工程热力学第三章.ppt
合集下载
工程热力学03章:理想气体的性质
c q 或 c q
dT
dt
1mol物质的热容称为摩尔热容『Cm, J/(mol·K)』。
标态下1m3 物质的热容为体积热容『C ’, J/(m3N·K)』。
上述三种比热容之间的关系为:
Cm Mc 0.0224141C (3-9)
热力设备中,工质往往是在接近压力不变或体积不变的 条件下吸热或放热的,因此定压过程和定容过程的比热容最
<4> 平均比热容直线关系式
c
|t2
t1
b 2
t2
t1
(3-17)
§3-4 理想气体的热力学能、焓和熵
一、热力学能和焓 du cV dt cV dT
dh cpdt cpdT
二、状态参数熵
(见1-6节)
ds qrev
T
三、理想气体的熵变计算
ds
cpdT vdp T
cp
dT T
Rg
dp p
v T
C1
pc
p T
C2
vc
pv C3Tc
pv T
C
Rg
(3-1)
注:式(3-1)可反证之
显然,上式中的Rg只与气体种类有关,而与气体所
处状态无关,故称之为某种气体的气体常数。
二、摩尔质量和摩尔体积
摩尔(mol)是表示物质的量的基本单位。
摩尔质量( ) :1mol物质的质量,单位是g/mol或
s12
c T2
T1 p
dT T
Rg
ln
p2 p1
(3-18) (3-19) (3-20)
(3-21) (3-22)
基准状态的确定:
规定p0=101325Pa、T0=0K时,熵s00K 0。则任
工程热力学-第3章 工质的热力性质
理想气体的状态方程式
根据分子运动论:
2 mc 2 p n 3 2
1m3体积分子数 玻尔兹曼常数
pv nvkT
每个分子的动能 与气体的种类有关, 与气体的状态无关
1 kg 理想气体状态方程式气体:
Pa
k) m3/kg J/(kg·
K
通用气体常数
●阿伏加德罗定律:
相同 p 和 T 下各理想气体的摩尔容积V0相同。
v v测 0.84992 0.84925 0.02% 相对误差= v测 0.84925
10
例 题
1. 某人从煤气表上读得煤气消耗量是V1=68.37m3, 使用期间煤气表的平均表压力pe=44mmH2O,平均 温度T1=290K,此时大气平均压力pb=751.4mmHg, 求消耗了多少标准立方米(Nm3)的煤气。 解:由于压力较低,故煤气可作理想气体。
(3.43)
式(3.43)也是定压比热容的定义式。对于理想气 体,热力学能u是温度T的单值函数,式(3.43)可 表示为cp=dh/dT,即可得: dh=cpdT (3.44) (3.45)
理想气体不论经过何种过程,其热力学能及焓的变 化量都可按式(3.41)和(3.45)确定。
通常,热工计算中只要求确定热力过程中热力学能或焓值
1) t 的系数已除过2 2) t 需用t1+t2代入
4.比热容与气体性质的关系
定值比热容:工程上,当理想气体温度在室温附近, 温度变化范围不大或者计算精确度要求不太高时,可 将比热容近似作为定值处理。 1 mol理想气体的热力学能: UM=iR0T/2
CvM=δQv/dT=iR0/2 CpM=(i+2)R0/2 k=(i+2)/i
工程热力学 第三章 理想气体的性质
11
比热容的概念
比热容是单位物量的物质升高1K或1℃所需 的热量。 根据物质的数量和经历的过程不同,可分为:
(1)比热容(质量热容) : 1kg物质的热容,c ,J/(kg·K)。 c q q dT dt
12
比热容的概念
(2)摩尔热容
1 mol物质的热容,Cm,J/(kmol· K)。 Cm Mc
s isi
❖1kg混合气体的比熵变为
d s
c i p,i
dT T
R i g,i
dip pi
❖1mol混合气体的熵变为
dmpp
49
课后思考题
❖理想气体的热力学能和焓是温度的单值函 数,理想气体的熵也是温度的单值函数吗?
