的反比例函数的解析式为.16.如图,都是由边长为1的正方体叠成的图形.例如第(1)个图形的表面积为6个平方单位,第(2)个图形的表面积为18个平方单位,第(3)个图形的表面积是36个平方单位.依此规律.则第(5)个图形的表面积个平方单位.17.如图,双曲线y=经过Rt△BOC斜边上的点A,且满足=,与BC交于点D,S△BOD=21,求k= .三、解答题18.(1)计算:()﹣1+|1﹣|﹣(π﹣3)0﹣;(2)化简:•÷;(3)解不等式组:,并写出它的非负整数解.(4)关于x的一元二次方程x2﹣(2m﹣1)x+m2+1=0.设x1,x2分别是方程的两个根,且满足x12+x22=x1x2+10,求实数m的值.19.2016年3月全国两会胜利召开,某数学兴趣小组就两会期间出现频率最高的热词:A 脱贫攻坚.B.绿色发展.C.自主创新.D.简政放权等热词进行了抽样调查,每个同学只能从中选择一个“我最关注”的热词,如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了名同学;(2)条形统计图中,m= ,n= ;(3)扇形统计图中,热词B所在扇形的圆心角的度数是;(4)从该校学生中随机抽取一个最关注热词D的学生的概率是多少?20.某校兴趣小组想测量一座大楼AB的高度.如图6,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1:.在离C点40米的D处,用测角仪测得大楼顶端A的仰角为37°,测角仪DE的高为1.5米,求大楼AB的高度约为多少米?(结果精确到0.1米)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)21.某市在城中村改造中,需要种植A、B两种不同的树苗共3000棵,经招标,承包商以15万元的报价中标承包了这项工程,根据调查及相关资料表明,A、B两种树苗的成本价及成活率如表:设种植A种树苗x棵,承包商获得的利润为y元.(1)求y与x之间的函数关系式;(2)政府要求栽植这批树苗的成活率不低于93%,承包商应如何选种树苗才能获得最大利润?最大利润是多少?22.如图,⊙O是△ABC的外接圆,AB是直径,作OD∥BC与过点A的切线交于点D,连接DC并延长交AB的延长线于点E.(1)求证:DE是⊙O的切线;(2)若AE=6,CE=2,求线段CE、BE与劣弧BC所围成的图形面积.(结果保留根号和π)23.如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=12cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB,AC,AD于E,F,H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)连接DE、DF,当t为何值时,四边形AEDF为菱形?(2)连接PE、PF,在整个运动过程中,△PEF的面积是否存在最大值?若存在,试求当△PEF的面积最大时,线段BP的长.(3)是否存在某一时刻t,使点F在线段EP的中垂线上?若存在,请求出此时刻t的值;若不存在,请说明理由.24.如图,已知直线y=3x+3与x轴交于点A,与y轴交于点B,过A,B两点的抛物线交x 轴于另一点C(3,0).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△ABP是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,说明理由.(3)在抛物线上求一点Q,使得△ACQ为等腰三角形,并写出Q点的坐标;(4)除(3)中所求的Q点外,在抛物线上是否还存在其它的点Q使得△ACQ为等腰三角形?若存在,请求出一共有几个满足条件的点Q(要求简要说明理由,但不证明);若不存在这样的点Q,请说明理由.2017年山东省淄博市临淄一中中考数学一模试卷参考答案与试题解析一、选择题1.下列各等式中正确的是()A. =±2 B.2+=2C.a2﹣a﹣2=(a+1)(a﹣2)D.(a m)n=a m+n【考点】因式分解﹣十字相乘法等;实数的运算;幂的乘方与积的乘方.【分析】分解利用十字相乘法以及幂的乘方和算术平方根以及实数运算分别分析得出即可.【解答】解:A、=2,故此选项错误;B、2+无法计算,故此选项错误;C、a2﹣a﹣2=(a+1)(a﹣2),故此选项正确;D、(a m)n=a mn,故此选项错误;故选:C.2.某学习小组7位同学,为玉树地重灾区捐款,捐款金额分别为:5元,10元,6元,6元,7元,8元,9元,则这组数据的中位数与众数分别为()A.6,6 B.7,6 C.7,8 D.6,8【考点】中位数;众数.【分析】首先把所给数据按从小到大的顺序重新排序,然后利用中位数和众数的定义就可以求出结果.【解答】解:把已知数据按从小到大的顺序排序后为5元,6元,6元,7元,8元,9元,10元,∴中位数为7∵6这个数据出现次数最多,∴众数为6.故选B.3.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()A. B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、旋转角是,只是每旋转与原图重合,而中心对称的定义是绕一定点旋转180度,新图形与原图形重合.因此不符合中心对称的定义,不是中心对称图形.D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.4.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1 B.﹣1 C.1或﹣1 D.【考点】一元二次方程的解.【分析】根据方程的解的定义,把x=0代入方程,即可得到关于a的方程,再根据一元二次方程的定义即可求解.【解答】解:根据题意得:a2﹣1=0且a﹣1≠0,解得:a=﹣1.故选B.5.观察图中尺规作图痕迹,下列说法错误的是()A.OE是∠AOB的平分线B.OC=ODC.点C、D到OE的距离不相等 D.∠AOE=∠BOE【考点】角平分线的性质.【分析】根据图形的画法得出OE是∠AOB的角平分线,再根据尺规作图的画法结合角平分线的性质逐项分析四个选项即可得出结论.【解答】解:根据尺规作图的画法可知:OE是∠AOB的角平分线.A、OE是∠AOB的平分线,A正确;B、OC=OD,B正确;C、点C、D到OE的距离相等,C不正确;D、∠AOE=∠BOE,D正确.故选C.6.将矩形纸片ABCD按如图所示的方式折叠,恰好得到菱形AECF.若AB=3,则菱形AECF 的面积为()A.1 B.2 C.2 D.4【考点】菱形的判定与性质;翻折变换(折叠问题).【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求得BC的长,则利用菱形的面积公式即可求解.【解答】解:∵四边形AECF是菱形,AB=3,∴假设BE=x,则AE=3﹣x,CE=3﹣x,∵四边形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=3﹣x,解得:x=1,∴CE=2,利用勾股定理得出:BC2+BE2=EC2,BC===,又∵AE=AB﹣BE=3﹣1=2,则菱形的面积是:AE•BC=2.故选:C.7.如图,在平面直角坐标系中,点A,B的坐标分别为(1,0),(0,2),某抛物线的顶点坐标为D(﹣1,1)且经过点B,连接AB,直线AB与此抛物线的另一个交点为C,则S△BCD:S△ABO=()A.8:1 B.6:1 C.5:1 D.4:1【考点】二次函数的性质.【分析】设直线AB的解析式为y=kx+b,二次函数的解析式为y=a(x+1)2+1,结合点的坐标利用待定系数法求出一次函数与二次函数的解析式,联立一次函数与二次函数解析式解出交点C的坐标,根据两点间的距离公式求出线段BC、AB的长度,再借用点到直线的距离公式(分子部分)寻找到点D、O到直线AB的距离间的关键,借助各比例关系利用三角形的面积公式即可得出结论.【解答】解:设直线AB的解析式为y=kx+b,二次函数的解析式为y=a(x+1)2+1,将点A(1,0)、B(0,2)代入y=kx+b中得:,解得:,∴直线AB的解析式为y=﹣2x+2;将点B(0,2)代入到y=a(x+1)2+1中得:2=a+1,解得:a=1,∴二次函数的解析式为y=(x+1)2+1=x2+2x+2.将y=﹣2x+2代入y=x2+2x+2中得:﹣2x+2=x2+2x+2,整理得:x2+4x=0,解得:x1=﹣4,x2=0,∴点C的坐标为(﹣4,10).∵点C(﹣4,10),点B(0,2),点A(1,0),∴AB==,BC==4,∴BC=4AB.∵直线AB解析式为y=﹣2x+2可变形为2x+y﹣2=0,∴|﹣2+1﹣2|=3,|﹣2|=2.∴S△BCD:S△ABO=4×3:2=12:2=6:1.故选B.8.当ab>0时,y=ax2与y=ax+b的图象大致是()A.B. C.D.【考点】二次函数的图象;一次函数的图象.【分析】根据题意,ab>0,即a、b同号,分a>0与a<0两种情况讨论,分析选项可得答案.【解答】解:根据题意,ab>0,即a、b同号,当a>0时,b>0,y=ax2与开口向上,过原点,y=ax+b过一、二、三象限;此时,没有选项符合,当a<0时,b<0,y=ax2与开口向下,过原点,y=ax+b过二、三、四象限;此时,D选项符合,故选D.9.如图,在梯形ABCD中,AD∥BC,对角线AC与BD相交于点O,如果S△ACD:S△ABC=1:2,那么S△AOD:S△BOC是()A.1:3 B.1:4 C.1:5 D.1:6【考点】相似三角形的判定与性质;梯形.【分析】首先根据S△ACD:S△ABC=1:2,可得AD:BC=1:2;然后根据相似三角形的面积的比的等于它们的相似比的平方,求出S△AOD:S△BOC是多少即可.【解答】解:∵在梯形ABCD中,AD∥BC,而且S△ACD:S△ABC=1:2,∴AD:BC=1:2;∵AD∥BC,∴△AOD~△BOC,∵AD:BC=1:2,∴S△AOD:S△BOC=1:4.故选:B.10.如图,在平面直角坐标系中,△ABC绕某一点P旋转一定的角度得到△A′B′C′,根据图形变换前后的关系可得点P的坐标为()A.(0,1)B.(1,﹣1)C.(0,﹣1)D.(1,0)【考点】坐标与图形变化﹣旋转.【分析】根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心.【解答】解:由图形可知,对应点的连线CC′、AA′的垂直平分线的交点是点(1,﹣1),根据旋转变换的性质,点(1,﹣1)即为旋转中心.故旋转中心坐标是P(1,﹣1).故选B.11.甲、乙两车沿同一平直公路由A地匀速行驶(中途不停留),前往终点B地,甲、乙两车之间的距离S(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.下列说法:①甲、乙两地相距210千米;②甲速度为60千米/小时;③乙速度为120千米/小时;④乙车共行驶3小时,其中正确的个数为()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】根据题意和函数图象可以分别计算出各个小题中的结果,从而可以判断各小题是否正确,从而可以解答本题.【解答】解:由图可知,甲车的速度为:60÷1=60千米/时,故②正确,则A、B两地的距离是:60×=210(千米),故①正确,则乙的速度为:(60×2)÷(2﹣1)=120千米/时,故③正确,乙车行驶的时间为:2﹣1=1(小时),故④错误,故选C.12.如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B 运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.【考点】动点问题的函数图象.【分析】分F在线段PD上,以及线段DQ上两种情况,表示出y与x的函数解析式,即可做出判断.【解答】解:当F在PD上运动时,△AEF的面积为y=AE•AD=2x(0≤x≤2),当F在AD上运动时,△AEF的面积为y=AE•AF=x(6﹣x)=﹣x2+3x(2<x≤4),图象为:故选A二、填空题13.如果一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数为 6 .【考点】多边形内角与外角.【分析】多边形的外角和是360°,内角和是它的外角和的2倍,则内角和是2×360=720度.n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【解答】解:设这个多边形的边数为n,∵n边形的内角和为(n﹣2)•180°,多边形的外角和为360°,∴(n﹣2)•180°=360°×2,解得n=8.∴此多边形的边数为6.故答案为:6.14.一种甲型H1N1流感病毒的直径约为0.00000078m,数0.00000078用科学记数法表示为7.8×10﹣7.【考点】科学记数法—表示较小的数.【分析】绝对值<1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:数0.00000078用科学记数法表示为7.8×10﹣7.故答案为:7.8×10﹣7.15.如图,A(4,0),B(3,3),以AO,AB为边作平行四边形OABC,则经过C点的反比例函数的解析式为y=﹣.【考点】待定系数法求反比例函数解析式;平行四边形的性质.【分析】设经过C点的反比例函数的解析式是y=(k≠0),设C(x,y).根据平行四边形的性质求出点C的坐标(﹣1,3).然后利用待定系数法求反比例函数的解析式.【解答】解:设经过C点的反比例函数的解析式是y=(k≠0),设C(x,y).∵四边形OABC是平行四边形,∴BC∥OA,BC=OA;∵A(4,0),B(3,3),∴点C的纵坐标是y=3,|3﹣x|=4(x<0),∴x=﹣1,∴C(﹣1,3).∵点C在反比例函数y=(k≠0)的图象上,∴3=,解得,k=﹣3,∴经过C点的反比例函数的解析式是y=﹣.故答案为:y=﹣.16.如图,都是由边长为1的正方体叠成的图形.例如第(1)个图形的表面积为6个平方单位,第(2)个图形的表面积为18个平方单位,第(3)个图形的表面积是36个平方单位.依此规律.则第(5)个图形的表面积90 个平方单位.【考点】规律型:图形的变化类.【分析】根据题意分析可得,若增加至第n层,则需要增加正方体1+2+3+…+n=个,且其表面积为最下层所有正方体表面积之和.【解答】解:第(5)个图形的表面积6×15=90.故答案为:90.17.如图,双曲线y=经过Rt△BOC斜边上的点A,且满足=,与BC交于点D,S△BOD=21,求k= 8 .【考点】反比例函数系数k的几何意义;相似三角形的判定与性质.【分析】过A作AE⊥x轴于点E,根据反比例函数的比例系数k的几何意义可得S四边形AECB=S,根据△OAE∽△OBC,相似三角形面积的比等于相似比的平方,据此即可求得△OAE的△BOD面积,从而求得k的值.【解答】解:过A作AE⊥x轴于点E.∵S△OAE=S△OCD,∴S四边形AECB=S△BOD=21,∵AE∥BC,∴△OAE∽△OBC,∴==()2=,∴S△OAE=4,则k=8.故答案是:8.三、解答题18.(1)计算:()﹣1+|1﹣|﹣(π﹣3)0﹣;(2)化简:•÷;(3)解不等式组:,并写出它的非负整数解.(4)关于x的一元二次方程x2﹣(2m﹣1)x+m2+1=0.设x1,x2分别是方程的两个根,且满足x12+x22=x1x2+10,求实数m的值.【考点】根与系数的关系;实数的运算;零指数幂;负整数指数幂;根的判别式;解一元一次不等式组;一元一次不等式组的整数解.【分析】(1)将()﹣1=2、(π﹣3)0=1、=代入原式,再根据实数的运算即可得出结论;(2)根据完全平方差、完全平凡公式结合分式的运算,即可得出结论;(3)根据不等式组的解法及步骤,解不等式组即可得出结论;(4)根据方程有两个实数根结合根的判别式即可得出△=﹣4m﹣3≥0,解之即可得出m的取值范围,再根据根与系数的关系结合x12+x22=x1x2+10即可得出关于m的一元二次方程,解之即可得出结论.【解答】解:(1)()﹣1+|1﹣|﹣(π﹣3)0﹣,=2+﹣1﹣1﹣,=﹣.(2)原式=•÷,=••(1+a)(1﹣a),=(a﹣2)(1+a),=a2﹣a﹣2.(3),解不等式①,得:x≥﹣4;解不等式②,得:x<2.∴不等式组的解为﹣4≤x<2.∴x=﹣4、﹣3、﹣2和﹣1.(4)∵方程x2﹣(2m﹣1)x+m2+1=0有两个实数根,∴△=[﹣(2m﹣1)]2﹣4(m2+1)=﹣4m﹣3≥0,∴m≤﹣.∵x1,x2是方程x2﹣(2m﹣1)x+m2+1=0的两个根,∴x1+x2=2m﹣1,x1•x2=m2+1,∴x12+x22=﹣2x1x2=x1x2+10,即(2m﹣1)2﹣2(m2+1)=m2+1+10,解得:m=﹣2或m=6(舍去).∴实数m的值为﹣2.19.2016年3月全国两会胜利召开,某数学兴趣小组就两会期间出现频率最高的热词:A 脱贫攻坚.B.绿色发展.C.自主创新.D.简政放权等热词进行了抽样调查,每个同学只能从中选择一个“我最关注”的热词,如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了300 名同学;(2)条形统计图中,m= 60 ,n= 90 ;(3)扇形统计图中,热词B所在扇形的圆心角的度数是72°;(4)从该校学生中随机抽取一个最关注热词D的学生的概率是多少?【考点】概率公式;扇形统计图;条形统计图.【分析】(1)根据A的人数为105人,所占的百分比为35%,求出总人数,即可解答;(2)C所对应的人数为:总人数×30%,B所对应的人数为:总人数﹣A所对应的人数﹣C 所对应的人数﹣D所对应的人数,即可解答;(3)根据B所占的百分比×360°,即可解答;(4)根据概率公式,即可解答.【解答】解:(1)105÷35%=300(人).故答案为:300;(2)n=300×30%=90(人),m=300﹣105﹣90﹣45=60(人).故答案为:60,90;(3)×360°=72°.故答案为:72°;(4)从该校学生中随机抽取一个最关注热词D的学生的概率是=.答:从该校学生中随机抽取一个最关注热词D的学生的概率是.20.某校兴趣小组想测量一座大楼AB的高度.如图6,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1:.在离C点40米的D处,用测角仪测得大楼顶端A的仰角为37°,测角仪DE的高为1.5米,求大楼AB的高度约为多少米?(结果精确到0.1米)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)【考点】解直角三角形的应用﹣仰角俯角问题;解直角三角形的应用﹣坡度坡角问题.【分析】延长AB交直线DC于点F,过点E作EH⊥AF,垂足为点H,在Rt△BCF中利用坡度的定义求得CF的长,则DF即可求得,然后在直角△AEH中利用三角函数求得AF的长,进而求得AB的长.【解答】解:延长AB交直线DC于点F,过点E作EH⊥AF,垂足为点H.∵在Rt△BCF中, =i=1:,∴设BF=k,则CF=,BC=2k.又∵BC=12,∴k=6,∴BF=6,CF=.∵DF=DC+CF,∴DF=40+6.∵在Rt△AEH中,tan∠AEH=,∴AH=tan37°×(40+6)≈37.8(米),∵BH=BF﹣FH,∴BH=6﹣1.5=4.5.∵AB=AH﹣HB,∴AB=37.8﹣4.5=33.3.答:大楼AB的高度约为33.3米.21.某市在城中村改造中,需要种植A、B两种不同的树苗共3000棵,经招标,承包商以15万元的报价中标承包了这项工程,根据调查及相关资料表明,A、B两种树苗的成本价及成活率如表:设种植A种树苗x棵,承包商获得的利润为y元.(1)求y与x之间的函数关系式;(2)政府要求栽植这批树苗的成活率不低于93%,承包商应如何选种树苗才能获得最大利润?最大利润是多少?【考点】一次函数的应用;一元一次不等式的应用.【分析】(1)根据题意和表格中的数据可以得到y与x的函数关系式;(2)根据题意可以的得到相应的不等式,从而可以解答本题.【解答】解:(1)由题意可得,y=150000﹣28x﹣40=30000+12x,即y与x之间的函数关系式是y=12x+30000;(2)由题意可得,90%x+95%≥3000×93%,解得,x≤1200,∵y=12x+30000,∴当x=1200时,y取得最大值,此时y=44400,即承包商购买A种树苗1200棵,B种树苗1800棵时,能获得最大利润,最大利润是44400元.22.如图,⊙O是△ABC的外接圆,AB是直径,作OD∥BC与过点A的切线交于点D,连接DC并延长交AB的延长线于点E.(1)求证:DE是⊙O的切线;(2)若AE=6,CE=2,求线段CE、BE与劣弧BC所围成的图形面积.(结果保留根号和π)【考点】切线的判定;扇形面积的计算.【分析】(1)连结OC,如图,先根据切线的性质得∠BAD=90°,再根据平行线的性质,由OD∥BC得∠1=∠3,∠2=∠4,加上∠3=∠4,则∠1=∠2,接着证明△AOD≌△COD,得到∠OCD=∠OAD=90°,于是可根据切线的判定定理得到DE是⊙O的切线;(2)设半径为r,则OE=AE﹣OA=6﹣r,OC=r,在Rt△OCE中利用勾股定理得到r2+(2)2=(6﹣r)2,解得r=2,再利用正切函数求出∠COE=60°,然后根据扇形面积公式和S阴影部=S△COE﹣S扇形BOC进行计算即可.分【解答】解:(1)连结OC,如图,∵AD为⊙O的切线,∴AD⊥AB,∴∠BAD=90°,∵OD∥BC,∴∠1=∠3,∠2=∠4,∵OB=OC,∴∠3=∠4,∴∠1=∠2,在△OCD和△OAD中,,∴△AOD≌△COD(SAS);∴∠OCD=∠OAD=90°,∴OC⊥DE,∴DE是⊙O的切线;(2)设半径为r,则OE=AE﹣OA=6﹣r,OC=r,在Rt△OCE中,∵OC2+CE2=OE2,∴r2+(2)2=(6﹣r)2,解得r=2,∵tan∠COE===,∴∠COE=60°,∴S阴影部分=S△COE﹣S扇形BOC=×2×2﹣=2﹣π.23.如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=12cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB,AC,AD于E,F,H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)连接DE、DF,当t为何值时,四边形AEDF为菱形?(2)连接PE、PF,在整个运动过程中,△PEF的面积是否存在最大值?若存在,试求当△PEF的面积最大时,线段BP的长.(3)是否存在某一时刻t,使点F在线段EP的中垂线上?若存在,请求出此时刻t的值;若不存在,请说明理由.【考点】四边形综合题;解一元二次方程﹣因式分解法;线段垂直平分线的性质;菱形的判定与性质;相似三角形的判定与性质.【分析】(1)根据四边形AEDF为菱形,则EF垂直平分AD,此时,DH=AD=4cm,再根据直线m以每秒2cm的速度沿DA方向匀速平移,即可求得t==2(s);(2)先根据EF∥BC,得到△AEF∽△ABC,进而得出=,据此求得EF=12﹣3t,再根据S△PEF=EF•DH=(12﹣3t)•2t=﹣3t2+12t=﹣3(t﹣2)2+12(0<t≤4),求得当t=2秒时,S△PEF存在最大值,最大值为12cm2,最后计算线段BP的长;(3)若点F在线段EP的中垂线上,则FE=FP,过点F作FG⊥BC于G,则FG=HD=2t,FG∥AD,根据△FCG∽△ACD,得到=,进而得到CG=t,PG=12﹣3t﹣t,最后在Rt△PFG中,根据勾股定理列出方程(12﹣3t﹣t)2+(2t)2=(12﹣3t)2,即可求得t的值.【解答】解:(1)如图1,若四边形AEDF为菱形,则EF垂直平分AD,此时,DH=AD=4cm,又∵直线m以每秒2cm的速度沿DA方向匀速平移,∴t==2(s),此时,EF垂直平分AD,∴AE=DE,AF=DF.∵AB=AC,AD⊥BC于点D,∴AD⊥BC,∠B=∠C.∴EF∥BC,∴∠AEF=∠B,∠AFE=∠C,∴∠AEF=∠AFE,∴AE=AF,∴AE=AF=DE=DF,即四边形AEDF为菱形,故当t=2s时,四边形AEDF为菱形;(2)如图2,∵直线m以每秒2cm的速度沿DA方向匀速平移,AD=8cm,∴DH=2t,AH=8﹣2t,∵EF∥BC,∴△AEF∽△ABC,∴=,即=.解得EF=12﹣3t,∴S△PEF=EF•DH=(12﹣3t)•2t=﹣3t2+12t=﹣3(t﹣2)2+12(0<t≤4),∴当t=2秒时,S△PEF存在最大值,最大值为12cm2,此时BP=3t=6cm;(3)存在某一时刻t,使点F在线段EP的中垂线上.∵AB=AC,AD⊥BC,BC=12cm,AD=8cm,∴AB=AC=10cm,若点F在线段EP的中垂线上,则FE=FP,由(2)可得,EF=12﹣3t=PF,如图3,过点F作FG⊥BC于G,则FG=HD=2t,FG∥AD,∴△FCG∽△ACD,∴=,即=,∴CG=t,又∵BP=3t,BC=12cm,∴PG=12﹣3t﹣t,∴Rt△PFG中,(12﹣3t﹣t)2+(2t)2=(12﹣3t)2,解得t1=或t2=0(舍去),∴当t=时,点F在线段EP的中垂线上.24.如图,已知直线y=3x+3与x轴交于点A,与y轴交于点B,过A,B两点的抛物线交x 轴于另一点C(3,0).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△ABP是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,说明理由.(3)在抛物线上求一点Q,使得△ACQ为等腰三角形,并写出Q点的坐标;(4)除(3)中所求的Q点外,在抛物线上是否还存在其它的点Q使得△ACQ为等腰三角形?若存在,请求出一共有几个满足条件的点Q(要求简要说明理由,但不证明);若不存在这样的点Q,请说明理由.【考点】二次函数综合题.【分析】(1)先求得点A和点B的坐标,然后设抛物线的解析式为y=a(x+1)(x﹣3),将点B的坐标代入求解即可;(2)抛物线的对称轴为x=1.设点P的坐标为(1,a),分为AB=AP、BA=BP、AP=BP三种情况,然后结合两点间的距离公式列方程求解即可;(3)当点Q在AC的垂直平分线上时,QA=QC,即点Q为抛物线的顶点;(4)由(3)可知当Q为抛物线的顶点时,△AQC为等腰三角形;以A为圆心,以AC长为半径作⊙A,⊙A交抛物线与Q1、Q2、Q3,以C为圆心,AC长为半径作⊙C,交抛物线与点Q4、Q5、Q6,依据图形可得到问题的答案.【解答】解:(1)令x=0得:y=3,∴B(0,3).令y=0得:3x+3=0,解得x=﹣1,∴A(﹣1,0).设抛物线的解析式为y=a(x+1)(x﹣3),将点B的坐标代入得:﹣3a=3,解得a=﹣1,∴抛物线的解析式为y=﹣x2+2x+3.(2)抛物线的对称轴方程为x=﹣=1.设点P的坐标为(1,a).当AB=AP时, =,整理得:10=4+a2,解得a=±∴P(1,)或(1,﹣).当BA=BP时, =,整理得:10=1+(3﹣a)2,解得:a=0或a=6,∴P(1,0)或(1,6).当AP=BP时, =,整理得:6a=6,解得a=1,∴P(1,1).综上所述:点P的坐标为P(1,)或(1,﹣)或P(1,0)或(1,6)或P(1,1).(3)当点Q在AC的垂直平分线上时,则QA=QC.由抛物线的对称性可知:此时点Q为抛物线的顶点.∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴Q(1,4).(4)当QA=QC,时,抛物线的顶点即为所求的点Q.如图所示:以A为圆心,以AC长为半径作⊙A,⊙A交抛物线与Q1、Q2、Q3,以C为圆心,AC长为半径作⊙C,交抛物线与点Q4、Q5、Q6.由圆的性质可知:△ACQ1、△ACQ2、△ACQ3、△ACQ4、△ACQ5、△ACQ6均为等腰三角形.∴符合题意的点Q共有7个.。

