臭氧-生物活性炭工艺的设计与运行管理
浅谈臭氧—生物活性炭深度水处理工艺
浅谈臭氧—生物活性炭深度水处理工艺作者:林瑜来源:《科技与创新》2014年第04期摘要:以某市为例,介绍臭氧—生物活性炭深度水处理工艺。
该市的自来水厂原水受到了轻微的污染,为了净化水质,在原有常规水处理工艺的基础上,加以臭氧—生物活性炭深度水处理工艺辅之,经过一段时间的治理,该自来水厂的水质有了明显的改善,水的各项指标都达到了生活饮用水的标准,成功解决了民众用水紧张的状况。
关键词:净水原理;臭氧接触池;生物活性碳;反冲洗中图分类号:X52 文献标识码:A 文章编号:2095-6835(2014)04-0156-02某自来水厂的水源是大运河的支流,其水质遭到了有机物的污染,水中的氨氮、色度、亚硝酸盐、耗氧量和铁的含量明显增多,严重威胁了居民们生活饮用水的质量。
为了降低这些元素的含量,该厂花费了大量的人力、物力、财力,虽然起到了一定的作用,但是,这种常规水处理工艺存在很多弊病。
在水净化的过程中,由于投放了大量的氯,使得出厂的水中三氯甲烷和致癌物含量明显增多,并且水中的色度、味道等都没有达到标准,因此,臭氧—生物活性炭深度水处理工艺成为了水净化的必要手段之一。
通过对处理工艺进行比较后发现,氧化工艺比较适合原水的水质特点,它能够降低氨氮的含量,水质好、稳定性强,且成本费用低,所以,建议在水净化领域大力倡导使用臭氧—生物活性炭深度水处理工艺。
1 简述臭氧—生物活性炭深度水处理工艺臭氧—生物活性炭深度水处理工艺,有人称它为饮用水净化的第二代净水工艺。
该工艺利用了臭氧和活性炭吸附的特性,将两者结合在一起进行水净化处理。
采用臭氧化在先,然后利用活性炭进行吸附,因为活性炭有十分强大的吸附能力,能够将微生物聚集起来,清除更多的有机污染物,其效果十分显著。
这一工艺包括了臭氧化、杀菌、活性炭吸附和微生物氧化等流程,它们之间相互作用,互为补充,达到了非常好的效果,水质明显得到了改善,水中的各项指标也都达到了生活饮用水的标准,保证了出厂水的化学稳定性和生物稳定性。
四川什邡市某水厂臭氧-生物活性炭深度处理工艺分析
・
能源 与环境 工程 ・
四川 什 邡 市 某 水 厂 臭 氧 一生 物 活 性 炭 深 度 处 理 工 艺 分 析
罗本福 , 宁海 燕 , 杨 曦
( 1 .西华 大学 能源与环境学 院 , 四川 成都 6 1 0 0 3 9 ; 2 . 成都大学 图书馆 , 四川 成都 6 1 0 1 0 6 )
ห้องสมุดไป่ตู้
降低微生物穿透滤层 的风险有利。
关键词 : 臭氧; 生物 活性 炭 ; 给水深度处理 ; 工艺设计
中图分类号 : X 5 2 文献标志码 : A 文章编号 : 1 6 7 3~1 5 9 X( 2 0 1 3 ) 0 4— 0 1 0 9— 0 4
d o i : 1 0 . 3 9 6 9 / j . i s s n . 1 6 7 3— 1 5 9 X . 2 0 1 3 . 0 4 . 0 2 5
S h i f a n g S h i c h u a n C h i n a . T h i s p a p e r d i s c u s s e d t h e e x p e i r e n c e a n d me a s u r e s f o r 0 3 /B A C t e c h n o l o g y p r o j e c t .I f t h e t h e c h o l g y f o r s e p a r a - i r n g o x y g e n f r o m a i r w a s p r o v i d e d i n p r o j e c t l o c a t i o n, w h e n t h e o z o n e c o n s u m p t i o n Q 0 3 ≤6 0 k g o 3 / h, p u r c h a s e o f l i q u i d o x y g e n a s t h e
臭氧-生物活性炭工艺
生作用
结果: 增多吸附容量,延长活性炭滤池的工作周期
2.2 生物再生步骤
活性炭吸附有机物,液相中有机物含量减低 水中细菌附着在活性炭表面 细菌选择水中的生物易降解有机物分解,并不断繁殖;易 生物降解有机物含量下降,难降解有机物含量不受影响
2.2 生物再生步骤
伴随液相生物易降解有机物含量下降,吸附的有机物发生 解吸;解吸的有机物中易降解有机物在液相中扩散,被细菌 降解 解吸后空出活性炭表面的吸附点有可吸附有机物,起到生 物再生
微生物
去除小分子的亲 水性有机物
2 生物再生
影响因素
作用机理
优缺点 工程应用
生物再生
对水中有机物的吸附和微生物的氧化
分解是相继发生的,微生物的氧化分解作用陆
续空出了吸附位,使活性炭的吸附能力得到恢
复;而活性炭的吸附作用又使微生物获得丰富
的养料和氧气,二者相互促进,起到了生物再
始运行。
深圳水库是深圳市的主要供水水源,属南方地
区典型的低浊、高藻、微污染类水质。虽然东深供
水生物预处理工程(处理能力为400*104m3/d)的实施
在一定程度上改善了深圳水库的水质,但是原水中的
嗅味、藻类和有机物等污染物质的浓度仍然维持在
一个较高的水平,采用常规工艺处理时出水水质得不
到保证。
工艺流程图
臭氧-生物活性炭工艺
内容
1
作用机理
2
生物再生
3
影响因素
4
优缺点
5
工程应用
1 作用机理
影响因素
生物再生
优缺点 工程应用
作用机理
1.1 活性炭的空隙特性
大孔
直径 100~10000nm 比表面积占1%
臭氧生物活性炭各工艺阶段的特点及应用
臭氧生物活性炭各工艺阶段的特点及应用宋文涛1 ,胡志光1 ,常爱玲1 ,潘晓丽21华北电力大学环境科学与工程学院(071003)2北京国电富通科技发展有限责任公司(100055)E-mail:swt305@摘要:针对日益恶化的饮用水水源水质,臭氧生物活性炭饮用水深度处理方法受到人们的广泛关注。
本文论述了臭氧生物活性炭工艺中的臭氧发生系统、臭氧尾气破坏系统、臭氧预氧化及后氧化、生物活性炭滤池的应用现状及特点,并对其发展前景作了展望。
关键词:饮用水;深度处理;臭氧氧化;生物活性炭1.引言随着饮用水水源污染的日益加剧和居民环保意识的不断增强、生活水平的不断提高,饮用水水质标准要求亦将愈来愈高,常规的絮凝、沉淀、过滤、消毒净水工艺已难以满足水质不断提高的要求,饮用水深度处理技术受到人们的广泛关注,对深度处理技术研究和应用在我国已呈现出蓬勃发展的形式。
臭氧生物活性炭饮用水深度处理方法是集臭氧氧化、活性炭吸附和生物降解于一体,以去除污染的高效性成为当今世界各国进行饮用水深度处理的主流工艺,现已广泛地应用于欧洲,美国,日本等上千座水厂中[1]。
该项技术在我国正在逐步推广应用,目前在昆明、北京、常州、深圳、杭州、上海等城市已有应用[2]。
本文对臭氧生物活性炭工艺中的臭氧发生系统、臭氧尾气破坏系统、臭氧预氧化及后氧化、生物活性炭滤池的应用现状及特点进行了详细论述。