❖气体的比热容cp、cv究竟是过程量还是状态 量
pp1p2 pK pi i1
41
道尔顿分压力定律
pi p
ni n
xi
pi xi p
即分压力与总压力之比等于摩尔分数(即气 体组分的摩尔数与总摩尔数之比)
42
亚美格分体积定律
❖混合气体中第 i 种组元处于与混合气体压力 和温度时所单独占据的体积称为该组元的 分体积,用 Vi 表示。
❖亚美格分体积定律:理想混合气体的总体 积等于各组元的分体积之和(仅适用于理 想气体)
的关系式
17
cv和cp的关系式
比热容比: c p cV
得 cp 1 Rg
联立式 cp cV Rg
cV
1
1
Rg
18
比热容和温度的关系
❖理想气体的 u 和 h 是温度的单值函数,所 以理想气体的 cV 和 cp 也是温度的单值函 数。
c ft a b t d t2 e t3
比热容的概念
比热容是单位物量的物质升高1K或1℃所需 的热量。 根据物质的数量和经历的过程不同,可分为:
(1)比热容(质量热容) : 1kg物质的热容,c ,J/(kg·K)。 c q q dT dt
12
比热容的概念
(2)摩尔热容
1 mol物质的热容,Cm,J/(kmol· K)。 Cm Mc
s isi
❖1kg混合气体的比熵变为
d s
c i p,i
dT T
R i g,i
dip pi
❖1mol混合气体的熵变为
dmpp
49
课后思考题
❖理想气体的热力学能和焓是温度的单值函 数,理想气体的熵也是温度的单值函数吗?
❖气体的比热容cp、cv究竟是过程量还是状态 量
pp1p2 pK pi i1
41
道尔顿分压力定律
pi p
ni n
xi
pi xi p
即分压力与总压力之比等于摩尔分数(即气 体组分的摩尔数与总摩尔数之比)
42
亚美格分体积定律
❖混合气体中第 i 种组元处于与混合气体压力 和温度时所单独占据的体积称为该组元的 分体积,用 Vi 表示。
❖亚美格分体积定律:理想混合气体的总体 积等于各组元的分体积之和(仅适用于理 想气体)
的关系式
17
cv和cp的关系式
比热容比: c p cV
得 cp 1 Rg
联立式 cp cV Rg
cV
1
1
Rg
18
比热容和温度的关系
❖理想气体的 u 和 h 是温度的单值函数,所 以理想气体的 cV 和 cp 也是温度的单值函 数。
c ft a b t d t2 e t3
工程热力学第三章气体和蒸汽的性质ppt课件
标准状态下的体积流量:
qV 0 Vm0qn 22.4103 288876 6474.98m3 / h
☆注意:不同状态下的体积不同。
3-2 理想气体的比热容
1、比热容的定义 ■比热容 c(质量热容)(specific heat)
1kg物质温度升高1K所需的热量, c q / dT J / (kg K)
(T 1000
)2
C3
(T 1000
)3
见附表4(温度单位为K)。
qp
T2 T1
cpdT
qV
T2 T1
cV
dT
说明:此种方法结果比较精确。
(2)平均比热容表
c
t2 t1
q t2 t1
q
t2 cdt
t1
t2 cdt
0℃
t1 cdt
0℃
c
t2 0℃
t2
c
t t1
0℃ 1
平均比热容 c t0℃的起始温度为0℃,见附表5(温
3-1 理想气体的概念
1、理想气体模型(perfect gas, ideal gas) ■理想气体的两点假设
理想气体是实际上并不存在的假想气体。 假设: (1)分子是弹性的、不占体积的质点(与空间相比) (2)分子间没有作用力。(分子间的距离很大) ■作为理想气体的条件
气体 p 0 ,v ,即要沸点较低、远离液态。
■比定压热容c p 和比定容热容 cV 比定压热容(specific heat at constant pressure):定压
过程的比热容。
比定容热容(specific heat at constant volume):定容过
程的比热容。
●可逆过程
工程热力学第三章lm——工程热力学课件PPT
a c
Q w
Q w 0
2
V
状态参数的积 分特征
积分是否与路径无关
热力学能是状态参数
对循环1-a-2-c-1,有:
( Q W ) ( Q W ) 0
1a 2
2 c1
对循环1-b-2-c-1,有:
( Q W ) ( Q W ) 0
1b 2
2 c1
( Q W ) ( Q W )
理想气体热力学能变化计算
定容过程 理想气体
qv
u
duv
f T
cv dTv
cv
du dT
cv
uu cvdT 或 u 1 cvdT
Cv 平均比热 真实比热
混合气体
n
U Ui i 1
n
mu miui i 1
n
u giui i 1
例题
门窗紧闭的房间内有一台运行的电冰 箱,若敞开冰箱门就有一股凉气扑面, 有人就想通过敞开冰箱大门达到降低 室温的目的,请用热力学第一定律分 析此方法是否可行?