2017年山东省淄博市中考数学试卷(含答案)

2017年山东省淄博市中考数学试卷(含答案)

2017年山东省淄博市中考数学试卷一、选择题(本大题共12小题,每小题4分,共48分)1.﹣的相反数是()A.B.C.D.﹣2.C919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个,请将100万用科学记数法表示为()A.1×106B.100×104C.1×107×1083.下列几何体中,其主视图为三角形的是()A.B.C.D.4.下列运算正确的是()A.a2•a3=a6 B.(﹣a2)3=﹣a5C.a10÷a9=a(a≠0)D.(﹣bc)4÷(﹣bc)2=﹣b2c25.若分式的值为零,则x的值是()A.1 B.﹣1 C.±1 D.26.若a+b=3,a2+b2=7,则ab等于()A.2 B.1 C.﹣2 D.﹣17.将二次函数y=x2+2x﹣1的图象沿x轴向右平移2个单位长度,得到的函数表达式是()A.y=(x+3)2﹣2 B.y=(x+3)2+2 C.y=(x﹣1)2+2 D.y=(x﹣1)2﹣2 8.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣1 B.k>﹣1且k≠0 C.k<﹣1 D.k<﹣1或k=09.如图,半圆的直径BC恰与等腰直角三角形ABC的一条直角边完全重合,若BC=4,则图中阴影部分的面积是()A.2+πB.2+2πC.4+πD.2+4π10.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A.B.C.D.11.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器,然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是()A.B. C.D.12.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为()A.B.C.D.二、填空题(本大题共5小题,每小题4分,共20分)13.分解因式:2x3﹣8x=.14.已知α,β是方程x2﹣3x﹣4=0的两个实数根,则α2+αβ﹣3α的值为.15.运用科学计算器(如图是其面板的部分截图)进行计算,按键顺序如下:则计算器显示的结果是.16.在边长为4的等边三角形ABC中,D为BC边上的任意一点,过点D分别作DE⊥AB,DF⊥AC,垂足分别为E,F,则DE+DF=.17.设△ABC的面积为1.如图1,分别将AC,BC边2等分,D1,E1是其分点,连接AE1,BD1交于点F1,得到四边形CD1F1E1,其面积S1=.如图2,分别将AC,BC边3等分,D1,D2,E1,E2是其分点,连接AE2,BD2交于点F2,得到四边形CD2F2E2,其面积S2=;如图3,分别将AC,BC边4等分,D1,D2,D3,E1,E2,E3是其分点,连接AE3,BD3交于点F3,得到四边形CD3F3E3,其面积S3=;…按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形CD n E n F n,其面积S=.三、解答题(本大题共7小题,共52分)18.解不等式:≤.19.已知:如图,E,F为▱ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.20.某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h,求汽车原来的平均速度.21.为了“天更蓝,水更绿”某市政府加大了对空气污染的治理力度,经过几年的努力,空气质量明显改善,现收集了该市连续30天的空气质量情况作为样本,整理并制作了如下表格和一幅不完整的条形统计图:空气污染指数(ω)3040708090110120140天数(t)12357642说明:环境空气质量指数(AQI)技术规定:ω≤50时,空气质量为优;51≤ω≤100时,空气质量为良;101≤ω≤150时,空气质量为轻度污染;151≤ω≤200时,空气质量为中度污染,…根据上述信息,解答下列问题:(1)直接写出空气污染指数这组数据的众数,中位数;(2)请补全空气质量天数条形统计图:(3)根据已完成的条形统计图,制作相应的扇形统计图;(4)健康专家温馨提示:空气污染指数在100以下适合做户外运动,请根据以上信息,估计该市居民一年(以365天计)中有多少天适合做户外运动?22.如图,在直角坐标系中,Rt△ABC的直角边AC在x轴上,∠ACB=90°,AC=1,反比例函数y=(k>0)的图象经过BC边的中点D(3,1)(1)求这个反比例函数的表达式;(2)若△ABC与△EFG成中心对称,且△EFG的边FG在y轴的正半轴上,点E 在这个函数的图象上.①求OF的长;②连接AF,BE,证明四边形ABEF是正方形.23.如图,将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P 重合(点P不与点C,D重合),折痕为MN,点M,N分别在边AD,BC上,连接MB,MP,BP,BP与MN相交于点F.(1)求证:△BFN∽△BCP;(2)①在图2中,作出经过M,D,P三点的⊙O(要求保留作图痕迹,不写做法);②设AB=4,随着点P在CD上的运动,若①中的⊙O恰好与BM,BC同时相切,求此时DP的长.24.如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.2017年山东省淄博市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分)1.﹣的相反数是()A.B.C.D.﹣【考点】14:相反数.【分析】直接根据相反数的定义即可得出结论.【解答】解:∵﹣与是只有符号不同的两个数,∴﹣的相反数是.故选C.2.C919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个,请将100万用科学记数法表示为()A.1×106B.100×104C.1×107×108【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将100万用科学记数法表示为:1×106.故选:A.3.下列几何体中,其主视图为三角形的是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】找出四个选项中几何体的主视图,由此即可得出结论.【解答】解:A、圆柱的主视图为矩形,∴A不符合题意;B、正方体的主视图为正方形,∴B不符合题意;C、球体的主视图为圆形,∴C不符合题意;D、圆锥的主视图为三角形,∴D符合题意.故选D.4.下列运算正确的是()A.a2•a3=a6 B.(﹣a2)3=﹣a5C.a10÷a9=a(a≠0)D.(﹣bc)4÷(﹣bc)2=﹣b2c2【考点】48:同底数幂的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的乘法、除法、积的乘方和幂的乘方进行计算即可.【解答】解:A、a2•a3=a5,故A错误;B、(﹣a2)3=﹣a6,故B错误;C、a10÷a9=a(a≠0),故C正确;D、(﹣bc)4÷(﹣bc)2=b2c2,故D错误;故选C.5.若分式的值为零,则x的值是()A.1 B.﹣1 C.±1 D.2【考点】63:分式的值为零的条件.【分析】直接利用分式的值为零,则分子为零,分母不为零,进而得出答案.【解答】解:∵分式的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选:A.6.若a+b=3,a2+b2=7,则ab等于()A.2 B.1 C.﹣2 D.﹣1【考点】4C:完全平方公式.【分析】根据完全平方公式得到(a+b)2=9,再将a2+b2=7整体代入计算即可求解.【解答】解:∵a+b=3,∴(a+b)2=9,∴a2+2ab+b2=9,∵a2+b2=7,∴7+2ab=9,∴ab=1.故选:B.7.将二次函数y=x2+2x﹣1的图象沿x轴向右平移2个单位长度,得到的函数表达式是()A.y=(x+3)2﹣2 B.y=(x+3)2+2 C.y=(x﹣1)2+2 D.y=(x﹣1)2﹣2【考点】H6:二次函数图象与几何变换.【分析】根据题目中的函数解析式,可以先化为顶点式,然后再根据左加右减的方法进行解答即可得到平移后的函数解析式.【解答】解:∵y=x2+2x﹣1=(x+1)2﹣2,∴二次函数y=x2+2x﹣1的图象沿x轴向右平移2个单位长度,得到的函数表达式是:y=(x+1﹣2)2﹣2=(x﹣1)2﹣2,故选D.8.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣1 B.k>﹣1且k≠0 C.k<﹣1 D.k<﹣1或k=0【考点】AA:根的判别式.【分析】利用一元二次方程的定义和判别式的意义得到k≠0且△=(﹣2)2﹣4k•(﹣1)>0,然后其出两个不等式的公共部分即可.【解答】解:根据题意得k≠0且△=(﹣2)2﹣4k•(﹣1)>0,解得k>﹣1且k≠0.故选B.9.如图,半圆的直径BC恰与等腰直角三角形ABC的一条直角边完全重合,若BC=4,则图中阴影部分的面积是( )A .2+πB .2+2πC .4+πD .2+4π【考点】MO :扇形面积的计算;KW :等腰直角三角形.【分析】如图,连接CD ,OD ,根据已知条件得到OB=2,∠B=45°,根据三角形和扇形的面积公式即可得到结论.【解答】解:如图,连接CD ,OD ,∵BC=4,∴OB=2,∵∠B=45°,∴∠COD=90°,∴图中阴影部分的面积=S △BOD +S 扇形COD =2×2+=2+π,故选A .10.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m ,再由乙猜这个小球上的数字,记为n .如果m ,n 满足|m ﹣n |≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是( )A .B .C .D .【考点】X6:列表法与树状图法;15:绝对值.【分析】画出树状图列出所有等可能结果,由树状图确定出所有等可能结果数及两人“心领神会”的结果数,根据概率公式求解可得.【解答】解:画树状图如下:由树状图可知,共有16种等可能结果,其中满足|m ﹣n |≤1的有10种结果, ∴两人“心领神会”的概率是=, 故选:B .11.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器,然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h 与注水时间t之间的变化情况的是()A.B. C.D.【考点】E6:函数的图象.【分析】根据用一注水管沿大容器内壁匀速注水,即可分段求出小水杯内水面的高度h(cm)与注水时间t(min)的函数图象.【解答】解:一注水管向小玻璃杯内注水,水面在逐渐升高,当小杯中水满时,开始向大桶内流,这时水位高度不变,当桶水面高度与小杯一样后,再继续注水,水面高度在升高,升高的比开始慢.故选:D.12.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为()A.B.C.D.【考点】S9:相似三角形的判定与性质;KF:角平分线的性质;KJ:等腰三角形的判定与性质.【分析】延长FE交AB于点D,作EG⊥BC、作EH⊥AC,由EF∥BC可证四边形BDEG是矩形,由角平分线可得ED=EH=EG、∠DAE=∠HAE,从而知四边形BDEG 是正方形,再证△DAE≌△HAE、△CGE≌△CHE得AD=AH、CG=CH,设BD=BG=x,则AD=AH=6﹣x、CG=CH=8﹣x,由AC=10可得x=2,即BD=DE=2、AD=4,再证△ADF∽△ABC可得DF=,据此得出EF=DF﹣DE=.【解答】解:如图,延长FE交AB于点D,作EG⊥BC于点G,作EH⊥AC于点H,∵EF∥BC、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四边形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠DAE=∠HAE,∴四边形BDEG是正方形,在△DAE和△HAE中,∵,∴△DAE≌△HAE(SAS),∴AD=AH,同理△CGE≌△CHE,∴CG=CH,设BD=BG=x,则AD=AH=6﹣x、CG=CH=8﹣x,∵AC===10,∴6﹣x+8﹣x=10,解得:x=2,∴BD=DE=2,AD=4,∵DF∥BC,∴△ADF∽△ABC,∴=,即=,解得:DF=,则EF=DF﹣DE=﹣2=,故选:C.二、填空题(本大题共5小题,每小题4分,共20分)13.分解因式:2x3﹣8x=2x(x﹣2)(x+2).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式2x,再对余下的项利用平方差公式分解因式.【解答】解:2x3﹣8x,=2x(x2﹣4),=2x(x+2)(x﹣2).14.已知α,β是方程x 2﹣3x ﹣4=0的两个实数根,则α2+αβ﹣3α的值为 0 .【考点】AB :根与系数的关系.【分析】根据根与系数的关系得到得α+β=3,再把原式变形得到a (α+β)﹣3α,然后利用整体代入的方法计算即可.【解答】解:根据题意得α+β=3,αβ=﹣4,所以原式=a (α+β)﹣3α=3α﹣3α=0.故答案为0.15.运用科学计算器(如图是其面板的部分截图)进行计算,按键顺序如下: 则计算器显示的结果是 ﹣959 .【考点】1M :计算器—基础知识.【分析】根据计算器的按键顺序,写出计算的式子.然后求值.【解答】×312+=﹣959,故答案为:﹣959.16.在边长为4的等边三角形ABC 中,D 为BC 边上的任意一点,过点D 分别作DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,则DE +DF= 2.【考点】KK :等边三角形的性质.【分析】作AG ⊥BC 于G ,根据等边三角形的性质得出∠B=60°,解直角三角形求得AG=2,根据S △ABD +S △ACD =S △ABC 即可得出DE +DF=AG=2. 【解答】解:如图,作AG ⊥BC 于G ,∵△ABC 是等边三角形,∴∠B=60°,∴AG=AB=2,连接AD ,则S △ABD +S △ACD =S △ABC ,∴AB•DE +AC•DF=BC•AG ,∵AB=AC=BC=4,∴DE +DF=AG=2, 故答案为:2.17.设△ABC 的面积为1.如图1,分别将AC ,BC 边2等分,D 1,E 1是其分点,连接AE 1,BD 1交于点F 1,得到四边形CD 1F 1E 1,其面积S 1=.如图2,分别将AC ,BC 边3等分,D 1,D 2,E 1,E 2是其分点,连接AE 2,BD 2交于点F 2,得到四边形CD 2F 2E 2,其面积S 2=;如图3,分别将AC ,BC 边4等分,D 1,D 2,D 3,E 1,E 2,E 3是其分点,连接AE 3,BD 3交于点F 3,得到四边形CD 3F 3E 3,其面积S 3=;…按照这个规律进行下去,若分别将AC ,BC 边(n +1)等分,…,得到四边形CD n E n F n ,其面积S= . 【考点】38:规律型:图形的变化类;K3:三角形的面积.【分析】先连接D 1E 1,D 2E 2,D 3E 3,依据D 1E 1∥AB ,D 1E 1=AB ,可得△CD 1E 1∽△CBA ,且==,根据相似三角形的面积之比等于相似比的平方,即可得到S △CD1E1=S △ABC =,依据E 1是BC 的中点,即可得出S △D1E1F1=S △BD1E1=×=,据此可得S 1=;运用相同的方法,依次可得S 2=,S 2=;根据所得规律,即可得出四边形CD n E n F n ,其面积S n =+×n ×,最后化简即可.【解答】解:如图所示,连接D 1E 1,D 2E 2,D 3E 3,∵图1中,D 1,E 1是△ABC 两边的中点, ∴D 1E 1∥AB ,D 1E 1=AB ,∴△CD 1E 1∽△CBA ,且==,∴S △CD1E1=S △ABC =,∵E 1是BC 的中点,∴S △BD1E1=S △CD1E1=,∴S △D1E1F1=S △BD1E1=×=, ∴S 1=S △CD1E1+S △D1E1F1=+=,同理可得: 图2中,S 2=S △CD2E2+S △D2E2F2=+=, 图3中,S 3=S △CD3E3+S △D3E3F3=+=,以此类推,将AC ,BC 边(n +1)等分,得到四边形CD n E n F n ,其面积S n =+×n ×=, 故答案为:. 三、解答题(本大题共7小题,共52分)18.解不等式:≤.【考点】C6:解一元一次不等式.【分析】不等式去分母,去括号,移项合并,把x 系数化为1,即可求出解集.【解答】解:去分母得:3(x ﹣2)≤2(7﹣x ),去括号得:3x ﹣6≤14﹣2x ,移项合并得:5x ≤20,解得:x ≤4.19.已知:如图,E ,F 为▱ABCD 对角线AC 上的两点,且AE=CF ,连接BE ,DF ,求证:BE=DF .【考点】L5:平行四边形的性质;KD :全等三角形的判定与性质.【分析】证明△AEB ≌△CFD ,即可得出结论.【解答】证明:∵四边形ABCD 是平行四边形,∴AB ∥DC ,AB=DC .∴∠BAE=∠DCF .在△AEB 和△CFD 中,,∴△AEB ≌△CFD (SAS ).∴BE=DF .20.某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h,求汽车原来的平均速度.【考点】B7:分式方程的应用.【分析】求的汽车原来的平均速度,路程为420km,一定是根据时间来列等量关系,本题的关键描述语是:从甲地到乙地的时间缩短了2h.等量关系为:原来时间﹣现在时间=2.【解答】解:设汽车原来的平均速度是x km/h,根据题意得:﹣=2,解得:x=70经检验:x=70是原方程的解.答:汽车原来的平均速度70km/h.21.为了“天更蓝,水更绿”某市政府加大了对空气污染的治理力度,经过几年的努力,空气质量明显改善,现收集了该市连续30天的空气质量情况作为样本,整理并制作了如下表格和一幅不完整的条形统计图:空气污染指数(ω)3040708090110120140天数(t)12357642说明:环境空气质量指数(AQI)技术规定:ω≤50时,空气质量为优;51≤ω≤100时,空气质量为良;101≤ω≤150时,空气质量为轻度污染;151≤ω≤200时,空气质量为中度污染,…根据上述信息,解答下列问题:(1)直接写出空气污染指数这组数据的众数90,中位数90;(2)请补全空气质量天数条形统计图:(3)根据已完成的条形统计图,制作相应的扇形统计图;(4)健康专家温馨提示:空气污染指数在100以下适合做户外运动,请根据以上信息,估计该市居民一年(以365天计)中有多少天适合做户外运动?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图;W4:中位数;W5:众数.【分析】(1)根据众数的定义就可以得出这组数据的众数为90,由30各数据中排在第15和第16两个数的平均数就可以得出中位数为90;(2)根据统计表的数据分别计算出,优、良及轻度污染的时间即可;(3)由条形统计图分别计算出优、良及轻度污染的百分比及圆心角的度数即可;(4)先求出30天中空气污染指数在100以下的比值,再由这个比值乘以365天就可以求出结论.【解答】解:(1)在这组数据中90出现的次数最多7次,故这组数据的众数为90;在这组数据中排在最中间的两个数是90,90,这两个数的平均数是90,所以这组数据的中位数是90;故答案为:90,90.(2)由题意,得轻度污染的天数为:30﹣3﹣15=12天.(3)由题意,得优所占的圆心角的度数为:3÷30×360=36°,良所占的圆心角的度数为:15÷30×360=180°,轻度污染所占的圆心角的度数为:12÷30×360=144°(4)该市居民一年(以365天计)中有适合做户外运动的天数为:18÷30×365=219天.22.如图,在直角坐标系中,Rt△ABC的直角边AC在x轴上,∠ACB=90°,AC=1,反比例函数y=(k>0)的图象经过BC边的中点D(3,1)(1)求这个反比例函数的表达式;(2)若△ABC与△EFG成中心对称,且△EFG的边FG在y轴的正半轴上,点E 在这个函数的图象上.①求OF的长;②连接AF,BE,证明四边形ABEF是正方形.【考点】GB:反比例函数综合题.【分析】(1)由D点坐标可求得k的值,可求得反比例函数的表达式;(2)①由中心对称的性质可知△ABC≌△EFG,由D点坐标可求得B点坐标,从而可求得BC和AC的长,由全等三角形的性质可求得GE和GF,则可求得E点坐标,从而可求得OF的长;②由条件可证得△AOF≌△FGE,则可证得AF=EF=AB,且∠EFA=∠FAB=90°,则可证得四边形ABEF为正方形.【解答】解:(1)∵反比例函数y=(k>0)的图象经过点D(3,1),∴k=3×1=3,∴反比例函数表达式为y=;(2)①∵D为BC的中点,∴BC=2,∵△ABC与△EFG成中心对称,∴△ABC≌△EFG,∴GF=BC=2,GE=AC=1,∵点E在反比例函数的图象上,∴E(1,3),即OG=3,∴OF=OG﹣GF=1;②如图,连接AF、BE,∵AC=1,OC=3,∴OA=GF=2,在△AOF和△FGE中∴△AOF≌△FGE(SAS),∴∠GFE=∠FAO=∠ABC,∴∠GFE+∠AFO=∠FAO+∠BAC=90°,∴EF∥AB,且EF=AB,∴四边形ABEF为平行四边形,∴AF=EF,∴四边形ABEF为菱形,∵AF⊥EF,∴四边形ABEF为正方形.23.如图,将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P重合(点P不与点C,D重合),折痕为MN,点M,N分别在边AD,BC上,连接MB,MP,BP,BP与MN相交于点F.(1)求证:△BFN∽△BCP;(2)①在图2中,作出经过M,D,P三点的⊙O(要求保留作图痕迹,不写做法);②设AB=4,随着点P在CD上的运动,若①中的⊙O恰好与BM,BC同时相切,求此时DP的长.【考点】MR:圆的综合题.【分析】(1)根据折叠的性质可知,MN垂直平分线段BP,即∠BFN=90°,由矩形的性质可得出∠C=90°=∠BFN,结合公共角∠FBN=∠CBP,即可证出△BFN∽△BCP;(2)①在图2中,作MD、DP的垂直平分线,交于点O,以OD为半径作圆即可;②设⊙O与BC的交点为E,连接OB、OE,由△MDP为直角三角形,可得出AP 为⊙O的直径,根据BM与⊙O相切,可得出MP⊥BM,进而可得出△BMP为等腰直角三角形,根据同角的余角相等可得出∠PMD=∠MBA,结合∠A=∠PMD=90°、BM=MP,即可证出△ABM≌△DMP(AAS),根据全等三角形的性质可得出DM=AB=4、DP=AM,设DP=2a,根据勾股定理结合半径为直径的一半,即可得出关于a的方程,解之即可得出a值,再将a代入OP=2a中求出DP的长度.【解答】(1)证明:∵将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P重合,∴MN垂直平分线段BP,∴∠BFN=90°.∵四边形ABCD为矩形,∴∠C=90°.∵∠FBN=∠CBP,∴△BFN∽△BCP.(2)解:①在图2中,作MD、DP的垂直平分线,交于点O,以OD为半径作圆即可.如图所示.②设⊙O与BC的交点为E,连接OB、OE,如图3所示.∵△MDP为直角三角形,∴AP为⊙O的直径,∵BM与⊙O相切,∴MP⊥BM.∵MB=MP,∴△BMP为等腰直角三角形.∵∠AMB+∠PMD=180°﹣∠AMP=90°,∠MBA+∠AMB=90°,∴∠PMD=∠MBA.在△ABM和△DMP中,,∴△ABM≌△DMP(AAS),∴DM=AB=4,DP=AM.设DP=2a,则AM=2a,OE=4﹣a,BM==2.∵BM=MP=2OE,∴2=2×(4﹣a),解得:a=,∴DP=2a=3.24.如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)由直线解析式可求得B点坐标,由A、B坐标,利用待定系数法可求得抛物线的表达式;(2)过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD于点F,可设出C点坐标,利用C点坐标可表示出CD的长,从而可表示出△BOC的面积,由条件可得到关于C点坐标的方程,可求得C点坐标;(3)设MB交y轴于点N,则可证得△ABO≌△NBO,可求得N点坐标,可求得直线BN的解析式,联立直线BM与抛物线解析式可求得M点坐标,过M作MG ⊥y轴于点G,由B、C的坐标可求得OB和OC的长,由相似三角形的性质可求得的值,当点P在第一象限内时,过P作PH⊥x轴于点H,由条件可证得△MOG∽△POH,由==的值,可求得PH和OH,可求得P点坐标;当P 点在第三象限时,同理可求得P点坐标.【解答】解:(1)∵B(2,t)在直线y=x上,∴t=2,∴B(2,2),把A、B两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=2x2﹣3x;(2)如图1,过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD 于点F,∵点C是抛物线上第四象限的点,∴可设C(t,2t2﹣3t),则E(t,0),D(t,t),∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,=S△CDO+S△CDB=CD•OE+CD•BF=(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∴S△OBC∵△OBC的面积为2,∴﹣2t2+4t=2,解得t1=t2=1,∴C(1,﹣1);(3)存在.设MB交y轴于点N,如图1,∵B(2,2),∴∠AOB=∠NOB=45°,在△AOB和△NOB中∴△AOB≌△NOB(ASA),∴ON=OA=,∴N(0,),∴可设直线BN解析式为y=kx+,把B点坐标代入可得2=2k+,解得k=,∴直线BN的解析式为y=x+,联立直线BN和抛物线解析式可得,解得或,∴M(﹣,),∵C(1,﹣1),∴∠COA=∠AOB=45°,且B(2,2),∴OB=2,OC=,∵△POC∽△MOB,∴==2,∠POC=∠BOM,当点P在第一象限时,如图3,过M作MG⊥y轴于点G,过P作PH⊥x轴于点H,∵∠COA=∠BOG=45°,∴∠MOG=∠POH,且∠PHO=∠MGO,∴△MOG∽△POH,∴===2,∵M(﹣,),∴MG=,OG=,∴PH=MG=,OH=OG=,∴P(,);当点P在第三象限时,如图4,过M作MG⊥y轴于点G,过P作PH⊥y轴于点H,同理可求得PH=MG=,OH=OG=,∴P(﹣,);综上可知存在满足条件的点P,其坐标为(,)或(﹣,).2017年7月21日。

2017年中考数学真题试卷(含答案详细解析)

2017年中考数学真题试卷(含答案详细解析)