2. 臭氧发生系统传统臭氧发生器以空气为原料,其优点是原料为空气,不需成本。
但是其不足之处很多:需要对空气进行除尘,脱湿的预处理;臭氧产量低,通常国产臭氧发生器的臭氧质量分数为1%左右;能耗高;设备庞大,增加占地等。
当前水厂使用的臭氧发生器多以氧气为原料,其优点是:提高臭氧浓度,增加臭氧产量,通常臭氧质量分数为6%左右;降低电耗;简化设备,减少设备体积和占地面积;加快氧化速度[3]。
对臭氧发生系统而言,臭氧浓度低则臭氧发生器的能耗也低,但臭氧发生器所消耗的氧气量大;臭氧浓度高则臭氧发生器的能耗也高,但臭氧发生器所消耗的氧气量小。
焦化废水臭氧-生物活性炭的深度处理技术
焦 化 废水生 物 处 理 出水 一般 很 难 达 到 排 放 要 求 , 要进 行 深 度 处 理. 1 需 近 0年来 , 着臭 氧发 生 随
全 矿 化 , 般 去除 1g化 学 需 氧 量 ( h mia O y 一 C e cl x —
g nD ma d C e e n , OD) 需要 消耗 5g的臭 氧 一3臭 氧 3,
( l g fCh mi ty a d Che c lEng n e i g,S a g iUn v r iy o g n e i g Sce e Co l e o e s r n e mi a i e rn h n ha i e st f En i e rn inc ,Sh n a 0 6 0,Ch n ) a gh i2 1 2 ia
第 2 5卷 第 2期
21 0 1年 6月
上
海
工
程
技
术
大
学
学
报
V0 _ 5 NO 2 l2 .
J OURNAL OF S HANGHAI UNI R I NGI E I VE S TY OF E NE R NG C E E S I NC
J n 01 u .2 1
du o a h gh c nc nt a i e ani g nis a d NH ;一N. e t i o e r ton ofr m i ng or a c n The e o e, 一 r f r O3 BAC o e s wa d pt d pr c s s a o e a he a a c n r a m e r e s f rt f l nt Ex rm e t lr s ls i dia et ts m e o ga cr s— st dv n i g t e t ntp oc s o he e fue . pe i n a e u t n c t ha o r ni e i
浅谈臭氧,臭氧活性炭的技术应用
浅谈臭氧-生物活性炭深度水处理工艺摘要主要探讨臭氧—生物活性炭深度水处理工艺的优缺点,总结工艺设计的要点,并介绍了它们的一些具体运用,为臭氧-生物活性炭深度水处理工艺的进一步推广提供技术支持。
关键词臭氧活性炭城市供水工艺设计1臭氧-生物活性炭深度水处理工艺(O3-BAC) 概述臭氧-生物活性炭深度水处理技术被称为饮用水净化的第二代净水技术,臭氧-生物活性炭技术采用臭氧氧化和生物活性炭滤池联用的方法,将臭氧化学氧化、臭氧灭菌消毒、活性炭物理化学吸附和生物氧化降解四种技术合为一体。
其主要目的是在常规处理之后进一步去除水中有机污染物、氯消毒副产物的前体物以及氨氮,降低出水中的BDOC和AOC,保证净水工艺出水的化学稳定性和生物稳定性。
臭氧是氧的同素异性体,分子式为O3,常态呈气体,淡蓝色,有特殊气味;臭氧是自然界最强的氧化剂之一,具有广谱杀微生物作用,其杀菌速度高于氯气。
臭氧投加在水中以后,主要有三个作用,一方面直接降解有机物,减少进入活性炭池中的有机负荷;一方面把大分子有机物降解为小分子有机物,改变水中有机物的分子量分布,提高水中有机物的可生化性,从而有利于强化后续活性炭工艺对于中小分子量有机物的吸附降解;最后一个作用就是为后续活性炭工艺充氧,有利于活性炭好氧微生物的生长。
活性炭几乎可以用含有碳的任何物质做原材料来制造,这包括木材、锯末、煤、泥炭、果壳、果核、蔗渣、骨、石油脚、皮革废物、纸厂废物等等,近来有的国家倾向于用天然煤和焦炭制造粒状活性炭。
活性炭的主要特征是比表面积大和带孔隙的构造,因而显示出良好的吸附性能。
活性炭分粉末活性炭和颗粒活性炭两种,两者不同之处是颗粒大小不同,其吸附性能没有本质上的区别。
活性炭作为一种多孔物质,能够吸附水中浓度较低、其它方法难以去除的物质,同时,还可以去除水中的浊度、嗅味、色度,改善水的口感,而且能够有效地吸附合成洗涤剂、阴离子表面活性剂等活性物质;活性炭还具有催化作用,催化氧化臭氧为羟基自由基,最终生成氧气,增加水中的溶解氧(DO)的浓度。
臭氧_生物活性炭工艺设计中工程方案的选择
( Seventh Design Institute,Shanghai Municipal Engineering Design Institute < Group > Co. Ltd.,Qingdao 266000,China)
Abstract: Ozone / biological activated carbon ( O3 / BAC) process was developed on the basis of biological activated carbon process,which is recognized as one of the most effective advanced treatment processes in removing organic pollutants and odor from drinking water in the world at present. With the implementation of the Standards for Drinking Water Quality ( GB 5749 - 2006 ) ,O3 / BAC process has been widely used in upgrading and reconstruction of water treatment plants. In the design,selection of gas source for ozone generator and design of activated carbon tank type related to project investment,operation cost and operation management. In order to facilitate the upgrading and reconstruction project of water treatment plants,it needs to choose the ozone source and tank type reasonably according to the actual situation of the plant.