Wf = p A dl = pV wf= pv
流动功是一种特殊的功,大小取 决于控制体进出口界面的热力状 态,与热力过程无关。
对流动功的理解
1.与宏观流动有关,流动停止,流动功不存在 2.作用过程中,工质仅发生位置变化,无状态变化
3.Wf=pv与所处状态有关,是状态量
4.并非工质本身的能量(动能、位能)变化引起,而 由外界(泵与风机)做出,流动工质所携带的能量
1.宏观动能
Ek
1 mc2 2
2.重力位能
Ep mgz
外部存储能 机械能
系统的总能
系统的总能=内部储存能+外部储存能
E U Ek E p
工程热力学 第三章 气体和蒸汽的性质.
第三章 气体和蒸汽的性质
3-1 理想气体的概念 3-2 理想气体的比热容 3-3 理想气体的热力学能、焓和熵 3-4 水蒸汽的饱和状态和相图 3-5 水的汽化过程和临界点 3-6 水和水蒸汽的状态参数 3-7 水蒸汽表和图
3-1 理想气体的概念
1、理想气体模型(perfect gas, ideal gas) ■理想气体的两点假设
dT
p
dh vdp dT
p
h T
p
cV
q
dT
V
du
pdv dT
V
u T
V
☆注意:上式适用于任何工质,表明 c p、cV为状态参数
●理想气体
热力学能只包括内动能,只与温度有关,u f (T )
cp,423K 1.01622kJ /(kg K) cp,623K 1.05652kJ /(kg K)
623K
cp 423K (1.01622 1.05652) / 2 1.0364kJ /(kg K)
623K
qp cp 423K (T2 T1) 1.0364 (623 423) 207.27kJ / kg
5、不同形式的理想气体状态方程式
1kg的气体: pv RgT mkg的气体: pV mRgT 1mol的气体:pVm RT nmol的气体:pV nRT 流量形式: pqV qm RgT qn RT
例3-2:某台压缩机每小时输出 3200m3、表压力 pe 0.22MPa 温度t 156℃的压缩空气。设当地大气压pb 765mmHg ,求 压缩空气的质量流量qm及标准状态下的体积流量qV 0 。
3-1 理想气体的概念 3-2 理想气体的比热容 3-3 理想气体的热力学能、焓和熵 3-4 水蒸汽的饱和状态和相图 3-5 水的汽化过程和临界点 3-6 水和水蒸汽的状态参数 3-7 水蒸汽表和图
3-1 理想气体的概念
1、理想气体模型(perfect gas, ideal gas) ■理想气体的两点假设
dT
p
dh vdp dT
p
h T
p
cV
q
dT
V
du
pdv dT
V
u T
V
☆注意:上式适用于任何工质,表明 c p、cV为状态参数
●理想气体
热力学能只包括内动能,只与温度有关,u f (T )
cp,423K 1.01622kJ /(kg K) cp,623K 1.05652kJ /(kg K)
623K
cp 423K (1.01622 1.05652) / 2 1.0364kJ /(kg K)
623K
qp cp 423K (T2 T1) 1.0364 (623 423) 207.27kJ / kg
5、不同形式的理想气体状态方程式
1kg的气体: pv RgT mkg的气体: pV mRgT 1mol的气体:pVm RT nmol的气体:pV nRT 流量形式: pqV qm RgT qn RT
例3-2:某台压缩机每小时输出 3200m3、表压力 pe 0.22MPa 温度t 156℃的压缩空气。设当地大气压pb 765mmHg ,求 压缩空气的质量流量qm及标准状态下的体积流量qV 0 。
工程热力学-第三章热力学第一定律-能量方程
推导过程
最终形式
Qபைடு நூலகம் E
2 1
ejδmj
eiδmi
Wtot
忽略宏观动能和位能的变化量
E U
δmi 0 δmj 0
δq du δw q u w δQ dU δW Q U W
第一定律第一解析式
02
2.2 开口系统稳态稳流能量方程
g z2 z1
(C)
热能转变 成功部分
流动功
机械能增量
02
第一定律第二解析式
wt
ws
1 2
cf2
gz
q
h2
h1
1 2
cf22 cf21
g
z2 z1