2017年中考数学真题卷及答案详解一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)计算:(﹣12)2﹣1=( ) A .﹣54 B .﹣14 C .﹣34D .0 【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘方运算,再计算加减运算即可得到结果.【解答】解:原式=14﹣1=﹣34,故选C 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(3分)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )A .B .C .D .【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看下边是一个较大的矩形,上便是一个角的矩形,故选:B .【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.(3分)若一个正比例函数的图象经过A (3,﹣6),B (m ,﹣4)两点,则m 的值为( )A .2B .8C .﹣2D .﹣8【考点】一次函数图象上点的坐标特征.【分析】运用待定系数法求得正比例函数解析式,把点B 的坐标代入所得的函数解析式,即可求出m的值.【解答】解:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选:A.【点评】本题考查了一次函数图象上点的坐标特征.解题时需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.4.(3分)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()A.55°B.75°C.65°D.85°【考点】平行线的性质.【分析】由余角的定义求出∠3的度数,再根据平行线的性质求出∠2的度数,即可得出结论.【解答】解:∵∠1=25°,∴∠3=90°﹣∠1=90°﹣25°=65°.∵a∥b,∴∠2=∠3=65°.故选:C.【点评】本题考查的是平行线的性质,解题时注意:两直线平行,同位角相等.5.(3分)化简:xx−y ﹣yx+y,结果正确的是()A.1 B.x2+y2x−yC.x−yx+yD.x2+y2【考点】分式的加减法.【专题】计算题;分式.【分析】原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=x2+xy−xy+y2x2−y2=x2+y2x2−y2.故选B【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.(3分)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.33 B.6 C.32 D.21【考点】勾股定理.【分析】根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90°,根据勾股定理计算.【解答】解:∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB=AC2+BC2=32,∠CAB=45°,∵△ABC和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=32,∴∠CAB′=90°,∴B′C=CA2+B′A2=33,故选:A.【点评】本题考查的是勾股定理的应用、等腰直角三角形的性质,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.(3分)如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<2【考点】两条直线相交或平行问题;F8:一次函数图象上点的坐标特征.【专题】推理填空题.【分析】首先根据直线l2与x轴的交点为A(﹣2,0),求出k、b的关系;然后求出直线l1、直线l2的交点坐标,根据直线l1、直线l2的交点横坐标、纵坐标都大于0,求出k的取值范围即可.【解答】解:∵直线l2与x轴的交点为A(﹣2,0),∴﹣2k+b=0,∴y=−2x+4y=kx+2k解得x=4−2kk+2y=8kk+2∵直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)的交点在第一象限,∴4−2kk+2>08kk+2>0解得0<k<2.故选:D.【点评】此题主要考查了两条直线的相交问题,以及一次函数图象的点的特征,要熟练掌握.8.(3分)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.3102B.3105C.105D.355【考点】相似三角形的判定与性质;LB:矩形的性质.【分析】根据S△ABE =12S矩形ABCD=3=12•AE•BF,先求出AE,再求出BF即可.【解答】解:如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt△ADE中,AE=AD2+DE2=32+12=10,∵S△ABE =12S矩形ABCD=3=12•AE•BF,∴BF=310 5.故选B.【点评】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.9.(3分)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A.5 B.532C.52 D.53【考点】三角形的外接圆与外心;KH:等腰三角形的性质.【分析】连接OA、OB、OP,根据圆周角定理求得∠APB=∠C=30°,进而求得∠PAB=∠APB=30°,∠ABP=120°,根据垂径定理得到OB⊥AP,AD=PD,∠OBP=∠OBA=60°,即可求得△AOB是等边三角形,从而求得PB=OA=5,解直角三角形求得PD,即可求得PA.【解答】解:连接OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB,∴OB⊥AP,AD=PD,∴∠OBP=∠OBA=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=5,则Rt△PBD中,PD=cos30°•PB=32×5=532,∴AP=2PD=53,故选D.【点评】本题考查了圆周角定理、垂径定理、等边三角形的判定和性质以及解直角三角形等,作出辅助性构建等边三角形是解题的关键.10.(3分)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)【考点】二次函数的性质.【分析】先利用配方法求得点M的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点M′的坐标代入抛物线的解析式求解即可.【解答】解:y=x2﹣2mx﹣4=x2﹣2mx+m2﹣m2﹣4=(x﹣m)2﹣m2﹣4.∴点M(m,﹣m2﹣4).∴点M′(﹣m,m2+4).∴m2+2m2﹣4=m2+4.解得m=±2.∵m>0,∴m=2.∴M(2,﹣8).故选C.【点评】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点M′的坐标是解题的关键.二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)在实数﹣5,﹣3,0,π,6中,最大的一个数是.【考点】实数大小比较.【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:根据实数比较大小的方法,可得π> 6>0>− 3>﹣5,故实数﹣5,− 3,0,π, 6其中最大的数是π.故答案为:π.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A .如图,在△ABC 中,BD 和CE 是△ABC 的两条角平分线.若∠A=52°,则∠1+∠2的度数为 .B. 173tan38°15′≈ .(结果精确到0.01)【考点】计算器—三角函数;25:计算器—数的开方;K7:三角形内角和定理.【分析】A :由三角形内角和得∠ABC +∠ACB=180°﹣∠A=128°,根据角平分线定义得∠1+∠2=12∠ABC +12∠ACB=12(∠ABC +∠ACB ); B :利用科学计算器计算可得.【解答】解:A 、∵∠A=52°,∴∠ABC +∠ACB=180°﹣∠A=128°,∵BD 平分∠ABC 、CE 平分∠ACB ,∴∠1=12∠ABC 、∠2=12∠ACB , 则∠1+∠2=12∠ABC +12∠ACB=12(∠ABC +∠ACB )=64°, 故答案为:64°;B 、 173tan38°15′≈2.5713×0.7883≈2.03,故答案为:2.03.【点评】本题主要考查三角形内角和定理、角平分线的定义及科学计算器的运用,熟练掌握三角形内角和定理、角平分线的定义是解题的关键.13.(3分)已知A ,B 两点分别在反比例函数y=3m x (m ≠0)和y=2m−5x (m≠52)的图象上,若点A 与点B 关于x 轴对称,则m 的值为 . 【考点】反比例函数图象上点的坐标特征;关于x 轴、y 轴对称的点的坐标.【分析】设A (a ,b ),则B (a ,﹣b ),将它们的坐标分别代入各自所在的函数解析式,通过方程来求m 的值.【解答】解:设A (a ,b ),则B (a ,﹣b ),依题意得: b =3m a −b =2m−5a, 所以3m +2m−5a =0,即5m ﹣5=0,解得m=1.故答案是:1.【点评】本题考查了反比例函数图象上点的坐标特征,关于x 轴,y 轴对称的点的坐标.根据题意得3m +2m−5a =0,即5m ﹣5=0是解题的难点.14.(3分)如图,在四边形ABCD 中,AB=AD ,∠BAD=∠BCD=90°,连接AC .若AC=6,则四边形ABCD 的面积为 .【考点】全等三角形的判定与性质.【分析】作辅助线;证明△ABM ≌△ADN ,得到AM=AN ,△ABM 与△ADN 的面积相等;求出正方形AMCN 的面积即可解决问题.【解答】解:如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N;∵∠BAD=∠BCD=90°∴四边形AMCN为矩形,∠MAN=90°;∵∠BAD=90°,∴∠BAM=∠DAN;在△ABM与△ADN中,∠BAM=∠DAN∠AMB=∠ANDAB=AD,∴△ABM≌△ADN(AAS),∴AM=AN(设为λ);△ABM与△ADN的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;由勾股定理得:AC2=AM2+MC2,而AC=6;∴2λ2=36,λ2=18,故答案为:18.【点评】本题主要考查了全等三角形的判定及其性质、正方形的判定及其性质等几何知识点的应用问题;解题的关键是作辅助线,构造全等三角形和正方形.三、解答题(本大题共11小题,共78分)15.(5分)计算:(﹣2)×6+|3﹣2|﹣(12)﹣1.【考点】二次根式的混合运算;负整数指数幂.【分析】根据二次根式的性质以及负整数指数幂的意义即可求出答案.【解答】解:原式=﹣12+2﹣3﹣2=﹣23﹣3=﹣33【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.16.(5分)解方程:x+3x−3﹣2x+3=1.【考点】解分式方程.【分析】利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论.【解答】解:去分母得,(x+3)2﹣2(x﹣3)=(x﹣3)(x+3),去括号得,x2+6x+9﹣2x+6=x2﹣9,移项,系数化为1,得x=﹣6,经检验,x=﹣6是原方程的解.【点评】此题是解分式方程,主要考查了解分式方程的方法和完全平方公式,平方差公式,解本题的关键是将分式方程转化为整式方程.17.(5分)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)【考点】作图—基本作图.【分析】根据题意可知,作∠BDC的平分线交BC于点P即可.【解答】解:如图,点P即为所求.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.18.(5分)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)【考点】频数(率)分布直方图;V5:用样本估计总体;VB:扇形统计图;W4:中位数.【分析】(1)先根据A区间人数及其百分比求得总人数,再根据各区间人数之和等于总人数、百分比之和为1求得C区间人数及D区间百分比可得答案;(2)根据中位数的定义求解可得;(3)利用样本估计总体思想求解可得.【解答】解:(1)本次调查的总人数为10÷5%=200,则20~30分钟的人数为200×65%=130(人),D项目的百分比为1﹣(5%+10%+65%)=20%,补全图形如下:(2)由于共有200个数据,其中位数是第100、101个数据的平均数,则其中位数位于C区间内,故答案为:C;(3)1200×(65%+20%)=1020(人),答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(7分)如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.【考点】正方形的性质;KD:全等三角形的判定与性质.【分析】根据正方向的性质,可得∠ADF=CDE=90°,AD=CD,根据全等三角形的判定与性质,可得答案.【解答】证明:∵四边形ABCD是正方形,∴∠ADF=CDE=90°,AD=CD.∵AE=CF,∴DE=DF,在△ADF和△CDE中AD=CD∠ADF=∠CDE DF=DE,∴△ADF≌△CDE(SAS),∴∠DAF=∠DCE,在△AGE和△CGF中,∠GAE=∠GCF ∠AGE=∠CGF AE=CF,∴△AGE≌△CGF(AAS),∴AG=CG.【点评】本题考查了正方形的性质,利用全等三角形的判定与性质是解题关键,又利用了正方形的性质.20.(7分)某市一湖的湖心岛有一颗百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x 米,再由锐角三角函数的定义即可得出结论.【解答】解:如图,作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,在Rt△MBD中,MD=x•tan23°,在Rt△MCE中,ME=x•tan24°,∵ME﹣MD=DE=BC,∴x•tan24°﹣x•tan23°=1.7﹣1,∴x=0.7tan24°−tan23°,解得x≈34(米).答:“聚贤亭”与“乡思柳”之间的距离AN的长约为34米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.21.(7分)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.【考点】一次函数的应用.【分析】(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于100000建立不等式,即可确定出结论.【解答】解:(1)由题意得,y=(2000×12﹣8000)x+(4500×3﹣5000)(8﹣x)=7500x+68000,(2)由题意得,7500x+6800≥100000,∴x≥44 15,∵x为整数,∴李师傅种植的8个大棚中,香瓜至少种植5个大棚.【点评】此题是一次函数的应用,主要考查了一次函数的应用以及解一元一次不等式,解题的关键是:(1)根据数量关系,列出函数关系式;(2)根据题意建立不等式,是一道基础题目.22.(7分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【考点】列表法与树状图法;X4:概率公式.【分析】(1)根据题意可以得到小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率;(2)根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:(1)由题意可得,小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是:24=1 2,即小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是1 2;(2)由题意可得,出现的所有可能性是:(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:316.【点评】本题考查列表法与树状图法、概率公式,解答本题的关键是明确题意,写出所有的可能性,利用概率的知识解答.23.(8分)如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,(1)求弦AC的长;(2)求证:BC∥PA.【考点】切线的性质.【分析】(1)连接OA,由于PA是⊙O的切线,从而可求出∠AOD=60°,由垂径定理可知:AD=DC,由锐角三角函数即可求出AC的长度.(2)由于∠AOP=60°,所以∠BOA=120°,从而由圆周角定理即可求出∠BCA=60°,从而可证明BC∥PA【解答】解:(1)连接OA,∵PA 是⊙O 的切线,∴∠PAO=90°∵∠P=30°,∴∠AOD=60°,∵AC ⊥PB ,PB 过圆心O ,∴AD=DC在Rt △ODA 中,AD=OA•sin60°=5 32∴AC=2AD=5 3(2)∵AC ⊥PB ,∠P=30°,∴∠PAC=60°,∵∠AOP=60°∴∠BOA=120°,∴∠BCA=60°,∴∠PAC=∠BCA∴BC ∥PA【点评】本题考查圆的综合问题,涉及切线的性质,解直角三角形,平行线的判定等知识,综合程度较高,属于中等题型.24.(10分)在同一直角坐标系中,抛物线C 1:y=ax 2﹣2x ﹣3与抛物线C 2:y=x 2+mx +n 关于y 轴对称,C 2与x 轴交于A 、B 两点,其中点A 在点B 的左侧.(1)求抛物线C 1,C 2的函数表达式;(2)求A 、B 两点的坐标;(3)在抛物线C 1上是否存在一点P ,在抛物线C 2上是否存在一点Q ,使得以AB 为边,且以A 、B 、P 、Q 四点为顶点的四边形是平行四边形?若存在,求出P 、Q 两点的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由对称可求得a、n的值,则可求得两函数的对称轴,可求得m的值,则可求得两抛物线的函数表达式;(2)由C2的函数表达式可求得A、B的坐标;(3)由题意可知AB只能为平行四边形的边,利用平行四边形的性质,可设出P点坐标,表示出Q点坐标,代入C2的函数表达式可求得P、Q的坐标.【解答】解:(1)∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=﹣3,∴C1的对称轴为x=1,∴C2的对称轴为x=﹣1,∴m=2,∴C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;(2)在C2的函数表达式为y=x2+2x﹣3中,令y=0可得x2+2x﹣3=0,解得x=﹣3或x=1,∴A(﹣3,0),B(1,0);(3)存在.∵AB的中点为(﹣1,0),且点P在抛物线C1上,点Q在抛物线C2上,∴AB只能为平行四边形的一边,∴PQ∥AB且PQ=AB,由(2)可知AB=1﹣(﹣3)=4,∴PQ=4,设P(t,t2﹣2t﹣3),则Q(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,∴t2﹣2t﹣3=4+4﹣3=5,∴P(﹣2,5),Q(2,5);②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,∴t2﹣2t﹣3=4﹣4﹣3=﹣3,∴P(﹣2,﹣3),Q(2,﹣3),综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(﹣2,﹣3),Q(2,﹣3).【点评】本题为二次函数的综合应用,涉及待定系数法、对称的性质、函数图象与坐标轴的交点、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)中由对称性质求得a、n的值是解题的关键,在(2)中注意函数图象与坐标轴的交点的求法即可,在(3)中确定出PQ的长度,设P点坐标表示出Q点的坐标是解题的关键.本题考查知识点较多,综合性较强,难度适中.25.(12分)问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m ,MB=10m ,△AMB 的面积为96m 2;过弦AB 的中点D作DE ⊥AB 交AB于点E ,又测得DE=8m . 请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)【考点】圆的综合题.【分析】(1)构建Rt △AOD 中,利用cos ∠OAD=cos30°=AD OA,可得OA 的长; (2)经过矩形对角线交点的直线将矩形面积平分,根据此结论作出PQ ,利用勾股定理进行计算即可;(3)如图3,作辅助线,先确定圆心和半径,根据勾股定理计算半径:在Rt △AOD 中,r 2=122+(r ﹣8)2,解得:r=13根据三角形面积计算高MN 的长,证明△ADC ∽△ANM ,列比例式求DC 的长,确定点O 在△AMB 内部,利用勾股定理计算OM ,则最大距离FM 的长可利用相加得出结论.【解答】解:(1)如图1,过O 作OD ⊥AC 于D ,则AD=12AC=12×12=6, ∵O 是内心,△ABC 是等边三角形,∴∠OAD=12∠BAC=12×60°=30°, 在Rt △AOD 中,cos ∠OAD=cos30°=AD OA, ∴OA=6÷ 32=4 3, 故答案为:4 3;(2)存在,如图2,连接AC 、BD 交于点O ,连接PO 并延长交BC 于Q ,则线段PQ 将矩形ABCD 的面积平分,∵点O 为矩形ABCD 的对称中心,∴CQ=AP=3,过P 作PM ⊥BC 于点,则PM=AB=12,MQ=18﹣3﹣3=12,由勾股定理得:PQ= PM 2+MQ 2= 122+122=12 2;(3)如图3,作射线ED 交AM 于点C∵AD=DB ,ED ⊥AB ,AB是劣弧, ∴AB所在圆的圆心在射线DC 上, 假设圆心为O ,半径为r ,连接OA ,则OA=r ,OD=r ﹣8,AD=12AB=12, 在Rt △AOD 中,r 2=122+(r ﹣8)2,解得:r=13,∴OD=5,过点M 作MN ⊥AB ,垂足为N ,∵S △ABM =96,AB=24,∴12AB•MN=96, 12×24×MN=96, ∴MN=8,NB=6,AN=18,∵CD ∥MN ,∴△ADC ∽△ANM ,∴DC MN =AD AN, ∴DC 8=1218, ∴DC=163, ∴OD <CD ,∴点O 在△AMB 内部,∴连接MO 并延长交AB于点F ,则MF 为草坪上的点到M 点的最大距离, ∵在AB上任取一点异于点F 的点G ,连接GO ,GM , ∴MF=OM +OF=OM +OG >MG ,即MF >MG ,过O 作OH ⊥MN ,垂足为H ,则OH=DN=6,MH=3,∴OM=MH2+OH2=32+62=35,∴MF=OM+r=35+13≈19.71(米),答:喷灌龙头的射程至少为19.71米.【点评】本题是圆的综合题,考查了三角形相似的性质和判定、勾股定理、等边三角形的性质及内心的定义、特殊的三角函数值、矩形的性质等知识,明确在特殊的四边形中将面积平分的直线一定过对角线的交点,本题的第三问比较复杂,辅助线的作出是关键,根据三角形的三角关系确定其最大射程为MF.。