臭氧-生物活性炭工艺
臭氧-生物活性炭工艺臭氧-生物活性炭工艺结合了臭氧工艺和生物活性炭工艺,净水前通过臭氧预氧化,对于无机物,臭氧在水中可以有效地将其中的溶解性铁,锰等无机离子转化成难溶解性氧化物从水中沉淀出来,从而在混凝沉淀与过滤中去除。
而对于有机物,臭氧分子与有机污染物间的直接氧化作用缓慢且有明显的选择性反应。
另一种是臭氧被分解后产生羟基自由基间接地与水中的有机物作用。
在臭氧后氧化中增加水中的溶解氧,有利于后继生物活性炭上好氧微生物的生长。
生物活性炭滤池位于臭氧接触池之后,活性炭因其内部具有发达的孔隙结构和巨大的比表面积从而用微孔吸附的方法去除有机物,活性炭的吸附性也可经济有效的去除嗅,味,色度,农药,放射性有机物及其其它人工合成有机物。
由于活性炭是一种兼有吸附,触媒和化学反应活性的多功能载体。
好氧微生物群落可以分散在炭段表面,也可以成膜覆盖在整个炭粒外表面,形成生物活性炭,这样可以发挥生化和物化处理的协同作用,从而延长活性炭的工作周期,大大提高处理效率,改善出水水质,并能处理那些采用单纯生化处理或活性炭吸附法所不能去除的污染物质。
影响臭氧-生物活性炭工艺主要因素1、微生物生命活动对水温、pH值等因素的变化很敏感,容易导致炭床中生物降解效率发生波动。
当温度低于5℃时,水处理效果极差。
2、活性炭柱承担着吸附和生物降解有机物的双重作用,延长水与活性炭柱的接触时间对去除有机物有利;而反冲洗条件对保护某些菌落很重要。
3、为了维持活性炭的生物平衡和避免高于微生物生命形式的发展,活性炭定期冲洗是维护生命活动的重要手段。
活性炭冲洗一般采用水洗、气洗、气水同时冲洗等几种方式。
反冲后重新启动时水质一般较差,将持续10-20min,以使扰乱的炭层复原到正常过滤状态。
工程实践证明,反冲效果的好坏直接影响处理水质。
4、臭氧-生物活性炭工艺一般设置在砂滤之后,去除有机物的效果取决于水中有机物的性质、活性炭的特性、操作条件、温度等。
5、在臭氧-生物活性炭工艺中,臭氧的重要作用是将大分子有机物降解为小分子有机物,提高原水的可生化性。
臭氧-活性炭工艺研究现状PPT演示课件
13
13
3、臭氧-活性炭工艺的主要问题
消毒副产物 溴酸盐的产生过程
溴酸盐生成过程主要包 括臭氧和氢氧自由基两 种途径。
臭氧途径:Br-直接与O3反 应生成HOBr-/OBr-,接着只有 OBr-被O3继续氧化成BrO2-, BrO2-继续被氧化最后生成 BrO3-。
氢氧自由基途径:首先 是·OH与Br一反应生成Br-, Br-既可被O3氧化成BrO-,也 可与Br反应生成Br2-,然后反 应生成HOBr-与O3。不同的 是,·OH既可与OBr-反应,也 可与HOBr-反应生成BrO·,且 两个反应速率相近。BrO·发生 歧化反应,生成OBr-和BrO2-, BrO继续被O3氧化生成BrO3-。
16
16
3、臭氧-活性炭工艺的主要问题
生物稳定性影响因素
影响生物活性炭滤池出水水质的因素很多,目前国内外对于这 方面都还没有系统的研究结果。
何元春等研究指出用不同的水冲强度和冲洗时间对活性炭池进行冲洗后,活 性炭池出水中的颗粒物数目呈现出不同的变化趋势,在低强度、长时间水洗条 件下,初滤水中颗粒较多,而在高强度、短时间水洗条件下,初滤水中的颗粒较少。
10
10
3、臭氧-活性炭工艺的主要问题
消毒副产物 甲醛生成特性及影响因素
臭氧消毒副产物甲醛生成影响因素主 要包括腐殖酸等前体物质的结构、种 类、浓度、臭氧浓度和 pH 值等因素。
有机物浓度的影响 在臭氧氧化过程中,特定前体 物质的浓度是影响甲醛形成的 首要因素。
这说明丙烯酸浓度与甲醛生成 量是线性相关的。
14
14
3、臭氧-活性炭工艺的主要问题
消毒副产物 溴酸盐生成特性及影响因素
臭氧消毒副产物溴酸盐生成受多种因素的 影响,主要包括溴离子浓度、催化剂投加 量、臭氧投加量及投加方式、反应温度和 反应时间、pH 值、腐殖酸浓度、硬度、碱 度等。
深圳梅林水厂臭氧活性炭深度处理工艺设计
深梅林水厂臭氧活性炭深度处理工艺设计黄年龙 廖凤京提要 深圳梅林水厂深度处理采用臭氧活性炭深度处理工艺,介绍了该工艺的设计参数,并对设计中的重点进行了分析,提出了臭氧活性炭深度处理工艺的出水水质指标与经济指标。
关键词 臭氧接触氧化 生物活性炭过滤 设计参数 水质指标 经济指标 梅林水厂是深圳市供水量最大的一座水厂,其规划总规模为90万m 3/d,现状常规处理规模为60万m 3/d 。
水源为深圳水库水,属低浊多藻富营养化的水体。
根据深圳水库原水的水质特点,在中试的基础上,梅林水厂深度处理设计采用 臭氧接触氧化+生物活性炭过滤 工艺,其净水工艺流程见图1。
图1 净水工艺流程示意1 臭氧接触氧化对于富营养化或受有机污染的水体,采用预氯化会导致水中形成THM s 等三致物质,而臭氧和活性炭均不能有效地将该类物质去除,只能靠活性炭吸附,富集在活性炭里。
但当活性炭吸附饱和后,又会释放进入水中,导致出水TH Ms 浓度升高,影响处理效果。
另一方面,预氯化的余氯,也会对后续活性炭上生物体的活性产生抑制作用,从而导致活性炭的生物降解能力下降。
因此,对臭氧活性炭工艺,设计取消预加氯,将臭氧氧化分为预臭氧氧化与后臭氧氧化,以预臭氧化代替预氯化,从而保证深度处理工艺的效果。
1 1 预臭氧接触池预臭氧主要的作用是杀藻,改善絮凝效果和去除部分有机物,避免预氯化产生消毒副产物。
预臭氧投加量设计采用0 5~1 5mg/L,一般运行在1mg/L 左右,高藻时投加1 5mg/L 。
预臭氧接触时间,根据试验设计采用4min,主要考虑使絮凝剂的投加与藻类的去除效果最佳。
预臭氧接触池采用2座,每座分2格,每格处理水量为15万m 3/d 。
单格池宽为6m ,池长为15 6m,有效水深为6m,超高为0 75m 。
每格预臭氧采用前端1点投加,竖向廊道混合,混合流速采用0 12~0 2m/s,混合水头控制在0 1m 以内。