ws
(B)
q h wt δq dh δwt
2
q h 1 vdp
稳定流动特征 1)各截面上参数不随时间变化。
推导过程
流入系统的能量:
qQ
qm1
u1
p1v1
cf21 2
gz1
2)ΔECV = 0, ΔSCV = 0, ΔmCV = 0···
流出系统的能量:
Ps
qm2
u2
p2v2
1 2
cf22
gz2
系统内部储能增量: ΔECV
流出:δW δmjej
δQ
d 内部贮能的增量:dE
δQ dE ejδmj eiδmi δWtot
Q E
最终形式
Qபைடு நூலகம் E
2 1
ejδmj
eiδmi
Wtot
忽略宏观动能和位能的变化量
E U
δmi 0 δmj 0
δq du δw q u w δQ dU δW Q U W
第一定律第一解析式
02
2.2 开口系统稳态稳流能量方程
g z2 z1
(C)
热能转变 成功部分
流动功
机械能增量
02
第一定律第二解析式
wt
ws
1 2
cf2
gz
q
h2
h1
1 2
cf22 cf21
g
z2 z1
ws
(B)
q h wt δq dh δwt
2
q h 1 vdp
稳定流动特征 1)各截面上参数不随时间变化。
推导过程
流入系统的能量:
qm1
u1
p1v1
cf21 2
gz1
2)ΔECV = 0, ΔSCV = 0, ΔmCV = 0···
流出系统的能量:
Ps
qm2
u2
p2v2
1 2
cf22
gz2
系统内部储能增量: ΔECV
流出:δW δmjej
δQ
d 内部贮能的增量:dE
δQ dE ejδmj eiδmi δWtot
Q E
工程热力学第三章课件
四、焓( Enthalpy )及其物理意义
1 2 流动工质传递的总能量为:U mc mgz pV ( J ) 2 1 2 或 u c gz pv (J/kg) 2
焓的定义:h = u + pv H = U + pV
对理想气体:
( J/kg ) (J)
h = u + pv = u + RT=f(T)
表面张力功、膨胀功和轴功等。 1.膨胀功(容积功)
无论是开口系统还是闭口系统,都有膨胀功;
闭口系统膨胀功通过系统界面传递,开口系统的膨胀 功是技术功的一部分,可通过其它形式(如轴)传递。 系统容积变化是做膨胀功的必要条件,但容积变化不 一定有膨胀功的输出。
2.轴功
系统通过机械轴与外界传递的机械功称为轴功。
第三节 闭口系统能量方程
一、闭口系统能量方程表达式 Q = dU + W (J)
Q = U + W (J)
Q W
q = du + w (J/kg)
q = u + w (J/kg)
对闭口系统而言,系统储存 能中的宏观动能和宏观位能 均不发生变化,因此系统总 储存能的变化就等于系统内 能的变化。即 ΔE= ΔU=U2-U1
p
3 4
2
1
v
对整个循环:∑∆u=0 或
du 0
因而q12 + q23 + q34 + q41 = w12 + w23 + w34 + w41
即
q w
三、理想气体热力学能变化计算
对于定容过程, w = 0,于是能量方程为:
q v = duv=cvdTv
u cV ( )V T
1 2 1 2 Q (h2 c2 gz 2 )m2 (h1 c1 gz1 )m1 Ws dECV 2 2
工程热力学第三章 热力学第一定律
能量守恒原理:进入 控制体的增量-控制 体输出的能量=控制 体中储存能的增量
进入控制体的能量Q(h11 2c12gz1)m1
离开控制体的能量W s(h21 2c2 2gz2)m 2
控制体储存能变化: dE cv(EdE )cvE cv 根据热力学第一定律建立能量方程
Q(h11 2c1 2gz1)m 1(h21 2c2 2gz2)m 2W sdEcv Q(h21 2c2 2gz2)m 2(h11 2c1 2gz1)m 1W sdEcv
可逆过程能量方程
可逆过程能量方程 以下二式仅适用可逆过程:
q du pdv
2
q u pdv 1
闭口系统能量方程反映了热功转换的实质,是热 力学第一定律的基本方程式,其热量、内能和膨 胀功三者之间的关系也适用于开口系统
二、热力学第一定律在循环过程中的应用
q12 u2 u1 w12 q23 u3 u2 w23 q34 u4 u3 w34 q41 u1 u4 w41