山东省淄博市中考数学模拟试卷(六)含答案解析

山东省淄博市中考数学模拟试卷(六)含答案解析

山东省淄博市中考数学模拟试卷(六)一、选择题:1.下列计算正确的是()A. =2B.•=C.﹣=D. =﹣3 2.下列调查方式合适的是()A.为了了解市民对电影《南京》的感受,小华在某校随机采访了8名初三学生B.为了了解全校学生用于做数学作业的时间,小民同学在网上向3位好友做了调查C.为了了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式D.为了了解全国青少年儿童的睡眠时间,统计人员采用了普查的方式3.下列正多边形中,不能铺满地面的是()A.正三角形B.正四边形C.正五边形D.正六边形4.如图,点B、C在⊙O上,且BO=BC,则圆周角∠BAC等于()A.60° B.50°C.40°D.30°5.二次函数y=﹣3x2﹣6x+5的图象的顶点坐标是()A.(﹣1,8) B.(1,8)C.(﹣1,2) D.(1,﹣4)6.对于反比例函数y=,下列说法正确的是()A.当x>0时,y随x的增大而增大B.当x<0时,y随x的增大而增大C.当x<0时,y随x的增大而减小D.y随x的增大而减小7.在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来(如图),则这堆正方体货箱共有()A.4箱B.5箱C.6箱D.7箱8.如图所示,菱形ABCD的周长为20cm,DE⊥AB,垂足为E,sinA=,则下列结论正确的个数有()①DE=3cm;②BE=1cm;③菱形的面积为15cm2;④BD=2cm.A.1个B.2个C.3个D.4个9.已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数关系的是()A.B.C.D.10.如图,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD为菱形的是()A.BA=BC B.AC、BD互相平分C.AC=BD D.AB∥CD11.抛物线y=x2+bx+c图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x2﹣2x ﹣3,则b、c的值为()A.b=2,c=2 B.b=2,c=0 C.b=﹣2,c=﹣1 D.b=﹣3,c=212.已知点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=的图象上.下列结论中正确的是()A.y1>y2>y3B.y1>y3>y2C.y3>y1>y2D.y2>y3>y1二、填空题:13.某班7名学生的数学考试成绩(单位:分)如下:52,76,80,76,71,92,67 则这组数据的中位数是分.14.如图,在▱ABCD中,对角线AC、BD相交于点O,若AC=14,BD=8,AB=10,则△OAB的周长为.15.已知扇形半径是3cm,弧长为2πcm,则扇形的圆心角为°.(结果保留π)16.若一个函数图象的对称轴是y轴,则该函数称为偶函数.那么在下列四个函数:①y=2x;②y=;③y=x2;④y=(x﹣1)2+2中,属于偶函数的是(只填序号).17.如图,上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子恰好在甲的影子里边,已知甲,乙同学相距1米.甲身高1.8米,乙身高1.5米,则甲的影长是米.18.如图,直线y=x与双曲线y=(x>0)交于点A,将直线y=x向下平移个6单位后,与双曲线y=(x>0)交于点B,与x轴交于点C,则C点的坐标为;若=2,则k=.19.如图,直线y=x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O 为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此作法进行下去,点A3的坐标为(,).三、解答题:20.计算:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+.21.有三张卡片(形状、大小、质地都相同),正面分别写上整式x+1,x,3.将这三张卡片背面向上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张、第一次抽取的卡片上的整式作为分子,第二次抽取的卡片上的整式作为分母.(1)请写出抽取两张卡片的所有等可能结果(用树状图或列表法求解);(2)试求抽取的两张卡片结果能组成分式的概率.22.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.23.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB=,BC=2,求⊙O的半径.24.阅读题例,解答下题:例解方程x2﹣|x﹣1|﹣1=0解:(1)当x﹣1≥0,即x≥1时x2﹣(x﹣1)﹣1=0x2﹣x=0(2)当x﹣1<0,即x<1时x2+(x﹣1)﹣1=0x2+x﹣2=0解得:x1=0(不合题设,舍去),x2=1解得x1=1(不合题设,舍去)x2=﹣2综上所述,原方程的解是x=1或x=﹣2依照上例解法,解方程x2+2|x+2|﹣4=0.25.在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0<α<120°),得△A1BC1,交AC于点E,AC分别交A1C1、BC于D、F两点.(1)如图①,观察并猜想,在旋转过程中,线段EA1与FC有怎样的数量关系?并证明你的结论;(2)如图②,当α=30°时,试判断四边形BC1DA的形状,并说明理由;(3)在(2)的情况下,求ED的长.山东省淄博市中考数学模拟试卷(六)参考答案与试题解析一、选择题:1.下列计算正确的是()A. =2B.•=C.﹣=D. =﹣3 【考点】二次根式的混合运算.【分析】根据二次根式的性质化简二次根式,根据二次根式的加减乘除运算法则进行计算.二次根式的加减,实质是合并同类二次根式;二次根式相乘除,等于把它们的被开方数相乘除.【解答】解:A、=2,故A错误;B、二次根式相乘除,等于把它们的被开方数相乘除,故B正确;C、﹣=2﹣,故C错误;D、=|﹣3|=3,故D错误.故选:B.【点评】此题考查了二次根式的化简和二次根式的运算.注意二次根式的性质: =|a|.2.下列调查方式合适的是()A.为了了解市民对电影《南京》的感受,小华在某校随机采访了8名初三学生B.为了了解全校学生用于做数学作业的时间,小民同学在网上向3位好友做了调查C.为了了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式D.为了了解全国青少年儿童的睡眠时间,统计人员采用了普查的方式【考点】全面调查与抽样调查.【分析】根据抽样调查和全面调查的特点即可作出判断.【解答】解:A、要了解市民对电影《南京》的感受,应随机抽查一部分市民,只采访了8名初三学生,具有片面性;B、要了解全校学生用于做数学作业的时间,应从全校中随机抽查部分学生,不能在网上向3位好友做调查,不具代表性;C、要保证“嫦娥一号”卫星零部件的状况,是精确度要求高、事关重大的调查,往往选用全面调查;D、要了解全国青少年儿童的睡眠时间,范围广,宜采用抽查方式;故选C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查3.下列正多边形中,不能铺满地面的是()A.正三角形B.正四边形C.正五边形D.正六边形【考点】平面镶嵌(密铺).【专题】常规题型.【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【解答】解:A、正三角形的每个内角是60°,能整除360°,能密铺;B、正方形的每个内角是90°,4个能密铺;C、正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺;D、正六边形的每个内角是120°,能整除360°,3个能密铺.故选C.【点评】本题考查一种正多边形的镶嵌,难度不大,关键是掌握平面密铺应该符合一个内角度数能整除360°.4.如图,点B、C在⊙O上,且BO=BC,则圆周角∠BAC等于()A.60° B.50°C.40°D.30°【考点】圆周角定理.【分析】首先根据三边相等的三角形得到等边三角形,则∠O=60°,再根据圆周角定理进行求解.【解答】解:∵BO=BC,BO=CO,∴BO=BC=CO,∴△BOC是等边三角形.∴∠O=60°.∴∠BAC=30°.故选D.【点评】此题综合运用了等边三角形的性质和圆周角定理.5.二次函数y=﹣3x2﹣6x+5的图象的顶点坐标是()A.(﹣1,8) B.(1,8)C.(﹣1,2) D.(1,﹣4)【考点】二次函数的性质.【分析】利用二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),可求函数的顶点坐标.【解答】解:∵a=﹣3、b=﹣6、c=5,∴﹣ =﹣1, =8,即顶点坐标是(﹣1,8).故选A.【点评】本题考查了二次函数的顶点坐标.6.对于反比例函数y=,下列说法正确的是()A.当x>0时,y随x的增大而增大B.当x<0时,y随x的增大而增大C.当x<0时,y随x的增大而减小D.y随x的增大而减小【考点】反比例函数的性质.【专题】压轴题.【分析】因为k=2>0,根据反比例函数的性质,利用排除法求解.【解答】解:A、∵2>0,∴当x>0时,y随x的增大而减小,错误;B、∵2>0,∴当x<0时,y随x的增大而减小,错误;C、当x<0时,y随x的增大而减小,正确;D、应强调在每一个象限内或在函数的每一支上,y随x的增大而减小,错误.故选C.【点评】本题主要考查反比例函数当k>0时的性质,熟练掌握反比例函数的性质是解题的关键.7.在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来(如图),则这堆正方体货箱共有()A.4箱B.5箱C.6箱D.7箱【考点】由三视图判断几何体.【专题】压轴题.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:由题意知,第二行正方体的个数从左往右依次为:1,1,2;第一行第一列有1个正方体,共有1+1+2+1=5个正方体.故选B.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.8.如图所示,菱形ABCD的周长为20cm,DE⊥AB,垂足为E,sinA=,则下列结论正确的个数有()①DE=3cm;②BE=1cm;③菱形的面积为15cm2;④BD=2cm.A.1个B.2个C.3个D.4个【考点】菱形的性质;锐角三角函数的定义.【专题】压轴题.【分析】根据菱形的性质及已知对各个选项进行分析,从而得到答案.【解答】解:∵菱形ABCD的周长为20cm∴AD=5cm∵sinA==∴DE=3cm(①正确)∴AE=4cm∵AB=5cm∴BE=5﹣4=1cm(②正确)∴菱形的面积=AB×DE=5×3=15cm2(③正确)∵DE=3cm,BE=1cm∴BD=cm(④不正确)所以正确的有三个,故选C.【点评】此题主要考查学生对菱形的性质的运用能力.9.已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数关系的是()A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题;动点型.【分析】根据函数解析式求函数图象.【解答】解:由题意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周长等于2个正方形的边长.则y=2x,为正比例函数.故选:A.【点评】要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.10.如图,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD为菱形的是()A.BA=BC B.AC、BD互相平分C.AC=BD D.AB∥CD【考点】菱形的判定.【分析】已知四边形的对角线互相垂直,可依据“对角线互相垂直且平分的四边形是菱形”的判定方法,来选择条件.【解答】解:四边形ABCD中,AC、BD互相垂直,若四边形ABCD是菱形,需添加的条件是:AC、BD互相平分;(对角线互相垂直且平分的四边形是菱形)故选B.【点评】此题主要考查的是菱形的判定方法:对角线互相垂直且平分的四边形是菱形.11.抛物线y=x2+bx+c图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x2﹣2x ﹣3,则b、c的值为()A.b=2,c=2 B.b=2,c=0 C.b=﹣2,c=﹣1 D.b=﹣3,c=2【考点】二次函数图象与几何变换.【专题】压轴题.【分析】易得新抛物线的顶点,根据平移转换可得原抛物线顶点,根据顶点式及平移前后二次项的系数不变可得原抛物线的解析式,展开即可得到b,c的值.【解答】解:由题意得新抛物线的顶点为(1,﹣4),∴原抛物线的顶点为(﹣1,﹣1),设原抛物线的解析式为y=(x﹣h)2+k代入得:y=(x+1)2﹣1=x2+2x,∴b=2,c=0.故选B.【点评】抛物线平移不改变二次项的系数的值;讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可.12.已知点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=的图象上.下列结论中正确的是()A.y1>y2>y3B.y1>y3>y2C.y3>y1>y2D.y2>y3>y1【考点】反比例函数图象上点的坐标特征.【专题】压轴题.【分析】先判断出函数反比例函数y=的图象所在的象限,再根据图象在每一象限的增减性及每一象限坐标的特点进行判断即可.【解答】解:∵k2≥0,∴﹣k2≤0,﹣k2﹣1<0,∴反比例函数y=的图象在二、四象限,∵点(﹣1,y1)的横坐标为﹣1<0,∴此点在第二象限,y1>0;∵(2,y2),(3,y3)的横坐标3>2>0,∴两点均在第四象限y2<0,y3<0,∵在第四象限内y随x的增大而增大,∴0>y3>y2,∴y1>y3>y2.故选:B.【点评】本题考查了反比例函数图象上点的坐标特征:当k>0时,图象分别位于第一、三象限,横纵坐标同号;当k<0时,图象分别位于第二、四象限,横纵坐标异号.二、填空题:13.某班7名学生的数学考试成绩(单位:分)如下:52,76,80,76,71,92,67 则这组数据的中位数是76分.【考点】中位数.【分析】先把这组数据按从小到大的顺序排列,找到第四个数据即为中位数.【解答】解:将这组数据按从小到大的顺序排列为:52,67,71,76,76,80,92,处于中间位置的那个数是76,那么由中位数的定义可知,这组数据的中位数是76.故答案为76.【点评】本题为统计题,考查中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.14.如图,在▱ABCD中,对角线AC、BD相交于点O,若AC=14,BD=8,AB=10,则△OAB的周长为21.【考点】平行四边形的性质.【专题】压轴题.【分析】△OAB的周长=AO+BO+AB,只要求得AO和BO即可,根据平行四边形的对角线互相平分的性质求得答案.【解答】解:在▱ABCD中,OA=OC=AC,OB=OD=BD,∵AC=14,BD=8,∴OA=7,OB=4,∵AB=10,∴△OAB的周长=7+4+10=21.故答案为21.【点评】本题重点考查了平行四边形的性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.15.已知扇形半径是3cm,弧长为2πcm,则扇形的圆心角为120°.(结果保留π)【考点】弧长的计算.【分析】设扇形的圆心角为n°,根据弧长公式和已知得出方程=2π,求出方程的解即可.【解答】解:设扇形的圆心角为n°,∵扇形半径是3cm,弧长为2πcm,∴=2π,解得:n=120,故答案为:120.【点评】本题考查了弧长的计算的应用,解此题的关键是能根据弧长公式得出关于n的方程,题目比较好,难度适中.16.若一个函数图象的对称轴是y轴,则该函数称为偶函数.那么在下列四个函数:①y=2x;②y=;③y=x2;④y=(x﹣1)2+2中,属于偶函数的是③(只填序号).【考点】函数的概念.【专题】压轴题.【分析】根据对称轴是y轴,排除①②选项,再根据④不是偶函数,即可确定答案.【解答】解:①y=2x,是正比例函数,函数图象的对称轴不是y轴,错误;②y=是反比例函数,函数图象的对称轴不是y轴,错误;③y=x2是抛物线,对称轴是y轴,是偶函数,正确;④y=(x﹣1)2+2对称轴是x=1,错误.故属于偶函数的是③.【点评】本题主要考查正比例函数、反比例函数、二次函数的对称性和二次函数是偶函数的性质.17.如图,上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子恰好在甲的影子里边,已知甲,乙同学相距1米.甲身高1.8米,乙身高1.5米,则甲的影长是6米.【考点】相似三角形的应用.【专题】压轴题.【分析】根据甲的身高与影长构成的三角形与乙的身高和影长构成的三角形相似,列出比例式解答.【解答】解:设甲的影长是x米,∵BC⊥AC,ED⊥AC,∴△ADE∽△ACB,∴=,∵CD=1m,BC=1.8m,DE=1.5m,∴=,解得:x=6.所以甲的影长是6米.【点评】根据身高与影长的比例不变,得出三角形相似,运用相似比即可解答.18.如图,直线y=x与双曲线y=(x>0)交于点A,将直线y=x向下平移个6单位后,与双曲线y=(x>0)交于点B,与x轴交于点C,则C点的坐标为(,0);若=2,则k= 12.【考点】反比例函数综合题.【专题】计算题;压轴题.【分析】根据题意得到直线BC的解析式,令y=0,得到点C的坐标;根据直线AO和直线BC的解析式与双曲线y=联立求得A,B的坐标,再由已知条件=2,从而求出k值.【解答】解:∵将直线y=x向下平移个6单位后得到直线BC,∴直线BC解析式为:y=x﹣6,令y=0,得x﹣6=0,∴C点坐标为(,0);∵直线y=x与双曲线y=(x>0)交于点A,∴A(,),又∵直线y=x﹣6与双曲线y=(x>0)交于点B,且=2,∴B(+,),将B的坐标代入y=中,得(+)=k,解得k=12.故答案为:(,0),12.【点评】此题考查一次函数与反比例函数的性质,联立方程求出点的坐标,同时还考查学生的计算能力.19.如图,直线y=x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O 为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此作法进行下去,点A3的坐标为(4,0).【考点】一次函数图象上点的坐标特征.【专题】规律型.【分析】根据点A1坐标为(1,0),且B1A1⊥x轴,可得出B1的横坐标为1,将其横坐标代入直线解析式就可以求出B1的坐标,就可以求出A1B1的值,OA1的值,根据锐角三角函数值就可以求出∠xOB3的度数,从而求出OB1的值,就可以求出OA2值,同理可以求出OB2、OB3…,从而寻找出点A2、A3…的坐标规律,最后求出A3的坐标.【解答】解:∵点A1坐标为(1,0),∴OA1=1.∵B1A1⊥x轴,∴点B1的横坐标为1,且点B1在直线上,∴y=,∴B1(1,),∴A1B1=.在Rt△A1B1O中由勾股定理,得OB1=2,∴sin∠OB1A1=,∴∠OB1A1=30°,∴∠OB1A1=∠OB2A2=∠OB3A3=…=∠OB n A n=30°.∵OA2=OB1=2,∴A2(2,0).在Rt△OB2A2中,∵OB2=2OA2=4∴OA3=4,∴A3(4,0).故答案为:(4,0).【点评】本题考查的是一次函数图象上点的坐标特点,涉及到直角三角形的性质,特别是30°所对的直角边等于斜边的一半的运用,点的坐标与函数图象的关系等知识.三、解答题:20.计算:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+.【考点】特殊角的三角函数值;零指数幂;负整数指数幂.【专题】计算题.【分析】涉及绝对值、特殊角的三角函数值、0指数幂、负整数指数幂、二次根式的运算等考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+,=|2﹣|﹣1+4+,=2﹣﹣1+4+,=5.【点评】本题考查的知识点比较多:绝对值、特殊角的三角函数值、0指数幂、负整数指数幂、二次根式的运算的有关内容,熟练掌握且区分清楚,才不容易出错.21.有三张卡片(形状、大小、质地都相同),正面分别写上整式x+1,x,3.将这三张卡片背面向上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张、第一次抽取的卡片上的整式作为分子,第二次抽取的卡片上的整式作为分母.(1)请写出抽取两张卡片的所有等可能结果(用树状图或列表法求解);(2)试求抽取的两张卡片结果能组成分式的概率.【考点】列表法与树状图法;分式的定义.【专题】压轴题.【分析】(1)列举出不放回的2次实验的所有情况即可;(2)看抽取的两张卡片结果能组成分式的情况占总情况的多少即可.【解答】解:(1)树状图:列表法:=.(2)共有6种情况,能组成的分式的有,,, 4种情况,所以P分式【点评】此题考查概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.用到的知识点为:分母中含有字母的式子是分式.22.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.【考点】一元一次不等式组的应用;二元一次方程组的应用.【专题】方案型;图表型.【分析】(1)等量关系为:甲件数+乙件数=160;甲总利润+乙总利润=1100.(2)设出所需未知数,甲进价×甲数量+乙进价×乙数量<4300;甲总利润+乙总利润>1260.【解答】解:(1)设甲种商品应购进x件,乙种商品应购进y件.根据题意得:.解得:.答:甲种商品购进100件,乙种商品购进60件.(2)设甲种商品购进a件,则乙种商品购进(160﹣a)件.根据题意得.解不等式组,得65<a<68.∵a为非负整数,∴a取66,67.∴160﹣a相应取94,93.方案一:甲种商品购进66件,乙种商品购进94件.方案二:甲种商品购进67件,乙种商品购进93件.答:有两种购货方案,其中获利最大的是方案一.【点评】解决本题的关键是读懂题意,找到所求量的等量关系及符合题意的不等关系式组:甲件数+乙件数=160;甲总利润+乙总利润=1100.甲进价×甲数量+乙进价×乙数量<4300;甲总利润+乙总利润>1260.23.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB=,BC=2,求⊙O的半径.【考点】圆的综合题.【分析】(1)连接OE.欲证直线CE与⊙O相切,只需证明∠CEO=90°,即OE⊥CE即可;(2)在直角三角形ABC中,根据三角函数的定义可以求得AB=,然后根据勾股定理求得AC=,同理知DE=1;方法一、在Rt△COE中,利用勾股定理可以求得CO2=OE2+CE2,即=r2+3,从而易得r的值;方法二、过点O作OM⊥AE于点M,在Rt△AMO中,根据三角函数的定义可以求得r的值.【解答】解:(1)直线CE与⊙O相切.…理由如下:∵四边形ABCD是矩形,∴BC∥AD,∠ACB=∠DAC;又∵∠ACB=∠DCE,∴∠DAC=∠DCE;连接OE,则∠DAC=∠AEO=∠DCE;∵∠DCE+∠DEC=90°∴∠AE0+∠DEC=90°∴∠OEC=90°,即OE⊥CE.又OE是⊙O的半径,∴直线CE与⊙O相切.…(2)∵tan∠ACB==,BC=2,∴AB=BC•tan∠ACB=,∴AC=;又∵∠ACB=∠DCE,∴tan∠DCE=tan∠ACB=,∴DE=DC•tan∠DCE=1;方法一:在Rt△CDE中,CE==,连接OE,设⊙O的半径为r,则在Rt△COE中,CO2=OE2+CE2,即=r2+3解得:r=方法二:AE=AD﹣DE=1,过点O作OM⊥AE于点M,则AM=AE=在Rt△AMO中,OA==÷=…【点评】本题考查了圆的综合题:圆的切线垂直于过切点的半径;利用勾股定理计算线段的长.24.阅读题例,解答下题:例解方程x2﹣|x﹣1|﹣1=0解:(1)当x﹣1≥0,即x≥1时x2﹣(x﹣1)﹣1=0x2﹣x=0(2)当x﹣1<0,即x<1时x2+(x﹣1)﹣1=0x2+x﹣2=0解得:x1=0(不合题设,舍去),x2=1解得x1=1(不合题设,舍去)x2=﹣2综上所述,原方程的解是x=1或x=﹣2依照上例解法,解方程x2+2|x+2|﹣4=0.【考点】解一元二次方程-因式分解法;解一元二次方程-公式法.【专题】阅读型.【分析】根据题中所给的材料把绝对值符号内的x+2分两种情况讨论(x+2≥0和x+2<0),去掉绝对值符号后再解方程求解.【解答】解:①当x+2≥0,即x≥﹣2时,x2+2(x+2)﹣4=0,x2+2x=0,解得x1=0,x2=﹣2;②当x+2<0,即x<﹣2时,x2﹣2(x+2)﹣4=0,x2﹣2x﹣8=0,解得x1=4(不合题设,舍去),x2=﹣2(不合题设,舍去).综上所述,原方程的解是x=0或x=﹣2.【点评】从题中所给材料找到需要的解题方法是解题的关键.注意在去掉绝对值符号时要针对符号内的代数式的正负性分情况讨论.25.在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0<α<120°),得△A1BC1,交AC于点E,AC分别交A1C1、BC于D、F两点.(1)如图①,观察并猜想,在旋转过程中,线段EA1与FC有怎样的数量关系?并证明你的结论;(2)如图②,当α=30°时,试判断四边形BC1DA的形状,并说明理由;(3)在(2)的情况下,求ED的长.【考点】旋转的性质;全等三角形的判定与性质;菱形的判定;解直角三角形.【专题】几何综合题.【分析】(1)根据等边对等角的性质可得∠A=∠C,再根据旋转的性质可得∠ABE=∠C1BF,AB=BC=A1B=BC1,然后利用“角边角”证明△ABE和△C1BF全等,根据全等三角形对应边相等可得BE=BF,从而得解;(2)先根据旋转的性质求出∠ABC1=150°,再根据同旁内角互补,两直线平行求出AB∥C1D,AD∥BC1,证明四边形BC1DA是平行四边形,又因为邻边相等,所以四边形BC1DA是菱形;(3)过点E作EG⊥AB于点G,等腰三角形三线合一的性质可得AG=BG=1,然后解直角三角形求出AE的长度,再利用DE=AD﹣AE计算即可得解.【解答】解:(1)EA1=FC.理由如下:∵AB=BC,∴∠A=∠C,∵△ABC绕点B顺时针旋转角α得△A1BC1,∴∠ABE=∠C1BF,AB=BC=A1B=BC1,在△ABE和△C1BF中,,∴△ABE≌△C1BF(ASA),∴BE=BF,∴A1B﹣BE=BC﹣BF,即EA1=FC;(2)四边形BC1DA是菱形.理由如下:∵旋转角α=30°,∠ABC=120°,∴∠ABC1=∠ABC+α=120°+30°=150°,∵∠ABC=120°,AB=BC,∴∠A=∠C=(180°﹣120°)=30°,∴∠ABC1+∠C1=150°+30°=180°,∠ABC1+∠A=150°+30°=180°,∴AB∥C1D,AD∥BC1,∴四边形BC1DA是平行四边形,又∵AB=BC1,∴四边形BC1DA是菱形;(3)过点E作EG⊥AB,∵∠A=∠ABA1=30°,∴AG=BG=AB=1,在Rt△AEG中,AE===,由(2)知AD=AB=2,∴DE=AD﹣AE=2﹣.【点评】本题考查了旋转的性质,主要利用了全等三角形的判定与性质,菱形的判定与性质,以及解直角三角形,等腰三角形三线合一的性质,难度不大,利用好旋转变换只改变图形的位置不改变图形的形状与大小,找出相等的线段是解题的关键.。

淄博九年级数学试卷【含答案】

淄博九年级数学试卷【含答案】

淄博九年级数学试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。

A. a/2B. a√2C. 2aD. a√32. 下列函数中,哪个函数在其定义域内是增函数?()A. y = -x^2B. y = x^3C. y = -xD. y = 1/x3. 若|a| = 3,则a的值为()。

A. 3或-3B. 3C. -3D. 04. 一个等腰三角形的底边长为8cm,腰长为10cm,则该三角形的周长为()cm。

A. 16B. 26C. 28D. 365. 若一组数据从小到大排列为2, 4, 6, 8, x,且这组数据的平均数为6,则x的值为()。

A. 4B. 6C. 8D. 10二、判断题(每题1分,共5分)1. 平行四边形的对角线互相平分。

()2. 任何有理数都可以表示为分数的形式。

()3. 若a > b,则a c > b c。

()4. 两个负数相乘的结果是正数。

()5. 一元二次方程ax^2 + bx + c = 0(a ≠ 0)的解的判别式为b^2 4ac。

()三、填空题(每题1分,共5分)1. 若一个圆的半径为r,则该圆的面积是______。

2. 若|a 3| = 5,则a的值为______或______。

3. 两个等腰直角三角形可以拼成一个正方形。

()4. 若一组数据从小到大排列为1, 3, 5, x, 9,且这组数据的平均数为5,则x的值为______。

5. 一元二次方程x^2 5x + 6 = 0的解为______和______。

四、简答题(每题2分,共10分)1. 简述勾股定理的内容。

2. 什么是等差数列?给出一个等差数列的例子。

3. 什么是函数的单调性?举例说明。

4. 简述概率的基本性质。

5. 什么是平行线?给出一个平行线的例子。

五、应用题(每题2分,共10分)1. 一个长方形的长是宽的两倍,若长方形的周长是30cm,求长方形的长和宽。

淄博市中考数学试卷及答案(解析)

淄博市中考数学试卷及答案(解析)