臭氧投加设备采用水射器与多孔扩散管,每台水射器流量为56m 3/h,水射器前水压为0 35MPa (相对压力)。
臭氧活性炭深度处理工艺简介
2020年8月2日6时50分
深度处理技术简介—活性炭
14
5. 在给水处理中的应用
➢ 原水突发性或季节性出现污染物质增高、异味、异臭和THM前驱 物质浓度很高时,作为应急措施投加粉末活性炭。
2020年8月2日6时50分
深度处理技术简介—工艺
19
5. 影响工艺处理效果的主要因素
a. 水中有机物的性质 b. 活性炭的特性 c. 操作条件 (臭氧投加量控制、反冲洗方式、负荷等) d. 温度
2020年8月2日6时50分
深度处理技术简介—工艺
20
6. 运行时注意事项
a. 臭氧制备及投加系统的正常运行和维护 b. 活性炭滤池运行前准备 c. 运行中生物膜的形成 d. 防止炭粒滤料流失 e. 及时更新和再生活性炭 f. 控制出水水质(浊度、耗氧量、氨氮、色度、pH) e. 各项操作必须按照操作规程进行
工艺流程 17
3. 主要工艺参数
a. 前加臭氧量0.5 ~1mg/L。
b. 臭氧-活性炭系统设计规模20万吨/天,进水浊度<3NTU。
c. 臭氧接触池分3次曝气接触,三阶段反应,后臭氧投加量为2.5 ~ 3mg/L,接触时间13min。
d. 活性炭滤池采用序批式反冲洗池型,单格尺寸10×8m,面积80m2, 空床滤速10.94m/h。填料层由上而下为:活性炭粒径8~30目,厚 度2.2m,空床停留时间12.1min;下设砂层,平均粒径0.6mm,不 均匀系数1.3,厚度0.5m;支承层D=2.0~16.0mm,厚0.45m。冲洗 周期5~10d,冲洗历经气冲、气水混充、水冲三个阶段,冲洗强度 视冲洗频率和 方式而定。
臭氧—生物活性炭(O3—BAC)
臭氧—生物活性炭(O3—BAC)臭氧—生物活性炭(O3—BAC)一、臭氧—生物活性炭工艺原理臭氧—生物活性炭(O3—BAC)深度处理工艺由两部分组成:臭氧氧化和生物活性炭的物理吸附、生物降解。
臭氧具有极强的氧化能力,其在水中的氧化还原电位仅次于氟而第二位。
利用臭氧氧化作用,初步氧化分解水中的一部分简单的有机物及其还原性物质,使之变为CO2和H2O,以降低生物活性炭滤池的有机负荷。
提高活性炭处理能力;同时臭氧氧化能使水中难以生物降解的大分子有机物,如天然有机物(NOM)断链、开环、氧化成短链的小分子有机物或分子的某些基团被改变从而使原来不能生物降解的有机物转化成可降解的有机物,减少大分子极性污染物BOD浓度得到提高,所以提高了处理水的可生化性,同时使个别有机物(POC)转化为(DOC),如腐植酸等,分解后的小分子有机物的极性和亲水性得到了提高,更容易被活性炭吸附和附着在活性炭上的细菌生物降解;臭氧氧化可有效去除水中的酚、氰、硫、铁、锰,并能脱色、除嗅和味、杀藻以及杀菌消除病毒等;臭氧氧化还能有效地减少UV254的吸收。
臭氧氧化后会生成氧气和臭氧混合气体中含有的大量氧气以及剩余臭氧会迅速转化为氧气,不产生二次污染,又可增加水中溶解氧,使生物活性炭滤池有充足的溶解氧(DO),因此促使好氧微生物在活性炭上繁殖。
提高了微生物增长潜力,加快生物氧化和硝化作用,延长了活性炭使用寿命,加快有机物的生物降解,从而提高了其对有机物的去除效果;同时臭氧能氧化水中的溶解性的铁和锰,生成难溶性的氧化物。
通过过虑,铁、锰的去除率增加,提高过滤速度50%,延长过滤工作周期,降低了过滤反冲洗水量。
臭氧氧化也是减少溴酸化合物形成的有效方法,加强了活性炭对溴酸化合物的高效去除。
由于臭氧的强氧化性,在去除水中其它水处理工艺难以去除物质的同时,可以减小反应设备或构筑物的体积;臭氧化还有助于絮凝,改善沉淀效果。
因此,臭氧化技术在欧洲、美国、加拿大等国家普遍应用。
【臭氧-生物活性炭工艺】的设计与运行管理
【臭氧- -生物活性炭工艺】的设计与运行管理臭氧- 生物活性炭工艺的设计与运行管理张金松, 范洁, 乔铁军(深圳市水务〈集团〉有限公司, 深圳518031)摘要: 针对臭氧—生物活性炭工艺设计和运行管理的重点问题,首先对工艺设计中的活性炭滤料选择、活性炭滤层结构设计、活性炭池型选择、臭氧系统选择、臭氧接触池优化设计和复合预氧化设计等内容进行了研究和总结,并且对工艺运行管理中存在的微生物安全、大型微生物控制、活性炭滤池初滤水管理及pH控制、预臭氧和主臭氧工艺的运行管理等问题,提出了相应的解决方案,以及今后应用中应重点注意的若干问题。
关键词: 臭氧活性炭; 设计; 运行管理; 微生物安全; 标准深水集团所属梅林水厂和笔架山水厂的臭氧—生物活性炭工艺分别于2005 年和2006 年投入运行,对水厂进一步提高有机物、氨氮的去除效果,降低嗅味,全面改善水质发挥了重要作用。
但在实际运行中,也陆续发现了一些国内外文献未曾报道过的新问题,如生物活性炭导致pH值大幅降低,出水有剑水蚤、线虫等微型动物检出等水质问题。
因此,如何通过更好的设计和运行管理,从技术上解决这些问题,无论在理论上还是在实践中均具有非常重要的意义。
1工艺设计1.1活性炭性能指标的选择标准根据制造原料不同,活性炭可分为木质炭、果壳炭和煤质炭等,其中煤质活性炭因其具有多孔性和高硬度的优点,且来源稳定和价格较低,在大规模水处理工程中得到广泛应用。
在水处理工程中,国外多采用不定型炭(主要是压块破碎炭) ,而国内柱状炭的应用最为广泛。
近些年来,不定型炭(主要是柱状破碎炭)在国内得到越来越多的关注,并已经被应用在一些新建水厂中。
研究结果表明,活性炭滤池出水水质与活性炭性能指标之间具有某种相关性。
根据分析结果和实际运行情况,并参考国内外活性炭选择的标准,制定了适合于我国南方地区饮用水中活性炭选择的性能指标,如表1所示。
1.2活性炭滤层结构活性炭滤层厚度一般不低于1. 2 m,根据要去除的不同污染物,接触时间在6~30 min之间,但在一些应用中可高于或低于这个范围。
臭氧生物活性炭技术11
A
17 饮用水深度处理应用效果
