单细胞测序技术PPT培训课件

合集下载

单细胞测序技术流程及其应用

单细胞测序技术流程及其应用

单细胞测序技术流程及其应用随着科学技术的不断发展,基因测序技术也在不断革新和完善,单细胞测序技术就是其中的一项重要突破。

单细胞测序技术是指针对单个细胞进行基因组测序以及转录组测序的技术,能够揭示单个细胞的基因表达和功能信息,为深入理解细胞的生物学特性、疾病的发生机制以及药物研发提供了有力支持。

本文将从单细胞测序技术的基本原理、流程及其在科研与临床中的应用进行详细介绍。

一、单细胞测序技术的基本原理单细胞测序技术的核心是在单个细胞水平上对基因组和转录组进行测序分析,从而可以揭示单个细胞的遗传信息和表达谱。

单细胞测序技术的基本原理主要包括以下几个步骤:单细胞的分离和捕获、细胞的裂解和DNA或RNA的提取、文库构建和测序、数据分析和解读。

单细胞的分离和捕获是单细胞测序技术的第一步,这一步骤需要使用微操纵技术或微流控芯片对单个细胞进行精确捕获和定位。

一般来说,单细胞可以通过胶体滴悬浮技术、微管道分选技术或光学镊子等手段进行分离和捕获。

细胞的裂解和DNA或RNA的提取是单细胞测序技术的第二步,这一步骤需要对单个细胞进行裂解以释放细胞内的DNA或RNA,并对其进行提取和纯化,以获取所需的生物学材料。

接着,文库构建和测序是单细胞测序技术的第三步,这一步骤需要将提取得到的DNA或RNA进行反转录、文库构建以及高通量测序。

目前常用的单细胞测序技术包括单细胞全转录组测序(scRNA-seq)、单细胞DNA测序(scDNA-seq)和单细胞ATAC测序(scATAC-seq)等。

数据分析和解读是单细胞测序技术的第四步,这一步骤需要利用生物信息学方法对测得的数据进行分析和解读,包括基因变异、基因表达谱、细胞类型鉴定、信号通路分析、表观遗传学等内容。

二、单细胞测序技术的应用1. 在发育生物学中的应用单细胞测序技术在发育生物学研究中具有重要的应用价值。

通过单细胞测序技术,研究人员可以揭示胚胎发育过程中各细胞类型的转录组变化,及时发现并界定发育中的特定细胞类型、子类型和发育轨迹。

单细胞测序技术流程及其应用

单细胞测序技术流程及其应用

单细胞测序技术流程及其应用1. 引言1.1 单细胞测序技术的背景单细胞测序技术的背景可以追溯到20世纪90年代初,在当时,传统的基因组测序技术主要是针对整个细胞群体进行测序。