h g i hi i 1
n
H n H i i 1
只有当混合气体的组成成分一定时,混合气体 单位质量的焓才是温度的单值函数
第六节 稳态稳流能量方程的应用
一、动力机
利用工质在机器中膨胀获得机械功的设备
由q
(h2
h1)
1 2
(c22
c12
)
g(z2
z1)
ws
g(z2 z1) 0
1 2
(c22
pv
对 移 动 1kg工 质 进 、 出 控 制 净 流 动 功
w
=
f
p 2 v 2-
p1v1
流动功是一种特殊的功,其数值取决于控制体进出口
界面工质的热力状态
进入控制体的能量Q(h11 2c12gz1)m1
离开控制体的能量W s(h21 2c2 2gz2)m 2
控制体储存能变化: dE cv(EdE )cvE cv 根据热力学第一定律建立能量方程
Q(h11 2c1 2gz1)m 1(h21 2c2 2gz2)m 2W sdEcv Q(h21 2c2 2gz2)m 2(h11 2c1 2gz1)m 1W sdEcv
可逆过程能量方程
可逆过程能量方程 以下二式仅适用可逆过程:
q du pdv
2
q u pdv 1
闭口系统能量方程反映了热功转换的实质,是热 力学第一定律的基本方程式,其热量、内能和膨 胀功三者之间的关系也适用于开口系统
二、热力学第一定律在循环过程中的应用
q12 u2 u1 w12 q23 u3 u2 w23 q34 u4 u3 w34 q41 u1 u4 w41
h g i hi i 1
n
H n H i i 1
只有当混合气体的组成成分一定时,混合气体 单位质量的焓才是温度的单值函数
第六节 稳态稳流能量方程的应用
一、动力机
利用工质在机器中膨胀获得机械功的设备
由q
(h2
h1)
1 2
(c22
c12
)
g(z2
z1)
ws
g(z2 z1) 0
1 2
(c22
pv
对 移 动 1kg工 质 进 、 出 控 制 净 流 动 功
w
=
f
p 2 v 2-
p1v1
流动功是一种特殊的功,其数值取决于控制体进出口
界面工质的热力状态
工程热力学 第三章 气体和蒸汽的性质
第三章 气体和蒸汽的性质
3-1 理想气体的概念
一 理想气体的模型
➢ 理想气体指分子间没有相互作用力、分 子是不具有体积的弹性质点的假想气体
➢ 实际气体是真实气体,在工程使用范围 内离液态较近,分子间作用力及分子本 身体积不可忽略,热力性质复杂,工程 计算主要靠图表
➢ 理想气体是实际气体p0的极限情况。
0
D(t1)
C(t2) t
=q02-q01
t2 cdt t1 cdt
0
0
c
t2 0
t2
c
t1 0
t1
c
t2 0
,
c
t1 0
表示温度自0C到t1和0C到t2的平均比热容.
c t2 q t1 t2 t1
t2 cdt
t1 t2 t1
0
cdt
t2 cdt
t1
0
t2 cdt
0
➢比热容、摩尔热容及体积热容三者之间的关 系:
Cm=Mc=0.0224141 C´
二、定压比热容及定容比热容
热量是过程量,因此比热容也与各过 程特性有关,不同的热力过程,比热容也 不相同:
➢定容比热容:可逆定容过程的比热容
cV
q
dT
v
du pdv dT v
u T
v
➢定压比热容:可逆定压过程的比热容
➢ 简化了物理模型,不仅可以定性分析气体某些 热现象,而且可定量导出状态参数间存在的简 单函数关系
➢ 在常温、常压下H2、O2、N2、CO2、CO、He及 空气、燃气、烟气等均可作为理想气体处理, 误差不超过百分之几。因此理想气体的提出具 有重要的实用意义。
二 理想气体状态方程式
理想气体在任一平衡状态时p、v、T之间关系
3-1 理想气体的概念
一 理想气体的模型
➢ 理想气体指分子间没有相互作用力、分 子是不具有体积的弹性质点的假想气体
➢ 实际气体是真实气体,在工程使用范围 内离液态较近,分子间作用力及分子本 身体积不可忽略,热力性质复杂,工程 计算主要靠图表
➢ 理想气体是实际气体p0的极限情况。
0
D(t1)
C(t2) t
=q02-q01
t2 cdt t1 cdt
0
0
c
t2 0
t2
c
t1 0
t1
c
t2 0
,
c
t1 0
表示温度自0C到t1和0C到t2的平均比热容.