常规处理水厂氨氮处理效果
常规水处理工艺中混凝 沉淀对氨氮有一定的去 除作用,但主要靠砂滤 池微生A 物作用去除
18
饮用水深度处理应用效果
三卤甲烷生成潜能比较
预臭氧后三卤甲烷总量有所增加。
整个工艺去除三卤甲烷生成潜能的最关键部分是生物活性炭滤 池,其对三卤甲烷生成潜能的去除率达到52.9%,出水后三卤甲烷生 成潜能仅为519μg·L-1,大大降低了消毒出水中过量消毒副产物产 生的风险。
与过滤配合使用——生物活性炭前需设过滤,不能将生物活性 炭作为过滤器来运行。一般生物活性炭进水的浊度<5NTU。
换炭再生——使用一定时间后必须更换新炭,饱和炭进行就地再 A生或是外运委托再生,否则将影响出水水质。
10
工艺应用条件与设计参数
设计参数:
吸附容量(qe);高出单纯活性炭4~20倍 通水倍数(n):根据水质确定 空塔速度(LV):4-5m/h,满足足够的接触时间,微生物降解 炭层高度(Hc):一般1~2m,不宜过高 气水比:炭层内应有足够溶解氧(>1mg/L),4~6:较为合
炼油废水
隔油 浮选 生物曝气 后浮选 生物活性炭工艺。生物活性炭的吸 附容量已达到2.52 gCOD/kg炭。
A
22
其他应用——生活污水深度处理
宝钢厂采用SBR 生物活性炭工艺,分别在各厂区陆续建成十多套 800 m3/d的综合污水处理及再生装置。
A
23
已连续运行2年以上,没有更换过新炭,处理出水达到中水水质标 试验
臭氧氧化一生物活性炭的第一次联合使用是1961年在德国 Dusseldorf(杜塞尔多夫)市Amstaad水厂中开始的,它的成 功引起了德国以及西欧水处理工程界的重视。
臭氧-生物活性炭-砂滤组合工艺运行效果分析
臭氧-生物活性炭-砂滤组合工艺运行效果分析刘建广;李芳;李世俊;王逸群;刘海勇【摘要】介绍某水厂采用“臭氧-生物活性炭-砂滤”深度处理组合工艺处理引黄水库水,考察了不同进水浑浊度对组合工艺长期运行效果的影响,同时对组合工艺各单元的有机物种类及分子量分布的变化进行了分析.长期运行结果表明:(1)组合工艺对不同水质条件下的有机物指标有较高的去除效果,较高的温度有利于水中有机污染物的去除.(2)臭氧的主要作用在于将大分子量的有机物氧化为小分子量有机物,故臭氧—生物活性炭工艺对CODMn、UV254和DOC有良好的去除作用.整个工艺对氨氮的去除率在40%~50%,对亚硝酸盐氮的去除率在80%~ 90%.(3)臭氧—活性炭工艺对可生物降解有机物有较好的去除效果,砂滤工艺主要去除DOCD&A.(4)上向流BAC柱活性炭颗粒间空隙率较大,降低了对浊度的机械截留,其后置的砂滤池可起到稳定出水浊度,保证出水微生物安全性的作用.%Combined processes of "ozone-biological activated carbon-sand filtration" applied in a WTP with reservoir raw water of Yellow River is introduced.And the effect of different influent turbidity on the long term operation of the combined process are investigated.At the same time,changes of organic species and molecular weight distribution of each unit of the combined process are analyzed.Long term operation results show as follows:(1) Combination process has high removal efficiency of organic matter indexes under different water quality conditions.Higher temperature is conducive to the removal of organic pollutants in water.(2) The main effect of ozone is the oxidation of organic compounds with large molecular weight to small molecular weight organic compounds.The removal rate of ammonianitrogen in the whole process is between 40%~ 50%,the removal rate of nitritenitrogen is between 80%~ 90%.(3) Ozone activated carbon process has a good effect on the removal of biodegradable organic compounds.Sand filtration process removes DOCD & A mainly.(4) The upper flow BAC activated carbon particles column with a larger porosity gives low removal efficiency of turbidity,the rear sand filter can play a stable effluent turbidity to ensure the safety of the role of water effluent.【期刊名称】《净水技术》【年(卷),期】2017(000)008【总页数】8页(P72-79)【关键词】饮用水;臭氧;生物活性炭;砂滤;组合工艺;深度处理【作者】刘建广;李芳;李世俊;王逸群;刘海勇【作者单位】山东建筑大学市政与环境工程学院,山东济南250101;山东建筑大学市政与环境工程学院,山东济南250101;济南水务集团有限公司,山东济南250012;山东建筑大学市政与环境工程学院,山东济南250101;山东建筑大学市政与环境工程学院,山东济南250101【正文语种】中文【中图分类】TU991.2Keywordsdrinking water ozone biological activated carbon(BAC) sand filtration combined processes advanced treatment虽然活性炭具有很强的吸附性能,但是由于活性炭的再生成本高、技术要求高[1],使得活性炭吸附使用周期较短,通常将臭氧氧化法与活性炭吸附联用[2],称作臭氧-生物活性炭法。