由于细胞在功能和表现上的异质性,整体测序技术无法揭示每个细胞的特定基因表达情况。

这导致科学家们意识到需要一种能够单个细胞进行基因组测序的技术,从而诞生了单细胞测序技术。

单细胞测序技术的出现填补了传统基因组测序技术的空白,允许科学家们深入了解单个细胞的基因组、转录组和表观组学特征。

通过单细胞测序技术,科学家们可以更好地理解细胞间的差异性,在个体发育、疾病发生和治疗方面提供了全新的视角。

随着单细胞测序技术的不断发展,越来越多的应用领域开始受益于该技术的应用。

从疾病研究到癌症治疗再到干细胞研究,单细胞测序技术的应用正在不断扩展,并为生命科学领域的发展带来了巨大的进步。

1.2 单细胞测序技术的意义单细胞测序技术的出现,标志着生物学研究进入了一个全新的时代。

传统的基因测序技术主要是对大量细胞的平均基因表达情况进行分析,而单细胞测序技术则可以对每个细胞的基因表达情况进行详细的分析和比较。

这种技术的意义在于,它能够揭示细胞之间的异质性和细胞在组织中的特异性,为我们深入了解生命的复杂性提供了新的视角。

通过单细胞测序技术,我们可以了解到不同细胞在基因表达水平上的差异,揭示不同细胞类型的特征和功能,进而探讨细胞在发育、疾病和治疗等方面的重要作用。

单细胞测序技术还可以帮助我们发现新的细胞类型和功能。

通过分析单个细胞的基因表达数据,我们可以挖掘出以往未曾发现的细胞亚群,解释其在生物学过程中的作用。

单细胞测序技术的意义在于它为我们提供了一种全新的研究手段,可以深入探究细胞的多样性和特异性,从而推动生命科学领域的发展和进步。

2. 正文2.1 单细胞测序技术流程单细胞测序技术是一种能够对单个细胞进行基因组、转录组和蛋白质组的高通量测定的技术。

它的出现为研究者提供了深入了解单个细胞特性和功能的机会,有助于揭示细胞间异质性和分化过程。

Nature:单细胞基因组测序

Nature:单细胞基因组测序

个体化医疗与精准诊断
个体化医疗
单细胞基因组测序可以揭示个体之间 的基因表达和变异差异,有助于实现 个体化医疗,为患者提供更加精准和 有效的治疗方案。
精准诊断
通过对患者的单细胞基因组数据进行 检测和分析,可以更加准确地诊断疾 病,提高诊断的准确性和可靠性。
药物研发与基因治疗
药物研发
单细胞基因组测序可以研究药物的基 因表达和变异效应,有助于发现新的 药物靶点和筛选出更有效的药物。
秘。
药物研发
单细胞测序技术将有助于更 快速、准确地筛选和开发新 药,降低药物研发成本和时 间。
THANKS
谢谢
通量
一次测序能够分析大量单细胞样本,具有高 通量。
02
CHAPTER
自然领域中的应用
物种进化研究
物种进化研究
单细胞基因组测序可以用于研究 物种的进化历程,通过比较不同 物种的单细胞基因组数据,可以 揭示物种之间的亲缘关系和进化 趋势。
物种分类
单细胞基因组测序可以提供更准 确的物种分类依据,通过对基因 组的比较和分析,可以更准确地 鉴定和分类物种。
技术发展历程
初始阶段
2009年,科学家首次实现了单细胞全基因组测 序。
进展阶段
随着技术的不断改进,单细胞测序的通量、分 辨率和灵敏度逐渐提高。
当前阶段
单细胞测序已经成为研究细胞异质性和基因表达的重要工具。
关键技术指标
分辨率
单细胞测序能够检测到单个细胞的基因表达 和变异情况,具有高分辨率。
灵敏度
能够检测到低丰度的基因表达和稀有变异, 具有高灵敏度。
02
疾病分类与诊断
03
药物筛选与作用机制
单细胞基因组测序可以揭示单个细胞 的基因表达和变异情况,有助于深入 了解疾病的发生机制,为疾病的预防 、诊断和治疗提供科学依据。

单细胞测序(测序公司培训)PPT精选文档

单细胞测序(测序公司培训)PPT精选文档
MDA方法的技术核心是用Phi29DNA聚合酶来进行直接的扩增,Phi29DNA聚合酶可 以把双链DNA进行解链,然后在常温条件下就把原始模板进行大量扩增
扩增引物 Phi 29 DNA聚合酶 基因组模板DNA
MALBAC法扩增
PicoPLEX™ WGA Kit
单细胞转录组
12
13
14
单细胞测序
主讲人:陈璟 2015/8/5
2013年,单细胞测序技术(single-cell sequencing)荣膺《自然-方法》年度 技术。单细胞测序技术有助于我们剖 析细胞的异质性。它可以揭示肿瘤细 胞基因组中发生的突变及结构性变异, 而这些突变和变异往往有着极高的突 变率。
2
3
4
MDA扩增图
15
16
171819 Nhomakorabea 2021
单细胞CNV(Copy number variation)分析
22
单细胞SNV(single nucleotide variation)分析
23
24

单细胞测序技术(singlecellsequencing)

单细胞测序技术(singlecellsequencing)