山东省淄博市中考数学试卷一、选择题(共12小题,每小题4分)1.(4分)(山东淄博)计算(﹣3)2等于()A.﹣9 B.﹣6 C. 6 D.9考点:有理数的乘方.分析:根据负数的偶次幂等于正数,可得答案.解答:解:原式=32=9.故选:D.点评:本题考查了有理数的乘方,负数的偶次幂是正数.2.(4分)(山东淄博)方程﹣=0解是()A.x=B.x=C.x=D.x=﹣1考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:3x+3﹣7x=0,解得:x=,经检验x=是分式方程的解.故选B点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.3.(4分)(山东淄博)如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是()A.8,6 B.8,5 C.52,53 D.52,52考点:频数(率)分布直方图;中位数;众数.专题:计算题.分析:找出出现次数最多的速度即为众数,将车速按照从小到大顺序排列,求出中位数即可.解答:解:根据题意得:这些车的车速的众数52千米/时,车速分别为50,50,51,51,51,51,51,52,52,52,52,52,52,52,52,53,53,53,53,53,53,54,54,54,54,55,55,中间的为52,即中位数为52千米/时,则这些车的车速的众数、中位数分别是52,52.故选D点评:此题考查了频数(率)分布直方图,中位数,以及众数,弄清题意是解本题的关键.4.(4分)(山东淄博)如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S1,S2,S3,则S1,S2,S3的大小关系是()A.S1>S2>S3B.S3>S2>S1C.S2>S3>S1D.S1>S3>S2考点:简单组合体的三视图.分析:根据从正面看得到的图形是主视图,从上面看得到的图形是俯视图,从左面看得到的图形是左视图,根据边角面积的大小,可得答案.解答:解:主视图的面积是三个正方形的面积,左视图是两个正方形的面积,俯视图是一个正方形的面积,S1>S3>S2,故选:D.点评:本题考查了简单组合体的三视图,分别得出三视图是解题关键.5.(4分)(山东淄博)一元二次方程x2+2x﹣6=0的根是()A.x1=x2=B.x1=0,x2=﹣2C.x1=,x2=﹣3D.x1=﹣,x2=3考点:解一元二次方程-公式法.分析:找出方程中二次项系数a,一次项系数b及常数项c,再根据x=,将a,b及c的值代入计算,即可求出原方程的解.解答:解:∵a=1,b=2,c=﹣6∴x====﹣±2,∴x1=,x2=﹣3;故选C.点评:此题考查了利用公式法求一元二次方程的解,利用公式法解一元二次方程时,首先将方程化为一般形式,找出二次项系数,一次项系数及常数项,计算出根的判别式,当根的判别式大于等于0时,将a,b及c的值代入求根公式即可求出原方程的解.6.(4分)(山东淄博)当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A.7 B. 3 C. 1 D.﹣7考点:代数式求值.专题:整体思想.分析:把x=1代入代数式求值a、b的关系式,再把x=﹣1代入进行计算即可得解.解答:解:x=1时,ax3﹣3bx+4=a﹣3b+4=7,解得a﹣3b=3,当x=﹣1时,ax3﹣3bx+4=﹣a+3b+4=﹣3+4=1.故选C.点评:本题考查了代数式求值,整体思想的利用是解题的关键.7.(4分)(山东淄博)如图,等腰梯形ABCD中,对角线AC、DB相交于点P,∠BAC=∠CDB=90°,AB=AD=DC.则cos∠DPC的值是()A.B. C. D.考点:等腰梯形的性质.分析:先根据等腰三角形的性质得出∠DAB+∠BAC=180°,AD∥BC,故可得出∠DAP=∠ACB,∠ADB=∠ABD,再由AB=AD=DC可知∠ABD=∠ADB,∠DAP=∠ACD,所以∠DAP=∠ABD=∠DBC,再根据∠BAC=∠CDB=90°可知,3∠ABD=90°,故∠ABD=30°,再由直角三角形的性质求出∠DPC的度数,进而得出结论.解答:解:∵梯形ABCD是等腰梯形,∴∠DAB+∠BAC=180°,AD∥BC,∴∠DAP=∠ACB,∠ADB=∠ABD,∵AB=AD=DC,∴∠ABD=∠ADB,∠DAP=∠ACD,∴∠DAP=∠ABD=∠DBC,∵∠BAC=∠CDB=90°,∴3∠ABD=90°,∴∠ABD=30°,在△ABP中,∵∠ABD=30°,∠BAC=90°,∴∠APB=60°,∴∠DPC=60°,∴cos∠DPC=cos60°=.故选A.点评:本题考查的是等腰梯形的性质,熟知等腰梯形同一底上的两个角相等是解答此题的关键.8.(4分)(山东淄博)如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()A.y=x2﹣x﹣2 B.y=x2﹣x+2 C.y=x2+x﹣2 D.y=x2+x+2考点:待定系数法求二次函数解析式;反比例函数图象上点的坐标特征.专题:计算题.分析:将A坐标代入反比例解析式求出m的值,确定出A的坐标,将A与B坐标代入二次函数解析式求出b与c的值,即可确定出二次函数解析式.解答:解:将A(m,4)代入反比例解析式得:4=﹣,即m=﹣2,∴A(﹣2,4),将A(﹣2,4),B(0,﹣2)代入二次函数解析式得:,解得:b=﹣1,c=﹣2,则二次函数解析式为y=x2﹣x﹣2.故选A.点评:此题考查l待定系数法求二次函数解析式,以及反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.9.(4分)(山东淄博)如图,ABCD是正方形场地,点E在DC的延长线上,AE与BC相交于点F.有甲、乙、丙三名同学同时从点A出发,甲沿着A﹣B﹣F﹣C的路径行走至C,乙沿着A﹣F﹣E﹣C﹣D的路径行走至D,丙沿着A﹣F﹣C﹣D的路径行走至D.若三名同学行走的速度都相同,则他们到达各自的目的地的先后顺序(由先至后)是()A.甲乙丙B.甲丙乙C.乙丙甲D.丙甲乙考点:正方形的性质;线段的性质:两点之间线段最短;比较线段的长短.分析:根据正方形的性质得出AB=BC=CD=AD,∠B=∠ECF,根据直角三角形得出AF>AB,EF>CF,分别求出甲、乙、丙行走的距离,再比较即可.解答:解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=90°,甲行走的距离是AB+BF+CF=AB+BC=2AB;乙行走的距离是AF+EF+EC+CD;丙行走的距离是AF+FC+CD,∵∠B=∠ECF=90°,∴AF>AB,EF>CF,∴AF+FC+CD>2AB,AF+FC+CD<AF+EF+EC+CD,∴甲比丙先到,丙比乙先到,即顺序是甲丙乙,故选B.点评:本题考查了正方形的性质,直角三角形的性质的应用,题目比较典型,难度适中.10.(4分)(山东淄博)如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过点C.则矩形的一边AB的长度为()A. 1 B. C. D. 2考点:勾股定理;线段垂直平分线的性质;矩形的性质.分析:本题要依靠辅助线的帮助,连接CE,首先利用线段垂直平分线的性质证明BC=EC.求出EC后根据勾股定理即可求解.解答:解:如图,连接EC.∵FC垂直平分BE,∴BC=EC(线段垂直平分线的性质)又∵点E是AD的中点,AE=1,AD=BC,故EC=2利用勾股定理可得AB=CD==.故选:C.点评:本题考查的是勾股定理、线段垂直平分线的性质以及矩形的性质,本题的关键是要画出辅助线,证明BC=EC后易求解.本题难度中等.11.(4分)(山东淄博)如图,直线AB与⊙O相切于点A,弦CD∥AB,E,F为圆上的两点,且∠CDE=∠ADF.若⊙O的半径为,CD=4,则弦EF的长为()A. 4 B.2C.5D. 6 考点:切线的性质.分析:首先连接OA,并反向延长交CD于点H,连接OC,由直线AB与⊙O相切于点A,弦CD∥AB,可求得OH的长,然后由勾股定理求得AC的长,又由∠CDE=∠ADF,可证得EF=AC,继而求得答案.解答:解:连接OA,并反向延长交CD于点H,连接OC,∵直线AB与⊙O相切于点A,∴OA⊥AB,∵弦CD∥AB,∴AH⊥CD,∴CH=CD=×4=2,∵⊙O的半径为,∴OA=OC=,∴OH==,∴AH=OA+OH=+=4,∴AC==2.∵∠CDE=∠ADF,∴=,∴=,∴EF=AC=2.故选B.点评:此题考查了切线的性质、圆周角定理、垂径定理以及勾股定理等知识.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.12.(4分)(山东淄博)已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是()A. 6 B. 5 C. 4 D. 3考点:二次函数的性质.专题:计算题.分析:根据抛物线的顶点式得到抛物线的对称轴为直线x=h,由于所给数据都是正数,所以当对称轴在y轴的右侧时,比较点A和点B都对称轴的距离可得到h<4.解答:解:∵抛物线的对称轴为直线x=h,∴当对称轴在y轴的右侧时,A(0,2)到对称轴的距离比B(8,3)到对称轴的距离小,∴x=h<4.故选D.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.二、填空题(共5小题,每小题4分,满分20分)13.(4分)(山东淄博)分解因式:8(a2+1)﹣16a=8(a﹣1)2.考点:提公因式法与公式法的综合运用.分析:首先提取公因式8,进而利用完全平方公式分解因式得出即可.解答:解:8(a2+1)﹣16a=8(a2+1﹣2a)=8(a﹣1)2.故答案为:8(a﹣1)2.点评:此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.14.(4分)(山东淄博)某实验中学九年级(1)班全体同学的综合素质评价“运动与健康”方面的等级统计如图所示,其中评价为“A”所在扇形的圆心角是108度.考点:扇形统计图.分析:首先计算出A部分所占百分比,再利用360°乘以百分比可得答案.解答:解:A所占百分比:100%﹣15%﹣20%﹣35%=30%,圆心角:360°×30%=108°,故答案为:108.点评:此题主要考查了扇形统计图,关键是掌握圆心角度数=360°×所占百分比.15.(4分)(山东淄博)已知▱ABCD,对角线AC,BD相交于点O,请你添加一个适当的条件,使▱ABCD成为一个菱形,你添加的条件是AD=DC.考点:菱形的判定;平行四边形的性质.专题:开放型.分析:根据菱形的定义得出答案即可.解答:解:∵邻边相等的平行四边形是菱形,∴平行四边形AB CD的对角线AC、BD相交于点O,试添加一个条件:可以为:AD=DC;故答案为:AD=DC.点评:此题主要考查了菱形的判定以及平行四边形的性质,根据菱形的定义得出是解题关键.16.(4分)(山东淄博)关于x的反比例函数y=的图象如图,A、P为该图象上的点,且关于原点成中心对称.△PAB中,PB∥y轴,AB∥x轴,PB与AB相交于点B.若△PAB的面积大于12,则关于x的方程(a﹣1)x2﹣x+=0的根的情况是没有实数根.考点:根的判别式;反比例函数的性质.分析:由比例函数y=的图象位于一、三象限得出a+4>0,A、P为该图象上的点,且关于原点成中心对称,得出2xy>12,进一步得出a+4>6,由此确定a的取值范围,进一步利用根的判别式判定方程根的情况即可.解答:解:∵反比例函数y=的图象位于一、三象限,∴a+4>0,a>﹣4,∵A、P关于原点成中心对称,PB∥y轴,AB∥x轴,△PAB的面积大于12,∴2xy>12,即a+4>6,a>2∴a>2.∴△=(﹣1)2﹣4(a﹣1)×=2﹣a<0,∴关于x的方程(a﹣1)x2﹣x+=0没有实数根.故答案为:没有实数根.点评:此题综合考查了反比例函数的图形与性质,一元二次方程根的判别式,注意正确判定a的取值范围是解决问题的关键.17.(4分)(山东淄博)如图,在正方形网格中有一边长为4的平行四边形ABCD,请将其剪拼成一个有一边长为6的矩形.(要求:在答题卡的图中画出裁剪线即可)考点:作图—应用与设计作图;图形的剪拼.分析:如图先过D点向下剪出一个三角形放在平行四边形的左边,再在剪去D点下面两格的小正方形放在右面,就组成了一人矩形.解答:解:如图:点评:本题一方面考查了学生的动手操作能力,另一方面考查了学生的空间想象能力,重视知识的发生过程,让学生体验学习的过程.三、解答题(共7小题,共52分)18.(5分)(山东淄博)计算:•.考点:分式的乘除法.专题:计算题.分析:原式约分即可得到结果.解答:解:原式=•=.点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.19.(5分)(山东淄博)如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,求∠2的度数.考点:平行线的性质.分析:根据垂直定义和邻补角求出∠3,根据平行线的性质得出∠2=∠3,代入求出即可.解答:解:∵AB⊥BC,∴∠ABC=90°,∴∠1+∠3=90°,∵∠1=55°,∴∠3=35°,∵a∥b,∴∠2=∠3=35°.点评:本题考查了垂直定义,平行线的性质的应用,注意:两直线平行,同位角相等.20.(8分)(山东淄博)节能灯根据使用寿命分成优等品、正品和次品三个等级,其中使用寿命大于或等于8000小时的节能灯是优等品,使用寿命小于6000小时的节能灯是次品,其余的节能灯是正品.质检部门对某批次的一种节能灯(共200个)的使用寿命进行追踪调查,并将结果整理成此表.(1)根据分布表中的数据,在答题卡上写出a,b,c的值;(2)某人从这200个节能灯中随机购买1个,求这种节能灯恰好不是次品的概率.寿命(小时)频数频率4000≤t≤5000 10 0.055000≤t<6000 20 a6000≤t<7000 80 0.407000≤t<8000 b 0.158000≤t<9000 60 c合计 200 1考点:频数(率)分布表;概率公式.分析:(1)由频率分布表中的数据,根据频率=频数÷数据总数及频数=数据总数×频率即可求出a、b、c的值;(2)根据频率分布表中的数据,用不是次品的节能灯个数除以节能灯的总个数即可求解.解答:解:(1)根据频率分布表中的数据,得a==0.1,b=200×0.15=30,c==0.3;(Ⅱ)设“此人购买的节能灯恰好不是次品”为事件A.由表可知:这批灯泡中优等品有60个,正品有110个,次品有30个,所以此人购买的节能灯恰好不是次品的概率为P(A)==0.85.点评:本题考查了读频数(率)分布表的能力和利用统计图获取信息的能力及古典概型的概率,用到的知识点:频率=频数÷数据总数,概率=所有出现的情况数与总数之比.21.(8分)(山东淄博)为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表:档次每户每月用电数(度)执行电价(元/度)第一档小于等于200 0.55第二档大于200小于400 0.6第三档大于等于400 0.85例如:一户居民七月份用电420度,则需缴电费420×0.85=357(元).某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各月电多少度?考点:二元一次方程组的应用.分析:某户居民五、六月份共用电500度,就可以得出每月用电量不可能都在第一档,分情况讨论,当5月份用电量为x度≤200度,6月份用电(500﹣x)度,当5月份用电量为x 度>200度,六月份用电量为(500﹣x)度>x度,分别建立方程求出其解即可.解答:解:当5月份用电量为x度≤200度,6月份用电(500﹣x)度,由题意,得0.55x+0.6(500﹣x)=290.5,解得:x=190,∴6月份用电500﹣x=310度.当5月份用电量为x度>200度,六月份用电量为(500﹣x)度,由题意,得0.6x+0.6(500﹣x)=290.5,300=290.5,原方程无解.∴5月份用电量为190度,6月份用电310度.点评:本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,分类讨论思想的运用,解答时由总价=单价×数量是关键.22.(8分)(山东淄博)如图,在直角坐标系中,点A的坐标是(0.3),点C是x轴上的一个动点,点C在x轴上移动时,始终保持△ACP是等边三角形.当点C移动到点O时,得到等边三角形A OB(此时点P与点B重合).(1)点C在移动的过程中,当等边三角形ACP的顶点P在第三象限时(如图),求证:△AOC≌△ABP;由此你发现什么结论?(2)求点C在x轴上移动时,点P所在函数图象的解析式.考点:一次函数综合题.分析:(1)由等边三角形的性质易证AO=AB,AC=AP,∠CAP=∠OAB=60°;然后由图示知∠CAP+∠PAO=∠OAB+∠PAO,即∠CAO=∠PAB.所以根据SAS证得结论;(2)利用(1)中的结论PB⊥AB.根据等边三角形的性质易求点B的坐标为B(,).再由旋转的性质得到当点P移动到y轴上的坐标是(0,﹣3),所以根据点B、P的坐标易求直线BP的解析式.解答:(1)证明:∵△AOB与△ACP都是等边三角形,∴AO=AB,AC=AP,∠CAP=∠OAB=60°,∴∠CAP+∠PAO=∠OAB+∠PAO,∴∠CAO=∠PAB,在△AOC与△ABP中,∴△AOC≌△ABP(SAS).∴∠COA=∠PBA=90°,∴点P在过点B且与AB垂直的直线上或PB⊥AB或∠ABP=90°.故结论是:点P在过点B且与AB垂直的直线上或PB⊥AB或∠ABP=90°;(2)解:点P在过点B且与AB垂直的直线上.∵△AOB是等边三角形,A(0,3),∴B(,).当点C移动到点P在y轴上时,得P(0,﹣3).设点P所在的直线方程为:y=kx+b(k≠0).把点B、P的坐标分别代入,得,解得,所以点P所在的函数图象的解析式为:y=x﹣3.点评:本题综合考查了待定系数法求一次函数解析式,旋转的性质,全等三角形的判定与性质等知识.解答(2)题时,求得点P位于y轴负半轴上的坐标是解题的关键.23.(9分)(山东淄博)如图,四边形ABCD中,AC⊥BD交BD于点E,点F,M分别是AB,BC的中点,BN平分∠ABE交AM于点N,AB=AC=BD.连接MF,NF.(1)判断△BMN的形状,并证明你的结论;(2)判断△MFN与△BDC之间的关系,并说明理由.考点:相似三角形的判定与性质;等腰直角三角形;三角形中位线定理.分析:(1)根据等腰三角形的性质,可得AM是高线、顶角的角平分线,根据直角三角形的性质,可得∠EAB+∠EBA=90°,根据三角形外角的性质,可得答案;(2)根据三角形中位线的性质,可得MF与AC的关系,根据等量代换,可得MF与BD 的关系,根据等腰直角三角形,可得BM与NM的关系,根据等量代换,可得NM与BC 的关系,根据同角的余角相等,可得∠CBD与∠NMF的关系,根据两边对应成比例且夹角相等的两个三角形相似,可得答案.解答:(1)答:△BMN是等腰直角三角形.证明:∵AB=AC,点M是BC的中点,∴AM⊥BC,AM平分∠BAC.∵BN平分∠ABE,AC⊥BD,∴∠AEB=90°,∴∠EAB+∠EBA=90°,∴∠MNB=∠NAB+∠ABN=(∠BAE+∠ABE)=45°.∴△BMN是等腰直角三角形;(2)答:△MFN∽△BDC.证明:∵点F,M分别是AB,BC的中点,∴FM∥AC,FM=AC.∵AC=BD,∴FM=BD,即.∵△BMN是等腰直角三角形,∴NM=BM=BC,即,∴.∵AM⊥BC,∴∠NMF+∠FMB=90°.∵FM∥AC,∴∠ACB=∠FMB.∵∠CEB=90°,∴∠ACB+∠CBD=90°.∴∠CBD+∠FMB=90°,∴∠NMF=∠CBD.∴△MFN∽△BDC.点评:本题考查了相似三角形的判定与性质,利用了锐角是45°的直角三角形是等腰直角三角形,两边对应成比例且夹角相等的两个三角形相似.24.(9分)(山东淄博)如图,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点.(1)使∠APB=30°的点P有无数个;(2)若点P在y轴上,且∠APB=30°,求满足条件的点P的坐标;(3)当点P在y轴上移动时,∠APB是否有最大值?若有,求点P的坐标,并说明此时∠APB最大的理由;若没有,也请说明理由.考点:圆的综合题;三角形的外角性质;等边三角形的性质;勾股定理;矩形的判定与性质;垂径定理;圆周角定理;切线的性质.专题:综合题;探究型.分析:(1)已知点A、点B是定点,要使∠APB=30°,只需点P在过点A、点B的圆上,且弧AB所对的圆心角为60°即可,显然符合条件的点P有无数个.(2)结合(1)中的分析可知:当点P在y轴的正半轴上时,点P是(1)中的圆与y轴的交点,借助于垂径定理、等边三角形的性质、勾股定理等知识即可求出符合条件的点P的坐标;当点P在y轴的负半轴上时,同理可求出符合条件的点P的坐标.(3)由三角形外角的性质可证得:在同圆或等圆中,同弧所对的圆周角大于同弧所对的圆外角.要∠APB最大,只需构造过点A、点B且与y轴相切的圆,切点就是使得∠APB最大的点P,然后结合切线的性质、三角形外角的性质、矩形的判定与性质、勾股定理等知识即可解决问题.解答:解:(1)以AB为边,在第一象限内作等边三角形ABC,以点C为圆心,AC为半径作⊙C,交y轴于点P1、P2.在优弧AP1B上任取一点P,如图1,则∠APB=∠ACB=×60°=30°.∴使∠APB=30°的点P有无数个.故答案为:无数.(2)①当点P在y轴的正半轴上时,过点C作CG⊥AB,垂足为G,如图1.∵点A(1,0),点B(5,0),∴OA=1,OB=5.∴AB=4.∵点C为圆心,CG⊥AB,∴AG=BG=AB=2.∴OG=OA+AG=3.∵△ABC是等边三角形,∴AC=BC=AB=4.∴CG===2.∴点C的坐标为(3,2).过点C作CD⊥y轴,垂足为D,连接CP2,如图1,∵点C的坐标为(3,2),∴CD=3,OD=2.∵P1、P2是⊙C与y轴的交点,∴∠AP1B=∠AP2B=30°.∵CP2=CA=4,CD=3,∴DP2==.∵点C为圆心,CD⊥P1P2,∴P1D=P2D=.∴P2(0,2﹣).P1(0,2+).②当点P在y轴的负半轴上时,同理可得:P3(0,﹣2﹣).P4(0,﹣2+).综上所述:满足条件的点P的坐标有:(0,2﹣)、(0,2+)、(0,﹣2﹣)、(0,﹣2+).(3)当过点A、B的⊙E与y轴相切于点P时,∠APB最大.①当点P在y轴的正半轴上时,连接EA,作EH⊥x轴,垂足为H,如图2.∵⊙E与y轴相切于点P,∴PE⊥OP.∵EH⊥AB,OP⊥OH,∴∠EPO=∠POH=∠EHO=90°.∴四边形OPEH是矩形.∴OP=EH,PE=OH=3.∴EA=3.∵∠EHA=90°,AH=2,EA=3,∴EH===∴OP=∴P(0,).②当点P在y轴的负半轴上时,同理可得:P(0,﹣).理由:①若点P在y轴的正半轴上,在y轴的正半轴上任取一点M(不与点P重合),连接MA,MB,交⊙E于点N,连接NA,如图2所示.∵∠ANB是△AMN的外角,∴∠ANB>∠AMB.∵∠APB=∠ANB,∴∠APB>∠AMB.②若点P在y轴的负半轴上,同理可证得:∠APB>∠AMB.综上所述:当点P在y轴上移动时,∠APB有最大值,此时点P的坐标为(0,)和(0,﹣).点评:本题考查了垂径定理、圆周角定理、勾股定理、等边三角形的性质、矩形的判定与性质,切线的性质、三角形外角性质等知识,综合性强.同时也考查了创造性思维,有一定的难度.构造辅助圆是解决本题关键.。

山东省淄博市桓台县中考数学一模试卷含答案解析

山东省淄博市桓台县中考数学一模试卷含答案解析

2017年山东省淄博市桓台县中考数学一模试卷一、选择题(4*12=48)1.﹣的倒数是()A.5 B.C.﹣5 D.﹣2.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()A.B.C.D.3.神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为()A.2.8×103B.28×103C.2.8×104D.0.28×1054.某个密码锁的密码由三个数字组成,每个数字都是0﹣9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开.如果仅忘记了锁设密码的最后那个数字,那么一次就能打开该密码的概率是()A.B.C.D.5.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元6.内角和为540°的多边形是()A. B.C.D.7.如图,在高出海平面100m的悬崖顶A处,观测海面上的一艘小船B,并测得它的俯角为30°,则船与观测者之间的水平距离为()A.50B.100 C.100+D.1008.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿CB方向平移7cm 得到线段EF,点E、F分别落在边AB、BC上,则△EBF的周长是()cm.A.7 B.11 C.13 D.169.如图,分别延长圆内接四边形ABDE的两组对边,延长线相交于点F、C,若∠F=27°,∠A=53°,则∠C的度数为()A.30° B.43° C.47° D.53°10.分解因式:y3﹣4y2+4y=()A.y(y2﹣4y+4)B.y(y﹣2)2C.y(y+2)2D.y(y+2)(y﹣2)11.如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的大小为()A.20° B.30° C.36° D.40°12.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m2二.填空题(4*5=20)13.化简:(1﹣)•(m+1)= .14.代数式在实数范围内有意义,则x的取值范围是.15.将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为.16.若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为.17.如图,等边三角形OAB的边长为8,点P沿O→A→B→O的方向运动,⊙P的半径是,⊙P运动一圈与△ABC的边相切几次,其中与边AB相切时,点P的坐标为.三.解答题18.(10分)(1)计算:(﹣1)2017+|﹣3|+(tan30°)﹣1(2)解方程组:.19.(15分)某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为,扇形统计图中A类所对的圆心角是度;(2)请补全统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?20.(10分)如图,已知点A(1,a)是反比例函数y=﹣的图象上一点,直线y=﹣与反比例函数y=﹣的图象在第四象限的交点为点B.(1)求直线AB的解析式;(2)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P 的坐标.21.(10分)已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1,x2.(1)求m的取值范围;(2)当x12+x22=6x1x2时,求m的值.22.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.23.(12分)如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.24.(15分)如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.2017年山东省淄博市桓台县中考数学一模试卷参考答案与试题解析一、选择题(4*12=48)1.﹣的倒数是()A.5 B.C.﹣5 D.﹣【考点】17:倒数.【分析】根据乘积是1的两个数互为倒数的定义解答即可.【解答】解:﹣的倒数是﹣5.故选C.【点评】此题考查倒数问题,关键是根据乘积是1的两个数互为倒数分析.2.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找到从左面看所得到的图形即可.【解答】解:从左面可看到一个长方形和上面一个长方形.故选:A.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为()A.2.8×103B.28×103C.2.8×104D.0.28×105【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:28000=1.1×104.故选:C.【点评】此题考查科学记数n法的表示方法,表示时关键要正确确定a的值以及n的值.4.某个密码锁的密码由三个数字组成,每个数字都是0﹣9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开.如果仅忘记了锁设密码的最后那个数字,那么一次就能打开该密码的概率是()A.B.C.D.【考点】X4:概率公式.【分析】最后一个数字可能是0~9中任一个,总共有十种情况,其中开锁只有一种情况,利用概率公式进行计算即可.【解答】解:∵共有10个数字,∴一共有10种等可能的选择,∵一次能打开密码的只有1种情况,∴一次能打开该密码的概率为.故选A.【点评】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.5.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元【考点】8A:一元一次方程的应用.【分析】设该商品的进价为x元/件,根据“标价=(进价+利润)÷折扣”即可列出关于x 的一元一次方程,解方程即可得出结论.【解答】解:设该商品的进价为x元/件,依题意得:(x+20)÷=200,解得:x=80.∴该商品的进价为80元/件.故选C.【点评】本题考查了一元一次方程的应用,解题的关键是列出方程(x+20)÷=200.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.6.内角和为540°的多边形是()A. B.C.D.【考点】L3:多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°列式进行计算即可求解.【解答】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选:C.【点评】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.7.如图,在高出海平面100m的悬崖顶A处,观测海面上的一艘小船B,并测得它的俯角为30°,则船与观测者之间的水平距离为()A.50B.100 C.100+D.100【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】根据解直角三角形的应用,测得它的俯角为30°,得出tan30°=,整理代入计算即可得出答案.【解答】解:∵在高出海平面100米的悬崖顶A处,观测海平面上一艘小船B,并测得它的俯角为30°,∴tan30°=,∴船与观测者之间的水平距离BC==100(m).故选D.【点评】此题主要考查了解直角三角形的应用,根据已知得出BC=是解决问题的关键.8.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿CB方向平移7cm 得到线段EF,点E、F分别落在边AB、BC上,则△EBF的周长是()cm.A.7 B.11 C.13 D.16【考点】Q2:平移的性质;KH:等腰三角形的性质.【分析】直接利用平移的性质得出EF=DC=4cm,进而得出BE=EF=4cm,进而求出答案.【解答】解:∵将线段DC沿着CB的方向平移7cm得到线段EF,∴EF=DC=4cm,FC=7cm,∵AB=AC,BC=12cm,∴∠B=∠C,BF=5cm,∴∠B=∠BFE,∴BE=EF=4cm,∴△EBF的周长为:4+4+5=13(cm).故选C.【点评】此题主要考查了平移的性质,根据题意得出BE的长是解题关键.9.如图,分别延长圆内接四边形ABDE的两组对边,延长线相交于点F、C,若∠F=27°,∠A=53°,则∠C的度数为()A.30° B.43° C.47° D.53°【考点】M6:圆内接四边形的性质.【分析】先根据三角形外角性质∠CBD=∠A+∠F=80°,根据圆内接四边形的性质得到∠A+∠BDE=180°,求得∠BDE=180°﹣53°=127°,根据三角形的外角的性质即可得到结论.【解答】解:∵∠A=53°,∠F=27°,∴∠CBD=∠A+∠F=80°,∵∠A+∠BDE=180°,∴∠BDE=180°﹣53°=127°,∵∠BDE=∠C+∠CBD,∴∠C=127°﹣80°=47°.故选C.【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补;圆内接四边形的任意一个外角等于它的内对角.也考查了三角形外角性质.10.分解因式:y3﹣4y2+4y=()A.y(y2﹣4y+4)B.y(y﹣2)2C.y(y+2)2D.y(y+2)(y﹣2)【考点】55:提公因式法与公式法的综合运用.【分析】原式提取y,再利用完全平方公式分解即可.【解答】解:原式=y(y2﹣4y+4)=y(y﹣2)2,故选B【点评】此题考查了提公式法与公式法的综合运用,要注意有没有分解到不能分解.11.如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的大小为()A.20° B.30° C.36° D.40°【考点】PB:翻折变换(折叠问题);L5:平行四边形的性质.【分析】由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,与三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.【解答】解:∵四边形ABCD是平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°;故答案为:36°.【点评】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED′是解决问题的关键.12.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m2【考点】FH:一次函数的应用.【分析】根据待定系数法可求直线AB的解析式,再根据函数上点的坐标特征得出当x=2时,y的值,再根据工作效率=工作总量÷工作时间,列出算式求出该绿化组提高工作效率前每小时完成的绿化面积.【解答】解:如图,设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2).答:该绿化组提高工作效率前每小时完成的绿化面积是150m2.故选:B.【点评】考查了一次函数的应用和函数的图象,关键是根据待定系数法求出该绿化组提高工作效率后的函数解析式,同时考查了工作效率=工作总量÷工作时间的知识点.二.填空题(4*5=20)13.化简:(1﹣)•(m+1)= m .【考点】6C:分式的混合运算.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式=•(m+1)=m,故答案为:m【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.14.代数式在实数范围内有意义,则x的取值范围是x≥1 .【考点】72:二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.【点评】本题考查的是二次根式有意义的条件,即被开方数大于等于0.15.将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为(,﹣).【考点】R7:坐标与图形变化﹣旋转.【分析】求出旋转后OA与y轴夹角为45°,然后求出点A′的横坐标与纵坐标,从而得解.【解答】解:∵三角板绕原点O顺时针旋转75°,∴旋转后OA与y轴夹角为45°,∵OA=2,∴OA′=2,∴点A′的横坐标为2×=,纵坐标为﹣2×=﹣,所以,点A′的坐标为(,﹣).故答案为:(,﹣).【点评】本题考查了坐标与图形变化﹣旋转,准确识图求出旋转后OA与y轴的夹角为45°是解题的关键.16.若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为﹣1或2或1 .【考点】HA:抛物线与x轴的交点.【分析】直接利用抛物线与x轴相交,b2﹣4ac=0,进而解方程得出答案.【解答】解:∵函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,当函数为二次函数时,b2﹣4ac=16﹣4(a﹣1)×2a=0,解得:a1=﹣1,a2=2,当函数为一次函数时,a﹣1=0,解得:a=1.故答案为:﹣1或2或1.【点评】此题主要考查了抛物线与x轴的交点,正确得出关于a的方程是解题关键.17.如图,等边三角形OAB的边长为8,点P沿O→A→B→O的方向运动,⊙P的半径是,⊙P运动一圈与△ABC的边相切几次,其中与边AB相切时,点P的坐标为(6,0),(3,3).【考点】MC:切线的性质;D5:坐标与图形性质;KK:等边三角形的性质.【分析】当点P在OB上且与边AB相切时,如图,作PH⊥AB于H,则PH=,根据等边三角形的性质得到∠A=60°,解直角三角形得到AH=PH=1,AP=2AH=2,于是得到结论.【解答】解:当点P在OB上且与边AB相切时,如图,作PH⊥AB于H,则PH=,∵△ABO为等边三角形,∴∠A=60°,在Rt△APH中,AH=PH=1,AP=2AH=2,∴OP=6,∴P(6,0);∴点P在AO,AP=2时,⊙P与边AB相切,同理可得点P在OA,OP=2时,⊙P与边BO相切;点P在OB,BP=2时,⊙P与边OA相切,点P在OB,BP=2时,⊙P与边AB相切,则P(3,3)点P在AB,BP=2时,⊙P与边BO相切,点P在AB,AP=2时,⊙P与边OA相切,综上所述,⊙P运动一圈与△OBC的边相切6次,故答案为:P(6,0),(3,3).【点评】本题考查了直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.也考查了等边三角形的性质.三.解答题18.(10分)(2017•桓台县一模)(1)计算:(﹣1)2017+|﹣3|+(tan30°)﹣1(2)解方程组:.【考点】98:解二元一次方程组;2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)将(﹣1)2017=﹣1、|﹣3|=3﹣、(tan30°)﹣1=代入原式,再根据实数的运算即可求出结论;(2)将方程①、②相加可求出x的值,将其代入方程①中可求出y值,此题得解.【解答】解:(1)(﹣1)2017+|﹣3|+(tan30°)﹣1,=﹣1+3﹣+,=2;(2),方程①+②,得3x=9,解之,得x=3③,将③代入方程①,得3﹣y=5,解之,得y=﹣2.故方程组的解为.【点评】本题考查了解二元一次方程组、实数的运算、负整数指数幂以及特殊角的三角函数值,解题的关键是:(1)数量掌握实数的运算顺序;(2)熟练掌握解二元一次方程组的步骤及方法.19.(15分)(2016•桂林)某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),D类(m ≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为50 ,扇形统计图中A类所对的圆心角是72 度;(2)请补全统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?【考点】VC:条形统计图;V3:总体、个体、样本、样本容量;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据统计图可以得到抽查的学生数,从而可以求得样本容量,由扇形统计图可以求得扇形圆心角的度数;(2)根据统计图可以求得C类学生数和C类与D类所占的百分比,从而可以将统计图补充完整;(3)根据统计图可以估计该校九年级男生“引体向上”项目成绩为C类的有多少名.【解答】解:(1)由题意可得,抽取的学生数为:10÷20%=50,扇形统计图中A类所对的圆心角是:360°×20%=72°,故答案为:50,72;(2)C类学生数为:50﹣10﹣22﹣3=15,C类占抽取样本的百分比为:15÷50×100%=30%,D类占抽取样本的百分比为:3÷50×100%=6%,补全的统计图如右图所示,(3)300×30%=90(名)即该校九年级男生“引体向上”项目成绩为C类的有90名.【点评】本题考查条形统计图、扇形统计图、用本估计总体,解题的关键是明确题意,利用数形结合的思想解答.20.(10分)(2016•黄冈)如图,已知点A(1,a)是反比例函数y=﹣的图象上一点,直线y=﹣与反比例函数y=﹣的图象在第四象限的交点为点B.(1)求直线AB的解析式;(2)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P 的坐标.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)先把A(1,a)代入反比例函数解析式求出a得到A点坐标,再解方程组得B点坐标,然后利用待定系数法求AB的解析式;(2)直线AB交x轴于点Q,如图,利用x轴上点的坐标特征得到Q点坐标,则PA﹣PB≤AB (当P、A、B共线时取等号),于是可判断当P点运动到Q点时,线段PA与线段PB之差达到最大,从而得到P点坐标.【解答】解:(1)把A(1,a)代入y=﹣得a=﹣3,则A(1,﹣3),解方程组得或,则B(3,﹣1),设直线AB的解析式为y=kx+b,把A(1,﹣3),B(3,﹣1)代入得,解得,所以直线AB的解析式为y=x﹣4;(2)直线AB交x轴于点Q,如图,当y=0时,x﹣4=0,解得x=4,则Q(4,0),因为PA﹣PB≤AB(当P、A、B共线时取等号),所以当P点运动到Q点时,线段PA与线段PB之差达到最大,此时P点坐标为(4,0).【点评】本题考查了反比例函数与一次函数的交点:反比例函数与一次函数的交点问题(1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.21.(10分)(2016•孝感)已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1,x2.(1)求m的取值范围;(2)当x12+x22=6x1x2时,求m的值.【考点】AB:根与系数的关系;AA:根的判别式.【分析】(1)根据一元二次方程x2﹣2x+m﹣1=0有两个实数根,可得△≥0,据此求出m的取值范围;(2)根据根与系数的关系求出x1+x2,x1•x2的值,代入x12+x22=6x1x2求解即可.【解答】解:(1)∵原方程有两个实数根,∴△=(﹣2)2﹣4(m﹣1)≥0,整理得:4﹣4m+4≥0,解得:m≤2;(2)∵x1+x2=2,x1•x2=m﹣1,x12+x22=6x1x2,∴(x1+x2)2﹣2x1•x2=6x1•x2,即4=8(m﹣1),解得:m=.∵m=<2,∴符合条件的m的值为.【点评】本题考查了根与系数的关系以及根的判别式,解答本题的关键是掌握两根之和与两根之积的表达方式.22.(2016•北京)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.【考点】KX:三角形中位线定理;KP:直角三角形斜边上的中线;KQ:勾股定理.【分析】(1)根据三角形中位线定理得MN=AD,根据直角三角形斜边中线定理得BM=AC,由此即可证明.(2)首先证明∠BMN=90°,根据BN2=BM2+MN2即可解决问题.【解答】(1)证明:在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,MN=AD,在RT△ABC中,∵M是AC中点,∴BM=AC,∵AC=AD,∴MN=BM.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)可知,BM=AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴BN2=BM2+MN2,由(1)可知MN=BM=AC=1,∴BN=【点评】本题考查三角形中位线定理、直角三角形斜边中线定理、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.23.(12分)(2016•南宁)如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C点坐标;(2)分别过A、C两点作x轴的垂线,交x轴于点D、E两点,结合A、B、C三点的坐标可求得∠ABO=∠CBO=45°,可证得结论;(3)设出N点坐标,可表示出M点坐标,从而可表示出MN、ON的长度,当△MON和△ABC 相似时,利用三角形相似的性质可得=或=,可求得N点的坐标.【解答】解:(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a(x﹣1)2+1,又抛物线过原点,∴0=a(0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+1,即y=﹣x2+2x,联立抛物线和直线解析式可得,解得或,∴B(2,0),C(﹣1,﹣3);(2)如图,分别过A、C两点作x轴的垂线,交x轴于点D、E两点,则AD=OD=BD=1,BE=OB+OE=2+1=3,EC=3,∴∠ABO=∠CBO=45°,即∠ABC=90°,∴△ABC是直角三角形;(3)假设存在满足条件的点N,设N(x,0),则M(x,﹣x2+2x),∴ON=|x|,MN=|﹣x2+2x|,由(2)在Rt△ABD和Rt△CEB中,可分别求得AB=,BC=3,∵MN⊥x轴于点N∴∠ABC=∠MNO=90°,∴当△ABC和△MNO相似时有=或=,①当=时,则有=,即|x||﹣x+2|=|x|,∵当x=0时M、O、N不能构成三角形,∴x≠0,∴|﹣x+2|=,即﹣x+2=±,解得x=或x=,此时N点坐标为(,0)或(,0);②当=时,则有=,即|x||﹣x+2|=3|x|,∴|﹣x+2|=3,即﹣x+2=±3,解得x=5或x=﹣1,此时N点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N点,其坐标为(,0)或(,0)或(﹣1,0)或(5,0).【点评】本题为二次函数的综合应用,涉及知识点有待定系数法、图象的交点问题、直角三角形的判定、勾股定理、相似三角形的性质及分类讨论等.在(1)中注意顶点式的运用,在(3)中设出N、M的坐标,利用相似三角形的性质得到关于坐标的方程是解题的关键,注意相似三角形点的对应.本题考查知识点较多,综合性较强,难度适中.24.(15分)(2016•福州)如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM 沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.【考点】LB:矩形的性质;KF:角平分线的性质.【分析】(1)由折叠性质得∠MAN=∠DAM,证出∠DAM=∠MAN=∠NAB,由三角函数得出DM=AD•tan∠DAM=即可;(2)延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=4,AQ=5,即可求出△ABN的面积;(3)过点A作AH⊥BF于点H,证明△ABH∽△BFC,得出对应边成比例=,得出当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M 三点共线,由折叠性质得:AD=AH,由AAS证明△ABH≌△BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出结果.【解答】解:(1)由折叠性质得:△ANM≌△ADM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=AD•tan∠DAM=3×tan30°=3×=;(2)延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(x+1)2=32+x2,解得:x=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,∴S△NAB=S△NAQ=×AN•NQ=××3×4=;(3)过点A作AH⊥BF于点H,如图2所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠HBA=∠BFC,∵∠AHB=∠BCF=90°,∴=,∵AH≤AN=3,AB=4,∴当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,如图3所示:由折叠性质得:AD=AH,∵AD=BC,∴AH=BC,在△ABH和△BFC中,,∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得:BH===,∴CF=,∴DF的最大值=DC﹣CF=4﹣.【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键.。