c t2 q t1 t2 t1
t2 cdt
t1 t2 t1
0
cdt
t2 cdt
t1
0
t2 cdt
0
➢比热容、摩尔热容及体积热容三者之间的关 系:
Cm=Mc=0.0224141 C´
二、定压比热容及定容比热容
热量是过程量,因此比热容也与各过 程特性有关,不同的热力过程,比热容也 不相同:
➢定容比热容:可逆定容过程的比热容
cV
q
dT
v
du pdv dT v
u T
v
➢定压比热容:可逆定压过程的比热容
➢ 简化了物理模型,不仅可以定性分析气体某些 热现象,而且可定量导出状态参数间存在的简 单函数关系
➢ 在常温、常压下H2、O2、N2、CO2、CO、He及 空气、燃气、烟气等均可作为理想气体处理, 误差不超过百分之几。因此理想气体的提出具 有重要的实用意义。
二 理想气体状态方程式
理想气体在任一平衡状态时p、v、T之间关系
工程热力学与传热学(双语) 第3章 习题PPT
习题课
理想气体的热力过程
10. 有一汽缸和活塞组成的系统,汽缸壁和活塞均由绝热 材料制成,活塞可在汽缸中无摩擦地自由移动。初始时 活塞位于汽缸中间,A,B两侧各有1kg空气, 压力均为 0.45MPa,温度同为900K。现对A侧冷却水管通水冷 却,A侧压力逐渐降低。求: (1)压力降低到0.3MPa时, Q A B A,B两侧的体积是多少? (2)冷却水从系统带走的热量是多少? (3)整个气体组成的系统熵变是多少? (4)在p-v 图、T-s 图上大致表示两侧气体进行的过程。 设定值比热容计算。且k=1.4, cv=0.717 k]/(kg· K) 。
习题课
理想气体的性质
13. Five grams of argon gas undergoes a change of state at constant internal energy. Initial pressure and temperature are 6.0 atm and 300K, respectively. The final volume occupied by the gas is three times that occupied initially. Assuming ideal-gas behavior, determine (a) the final temperature of the gas. (b) the final pressure of the gas. (c) the entropy change of the gas due to the change of state.
习题课
理想气体的热力过程
8. 1kg 空气在多变过程中吸取 41.87kJ的热量时, 将使其容积增大10倍, 压力降低 8 倍。求: (1)过程中空气的热力学能变化量; (2)空气对外所作的膨胀功及技术功。 设空气 cv=0.716kJ/(kg· K),k=1.4 。
工程热力学 第3章 理想气体的热力性质
分子运动论
运动自由度
Um
i 2
RmT
C v,m
dU m dT
i 2 Rm
C p,m
dH m dT
d (U m RmT ) dT
i2 2 Rm
单原子 双原子 多原子
Cv,m[kJ/kmol.K]
3 2
Rm
Cp,m [kJ/kmol.K]
5 2
Rm
k
ห้องสมุดไป่ตู้1.67
5 2 Rm
7 2
Rm
1.4
u是状态量,设 u f (T , v)
u
u
du (T )v dT ( v )T dv
q
( u T
)v
dT
[
p
( u v
)T
]dv
定容
q
(
u T
)v
dT
cv
(
q
dT
)v
( u T
)v
物理意义: v 时1kg工质升高1K内能的增加量
2020/1/10
2020/1/10
20/97
比热容是过程量还是状态量?
T
(1)
1K
(2)
c q
dT
c1
c2
s
定容比热容 用的最多的某特定过程的比热容
定压比热容
2020/1/10
21/97
1. 定容比热容( cv ) 和定压比热容(cP ) 定容比热容cv
任意准静态过程 q du pdv dh vdp
第3章 理想气体的热力性质
清华大学热工基础课件工程热力学加传热学(4)第三章
pV mRgT
物质的多少还以物质的量(摩尔数)来衡量。 物质的量:n ,单位: mol(摩尔)。 摩尔质量: M ,1 mol物质的质量,kg/mol。
4
物质的量与摩尔质量的关系: n m M
摩尔质量与气体的相对分子量之间的关系:
1 kmol物质的质量数值与气体的相对分子质 量的数值相同。
MO2 = 32.0010-3 kg/mol MN2 = 28.0210-3 kg/mol
19
2) 理想气体的熵
根据熵的定义式及热力学第一定律表达式,
可得
ds q du pdv du p dv
Τ
T
TT
ds q dh vdp dh v dp
T
T
TT
对于理想气体,
du cV dT , dh cpdT , pv RgT
代入上面两式,可得
20
ds
cV
dT T
Rg
dv v
ds
cp
dT T
Rg
dp p
比热容为定值时 ,分别将上两式积分,可得
代入
s
cV ln
T2 T1
Rg ln
v2 v1
s
c
p
ln
T2 T1
Rgln
p2 p1
pv RgT和迈耶公式cp cV=Rg ,得 21
结论:
s
cV ln
p2 p1
cpln
v2 v1
(1)理想气体比熵的变化完全取决于初态和终 态,与过程所经历的路径无关。这就是说,理 想气体的比熵是一个状态参数。