浅谈臭氧-生物活性炭工艺及应用
浅谈臭氧-生物活性炭工艺及应用摘要:臭氧-生物活性炭工艺是一种先进的饮用水深度净化工艺,它将臭氧化学氧化、臭氧灭菌消毒、活性炭物理化学吸附、生物氧化降解四种作用紧密结合为一体。
关键词:臭氧-生物活性炭;深度处理前言臭氧-生物活性炭工艺一般设在砂滤之后,砂滤水经臭氧氧化后,其中一小部分有机物被彻底氧化为水和二氧化碳,大部分有机物转化为臭氧化中间产物,使原来不能被生物降解的有机物变为可生物降解的有机物,提高水的可生化性;臭氧在水中可以自动分解为氧,使活性炭床处于富氧状态,增强了活性炭表面好氧微生物的活性,形成生物膜,降解吸附在活性炭中的有机物,使活性炭得到更高程度的使用[1]。
1 臭氧-生物活性炭工艺机理该工艺将臭氧化学氧化、臭氧灭菌消毒、活性炭物理化学吸附、生物氧化降解四种作用紧密结合为一体,它们互相促进,取得多重效应[2]。
(1).臭氧预氧化。
臭氧初步氧化分解水中的有机物及其他还原性物质,降低生物活性炭滤池的有机负荷,同时使水中难以生物降解的有机物断链、开环,将大分子有机物氧化为小分子有机物,提高其可生化性和可吸附性,使其能够被生物降解。
同时氧化水中溶解性的锰和铁,生成难溶性的氧化物,提高砂过滤的效果,提高锰、铁的去除率。
臭氧在水中分解生成氧气,使生物活性炭滤池有充足的溶解氧(DO),使好氧微生物活性增强,提高了微生物增长潜力,加快了生物的氧化和硝化作用,延长了活性炭的使用寿命,加快了有机物的生物降解,从而提高了对有机物的去除效果[3]。
(2).生物活性炭处理。
主要发挥以下几种作用:①破坏水中残余臭氧;②通过吸附去除化合物或臭氧副产物;③通过活性炭表面细菌的生物活动降解有机物;④吸附水中浓度较低、其他方法难以去除的有臭味或异味的物质;⑤附着的硝化菌还可以降低水中氨氮的浓度[4]。
(3).臭氧后氧化。
破坏细菌体上的脱氢酶,干扰细菌的呼吸作用,导致细菌死亡;氧化有机物,如杀虫剂、清洁剂、苯酚等;去除DOC;氧化分解螯合物,如EDTA和NTA等[5]。
臭氧活性炭工艺单元简介
1.1.臭氧氧化单元臭氧既是一种强氧化剂,也是一种有效的消毒剂。
通过臭氧氧化可以去除水中的嗅、味,提高和改善水的感官性状;降低高锰酸盐指数,使难降解的高分子有机物得到氧化、降解;通过诱导微粒脱稳作用,诱导水中的胶体脱稳;杀灭水中的病毒、细菌与致病微生物。
与活性炭滤池联用,可以增加活性炭的生物作用,延长活性炭再生周期。
1.1.1.气源选择气源制备一般可采用空气处理、液态纯氧蒸发和现场纯氧制备等方法。
当采用空气作气源时,包括无油空气压缩机、冷却器、冷冻、冷凝装置,过滤净化及稳压、减压装置、空气吸附、干燥及干燥剂再生装置等。
供臭氧发生器的气源可以是空气,也可以是纯氧。
纯氧可以在现场制备,也可以购买液态氧通过蒸发取得。
三种气源的特点如下:1、干燥纯净压缩空气(CDA):效率较低,能耗较高,空气源易取得。
2、液态纯氧(LOC):效率高,具灵活性,适应小水厂。
3、现场制氧气(V-GOC):效率高,可靠性好,适应大中型水厂。
结合本工程的实际情况及经济因素考虑,选用空气为气源。
1.1.2.臭氧需量计算臭氧接触装置是保证臭氧氧化处理效果的关键环节,为了保证接触装置的设计合理、可靠,应通过模拟实验取得设计数据。
由于在三级处理中使用臭氧更侧重于对有机物的氧化功能,且介质中的有机物浓度和细菌总数较高,因此,在设计中应按三级处理的水质条件来确定臭氧投加量和接触时间,并根据这一特点来选择适宜的接触装置。
臭氧的消耗不仅取决于COD的降解幅度,而且与COD的组分有密切关系。
所以对不同的原水,臭氧的消耗量也不同。
在没有模拟实验条件和项目前期设计时,三级处理的臭氧氧化单元可参考下述经验参数设计手册第五册设计:降解1mg/LCOD消耗4mg/LO3(臭氧化气)接触时间15~60min。
本设计中,前处理构筑物对COD的去除效率如下表:表2-1 COD 的去除效率SBR 池出水COD 仍高于排放标准,故本单元设计去除COD 浓度按40mg/L 计算,则臭氧投加量:L mg C C /16040==则需臭氧量:d QC Q O /kg 96016060003=⨯==1.1.3.空气气量计算干空气量:αC Q V 1000=干空气 式中 V 干空气——干空气气量,(Nm 3/h );Q ——根据水处理要求计算出来的臭氧产量(kg/h );C ——单位体积空气产出的臭氧量,根据发生器而定(g/m 3);α——系数,本设计取0.92;本设计中,参考经验值C 取10g/m 3,代入得h Nm V /43472492.010********≈⨯⨯⨯=干空气总干空气量: (1.2 1.5)V V -总干空气=公式中的系数1.2~1.5,是考虑增加再生干燥剂的用气量,本设计取1.5。
臭氧生物活性炭技术PPT幻灯片
促使砂粒表面的生物生长。也可能与传统工艺水中较高的氯浓度
的抑制作用有关
16
饮用水深度处理应用效果
氨氮去除率比较
传统工艺:沉淀池对NH+4-N的去除率较大,均值为58.9%.滤池 对NH+4-N的去除率为2.6%.