2023年山东省淄博市中考数学试卷含答案解析

2023年山东省淄博市中考数学试卷含答案解析

绝密★启用前学校:___________姓名:___________班级:___________考号:___________一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.−|−3|的运算结果等于( )A. 3B. −3C. 13D. −132.在如图所示的几何体中,其主视图、左视图和俯视图完全相同的是( )A. B.C. D.3.下列计算结果正确的是( )A. 3a+2a=5aB. 3a−2a=1C. 3a⋅2a=6aD. 3a÷2a=32a4.将含30°角的直角三角板按如图所示放置到一组平行线中,若∠1=70°,则∠2等于( )A. 60°B. 50°C. 40°D. 30°5.已知x=1是方程m2−x −1x−2=3的解,那么实数m的值为( )A. −2B. 2C. −4D. 46.下列函数图象中,能反映y的值始终随x值的增大而增大的是( )A. B.C. D.7.为贯彻落实习近平总书记关于黄河流域生态保护和高质量发展的重要讲话精神,某学校组织初一、初二两个年级学生到黄河岸边开展植树造林活动.已知初一植树900棵与初二植树1200棵所用的时间相同,两个年级平均每小时共植树350棵.求初一年级平均每小时植树多少棵?设初一年级平均每小时植树x棵,则下面所列方程中正确的是( )A. 900350−x =1200xB. 900x=1200350+xC. 900350+x=1200xD. 900x=1200350−x8.“敬老爱老”是中华民族的优秀传统美德.小刚、小强计划利用暑期从A,B,C三处养老服务中心中,随机选择一处参加志愿服务活动,则两人恰好选到同一处的概率是( )A. 12B. 13C. 16D. 299.如图,△ABC是⊙O的内接三角形,AB=AC,∠BAC=120°,D是BC边上一点,连接AD并延长交⊙O于点E.若AD=2,DE=3,则⊙O的半径为( )A. √ 10B. 32√ 10C. 2√ 10D. 3√ 1010.勾股定理的证明方法丰富多样,其中我国古代数学家赵爽利用“弦图”的证明简明、直观,是世界公认最巧妙的方法.“赵爽弦图”已成为我国古代数学成就的一个重要标志,千百年来倍受人们的喜爱.小亮在如图所示的“赵爽弦图”中,连接EG,DG.若正方形ABCD与EFGH的边长之比为√ 5:1,则sin∠DGE等于( )A. √ 1010B. √ 55C. 310√ 10 D. 25√ 5二、填空题:本题共5小题,每小题4分,共20分。

2017年中考数学试卷含答案解析(Word版).docx

2017年中考数学试卷含答案解析(Word版).docx

2017 年中考数学试卷一、选择题:本大题共12 小题,每小题 3 分,共 36 分,在每小题给出的四个选项中,只有一个是正确的,每小题选对得 3 分,选错、不选或多选,均不得分.1.从新华网获悉:商务部5 月 27 日发布的数据显示,一季度,中国与“一带一路”沿线国家在经贸合作领域保持良好发展势头,双边货物贸易总额超过16553亿元人民币, 16553 亿用科学记数法表示为()A. 1.6553×108 B. 1.6553× 1011C.1.6553×1012D. 1.6553× 1013【分析】科学记数法的表示形式为a× 10n的形式,其中 1≤a< 10,n 为整数.确||定 n 的值时,要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n是负数.【解答】解:将16553 亿用科学记数法表示为: 1.6553× 1012.故选: C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤| a| <10,n 为整数,表示时关键要正确确定 a 的值以及n 的值.2.某校排球队 10 名队员的身高(厘米)如下:195, 186,182,188,188, 182,186,188, 186,188.这组数据的众数和中位数分别是()A. 186, 188 B. 188,187 C.187,188 D.188,186【分析】根据众数和中位数的定义求解可得.【解答】解:将数据重新排列为:182、182、 186、186、186、188、 188、188、188、 195,∴众数为 188,中位数为=187,故选: B.【点评】本题考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据中出现最多的一个数.3.下列运算正确的是()A. 3x2+4x2=7x4 B. 2x33x3=6x3C. a÷a﹣2=a3D.(﹣a2b)3=﹣a6b3【分析】原式各项计算得到结果,即可作出判断.【解答】解: A、原式 =7x2,不符合题意;B、原式 =6x6,不符合题意;C、原式 =aa2=a3,符合题意;D、原式 =﹣a6 b3,不符合题意,故选 C【点评】此题考查了整式的混合运算,以及负整数指数幂,熟练掌握运算法则是解本题的关键.2π 0+(﹣)﹣2的结果是()4.计算﹣()+(+ )A.1 B.2 C.D.3【分析】首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:﹣()2+(+π)0+(﹣)﹣2=﹣2+1+4=3故选: D.【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式﹣>1,得:x<﹣2,解不等式 3﹣x≥ 2,得: x≤1,∴不等式组的解集为x<﹣ 2,故选: B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.为了方便行人推车过某天桥,市政府在 10m 高的天桥一侧修建了40m 长的斜道(如图所示),我们可以借助科学计算器求这条斜道倾斜角的度数,具体按键顺序是()A.B.C.D.【分析】先利用正弦的定义得到sinA=0.25,然后利用计算器求锐角∠ A .【解答】解: sinA===0.25,所以用科学计算器求这条斜道倾斜角的度数时,按键顺序为故选 A.【点评】本题考查了计算器﹣三角函数:正确使用计算器,一般情况下,三角函数值直接可以求出,已知三角函数值求角需要用第二功能键.7.若 1﹣22x c=0的一个根,则 c 的值为()是方程 x ﹣+A.﹣ 2 B.4﹣2 C.3﹣D.1+【分析】把 x=1﹣代入已知方程,可以列出关于 c 的新方程,通过解新方程即可求得 c 的值.【解答】解:∵关于x 的方程 x2﹣2x c=0的一个根是 1﹣,+∴( 1﹣)2﹣2(1﹣) +c=0,解得, c=﹣2.故选: A.【点评】本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.8.一个几何体由n 个大小相同的小正方体搭成,其左视图、俯视图如图所示,则 n 的最小值是()A.5 B.7 C.9 D.10【分析】从俯视图中可以看出最底层小正方体的个数及形状,从左视图可以看出第二层和第三层的个数,从而算出总的个数.【解答】解:由题中所给出的左视图知物体共三层,每一层都是两个小正方体;从俯视图可以可以看出最底层的个数所以图中的小正方体最少1+2+4=7.故选 B.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.9.甲、乙两人用如图所示的两个转盘(每个转盘别分成面积相等的 3 个扇形)做游戏,游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.甲获胜的概率是()A.B.C.D.5 种,进而可得【分析】首先画出树状图,然后计算出数字之和为偶数的情况有答案.【解答】解:如图所示:数字之和为偶数的情况有 5 种,因此加获胜的概率为,故选: C.【点评】此题主要考查了画树状图和概率,关键是掌握概率 =所求情况数与总情况数之比.10.如图,在 ? ABCD 中,∠ DAB 的平分线交 CD 于点 E,交 BC 的延长线于点G,∠ABC 的平分线交 CD 于点 F,交 AD 的延长线于点 H,AG 与 BH 交于点 O,连接 BE,下列结论错误的是()A. BO=OH B.DF=CE C.DH=CG D.AB=AE【分析】根据平行四边形的性质、等腰三角形的判定和性质一一判断即可.【解答】解:∵四边形 ABCD 是平行四边形,∴AH∥ BG,AD=BC ,∴∠ H=∠HBG,∵∠ HBG=∠ HBA ,∴∠ H=∠HBA ,∴AH=AB ,同理可证 BG=AB ,∴AH=BG ,∵ AD=BC ,∴DH=CG,故③正确,∵AH=AB ,∠ OAH= ∠ OAB ,∴OH=OB,故①正确,∵DF∥AB,∴∠DFH=∠ABH ,∵∠ H=∠ABH ,∴∠ H=∠DFH,∴DF=DH ,同理可证 EC=CG,∵ DH=CG,∴DF=CE,故②正确,无法证明 AE=AB ,故选 D.【点评】本题考查平行四边形的性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.已知二次函数 y=ax2+bx+c(a≠0)的图象如图所示,则正比例函数 y=(b+c)x 与反比例函数y=在同一坐标系中的大致图象是()A.B.C.D.【分析】先根据二次函数的图象,确定a、 b、c 的符号,再根据 a、b、c 的符号判断反比例函数y=与一次函数y=( b+c) x的图象经过的象限即可.【解答】解:由二次函数图象可知a>0,c>0,由对称轴 x=﹣>0,可知b<0,当 x=1 时, a+b+c<0,即 b+c<0,所以正比例函数 y=(b+c) x 经过二四象限,反比例函数 y=图象经过一三象限,故选 C.【点评】本题主要考查二次函数图象的性质、一次函数的图象的性质、反比例函数图象的性质,关键在于通过二次函数图象推出 a、b、c 的取值范围.12.如图,正方形上,若反比例函数ABCD 的边长为 5,点y= ( k≠ 0)的图象过点A 的坐标为(﹣4,0),点B C,则该反比例函数的表达式为(在 y 轴)A. y=B.y=C.y=D.y=【分析】过点 C 作 CE⊥ y 轴于 E,根据正方形的性质可得 AB=BC ,∠ABC=90°,再根据同角的余角相等求出∠ OAB= ∠CBE,然后利用“角角边”证明△ ABO 和△ BCE 全等,根据全等三角形对应边相等可得 OA=BE=4 ,CE=OB=3,再求出 OE,然后写出点 C 的坐标,再把点 C 的坐标代入反比例函数解析式计算即可求出 k 的值.【解答】解:如图,过点 C 作 CE⊥ y 轴于 E,在正方形 ABCD 中, AB=BC ,∠ABC=90°,∴∠ ABO +∠ CBE=90°,∵∠ OAB +∠ ABO=90°,∴∠ OAB= ∠ CBE,∵点 A 的坐标为(﹣ 4,0),∴OA=4,∵ AB=5,∴ OB==3,在△ ABO 和△ BCE 中,,∴△ ABO ≌△ BCE(AAS ),∴OA=BE=4 , CE=OB=3,∴OE=BE﹣OB=4﹣ 3=1,∴点 C 的坐标为( 3,1),∵反比例函数 y= (k≠0)的图象过点 C,∴k=xy=3 ×1=3,∴反比例函数的表达式为y=.故选 A.【点评】本题考查的是反比例函数图象上点的坐标特点,涉及到正方形的性质,全等三角形的判定与性质,反比例函数图象上的点的坐标特征,作辅助线构造出全等三角形并求出点 D 的坐标是解题的关键.二、填空题:本大题共 6 小题,每小题 3 分,共 18 分,只要求填写最后结果.13.如图,直线 l1∥l2,∠ 1=20°,则∠ 2+∠3=200° .【分析】过∠ 2 的顶点作 l2的平行线 l,则 l ∥l1∥l2,由平行线的性质得出∠4=∠1=20°,∠BAC +∠3=180°,即可得出∠2+∠3=200°.【解答】解:过∠2 的顶点作l 2的平行线 l,如图所示:则 l∥ l1∥ l2,∴∠ 4=∠ 1=20°,∠ BAC +∠3=180°,∴∠ 2+∠ 3=180°+20°=200°;故答案为: 200°.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.14.方程+=1 的解是x=3.【分析】方程两边都乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:由原方程,得3﹣x﹣1=x﹣ 4,﹣2x=﹣6,x=3,经检验 x=3 是原方程的解.故答案是: x=3.【点评】本题考查了解分式方程,把分式方程转化为整式方程求解.最后注意需验根.15.阅读理解:如图1,⊙ O 与直线 a、b 都相切,不论⊙ O 如何转动,直线a、b 之间的距离始终保持不变(等于⊙ O 的直径),我们把具有这一特性的图形成为“等宽曲线”,图2 是利用圆的这一特性的例子,将等直径的圆棍放在物体下面,通过圆棍滚动,用较小的力既可以推动物体前进,据说,古埃及人就是利用这样的方法将巨石推到金字塔顶的.拓展应用:如图 3 所示的弧三角形(也称为莱洛三角形)也是“等宽曲线”,如图4,夹在平行线 c,d 之间的莱洛三角形无论怎么滚动,平行线间的距离始终不变,若直线 c,d 之间的距离等于2cm,则莱洛三角形的周长为2π cm.【分析】由等宽曲线的定义知AB=BC=AC=2cm ,即可得∠ BAC= ∠ ABC= ∠ACB=60°,根据弧长公式分别求得三段弧的长即可得其周长.【解答】解:如图 3,由题意知 AB=BC=AC=2cm ,∴∠ BAC= ∠ ABC= ∠ACB=60°,∴在以点 C 为圆心、 2 为半径的圆上,∴的长为=,则莱洛三角形的周长为×3=2π,故答案为: 2π.【点评】本题主要考查新定义下弧长的计算,理解“等宽曲线”得出等边三角形是解题的关键.16.某广场用同一种如图所示的地砖拼图案,第一次拼成形如图 1 所示的图案,第二拼成形如图 2 所示的图案,第三次拼成形如图 3 所示的图案,第四次拼成形如图 4 所示的图案按照这样的规律进行下去,第n 次拼成的图案共有地砖2n2+2n.块.【分析】首先求出第一个、第二个、第三个、第四个图案中的地砖的数量,探究规律后即可解决问题.【解答】解:第一次拼成形如图 1 所示的图案共有 4 块地砖, 4=2×( 1×2),第二拼成形如图 2 所示的图案共有 12 块地砖, 12=2×( 2×3),第三次拼成形如图 3 所示的图案共有 24 块地砖, 24=2×( 3× 4),第四次拼成形如图 4 所示的图案共有 40 块地砖, 40=2×( 4× 5),第 n 次拼成形如图 1 所示的图案共有 2× n( n+1) =2n2+2n 块地砖,故答案为 2n2+2n.【点评】本题考查规律题目、解题的关键是学会从特殊到一般的探究方法,属于中考填空题中的压轴题.17.如图,A 点的坐标为(﹣1,5),B 点的坐标为(3,3),C 点的坐标为(5,3), D 点的坐标为( 3,﹣ 1),小明发现:线段 AB 与线段 CD 存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,你认为这个旋转中心的坐标是(1,1)或( 4,4).【分析】分点 A 的对应点为 C 或 D 两种情况考虑:①当点 A 的对应点为点 C 时,连接 AC 、BD ,分别作线段 AC、 BD 的垂直平分线交于点 E,点 E 即为旋转中心;②当点 A 的对应点为点 D 时,连接 AD 、 BC,分别作线段 AD 、 BC 的垂直平分线交于点 M ,点 M 即为旋转中心.此题得解.【解答】解:①当点 A 的对应点为点 C 时,连接 AC 、BD ,分别作线段AC、BD 的垂直平分线交于点E,如图 1 所示,∵A 点的坐标为(﹣ 1,5), B 点的坐标为( 3,3),∴ E 点的坐标为( 1, 1);②当点 A 的对应点为点 D 时,连接 AD 、BC,分别作线段 AD 、BC 的垂直平分线交于点 M ,如图 2 所示,∵A 点的坐标为(﹣ 1,5), B 点的坐标为( 3,3),∴ M 点的坐标为( 4,4).综上所述:这个旋转中心的坐标为( 1,1)或( 4,4).故答案为:( 1,1)或( 4, 4).【点评】本题考查了坐标与图形变化中的旋转,根据给定点的坐标找出旋转中心的坐标是解题的关键.18.如图,△ ABC 为等边三角形, AB=2 .若 P 为△ ABC 内一动点,且满足∠PAB= ∠ACP,则线段 PB 长度的最小值为.【分析】由等边三角形的性质得出∠ABC= ∠ BAC=60°, AC=AB=2 ,求出∠APC=120°,当 PB⊥AC 时, PB 长度最小,设垂足为D,此时 PA=PC,由等边三角形的性质得出AD=CD= AC=1 ,∠ PAC=∠ACP=30°,∠ABD=∠ABC=30° ,求出 PD=ADtan30°=AD=,BD=AD=,即可得出答案.【解答】解:∵△ ABC 是等边三角形,∴∠ ABC= ∠ BAC=60°,AC=AB=2 ,∵∠ PAB=∠ ACP,∴∠ PAC+∠ACP=60°,∴∠ APC=120°,当 PB⊥AC 时, PB 长度最小,设垂足为 D,如图所示:此时 PA=PC,则 AD=CD= AC=1 ,∠ PAC=∠ ACP=30°,∠ ABD= ∠ ABC=30°,∴ PD=ADtan30°=AD=,BD=AD=,∴ PB=BD﹣PD=﹣=;故答案为:.【点评】本题考查了等边三角形的性质、等腰三角形的性质、三角形内角和定理、勾股定理、三角函数等知识;熟练掌握等边三角形的性质是解决问题的关键.三、解答题:本大题共7 小题,共 66 分.19.先化简÷(﹣ x+1),然后从﹣<x<的范围内选取一个合适的整数作为x 的值代入求值.【分析】根据分式的减法和除法可以化简题目中的式子,然后在﹣< x<中选取一个使得原分式有意义的整数值代入化简后的式子即可解答本题.【解答】解:x 1)÷(﹣+====,∵﹣<x<且 x 1≠ 0,x﹣ 1≠ 0,x≠ 0,x 是整数,+∴ x=﹣2 时,原式 =﹣.【点评】本题考查分式的化简求值、估算无理数的大小,解答本题的关键是明确分式化简求值的方法,注意取得的 x 的值必须使得原分式有意义.20.某农场去年计划生产玉米和小麦共200 吨,采用新技术后,实际产量为225 吨,其中玉米超产 5%,小麦超产 15%,该农产去年实际生产玉米、小麦各多少吨?【分析】设农场去年计划生产小麦x 吨,玉米 y 吨,利用去年计划生产小麦和玉米 200 吨,则 x+y=200,再利用小麦超产15%,玉米超产 5%,则实际生产了225吨,得出等式( 1+5%)x+(1+15%) y=225,进而组成方程组求出答案.【解答】解:设农场去年计划生产小麦x 吨,玉米 y 吨,根据题意可得:,解得:,则 50×( 1+5%)=52.5(吨),150×( 1+15%)=172.5(吨),答:农场去年实际生产小麦52.5 吨,玉米 172.5 吨.【点评】此题主要考查了二元一次方程组的应用,根据计划以及实际生产的粮食吨数得出等式是解题关键.21.央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了 200 名学生;(2)将条形统计图补充完整;( 3)图 2 中“小说类”所在扇形的圆心角为126 度;(4)若该校共有学生2500 人,估计该校喜欢“社科类”书籍的学生人数.【分析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数;(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数;【解答】解:( 1)∵喜欢文史类的人数为 76 人,占总人数的 38%,∴此次调查的总人数为: 76÷38%=200 人,(2)∵喜欢生活类书籍的人数占总人数的 15%,∴喜欢生活类书籍的人数为: 200× 15%=30 人,∴喜欢小说类书籍的人数为:200﹣ 24﹣76﹣30=70 人,如图所示;( 3)∵喜欢社科类书籍的人数为:24 人,∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°× 35%=126°,(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的 12%,∴该校共有学生 2500 人,估计该校喜欢“社科类”书籍的学生人数: 2500×12%=300 人故答案为:( 1)200;( 3) 126【点评】本题考查统计问题,解题的关键是熟练运用统计学中的公式,本题属于基础题型.22.图 1 是太阳能热水器装置的示意图,利用玻璃吸热管可以把太阳能转化为热能,玻璃吸热管与太阳光线垂直时,吸收太阳能的效果最好,假设某用户要求根据本地区冬至正午时刻太阳光线与地面水平线的夹角(θ)确定玻璃吸热管的倾斜角(太阳光线与玻璃吸热管垂直),请完成以下计算:如图 2,AB ⊥BC,垂足为点 B,EA ⊥AB ,垂足为点 A ,CD∥AB ,CD=10cm,DE=120cm, FG⊥ DE,垂足为点 G.( 1)若∠θ=37°50,′则 AB 的长约为83.2 cm;(参考数据: sin37 °50≈′0.61,cos37°50≈′0.79,tan37 °50≈′0.78)(2)若 FG=30cm,∠θ=60°求, CF 的长.【分析】(1)作 EP⊥BC、DQ⊥EP,知 CD=PQ=10,∠2+∠3=90°,由∠ 1+∠θ=90°且∠1=∠ 2知∠ 3=∠θ=37°50,根′据 EQ=DEsin∠3 和 AB=EP=EQ PQ 可得答案;+( 2)延长 ED、BC 交于点 K ,结合( 1)知∠θ=∠3=∠K=60°,从而由 CK=、KF=可得答案.【解答】解:( 1)如图,作 EP⊥BC 于点 P,作 DQ⊥ EP 于点 Q,则 CD=PQ=10,∠ 2+∠3=90°,∵∠ 1+∠ θ=90,°且∠ 1=∠2,∴∠ 3=∠ θ=37°50,′则 EQ=DEsin∠3=120× sin37 °50,′∴AB=EP=EQ+PQ=120sin37°50+10=83′.2,故答案为: 83.2;(2)如图,延长 ED、 BC 交于点 K ,由( 1)知∠θ=∠3=∠ K=60°,在 Rt△CDK 中, CK==,在 Rt△KGF 中, KF===,则 CF=KF﹣KC=﹣==.【点评】本题主要考查解直角三角形的应用,根据题意构建所需直角三角形和熟练掌握三角函数是解题的关键.23.已知: AB 为⊙ O 的直径, AB=2 ,弦 DE=1,直线 AD 与 BE 相交于点 C,弦 DE 在⊙ O 上运动且保持长度不变,⊙ O 的切线 DF 交 BC 于点F.( 1)如图 1,若 DE∥AB ,求证: CF=EF;( 2)如图 2,当点 E 运动至与点 B 重合时,试判断 CF 与 BF 是否相等,并说明理由.【分析】(1)如图 1,连接 OD、OE,证得△ OAD 、△ ODE、△ OEB、△ CDE 是等边三角形,进一步证得DF⊥CE 即可证得结论;(2)根据切线的性质以及等腰三角形的性质即可证得结论.【解答】证明:如图 1,连接 OD、OE,∵ AB=2,∴OA=OD=OE=OB=1 ,∵ DE=1,∴OD=OE=DE,∴△ ODE 是等边三角形,∴∠ ODE=∠ OED=60°,∵DE∥ AB ,∴∠ AOD=∠ ODE=60°,∠ EOB=∠OED=60°,∴△ AOD 和△△ OE 是等边三角形,∴∠ OAD=∠ OBE=60°,∴∠ CDE=∠ OAD=60°,∠ CED=∠OBE=60°,∴△ CDE 是等边三角形,∵DF 是⊙O 的切线,∴OD⊥DF,∴∠ EDF=90°﹣60°=30°,∴∠ DFE=90°,∴ DF⊥ CE,∴ CF=EF;( 2)相等;如图 2,点 E 运动至与点 B 重合时, BC 是⊙ O 的切线,∵⊙O的切线 DF 交 BC 于点 F,∴BF=DF,∴∠ BDF=∠ DBF,∵ AB 是直径,∴∠ ADB= ∠ BDC=90°,∴∠ FDC=∠ C,∴DF=CF,∴BF=CF.【点评】本题考查了切线的性质、平行线的性质、等边三角形的判定、等腰三角形的判定和性质,作出辅助线构建等边三角形是解题的关键.24.如图,四边形ABCD 为一个矩形纸片, AB=3 ,BC=2,动点 P 自 D 点出发沿 DC 方向运动至 C 点后停止,△ ADP 以直线 AP 为轴翻折,点 D 落在点 D1的位置,设 DP=x ,△ AD 1P 与原纸片重叠部分的面积为y.(1)当 x 为何值时,直线 AD 1过点 C?(2)当 x 为何值时,直线 AD 1过 BC 的中点 E?(3)求出 y 与 x 的函数表达式.【分析】(1)根据折叠得出AD=AD 1=2, PD=PD1=x ,∠ D= ∠AD 1P=90°,在Rt△ABC 中,根据勾股定理求出AC ,在 Rt△ PCD1中,根据勾股定理得出方程,求出即可;( 2)连接 PE,求出 BE=CE=1,在 Rt△ABE 中,根据勾股定理求出AE ,求出AD 1 =AD=2 ,PD=PD1=x,D1E=﹣2,PC=3﹣x,在Rt△PD1E和Rt△PCE中,根据勾股定理得出方程,求出即可;( 3)分为两种情况:当0<x ≤2 时, y=x;当 2<x≤3 时,点 D1在矩形 ABCD 的外部, PD1交 AB 于 F,求出 AF=PF,作 PG⊥AB 于 G,设 PF=AF=a,在 Rt △PFG 中,由勾股定理得出方程( x﹣a)2+22=a2,求出 a 即可.【解答】解:( 1)如图 1,∵由题意得:△ ADP ≌△ AD 1P,∴AD=AD 1 =2,PD=PD1=x,∠ D=∠ AD1P=90°,∵直线 AD1过 C,∴PD1⊥AC,在Rt△ABC 中, AC==,CD1=﹣2,222在 Rt△PCD1中, PC =PD1+CD1,即( 3﹣x)2=x2+(﹣2)2,解得: x=,∴当x=时,直线AD1过点C;( 2)如图 2,连接 PE,∵E 为BC 的中点,∴ BE=CE=1,在 Rt△ABE 中, AE==,∵AD1 =AD=2 ,PD=PD1=x,∴D1E=﹣2,PC=3﹣x,在 Rt△PD1E 和 Rt△PCE 中,x2+(﹣2)2=(3﹣x)2+12,解得: x=,∴当 x=时,直线 AD 1过BC 的中点;E( 3)如图 3,当 0<x≤2 时, y=x,如图 4,当 2<x≤3 时,点 D1在矩形 ABCD 的外部, PD1交 AB 于 F,∵AB∥CD,∴∠ 1=∠ 2,∵∠1=∠3(根据折叠),∴∠ 2=∠ 3,∴ AF=PF,作 PG⊥AB 于 G,设 PF=AF=a,由题意得: AG=DP=x ,FG=x﹣a,在 Rt△PFG 中,由勾股定理得:( x﹣a)2+22=a2,解得: a=,所以y==,综合上述,当 0<x≤2 时, y=x;当 2<x≤3 时, y=.【点评】本题考查了勾股定理,折叠的性质,矩形的性质等知识点,能综合运用知识点进行推理和计算是解此题的关键,用了分类推理思想.25.如图,已知抛物线y=ax2+bx+c 过点 A (﹣ 1,0), B(3,0), C( 0, 3)点 M 、N 为抛物线上的动点,过点 M 作 MD ∥ y 轴,交直线 BC 于点 D,交 x 轴于点 E.( 1)求二次函数 y=ax2+bx+c 的表达式;( 2)过点 N 作 NF⊥x 轴,垂足为点 F,若四边形 MNFE 为正方形(此处限定点M在对称轴的右侧),求该正方形的面积;(3)若∠ DMN=90°,MD=MN ,求点 M 的横坐标.【分析】(1)待定系数法求解可得;(2)设点 M 坐标为( m,﹣m2+2m+3),分别表示出 ME=| ﹣m2+2m+3| 、MN=2m﹣2,由四边形 MNFE 为正方形知 ME=MN ,据此列出方程,分类讨论求解可得;( 3)先求出直线 BC 解析式,设点 M 的坐标为( a,﹣ a2+2a+3),则点 N(2﹣a,﹣ a2+2a+3)、点 D( a,﹣ a+3),由 MD=MN 列出方程,根据点 M 的位置分类讨论求解可得.【解答】解:( 1)∵抛物线 y=ax2+bx+c 过点 A(﹣ 1,0), B( 3,0),∴设抛物线的函数解析式为 y=a( x+1)( x﹣3),将点 C(0,3)代入上式,得: 3=a( 0+1)( 0﹣3),解得: a=﹣1,∴所求抛物线解析式为 y=﹣( x+1)( x﹣3)=﹣x2+2x+3;( 2)由( 1)知,抛物线的对称轴为 x=﹣=1,如图 1,设点 M 坐标为( m,﹣ m2+2m+3),∴ME=| ﹣m2+2m+3| ,∵M 、N 关于 x=1 对称,且点 M 在对称轴右侧,∴点 N 的横坐标为 2﹣m,∴ MN=2m ﹣2,∵四边形 MNFE 为正方形,∴ME=MN ,∴| ﹣ m2+2m+3| =2m﹣2,分两种情况:①当﹣m2 2m 3=2m﹣2 时,解得: m12(不符合题意,舍去),+ +=、m =﹣当 m=时,正方形的面积为( 2﹣2)2=24﹣8;②当﹣ m2+2m+3=2﹣2m 时,解得:m3, 4 ﹣(不符合题意,舍去),=2+m =2当 m=2+时,正方形的面积为 [ 2(2+)﹣ 2] 2=24+8 ;综上所述,正方形的面积为 24+8或 24﹣8 .(3)设 BC 所在直线解析式为 y=kx +b,把点 B(3,0)、 C(0,3)代入表达式,得:,解得:,∴直线 BC 的函数表达式为y=﹣x+3,设点 M 的坐标为( a,﹣ a2 +2a+3),则点 N( 2﹣ a,﹣ a2+2a+3),点 D(a,﹣a+3),①点 M 在对称轴右侧,即a>1,则 | ﹣ a+3﹣(﹣ a2+2a+3)| =a﹣( 2﹣ a),即 | a2﹣3a| =2a﹣2,若 a2﹣3a≥ 0,即 a≤0 或 a≥3,a2﹣3a=2a﹣ 2,解得: a=或a=<1(舍去);若 a2﹣3a< 0,即 0≤ a≤3,a2﹣ 3a=2﹣ 2a,解得: a=﹣1(舍去)或 a=2;②点 M 在对称轴右侧,即a<1,则 | ﹣ a+3﹣(﹣ a2+2a+3)| =2﹣a﹣a,即 | a2﹣3a| =2﹣2a,若 a2﹣3a≥ 0,即 a≤0 或 a≥3,a2﹣3a=2﹣2a,解得: a=﹣1 或 a=2(舍);若 a2﹣3a< 0,即 0≤ a≤3,a2﹣ 3a=2a﹣2,解得: a=(舍去)或a=;综上,点M 的横坐标为、2、﹣ 1、.【点评】本题主要考查二次函数的综合问题,熟练掌握待定系数法求函数解析式及两点间的距离公式、解方程是解题的关键.。