M空气 = 28.96 10-3 kg/mol
5
摩尔体积 Vm :1 mol物质的体积, m3/mol。
物质的多少还以物质的量(摩尔数)来衡量。 物质的量:n ,单位: mol(摩尔)。 摩尔质量: M ,1 mol物质的质量,kg/mol。
4
物质的量与摩尔质量的关系: n m M
摩尔质量与气体的相对分子量之间的关系:
1 kmol物质的质量数值与气体的相对分子质 量的数值相同。
MO2 = 32.0010-3 kg/mol MN2 = 28.0210-3 kg/mol
19
2) 理想气体的熵
根据熵的定义式及热力学第一定律表达式,
可得
ds q du pdv du p dv
Τ
T
TT
ds q dh vdp dh v dp
T
T
TT
对于理想气体,
du cV dT , dh cpdT , pv RgT
代入上面两式,可得
20
ds
cV
dT T
Rg
dv v
ds
cp
dT T
Rg
dp p
比热容为定值时 ,分别将上两式积分,可得
代入
s
cV ln
T2 T1
Rg ln
v2 v1
s
c
p
ln
T2 T1
Rgln
p2 p1
pv RgT和迈耶公式cp cV=Rg ,得 21
结论:
s
cV ln
p2 p1
cpln
v2 v1
(1)理想气体比熵的变化完全取决于初态和终 态,与过程所经历的路径无关。这就是说,理 想气体的比熵是一个状态参数。
M空气 = 28.96 10-3 kg/mol
5
摩尔体积 Vm :1 mol物质的体积, m3/mol。
工程热力学第三章理想气体的性质讲解
2. Three kinds of Specific heats based on different quantity units
基于不同物量单位的三种比热
(1) Specific heat based on mass(质量比热容)
1kg物体温度1K升高1K所吸收的热量,记作c, 单位为 J/kg•K
理想气体内能的计算
q = du + pdv
对理想气体的定容过程
q = du + pdv 又
du cvdT
理想气体 u f (T )
du cvdT
理想气体,任何过程
Enthalpy of Ideal-gas 理想气体的焓
q = du + pdv +vdp-vdp
=dh-vdp
对理想气体的定压过程
RmT
8.31431000 293.15
m PV 100120 140.3kg RT 0.287 298/15
§3.2 Specific Heats and Heat Capacity (比热和热容)
1. Definition of Specific heat 比热容(比热)的定义
Chapter 3. Properties and Processes of Ideal Gas
第3章 理想气体的性质和过程
3.1 Equation of State for Ideal Gas 理想气体的状态方程
3.2 Specific Heat of Ideal Gas 理想气体的比热
3.3 Internal energy, enthalpy and entropy of Ideal Gas
What kind of gas can be treated as Ideal Gas? 哪些气体可当作理想气体
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
pAl pV mpv
在作推动功时,工质的状态 没有改变(如图中的C点), 因此推动功不会来自系统的 储存能-热力学能,而是系 统以外的物质,这样的物质 称为外部功源。
工质在传递推动功时只是单 纯地传递能量,像传输带一 样,能量的形态不发生变化。
✓ 工质在流动时,总是从后面获得推动功,而对前面 作出推动功,进出系统的推动功之差称为流动功 (也是系统为维持工质流动所需的功)。
汽轮机简单模型
Wf p2V2 p1V1 ( pV )
wf p2v2 p1v1 ( pv)
工质从进口到出口,从状 态1膨胀到状态2,膨胀功 为w ,在不计工质的动能 与位能变化时,开系与外 界交换的功量应为膨胀功 与流动功之差w - ( pv )
四、 焓 一、焓的定义:
H U pV h u pv
热力系
内部能量
z 外部势能
一、热力学能(内能)
热力学能是储存在系统内部的能量, 它与系统内工质的内部粒子的微观运动和 粒子的空间位置有关,是下列各种能量的 总和:
✓ 分子热运动形成的内动能。它是温度的函数。
✓ 分子间相互作用形成的内位能。它是比体积 和温度的函数。
✓ 维持一定分子结构的化学能、原子核内部的 原子能及电磁场作用下的电磁能等。
热
相应量
功
第一类永动机:不消耗能量而连续作功的设备。
3-1 热力学能和总能
➢能量是物质运动的度量,运动有各种不同 的形态,相应的就有各种不同的能量。
➢系统储存的能量称为储存能,它有内部储 存能与外部储存能之分。系统的内部储存 能即为热力学能,又称为内能。
下面的热力学系统具有哪些方面的能量?
cf
外部动能
左止点
p
1
续4飞1 轮
2
v
气缸
热 源
左止点
p
1
续4飞1 轮
2
v
气缸
热 源
左止点
p
1
续4飞1 轮
2
v
气缸
热 源
左止点
p
1
续4飞1 轮
v
气缸
热 源
左止点
p
1
续4飞1 轮
v
气缸
热 源
左止点
p
1
续4飞1 轮
v
气缸
续4飞1 轮
热 源
左止点
p
1
右止点
2
v
气缸
续4飞1 轮
热 源
左止点
p
1
右止点
2
v
问题:左图中 阴影部分的面 积代表什么?