组合工艺:澄清后氨氮质量浓度仍比原水高1.2倍,砂滤池出水 的NH+4-N相对原水去除率为80%左右,后续的深度处理后,氨氮 的质量浓度低于检测限
7
作用原理——生物活性炭技术
活性炭吸附与微生物降解的协同作用
——生物活性炭胞外酶再生假说:一部分水解酶扩散进入活性炭 微孔,与吸附质反应,活性炭的吸附能力得以再生。
——微生物的降解作用改变了活性炭的物理吸附平衡,使生物活性 炭得以再生。
8
作用原理——生物活性炭技术
炭表面生长的微生物是否会影响炭的正常吸附过程? 活性炭的吸附速率主要取决于中孔或微孔的吸附速率,炭表面
17 饮用水深度处理应用效果
常规处理水厂氨氮处理效果
常规水处理工艺中混凝 沉淀对氨氮有一定的去 除作用,但主要靠砂滤 池微生物作用去除
18
饮用水深度处理应用效果
三卤甲烷生成潜能比较
适 反冲洗强度:10~15L/(s.㎡),10~20min 工作周期:生物活性炭的使用周期按1年设计
11
工艺应用条件与设计参数
构筑物形式:
饮用水深度处理:
目前,国内活性炭滤池已建成水厂多采用普通快滤池、虹吸滤池、 V型滤池、翻板滤池等池型,其中以V型滤池和翻板滤池更具代表 性。
工业废水处理:
活性炭塔
12
饮用水深度处理应用效果
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【臭氧- -生物活性炭工艺】的设计与运行管理臭氧- 生物活性炭工艺的设计与运行管理金松, 洁, 乔铁军(市水务〈集团〉, 518031)摘要: 针对臭氧—生物活性炭工艺设计和运行管理的重点问题,首先对工艺设计中的活性炭滤料选择、活性炭滤层结构设计、活性炭池型选择、臭氧系统选择、臭氧接触池优化设计和复合预氧化设计等容进行了研究和总结,并且对工艺运行管理中存在的微生物安全、大型微生物控制、活性炭滤池初滤水管理及pH控制、预臭氧和主臭氧工艺的运行管理等问题,提出了相应的解决方案,以及今后应用中应重点注意的若干问题。
关键词: 臭氧活性炭; 设计; 运行管理; 微生物安全; 标准深水集团所属梅林水厂和笔架山水厂的臭氧—生物活性炭工艺分别于2005 年和2006 年投入运行,对水厂进一步提高有机物、氨氮的去除效果,降低嗅味,全面改善水质发挥了重要作用。
但在实际运行中,也陆续发现了一些国外文献未曾报道过的新问题,如生物活性炭导致pH值大幅降低,出水有剑水蚤、线虫等微型动物检出等水质问题。
因此,如何通过更好的设计和运行管理,从技术上解决这些问题,无论在理论上还是在实践中均具有非常重要的意义。
1 工艺设计1.1 活性炭性能指标的选择标准根据制造原料不同,活性炭可分为木质炭、果壳炭和煤质炭等,其中煤质活性炭因其具有多孔性和高硬度的优点,且来源稳定和价格较低,在大规模水处理工程中得到广泛应用。
在水处理工程中,国外多采用不定型炭(主要是压块破碎炭) ,而国柱状炭的应用最为广泛。
近些年来,不定型炭(主要是柱状破碎炭)在国得到越来越多的关注,并已经被应用在一些新建水厂中。
研究结果表明,活性炭滤池出水水质与活性炭性能指标之间具有某种相关性。
根据分析结果和实际运行情况,并参考国外活性炭选择的标准,制定了适合于我国南方地区饮用水中活性炭选择的性能指标,如表1所示。
1.2 活性炭滤层结构活性炭滤层厚度一般不低于1. 2 m,根据要去除的不同污染物,接触时间在6~30 min之间,但在一些应用中可高于或低于这个围。
通常,以去除嗅味为主时,接触时间一般为8 ~10 min; 以去除CODMn为主时,接触时间一般为12~15 min。
研究结果表明,砂垫层对浊度有去除效果,但是去除率不高,当砂垫层进水浊度为0. 10 NTU时,浊度的平均去除率为6. 5%;石英砂垫层对高锰酸盐指数和氨氮基本没有去除作用。
然而砂垫层对微生物有较好的截留作用。
活性炭柱在反冲洗后的运行初期,石英砂垫层能够有效地截留活性炭出水中的部分细菌,而运行一段时间后(一般为数周) ,石英砂垫层就失去了对水中细菌的截留作用。
但是,活性炭柱经过再次反冲洗后,石英砂垫层将恢复对水中细菌的部分截留作用。
因此,为了保障出水水质,砂垫层的设计考虑采用滤料级配为0. 8~1. 2 mm的石英砂,砂垫层厚度为300 mm。
从长期生产运行情况看,砂垫层起到了预期效果。
1.3 活性炭滤池池型活性炭滤池可以分为重力式和压力式。
重力式活性炭滤池可以采用钢筋混凝土结构,因此在大中型水厂中应用通常是经济的。
重力式活性炭滤池的构造与普通砂滤池相似,只是把滤料层换成了活性炭炭层,但活性炭炭层厚度较砂滤池中的砂层厚。
重力式活性炭滤池虽然有利于悬浮物的去除,但为了避免悬浮物和微生物产生的粘液堵塞活性炭滤层,必须重视反冲洗国已建成水厂中的活性炭池型多采用普通快滤池、虹吸滤池、V型滤池、翻板滤池,且在技术上都是可行的,其中以V 型滤池和翻板滤池相对更具吸引力和代表性。
1.4 臭氧系统选择臭氧系统由气源、发生系统、接触池、尾气破坏系统和控制系统五部分组成。
①气源臭氧气源主要有三种,即使用成品纯液态氧、现场用空气制备纯气态氧和直接利用空气。
为了提高臭氧浓度,同时节省能耗,降低设备及管道尺寸,目前较先进的臭氧发生器多采用前两种方式制备臭氧,第三种方式适用于臭氧产量较小的场合。
②臭氧发生系统臭氧发生是由臭氧发生器来完成的,目前使用最广的臭氧发生器一般分为石英管和瓷管两类。
臭氧发生器的备用率一般应大于30% ,备用的方式有设备台数备用(硬备用)与设备发生能力备用(软备用)两种。
每台臭氧发生器臭氧发生量的调节围不应小于10%~100%。
③接触池预臭氧接触池一般设1个臭氧投加点,较多采用水射器投加方式,臭氧投量通常为0. 5~1. 5 mg/L,反应时间为3~5 min,水中余臭氧一般为零或很少。
主臭氧接触池一般设多个臭氧投加点(通常为2~3个) ,采用微孔曝气投加方式,臭氧投加量通常为1. 5~3. 0 mg/L (水中余臭氧为0. 2~0. 4 mg/L) ,反应时间一般不小于10 min。