2017初三中考数学练习试卷(2)

2017初三中考数学练习试卷(2)

2017初三中考数学练习试卷(2)2017初三中考数学练习试题答案一、选择题(本题共10个小题,每小题3分,共30分)1.﹣2,﹣1,0,四个数中,绝对值最小的数是( )A. B.﹣2 C.0 D.﹣1【考点】18:有理数大小比较;15:绝对值.【分析】首先求出每个数的绝对值各是多少;然后根据有理数大小比较的法则,判断出﹣2,﹣1,0,四个数中,绝对值最小的数是哪个即可.【解答】解:|﹣2|=2,|﹣1|=1,|0|=0,| |= ,∵2>1> >0,∴﹣2,﹣1,0,四个数中,绝对值最小的数是0.故选:C.【点评】此题主要考查了绝对值的含义和求法,以及有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.下列图形中,是中心对称图形,但不是轴对称图形的是( )A. B. C. D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形.故此选项正确;B、是轴对称图形,也是中心对称图形.故此选项错误;C、是轴对称图形,不是中心对称图形.故此选项错误;D、是轴对称图形,不是中心对称图形.故此选项错误.故选:A.【点评】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.要使分式有意义,则x的取值应满足( )A.x≠﹣2B.x≠2C.x≠﹣1D.x=1【考点】62:分式有意义的条件.【分析】分式有意义:分母不等于零.【解答】解:依题意得:﹣x+2≠0,解得x≠2.故选:B.【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.4.对“某市明天下雨的概率是80%”这句话,理解正确的是( )A.某市明天将有80%的时间下雨B.某市明天将有80%的地区下雨C.某市明天一定会下雨D.某市明天下雨的可能性较大【考点】X3:概率的意义.【分析】根据概率的意义进行解答即可.【解答】解:“某市明天下雨的概率是80%”说明某市明天下雨的可能性较大,故选:D.【点评】本题考查的是概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.5.在平面直角坐标系中,点P(﹣,2)在( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】D1:点的坐标.【分析】根据各象限内点的坐标特征解答.【解答】解:∵﹣ >0,∴点P(﹣,2)在第一象限.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).6.下列计算正确的是( )A.2a3•3a2=6a6B.a3+2a2=3a5C.a÷b× =aD.( ﹣)÷x﹣1=【考点】6C:分式的混合运算;49:单项式乘单项式;6F:负整数指数幂.【分析】根据整式的运算以及分式的运算法则即可求出答案.【解答】解:(A)原式=6a5,故A错误;(B)a3与2a2不是同类项,不能合并,故B错误;(C)原式=a× × = ,故C错误;故选(D)【点评】本题考查学生的计算能力,解题的关键是熟练运用运算法则,本题属于基础题型.7.设函数y= (k≠0,x>0)的图象如图所示,若z= ,则z关于x的函数图象可能为( )A. B. C. D.【考点】G2:反比例函数的图象.【分析】根据反比例函数解析式以及z= ,即可找出z关于x的函数解析式,再根据反比例函数图象在第一象限可得出k>0,结合x的取值范围即可得出结论.【解答】解:∵y= (k≠0,x>0),∴z= = = (k≠0,x>0).∵反比例函数y= (k≠0,x>0)的图象在第一象限,∴k>0,∴ >0.∴z关于x的函数图象为第一象限内,且不包括原点的正比例的函数图象.【点评】本题考查了反比例函数的图象以及正比例函数的图象,解题的关键是找出z关于x的函数解析式.本题属于基础题,难度不大,解决该题型题目时,根据分式的变换找出z关于x的函数关系式是关键.8.已知a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是( )A.用两个相等的实数根B.有两个不相等的实数根C.不确定,与b的取值有关D.无实数根【考点】AA:根的判别式.【分析】利用完全平方的展开式将(a﹣c)2展开,即可得出ac<0,再结合方程ax2+bx+c=0根的判别式△=b2﹣4ac,即可得出△>0,由此即可得出结论.【解答】解:∵(a﹣c)2=a2+c2﹣2ac>a2+c2,∴ac<0.在方程ax2+bx+c=0中,∵△=b2﹣4ac≥﹣4ac>0,∴方程ax2+bx+c=0有两个不相等的实数根.故选B.【点评】此题考查了根的判别式,用到的知识点是一元二次方程根的情况与判别式△的关系:(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.也考查了完全平方公式.9.有以下四个命题:①半径为2的圆内接正三角形的边长为2 ;②有两边及其一个角对应相等的两个三角形全等;③从装有大小和质地完全相同的3个红球和2个黑球的袋子中,随机摸取1个球,摸到红色球和黑色球的可能性相等;④函数y=﹣x2+2x,当y>﹣3时,对应的x 的取值为x>3或x<﹣1,其中假命题的个数为( )A.4个B.3个C.2个D.1个【考点】O1:命题与定理.【分析】利用正多边形和圆、全等三角形的判定、概率公式及二次函数的性质分别判断后即可确定正确的选项.【解答】解:①半径为2的圆内接正三角形的边长为2 ,正确,是真命题;②有两边及其夹角对应相等的两个三角形全等,故错误,是假命题;③从装有大小和质地完全相同的3个红球和2个黑球的袋子中,随机摸取1个球,摸到红色球的可能性大于摸到黑色球的可能性,故错误,是假命题;④函数y=﹣x2+2x,当y>﹣3时,对应的x的取值为﹣1假命题有3个,故选B.【点评】本题考查了命题与定理的知识,解题的关键是了解正多边形和圆、全等三角形的判定、概率公式及二次函数的性质的知识,难度不大.10.如图,△ABC中AB=AC=4,∠C=72°,D是AB的中点,点E 在AC上,DE⊥AB,则cos∠ABE的值为( )A. B. C. D.【考点】S3:黄金分割;KG:线段垂直平分线的性质;KH:等腰三角形的性质;T7:解直角三角形.【分析】根据三角形内角和定理求出∠A,根据等腰三角形的性质得到点E是线段AC的黄金分割点,根据余弦的概念计算即可.【解答】解:∵AB=AC,∠C=72°,∴∠A=36°,∵D是AB的中点,点E在AC上,DE⊥AB,∴EA=EB,∴∠ABE=∠A=36°,∴点E是线段AC的黄金分割点,∴BE=AE= ×4=2( ﹣1),∴cos∠ABE= = ,故选:C.【点评】本题考查的是等腰三角形的性质、线段垂直平分线的判定和性质、黄金分割的概念,掌握等腰三角形的性质、熟记黄金比值是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.如图,已知a,b,c,d四条直线,a∥b,c∥d,∠1=110°,则∠2等于70°.【考点】JA:平行线的性质.【分析】根据平行线的性质得到∠3=∠1,4=∠3,然后由邻补角的定义即可得到结论.【解答】解:∵a∥b,c∥d,∴∠3=∠1,∠4=∠3,∴∠1=∠4=110°,∴∠2=180°﹣∠4=70°,故答案为:70°.【点评】本题考查了平行线的性质,解题时注意:运用两直线平行,同位角相等是解答此题的关键.12.某商品的进价为每件100元,按标价打八折售出后每件可获利20元,则该商品的标价为每件150 元.【考点】8A:一元一次方程的应用.【分析】设该商品的标价为每件为x元,根据八折出售可获利20元,可得出方程:80%x﹣100=20,再解答即可.【解答】解:设该商品的标价为每件x元,由题意得:80%x﹣100=20,解得:x=150.答:该商品的标价为每件150元.故答案为:150.【点评】此题考查了一元一次方程的应用,关键是仔细审题,得出等量关系,列出方程,难度一般.13.在数轴上从满足|x|<2的任意实数x对应的点中随机选取一点,则取到的点对应的实数大于1的概率为.【考点】X5:几何概率;29:实数与数轴.【分析】直接利用数轴的性质,结合a的取值范围得出答案.【解答】解:∵|x|<2,∴﹣2当a>1时有1∴取到的点对应的实数大于1的概率为:,故答案为: .【点评】此题主要考查了几何概率,正确利用数轴,结合a的取值范围求解是解题关键.14.分解因式:a3﹣6a2+5a= a(a﹣5)(a﹣1) .【考点】57:因式分解﹣十字相乘法等;53:因式分解﹣提公因式法.【分析】原式提取公因式,再利用十字相乘法分解即可.【解答】解:原式=a(a2﹣6a+5)=a(a﹣5)(a﹣1).故答案是:a(a﹣5)(a﹣1).【点评】此题考查了提公因式法与十字相乘法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.如果一个圆锥的主视图是等边三角形,俯视图是面积为4π的圆,那么这个圆锥的左视图的面积是 4 .【考点】MP:圆锥的计算;U3:由三视图判断几何体.【分析】先利用圆的面积公式得到圆锥的底面圆的半径为2,再利用等边三角形的性质得母线长,然后根据勾股定理计算圆锥的高.【解答】解:设圆锥的底面圆的半径为r,则πr2=4π,解得r=2,因为圆锥的主视图是等边三角形,所以圆锥的母线长为4,所以它的左视图的高= =2 ,所以左视图的面积为×4×2 =4 .故答案为4 .【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为 2 ﹣2 .【考点】L8:菱形的性质;KI:等腰三角形的判定;KK:等边三角形的性质.【分析】分三种情形讨论①若以边BC为底.②若以边PC为底.③若以边PB为底.分别求出PD的最小值,即可判断.【解答】解:①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短“,即当点P与点A重合时,PD值最小,为2;②若以边PC为底,∠PBC为顶角时,以点B为圆心,BC长为半径作圆,与BD相交于一点,则弧AC(除点C外)上的所有点都满足△PBC是等腰三角形,当点P在BD上时,PD最小,最小值为2√3﹣2;③若以边PB为底,∠PCB为顶角,以点C为圆心,BC为半径作圆,则弧BD上的点A与点D均满足△PBC为等腰三角形,当点P与点D重合时,PD最小,显然不满足题意,故此种情况不存在;综上所述,PD的最小值为2 ﹣2.【点评】本题考查菱形的性质、等边三角形的性质、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.三、解答题(本大题共9小题,共72分)17.(10分)(2017•呼和浩特一模)计算、求值:(1)计算:| ﹣2|+( )﹣1﹣( +1)( ﹣1);(2)已知单项式2xm﹣1yn+3与﹣xny2m是同类项,求m,n的值.【考点】79:二次根式的混合运算;34:同类项;6F:负整数指数幂.【分析】(1)利用绝对值的定义结合平方差公式计算得出答案;(2)直接利用同类项的定义分析得出答案.【解答】解:(1)| ﹣2|+( )﹣1﹣( +1)( ﹣1)=2﹣ +2﹣(5﹣1)=﹣ ;(2)∵单项式2xm﹣1yn+3与﹣xny2m是同类项,∴ ,解得: .【点评】此题主要考查了二次根式的混合运算以及同类项定义,正确化简各数是解题关键.18.如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F(1)求证:EF=DE;(2)若AC=BC,判断四边形ADCF的形状.【考点】LC:矩形的判定;KD:全等三角形的判定与性质;KX:三角形中位线定理.【分析】(1)首先根据三角形的中位线定理得出AE=EC,然后根据CF∥BD得出∠ADE=∠F,继而根据AAS证得△ADE≌△CFE,最后根据全等三角形的性质即可推出EF=DE;(2)首先证得四边形ADCF是平行四边形、四边形DBCF也为平行四边形,从而得到BC=DF,然后根据AC=BC得到AC=DE,从而得到四边形ADCF是矩形.【解答】解:(1)∵DE是△ABC的中位线,∴E为AC中点,∴AE=EC,∵CF∥BD,∴∠ADE=∠F,在△ADE和△CFE中,∵ ,∴△ADE≌△CFE(AAS),∴DE=FE.(2)解:四边形ADCF是矩形.∵DE=FE,AE=AC,∴四边形ADCF是平行四边形,∵AD=BD,∴BD=CF,∴四边形DBCF为平行四边形,∴BC=DF,∵AC=BC,∴AC=DE,∴四边形ADCF是正方形.【点评】本题考查了矩形的判定、全等三角形的判定与性质及三角形的中位线定理的知识,三角形的中位线平行于第三边且等于第三边的一半,难度不大.19.(10分)(2017•呼和浩特一模)为了解“足球进校园”活动开展情况,某中学利用体育课进行了定点射门测试,每人射门5次,所有班级测试结束后,随机抽取了某班学生的射门情况作为样本,对进球的人数进行整理后,绘制了不完整的统计图表,该班女生有22人,女生进球个数的众数为2,中位数为3.女生进球个数的统计表进球数(个) 人数0 11 22 x3 y4 45 2(1)求这个班级的男生人数,补全条形统计图,并计算出扇形统计图中进2个球的扇形的圆心角度数;(2)写出女生进球个数统计表中x,y的值;(3)若该校共有学生1880人,请你估计全校进球数不低于3个的学生大约多少人?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图;W4:中位数;W5:众数.【分析】(1)根据进球数为3个的人数除以占的百分比求出男生总人数即可;求出进球数为4个的人数,以及进球数为2个的圆心角度数,补全条形统计图即可;(2)由题意得,x+y=22﹣1﹣2﹣4﹣2=13,由于女生进球个数的众数为2,中位数为3,于是得到结论;(3)求出进球数不低于3个的百分比,乘以1880即可得到结果.【解答】解:(1)这个班级的男生人数为6÷24%=25(人),则这个班级的男生人数为25人;男生进球数为4个的人数为25﹣(1+2+5+6+4)=7(人),进2个球的扇形圆心角度数为360°× =72°;补全条形统计图,如图所示:(2)由题意得,x+y=22﹣1﹣2﹣4﹣2=13,∵n女生进球个数的众数为2,中位数为3,∴x=7,y=6;(3)根据题意得:47个学生中女生进球个数为6+4+2=12;男生进球数为6+7+4=17,∴1880× =1160(人),则全校进球数不低于3个的学生大约有1160人.【点评】此题考查了条形统计图,扇形统计图,用样本估计总体,弄清题中的数据是解本题的关键.20.如图所示,某学生在河东岸点A处观测到河对岸水边有一点C,测得C在A北偏西31°的方向上,沿河岸向北前行30米到达B处,测得C在B北偏西45°的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.(结果用含非特殊角的三角函数和根式表示即可) 【考点】TB:解直角三角形的应用﹣方向角问题.【分析】作CE⊥AB于E.由题意可以假设CE=BE=x,在Rt△CAE 中,求出AE,根据AB=AE﹣BE,列出方程即可解决问题.【解答】解:作CE⊥AB于E.由题意:∠CAE=31°,∠CBE=45°,AB=30,在Rt△CBE中,∵∠CEB=90°,∠CBE=45°,∴可以假设CE=BE=x,在Rt△CAE中,∵∠CEA=90°,∴AE= = ,∵AB=AE﹣BE= ﹣x=30,∴x= ,答:这条河的宽度为 m.【点评】本题考查解直角三角形、方位角、锐角三角函数等知识,解题的关键是熟练掌握三角函数的定义,学会用方程的思想思考问题,属于中考常考题型.21.已知关于x的不等式组有解,求实数a的取值范围,并写出该不等式组的解集.【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x﹣a≥0,得:x≥ ,解不等式 (x﹣2)>3x+4,得:x<﹣2,由题意得: <﹣2,解得:a<﹣6,∴不等式组的解集为≤x<﹣2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.在直角坐标系中,直线y=kx+1(k≠0)与双曲线y= (x>0)相交于点P(1,m)(1)求k的值;(2)若双曲线上存在一点Q与点P关于直线y=x对称,直线y=kx+1与x轴交于点A,求△APQ的面积.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)将P的坐标代入双曲线中求出m的值,然后将P的坐标代入直线解析式中求出k的值.(2)求出P关于y=x的对称点Q,然后利用待定系数法求出直线PQ的解析式,然后求出点B的坐标,最后利用S△APQ=S△APB﹣S△AQB即可求出答案.【解答】解:(1)将x=1代入y= ,∴y=2,∴P(1,2)∴将P(1,2)代入y=kx+1∴k=1,(2)易知P(1,2)关于直线y=x的对称点为Q(2,1)设直线PQ的解析式为:y=kx+b,将P、Q的坐标代入上式,∴解得:∴直线PQ的解析式为:y=﹣x+3∴令y=0代入y=﹣x+3∴x=3,∴S△APQ=S△APB﹣S△AQB= ×4×(2﹣1)=2【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是熟练运用待定系数法,本题属于中等题型.23.春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并求出最大利润.【考点】FH:一次函数的应用;9A:二元一次方程组的应用;C9:一元一次不等式的应用.【分析】(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)根据题意可以得到利润与甲种商品的关系,由甲种商品的数量不少于乙种商品数量的4倍,可以得到甲种商品的取值范围,从而可以求得获利最大的进货方案,以及最大利润.【解答】解:(1)设甲、乙两种商品每件的进价分别是x元、y元,,解得,,即甲、乙两种商品每件的进价分别是30元、70元;(2)设购买甲种商品a件,获利为w元,w=(40﹣30)a+(90﹣70)(100﹣a)=﹣10a+2000,∵a≥4(100﹣a),解得,a≥80,∴当a=80时,w取得最大值,此时w=1200,即获利最大的进货方案是购买甲种商品80件,乙种商品20件,最大利润是1200元.【点评】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和不等式的性质解答问题.24.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC•BG.【考点】S9:相似三角形的判定与性质;M2:垂径定理;MC:切线的性质.【分析】(1)由平行线的性质得出EF⊥AD,由线段垂直平分线的性质得出FA=FD,由等腰三角形的性质得出∠FAD=∠D,证出∠DCB=∠G,由对顶角相等得出∠GCF=∠G,即可得出结论;(2)连接AC,由圆周角定理证出AC是⊙O的直径,由弦切角定理得出∠DCB=∠C AB,证出∠CAB=∠G,再由∠CBA=∠GBA=90°,证明△ABC∽△GBA,得出对应边成比例,即可得出结论.【解答】证明:(1)∵EF∥BC,AB⊥BG,∴EF⊥AD,∵E是AD的中点,∴FA=FD,∴∠FAD=∠D,∵GB⊥AB,∴∠GAB+∠G=∠D+∠DCB=90°,∴∠DCB=∠G,∵∠DCB=∠GCF,∴∠GCF=∠G,∴FC=FG;(2)连接AC,如图所示:∵AB⊥BG,∴AC是⊙O的直径,∵FD是⊙O的切线,切点为C,∴∠DCB=∠CAB,∵∠DCB=∠G,∴∠CAB=∠G,∵∠CBA=∠GBA=90°,∴△ABC∽△GBA,∴ = ,∴AB2=BC•BG.【点评】本题考查了圆周角定理、相似三角形的判定与性质、等腰三角形的判定与性质、弦切角定理等知识;熟练掌握圆周角定理和弦切角定理,证明三角形相似是解决问题(2)的关键.25.(10分)(2017•呼和浩特一模)抛物线y=ax2+c与x轴交于A,B两点,顶点C,点P为抛物线上一点,且位于x轴下方.(1)如图1,若P(1,﹣3),B(4,0).D是抛物线上一点,满足∠DPO=∠POB,且D与B分布位于直线OP的两侧,求点C与点D的坐标;(2)如图2,A,B是抛物线y=ax2+c与x轴的两个交点,直线PA,PB与y轴分别交于E,F两点,当点P在x轴下方的抛物线上运动时,是否为定值?若是,试求出该定值;若不是,请说明理由(记OA=OB=t) 【考点】HF:二次函数综合题.【分析】(1)根据待定系数法求函数解析式,可得答案;根据平行线的判定,可得PD∥OB,根据函数值相等两点关于对称轴对称,可得D 点坐标;(2)根据待定系数法,可得E、F点的坐标,根据分式的性质,可得答案.【解答】解:(1)将P(1,﹣3),B(4,0)代入y=ax2+c,得,解得,抛物线的解析式为y= x2﹣ .∴C(0,﹣ )如图1,当点D在OP左侧时,由∠DPO=∠POB,得DP∥OB,D与P关于y轴对称,P(1,﹣3),得D(﹣1,﹣3);(2)点P运动时,是定值,定值为2,理由如下:作PQ⊥AB于Q点,设P(m,am2+c),A(﹣t,0),B(t,0),则at2+c=0,c=﹣at2.∵PQ∥OF,∴ = ,∴OF= =﹣ = =amt+at2.同理OE=﹣amt+at2.∴OE+OF=2at2=﹣2c=2OC.∴ =2.【点评】本题考查了二次函数综合题,①利用待定系数法求函数解析式;②利用函数值相等的点关于对称轴对称得出D点坐标是解题关键;(2)利用待定系数法求出E、F点坐标是解题关键.。