1
右止点
2
2
w 1 pdv
v
p 1
2
2
w 1 pdv
v
强调:1. p v 图上曲线下面的面积代表容积功
2. dv 0有 w 0 w 称为膨胀功 dv 0 有 w 0 w 称为压缩功 dv 0 有 w 0
可
逆
p
过 程
│
中
v容
图积
上功
的在
表
示
三、随物质流传递的能量
✓ 工质在开口系统中流动而传递的功,叫推动功。
热力学能 比热力学能
符 号:
U
u
单 位: 焦耳(J)
J/kg
千焦(kJ)
kJ/kg
热力学能是状态参数,是热力状态的单值函数:
2
U 1 dU U2 U1
Ñ dU 0
u u u2 要用系统外的参考坐标系测量的参数来 表示的能量,称为外部储存能,它包括系统的 宏观动能和重力位能:
第三章 热力学第一定律
教学目标:使学生深入理解并熟练掌握热力学第一定律 的内容和实质,能将工程实际问题建立热力学模型。 知识点:理解和掌握热力学第一定律基本表达式——基 本能量方程;理解和掌握闭口系、开口系和稳定流动能 量方程及其常用的简化形式;掌握能量方程的内在联系 与共性,热变功的实质。 能力点:培养学生正确、灵活运用基本能量方程,对工 程实际中的有关问题进行简化和建立模型的能力。培养 学生结合系统的特点推导出闭口系、开口系及稳定流动 过程能量方程的逻辑思维能力和演绎思维能力。
能量转换与守恒定律指出:一切物质都具有能 量。能量既不可能创造,也不能消灭,它只能在一 定的条件下从一种形式转变为另一种形式。而在转 换中,能量的总量恒定不变。
热力学第一定律是能量转换和守恒定律 在热力学上的应用,确定了热能和机械能之 间的相互转换的数量关系。
热力学第一定律:热能和机械能在转移 和转换的过程中,能量的总量必定守恒。
作功: ✓ 借作功来传递能量总是和物体的宏观位移有关。 ✓ 作功过程中往往伴随着能量形态的变化。
气缸
飞
轮
热 源
传热:
左止点
✓ 借传热来传递能量不需要物体的宏观移动。
✓ 传热是相互接触的物体间存在温差时发生的 能量传递过程。
二、容积功
气缸
可逆过程的容积功在p—v图中的表示
续4飞1 轮
热 源
左止点
p
Ek
mc2 2
J
Ep mgz J
mc2 E U mgz
2
3-2 系统与外界传递的能量
一、作功与传热
✓ 作功和传热是能量传递的两种方式,因此功 量与热量都是系统与外界所传递的能量,其 值并不由系统的状态确定,而是与传递时所 经历的具体过程有关。所以,功量和热量不 是系统的状态参数,而是与过程特征有关的 过程量,称为迁移能。
焓的单位:J,比焓的单位:J/kg
二、焓是状态参数
h f ( p, v), h f ( p,T ), h f (T , v)
2
h1a2 h1b2 1 dh h2 h1 dh 0
三、焓的意义
德育点:对学生进行能源的合理利用、节能及环 保等相关的可持续发展观念的教育。
重 点:热力学第一定律的实质,闭口、开口系 统热力学第一定律解析式的表述形式及适用条件, 在不同工程场合中的热工计算,及充气和放气过 程的计算。
难 点:热力学第一定律及其应用是本课程的重 点内容,应深刻理解这个定律的普遍适用性,牢 固掌握各种热力学第一定律表达式的适用条件, 并能将理论与工程实际相联系。
问题: 能量是否还有其它的传递方式?
观察下面的过程,看热能是如何转换为功的
气缸
活塞
飞轮
热 源
工质、机器和热源组成的系统
假设过程是可逆的。 问题:过程可逆的条件是什么?
气缸
可逆过程模拟
活塞
飞轮
热 源
左止点
p
1
v
气缸
活塞
续4飞1 轮
热 源
左止点
p
1
2
v
气缸
热 源
左止点
p
1
续4飞1 轮
2
v
气缸
热 源
宏观动能:
Ek
1 2
mc2f
重力位能: Ep mgz
系统的储存能
三、系统的总储存能(简称总能)
热力学能 U
宏观动能
Ek
宏观位能
EP
系统的储存能 E
即 E U Ek EP
或
E
U
1 2
mc2f
mgz
1kg工质的总能为比总能:
e
u
1 2
c
2 f
gz
内能 宏观动能 宏观位能 储存能
U Uk Up J