为了保证对隐孢子虫和贾第虫的杀灭效果, CT值一般要大于4。
④尾气破坏系统尾气破坏系统是收集臭氧接触池排出的剩余臭氧并将其分解成对环境无害的氧(保证排出的气体臭氧浓度< 0. 05~0.1 mg/L) ,主要有催化氧化法和加热分解法,目前两种方法均得到广泛应用。
⑤控制系统预臭氧投加控制一般根据水量进行比例投加,投加浓度根据铁锰等还原物质含量确定。
主臭氧投加控制一般根据水量和水中余臭氧进行双因子复合环投加控制(水量是前馈条件, 余臭氧是后馈条件) 。
1.5 臭氧接触池优化设计为了提高臭氧接触池效率,采用计算流体力学作为模拟工具,对A水厂的臭氧接触池进行了分析和优化,结果表明,原设计下接触池廊道的高宽比过大,造成较严重的短流现象, T10 /HRT比值仅为0. 4,说明水力效率较低。
通过分析,决定在池适当位置增加导流板,以改变池的流态,使流速分布更为均匀,从而减少短流现象。
增加导流板后,反应室的流场得到明显改善,降低了短流现象,大幅提高了水力效率。
T10 /HRT的数值增加到0. 66,比原设计中的T10 /HRT 比值增加了0. 26,相当于在原设计基础上增加了73%。
因此,进行臭氧接触池设计时,应最大限度地提高臭氧接触池效率。
如果条件允许,应考虑采用尽量大的高宽比,另外,从曝气室到反应室的连通处应增加穿孔墙,以改变流体进入反应室的流态。
当条件不允许时,可考虑增设导流板。
1.6 复合预氧化工艺当臭氧作为预氧化剂时,能够去除色度、嗅味,降低三卤甲烷等氯化消毒副产物含量,对混凝沉淀也有一定作用。
但是,臭氧氧化也会对混凝产生不利的影响。
一般情况下,臭氧在低剂量下( 0. 4 ~1. 5 mg/L)可以起到良好的助凝作用,但浓度过高则会使结果恶化。
臭氧还会在水中产生AOC问题,在原水中存在溴离子情况下,会产生溴酸盐问题,该物质是强烈的致癌物质。
臭氧应用的成本也比较高。
为了发挥高锰酸盐和臭氧这两种氧化剂的优点,减少其各自不利的影响,可采用两者联用的复合氧化技术,其处理效能在一定程度上优于单一氧化剂预氧化,克服了臭氧预氧化对混凝的不利影响,提高了对有机物、藻类和嗅味的去除效果。
研究和生产运行结果表明,高锰酸盐和臭氧的复合氧化作用可以提高处理后水质,对浊度、色度、藻类、有机物和氨氮等的去除率, 一般均能增加10%以上;有效降低水中可生物降解有机物的含量,提高对AOC的去除,在现有水质条件下( TOC为2. 0 mg/L左右时) , AOC去除率可以比单独臭氧化提高20%~30%;可以控制水中臭氧化副产物如溴酸盐和甲醛的生成。
同时,高锰酸盐的投加,可以节省其他预氧化药剂(氯和臭氧)的投量,节省混凝剂投量10% ~30%,初步核算每吨水可以节约成本0. 006元,降低了运行费用。
2 运行管理2.1 微生物学安全性臭氧生物活性炭技术的微生物安全性包括以下容:致病性微生物(主要包括病毒、病原菌、“两虫”、携带寄生虫的后生动物等)及代产生的有毒物质。
从研究和运行实践来看,臭氧生物活性炭工艺产生了丰富的微生物群落,但在活性炭上并未发现致病性微生物,且出水中也未发现明显致病性微生物。
另外,臭氧活性炭工艺可以提高水质的生物稳定性,能够改善浊度和颗粒数的去除效果,有利于保障微生物安全。
迄今为止,臭氧生物活性炭技术还不存在微生物安全问题,但是,对这个问题必须引起足够重视,同时也要注意加强运行管理。
2.2 大型微生物控制臭氧—生物活性炭工艺为微生物生长提供了良好“载体”,同时臭氧作用造成的大量营养物质使滤池产生了丰富的微生物群落。
微生物群落可以表征炭上微生物膜的成熟程度,在群落形成过程中,可能会发生不断变化,最后形成以大量菌胶团、原生动物和后生动物等组成的微生物群落。
在我国已经运行的臭氧—生物活性炭滤池和出水中已发现了一些较大的微型动物,例如红虫、剑水蚤、轮虫以及其他不明微生物,这些动物一方面可能是某些病原微生物的寄主,另一方面会影响水质的感观指标。
但是目前国外在这方面的研究报道非常少。
为了防止因大型微生物过量孳生繁殖而影响水质,除了要加强上游常规工艺的管理外,还要定期对活性炭滤池作药剂浸泡处理,每月一次,可以根据季节不同,适当延长或缩短周期。
一般采用的药剂有氨、氯、氯胺、食盐等。
2.3 活性炭滤池初滤水管理初滤水指从反冲洗完成到滤池过滤性能基本恢复期间,从滤池所排出的过滤水。
研究结果表明, 初滤水的颗粒数高达6 000个/mL,过滤成熟期(3~5 h)后,颗粒数可以降低到50个/mL,甚至更低(见图1) ,因此,要加强初滤水管理。
根据运行经验,过滤初期( 0. 5~1 h) 、过滤后期和过滤过程中仍存在着出水浊度超标的可能。
其中,过滤过程浊度超标是由于进水水质发生突变和运行管理不当造成的,可以通过科学运行管理解决,过滤后期超标可以通过及时反冲洗解决,而解决过滤初期超标问题还需要进一步研究,建议设计时可考虑采用专门的排出管道。
214 活性炭滤池出水pH水厂出水pH值要控制在一定的围,低pH值易导致管道及构筑物的腐蚀,会影响水的嗅味和感观;高pH值一般伴随着高碱度和较高浓度的钙、镁等离子,会影响到水处理的管道和器械,显著增加消毒过程的耗氯量,导致管网中的余氯含量降低,影响消毒效果,给水质的卫生安全性带来隐患。
活性炭的原料和制造工艺的不同可使其吸附性能表现出一定的差异。
在一些活性炭滤池初期运行时,会出现pH值显著升高的现象,一般可升到10。
为了解决这个问题,可以采用连续浸泡法、间歇浸泡法、稀释法和酸洗法等。
由于酸洗法在工程中难以实现,且处理成本较高,因此,活性炭投池后,采用其他三种方法处理较容易实现。
随着运行时间的延长,活性炭滤池出水pH值会逐渐降低,相对于砂滤出水,降幅达1 ~2 个pH单位。
为了保证出水pH 值,一些水厂通常增加混凝过程中石灰投加量,这会导致沉淀后浊度显著上升,混凝投药量增加。
当使用铝盐作为混凝剂时,还存在着铝超标风险。
当原水碱度低时,这种现象更加明显。
pH值降低可能是由于以下几个方面原因造成的:微生物作用(有机物降解和硝化作用) 、活性炭表面性质变化和臭氧氧化作用。