初中数学 中考数学试卷(含答案)

初中数学 中考数学试卷(含答案)

2017年中考数学试题第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.3的相反数是( )A .-3B .13-C .13D .3 【答案】A【解析】只有符号不同的两个数互为相反数,因此3的相反数是-3;故选A. 2.如图,由四个正方体组成的几何体的左视图是( )A .B .C .D .【答案】B【解析】从左边看可以看到两个小正方形摞在一起,故选B. 3.用科学计数法表示136 000,其结果是( )A .60.13610⨯B .51.3610⨯C .313610⨯D .613610⨯ 【答案】B【解析】13600=1.36×105,故选B. 4.化简2(2)x 的结果是( )A .4xB .22xC . 24xD .4x 【答案】C【解析】(2x )2=4x 2;故选C.5.下列关于图形对称性的命题,正确的是( )A .圆既是轴对称性图形,又是中心对称图形B .正三角形既是轴对称图形,又是中心对称图形C .线段是轴对称图形,但不是中心对称图形D .菱形是中心对称图形,但不是轴对称图形 【答案】A点睛:本题主要考查中心对称图形与轴对称图形的知识,能正确地区分是解题的关键.6. 不等式组:⎩⎨⎧>+≤-0302x x 的解集是( )A .32x -<≤B .32x -≤<C . 2x ≥D .3x <- 【答案】A【解析】由①得x≤2,由②得x>-3,所以解集为:-3<x≤2,故选A.7.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是( )A .10,15B .13,15C .13,20D .15,15 【答案】D【解析】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.8.如图,AB 是O 的直径,,C D 是O 上位于AB 异侧的两点.下列四个角中,一定与ACD ∠互余的角是( )A .ADC ∠B .ABD ∠C . BAC ∠D .BAD ∠ 【答案】D【解析】∵AB 是直径,∴∠ADB=90°,∴∠BAD+∠B=90°,∵∠ACD=∠B ,∴∠BAD+∠ACD=90°,故选D.9.若直线1y kx k =++经过点(,3)m n +和(1,21)m n +-,且02k <<,则n 的值可以是( )A .3B .4C .5D .6 【答案】C10.如图,网格纸上正方形小格的边长为1.图中线段AB 和点P 绕着同一个点做相同的旋转,分别得到线段A B ''和点P ',则点P '所在的单位正方形区域是( )A .1区B .2区C .3区D .4区 【答案】D【解析】如图,根据题意可得旋转中心O ,旋转角是90°,旋转方向为逆时针,因此可知点P 的对应点落在了4区,故选D.O点睛:本题主要考查图形的旋转,能根据题意正确地确定旋转中心、旋转方向、旋转角是解题的关键.第Ⅱ卷(共90分)二、填空题:本题共6小题,每小题4分,共24分. 11.计算023--= . 【答案】1【解析】原式=2-1=1.12. 如图,ABC ∆中,,D E 分别是,AB AC 的中点,连线DE ,若3DE =,则线段BC 的长等于 .【答案】6【解析】∵E 、F 分别是AB 、AC 的中点,∴BC=2EF=6.13.一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是13,那么添加的球是 .【答案】红球(或红色的)14.已知,,A B C 是数轴上的三个点,且C 在B 的右侧.点,A B 表示的数分别是1,3,如图所示.若2BC AB =,则点C 表示的数是 .【答案】7【解析】∵AB=2,BC=2AB ,∴BC=4, 3+4=7,故点C 表示的数是7.15.两个完全相同的正五边形都有一边在直线上,且有一个公共顶点O ,其摆放方式如图所示,则AOB ∠等于 度.【答案】108【解析】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.DC16. 已知矩形ABCD 的四个顶点均在反比例函数1y x=的图象上,且点A 的横坐标是2,则矩形ABCD 的面积为 . 【答案】7.5yxDBCAO点睛:本题主要考查双曲线、矩形的对称性,双曲线关于原点对称,关于直线y=±x 对称,矩形既是轴对称图形又是中心对称图形,能根据本题的题意确定矩形的对称中心是原点,并能应用图形的对称性解决问题是关键.三、解答题 :本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17. 先化简,再求值:1)11(2-⋅-a aa ,其中12-=a . 【答案】1a+1,22 .【解析】试题分析:先通分计算括号内的,然后再利用分式的乘除法进行计算,最后代入求值即可. 试题解析:原式=()()11111a a a a a a -=+-+ ,当a=2 -1时,原式=1211-+ =22.18. 如图,点,,,B E C F 在一条直线上,,,AB DE AC DF BE CF ===.求证:A D ∠=∠.【答案】证明见解析. 【解析】19.如图,ABC ∆中,90,BAC AD BC ∠=⊥,垂足为D .求作ABC ∠的平分线,分别交,AD AD 于P ,Q 两点;并证明AP AQ =.(要求:尺规作图,保留作图痕迹,不写作法)【答案】作图见解析;证明见解析. 【解析】试题分析:按作图方法作出角平分线BQ ,然后通过利用互为余角以及等角的余角相等得到∠APQ=∠ AQP,从而证得AP=AQ.试题解析:作图如下,BQ 就是所求作的∠ABC 的平分线,P 、Q 就是所求作的点. 证明如下:∵AD ⊥BC ,∴∠ADB=90°,∴∠BPD+∠PBD=90°,∵∠BAC=90°,∴∠AQP+∠ABQ=90°,∵∠ABQ=∠PBD ,∴∠BPD=∠AQP ,∵∠BPD=∠APQ ,∴∠APQ=∠ AQP,∴AP=AQ.20.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.【答案】鸡有23只,兔有12只.【解析】21.如图,四边形ABCD内接于O,AB是O的直径,点P在CA的延长线上,45CAD∠=.(Ⅰ)若4AB=,求弧CD的长;(Ⅱ)若弧BC=弧AD,AD AP=,求证:PD是O的切线.【答案】(Ⅰ)CD的长=π;(Ⅱ)证明见解析.【解析】试题分析:(Ⅰ)连接OC,OD,由圆周角定理可得∠COD=90°,然后利用弧长公式即可得;(Ⅱ)由BC=AD,可得∠BOC=∠AOD,从而可得∠AOD=45°,再由三角形内角和从而可得∠ODA=67.5°,由AD=AP可得∠ADP=∠APD,由∠CAD=∠ADP+∠APD,∠CAD=45°可得∠ADP=22.5°,继而可得∠ODP=90°,从而得PD是⊙O的切线.试题解析:(Ⅰ)连接OC,OD,∵∠COD=2∠CAD,∠CAD=45°,∴∠COD=90°,∵AB=4,∴OC=12AB=2,∴CD的长=902180π⨯⨯=π;22.小明在某次作业中得到如下结果:2222sin 7sin 830.120.990.9945+≈+=, 2222sin 22sin 680.370.93 1.0018+≈+=, 2222sin 29sin 610.480.870.9873+≈+=, 2222sin 37sin 530.600.80 1.0000+≈+=,222222sin 45sin 45()(122+≈+=. 据此,小明猜想:对于任意锐角α,均有22sin sin (90)1αα+-=.(Ⅰ)当30α=时,验证22sinsin (90)1αα+-=是否成立;(Ⅱ)小明的猜想是否成立?若成立,若成立,请给予证明;若不成立,请举出一个反例. 【答案】(Ⅰ)成立,证明见解析;(Ⅱ)成立,证明见解析. 【解析】试题分析:(Ⅰ)成立,当30α=时,将30°与60°的正弦值代入计算即可得证; (Ⅱ)成立,如图,△ABC 中,∠C=90°,设∠A=α,则∠B=90°-α,正确地表示这两个角的正弦并利用勾股定理即可得证.试题解析:(Ⅰ)当30α=时, 22sin sin (90)αα+-=sin 230°+sin 260°=221322⎛⎫+ ⎪⎝⎭=1344+=1,所以22sin sin(90)1αα+-=成立;(Ⅱ)小明的猜想成立.证明如下:如图,△ABC中,∠C=90°,设∠A=α,则∠B=90°-α,sin2α+sin 2(90°-α)=2222222BC AC BC AC ABAB AB AB AB+⎛⎫⎛⎫+==⎪ ⎪⎝⎭⎝⎭=123.自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:使用次数0 1 2 3 4 5(含5次以上)累计车费0 0.5 0.9 a b 1.5同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:使用次数0 1 2 3 4 5人数 5 15 10 30 25 15(Ⅰ)写出,a b的值;(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利? 说明理由.【答案】(Ⅰ)a=1.2,b=1.4;(Ⅱ)不能获利,理由见解析;【解析】试题分析:(Ⅰ)根据调整后的收费歀:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费通过计算即可得a=1.2,b=1.4;(Ⅱ)根据用车意愿调查结果,抽取的100名师生每人每天使用A 品牌共享单车的平均车费 为:1100×(0×5+0.5×15+0.9×10+1.2×30+1.4×25+1.1×15)=1.1(元), 所以估计该校5000名师生一天使用A 品牌共享单车的总车费为:5000×1.1=5500(元), 因为5500<5800,故收费调整后,此运营商在该校投放A 品牌共享单车不能获利.24.如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(Ⅰ)若PCD ∆是等腰三角形时,求AP 的长;(Ⅱ)若2AP =,求CF 的长.【答案】(Ⅰ)AP 的长为4或5或145;(Ⅱ)324【解析】试题分析:(Ⅰ)分情况CP=CD 、PD=PC 、DP=DC 讨论即可得;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,通过证明△ADP ∽△CDF ,从而得34CF CD AP AD == ,由2 ,从而可得324. 试题解析:(Ⅰ)在矩形ABCD 中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6, 22AD DC + =10;要使△PCD 是等腰三角形,有如下三种情况:(1)当CP=CD 时,CP=6,∴AP=AC-CP=4 ;(2)当PD=PC 时,∠PDC=∠PCD ,∵∠PCD+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA ,∴PD=PA ,∴PA=PC ,∴AP=2AC ,即AP=5;(3)当DP=DC 时,过D 作DQ ⊥AC 于Q ,则PQ=CQ ,∵S △ADC =12 AD·DC=12 AC·DQ ,∴DQ=245AD DC AC = ,∴CQ=22185DC DQ -= ,∴PC=2CQ =365 ,∴AP=AC-PC=145 . 综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,点睛:本题主要考查矩形的性质、等腰三角形的判定与性质,相似三角形的判定与性质等,能正确地分情况进行讨论是判定△PCD 要等腰三角形的关键.25.已知直线m x y +=2与抛物线2y ax ax b =++有一个公共点(1,0)M ,且a b <. (Ⅰ)求抛物线顶点Q 的坐标(用含a 的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N . (ⅰ)若211-≤≤-a ,求线段MN 长度的取值范围; (ⅱ)求QMN ∆面积的最小值.【答案】(Ⅰ)抛物线顶点Q 的坐标为(-12,-94a );(Ⅱ)理由见解析; (Ⅲ)(i )55≤MN≤75.(ii )△QMN 面积的最小值为279242+. 【解析】 试题分析:(Ⅰ)由抛物线过点M (1,0),可得b=-2a ,将解析式y=ax 2+ax+b=ax 2+ax-2a 配方得y=a(x+ 12)2- 94a ,从而可得抛物线顶点Q 的坐标为(- 12,- 94a ). (Ⅱ)由直线y=2x+m 经过点M (1,0),可得m=-2.由y=2x-2、y=ax 2+ax-2a ,可得ax 2+(a-2)x-2a+2=0,(*),由根的判别式可得方程(*)有两个不相等的实数根,从而可得直线与抛物线有两个交点.(ii )作直线x=-12 交直线y=2x-2于点E ,得 E (-12,-3), 从而可得△QMN 的面积S=S △QEN +S △QEM =2732748a a -- ,即27a 2+(8S-54)a+24=0,(*) 因为关于a 的方程(*)有实数根, 从而可和S≥279242+,继而得到面积的最小值. 试题解析:(Ⅰ)因为抛物线过点M (1,0),所以a+a+b=0,即b=-2a ,所以y=ax 2+ax+b=ax 2+ax-2a=a(x+12)2-94a ,所以抛物线顶点Q 的坐标为(-12,-94a ). (Ⅱ)因为直线y=2x+m 经过点M (1,0),所以0=2×1+m ,解得m=-2.把y=2x-2代入y=ax 2+ax-2a ,得ax 2+(a-2)x-2a+2=0,(*),所以△=(a-2)2-4a(-2a+2)=9a 2-12a+4由(Ⅰ)知b=-2a ,又a<b ,所以a<0,b>0,所以△>0,所以方程(*)有两个不相等的实数根,故直线与抛物线有两个交点.(ii )作直线x=-12 交直线y=2x-2于点E ,把x=-12代入y=2x-2得,y=-3,即E (-12,-3), 又因为M (1,0),N (2a -2,4a -6),且由(Ⅱ)知a<0, 所以△QMN 的面积S=S △QEN +S △QEM =()12921324a a ⎛⎫----- ⎪⎝⎭=2732748a a -- , 即27a 2+(8S-54)a+24=0,(*)因为关于a 的方程(*)有实数根,所以△=(8S-54)2-4×27×24≥0,即(8S-54)2≥(2 )2, 又因为a<0,所以S=2732748a a -- >274,所以8S-54>0,所以8S-54>0, 所以8S-2,即S≥279242+, 当S=279242+*)可得223满足题意. 故当223,423时,△QMN 面积的最小值为279242+点睛:本题考查的二次函数的综合问题,能正确地应用待定系数法、一元二次方程根的判别式、二次函数的性质等是解决本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前 试卷类型:A山东省淄博市二〇一七年初中学业水平考试数学试题(试卷满分为120分,考试时间为120分钟)2017年山东省淄博市中考数学试卷一、选择题(本大题共12小题,每小题4分,共48分)1.23-的相反数是( ) A .32 B .32- C .23 D .23-3.下列几何体中,其主视图为三角形的是( )A .B .C .D .4.下列运算正确的是( )A .236a a a ⋅= B .235()a a -=-C .109a a a ÷=(a ≠0) D .4222()()bc bc b c -÷-=-5.若分式||11x x -+的值为零,则x 的值是( ) A .1 B .﹣1 C .±1 D .2 6.若a +b =3,227a b +=,则ab 等于( )A .2B .1C .﹣2D .﹣17.将二次函数221y x x =+-的图象沿x 轴向右平移2个单位长度,得到的函数表达式是( ) A .2(3)2y x =+- B .2(3)2y x =++ C . 2(1)2y x =-+ D .2(1)2y x =--8.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则实数k 的取值范围是( ) A .k >﹣1 B .k >﹣1且k ≠0 C .k <﹣1 D .k <﹣1或k =09.如图,半圆的直径BC恰与等腰直角三角形ABC的一条直角边完全重合,若BC=4,则图中阴影部分的面积是()A.2+πB.2+2πC.4+πD.2+4π10.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A.38B.58C.14D.1211.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器,然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是()A.B.C.D.12.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分线相交于点E,过点E作EF ∥BC交AC于点F,则EF的长为()A .52 B .83 C . 103 D .154二、填空题(本大题共5小题,每小题4分,共20分)13.分解因式:328x x -= .14.已知α,β是方程2340x x --=的两个实数根,则23a αβα+-的值为 .15.运用科学计算器(如图是其面板的部分截图)进行计算,按键顺序如下:则计算器显示的结果是 .16.在边长为4的等边三角形ABC 中,D 为BC 边上的任意一点,过点D 分别作DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,则DE +DF = . 17.设△ABC 的面积为1.如图1,分别将AC ,BC 边2等分,D 1,E 1是其分点,连接AE 1,BD 1交于点F 1,得到四边形CD 1F 1E 1,其面积S 1=13. 如图2,分别将AC ,BC 边3等分,D 1,D 2,E 1,E 2是其分点,连接AE 2,BD 2交于点F 2,得到四边形CD 2F 2E 2,其面积S 2=16; 如图3,分别将AC ,BC 边4等分,D 1,D 2,D 3,E 1,E 2,E 3是其分点,连接AE 3,BD 3交于点F 3,得到四边形CD 3F 3E 3,其面积S 3=110; …按照这个规律进行下去,若分别将AC ,BC 边(n +1)等分,…,得到四边形CD n E n F n ,其面积S = .三、解答题(本大题共7小题,共52分)18.解不等式:2723x x --≤.19.已知:如图,E,F为▱ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.20.某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km 的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h,求汽车原来的平均速度.21.为了“天更蓝,水更绿”某市政府加大了对空气污染的治理力度,经过几年的努力,空气质量明显改善,现收集了该市连续30天的空气质量情况作为样本,整理并制作了如下表格和一幅不完整的条形统计图:空气污染指数(ω)3040708090110120140天数(t)12357642说明:环境空气质量指数(AQI)技术规定:ω≤50时,空气质量为优;51≤ω≤100时,空气质量为良;101≤ω≤150时,空气质量为轻度污染;151≤ω≤200时,空气质量为中度污染,…根据上述信息,解答下列问题:(1)直接写出空气污染指数这组数据的众数,中位数;(2)请补全空气质量天数条形统计图:(3)根据已完成的条形统计图,制作相应的扇形统计图;(4)健康专家温馨提示:空气污染指数在100以下适合做户外运动,请根据以上信息,估计该市居民一年(以365天计)中有多少天适合做户外运动?22.如图,在直角坐标系中,Rt△ABC的直角边AC在x轴上,∠ACB=90°,AC=1,反比例函数kyx(k>0)的图象经过BC边的中点D(3,1).(1)求这个反比例函数的表达式;(2)若△ABC与△EFG成中心对称,且△EFG的边FG在y轴的正半轴上,点E在这个函数的图象上.①求OF的长;②连接AF,BE,证明四边形ABEF是正方形.23.如图,将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P重合(点P不与点C,D重合),折痕为MN,点M,N分别在边AD,BC上,连接MB,MP,BP,BP与MN相交于点F.(1)求证:△BFN∽△BCP;(2)①在图2中,作出经过M,D,P三点的⊙O(要求保留作图痕迹,不写做法);②设AB=4,随着点P在CD上的运动,若①中的⊙O恰好与BM,BC同时相切,求此时DP的长.24.如图1,经过原点O的抛物线2y ax bx =+(a ≠0)与x 轴交于另一点A (32,0),在第一象限内与直线y =x 交于点B (2,t ). (1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C ,满足以B ,O ,C 为顶点的三角形的面积为2,求点C 的坐标; (3)如图2,若点M 在这条抛物线上,且∠MBO =∠ABO ,在(2)的条件下,是否存在点P ,使得△POC ∽△MOB ?若存在,求出点P 的坐标;若不存在,请说明理由.2017年山东省淄博市中考数学试卷参考答案与评分标准一、选择题(本大题共12小题,每小题4分,共48分)1-5.CADCA 6-10.BDBAB 11-12.DC二、填空题(本大题共5小题,每小题4分,共20分)13.(4分)2x(x﹣2)(x+2)14.(4分)015.(4分)95916.(4分)2错误!未找到引用源。

17.(4分)错误!未找到引用源。

三、解答题(本大题共7小题,共52分)18.(5分)解:去分母得:3(x﹣2)≤2(7﹣x),去括号得:3x﹣6≤14﹣2x,移项合并得:5x≤20,解得:x≤4.19.(5分)证明:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC.∴∠BAE=∠DCF.在△AEB和△CFD中,错误!未找到引用源。

,∴△AEB≌△CFD(SAS).∴BE=DF.20.(8分)解:设汽车原来的平均速度是x km/h,根据题意得:错误!未找到引用源。

﹣错误!未找到引用源。

=2,解得:x=70经检验:x=70是原方程的解.答:汽车原来的平均速度70km/h.21.(8分)解:(1)在这组数据中90出现的次数最多7次,故这组数据的众数为90;在这组数据中排在最中间的两个数是90,90,这两个数的平均数是90,所以这组数据的中位数是90;故答案为:90,90.(2)由题意,得轻度污染的天数为:30﹣3﹣15=12天.(3)由题意,得优所占的圆心角的度数为:3÷30×360=36°,良所占的圆心角的度数为:15÷30×360=180°,轻度污染所占的圆心角的度数为:12÷30×360=144°(4)该市居民一年(以365天计)中有适合做户外运动的天数为:18÷30×365=219天.22.(8分)解:(1)∵反比例函数y=错误!未找到引用源。

(k>0)的图象经过点D(3,1),∴k=3×1=3,∴反比例函数表达式为y=错误!未找到引用源。

;(2)①∵D为BC的中点,∴BC=2,∵△ABC与△EFG成中心对称,∴△ABC≌△EFG,∴GF=BC=2,GE=AC=1,∵点E在反比例函数的图象上,∴E(1,3),即OG=3,∴OF=OG﹣GF=1;②如图,连接AF、BE,∵AC=1,OC=3,∴OA=GF=2,在△AOF和△FGE中∴△AOF≌△FGE(SAS),∴∠GFE=∠FAO=∠ABC,∴∠GFE+∠AFO=∠FAO+∠BAC=90°,∴EF∥AB,且EF=AB,∴四边形ABEF为平行四边形,∴AF=EF,∴四边形ABEF为菱形,∵AF⊥EF,∴四边形ABEF为正方形.23.(9分)(1)证明:∵将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P 重合,∴MN垂直平分线段BP,∴∠BFN=90°.∵四边形ABCD为矩形,∴∠C=90°.∵∠FBN=∠CBP,∴△BFN∽△BCP.(2)解:①在图2中,作MD、DP的垂直平分线,交于点O,以OD为半径作圆即可.如图所示.②设⊙O与BC的交点为E,连接OB、OE,如图3所示.∵△MDP为直角三角形,∴AP为⊙O的直径,∵BM与⊙O相切,∴MP⊥BM.∵MB=MP,∴△BMP为等腰直角三角形.∵∠AMB+∠PMD=180°﹣∠AMP=90°,∠MBA+∠AMB=90°,∴∠PMD=∠MBA.在△ABM和△DMP中,错误!未找到引用源。

,∴△ABM≌△DMP(AAS),∴DM=AB=4,DP=AM.设DP=2a,则AM=2a,OE=4﹣a,BM=错误!未找到引用源。

=2错误!未找到引用源。

.∵BM=MP=2OE,∴2错误!未找到引用源。

=2×(4﹣a),解得:a=错误!未找到引用源。

相关文档
最新文档