单细胞测序技术(singlecellsequencing)前⾔单细胞⽣物学最近⼏年是⾮常热门的研究⽅向。

在这⼀领域中,最前沿的则是单细胞测序技术。

传统测序⽅法⼀次处理成千上万个细胞,得到的变异⽔平也是成千上万个细胞的平均后⽔平。

但是,就如同世界上没有完全相同的两⽚树叶⼀样,没有两个细胞是完全相同的。

所以,单细胞测序对于研究单个细胞就显得⾄关重要。

单细胞测序可以揭⽰出每个细胞独特的微妙变化,甚⾄可以揭⽰全新的细胞类型。

单细胞测序技术可谓是科技发展史上的⼀⼤创举,它极⼤地推进了基因组学领域,使不同细胞类型得以精细区分,使得科学家们在单细胞⽔平进⾏分⼦机制研究成为可能。

随着⾼通量RNA测序技术的发展,2009年,开发了第⼀个单细胞转录组测序技术。

到了2011年Nicholas等⼈开发了单细胞基因组测序技术。

2013年⼜开发出了单细胞全基因组DNA甲基化检测技术。

随后,科学家在细胞分选技术、核酸扩增技术、信噪⽐提⾼⽅⾯等进⾏不断优化和改进,也进⼀步开创了单细胞Hi-C、单细胞ChIP-seq、单细胞ATAC-seq技术等。

2017年单细胞测序在技术⽔平和应⽤层⾯上都更进⼀步发展,本周我们汇总了2017年单细胞测序技术层⾯的部分重要进展。

更多的信息请您继续关注⼀呼百诺。

SCI-seq2017年3⽉,美国俄勒冈的研究⼈员在Nature Methods上发表“Sequencing thousands of single-cell genomes with combinatorial indexing (doi:10.1038/nmeth.4154) ”⽂章,开发出⼀种SCI-seq (single-cell combinatorial indexed sequencing,单细胞组合标记测序技术),多次对细胞进⾏条形码编码标记后对它们进⾏测序,可以同时构建上千个单细胞⽂库,检测体细胞拷贝数的变异。

这项技术极⼤的缩减了⽂库构建的成本,增加了检测细胞的数量,这对于体细胞变异的检测,尤其是在肿瘤进化过程中对细胞亚克隆变异研究具有重要价值。

10X单细胞转录组测序原理和文库构建注意要点(PPT课件)

10X单细胞转录组测序原理和文库构建注意要点(PPT课件)

• 定点编辑基因的细胞水平研究
提高效率
• 发育及分化
• 7分钟之内即可完成单细胞体系制备,捕获效率高
• 新型细胞发现
达65%
• 构建细胞图谱
• 成本低,广泛的研究应用领域,超短的项目周期
▽ 细胞类型
生殖细胞、胚胎细胞、神经细胞、免疫细胞、肿瘤细胞、干细胞、其他原代细胞
3
10
10X单细胞转录组测序的技术原理
根据建库起始量计算循环数,Index 核对无误。 同上一步双端纯化
9
10
常见问题
Q1:细胞悬液中杂质较多,一方面会影响计数的不准确,细胞浓度偏高,细胞活性偏低; 另一方面会导致芯片的堵塞。
Q2:细胞直径较小(~5um),不在计数仪有效计数的大小范围;细胞小,染色后容易 被当成死细胞计数,导致细胞活性比实际的活性低。
手持芯片边缘将芯片放入芯片架,样本数不足8个,
需要向用不到的通道内加入50%甘油,不要向回收
孔中加入50%的甘油
组织解离
①②③④⑤⑥⑦⑧
6
10
e/ 混合单细胞悬液、Master Mix和水 根据目标捕获细胞数和细胞浓度确定上样体积和水 的体积,先向Mix中加入水再加细胞悬液,细胞悬液 加入Master Mix前用移液器重悬细胞悬液。不要直接 混合细胞和水。
10X单细胞转录组测序: • 是如何实现单个细胞的分离的? • 是如何区分不同的细胞以及同一细胞中同一基因的不同转录本的呢?
微流控技术
Barcoding技术
4
Barcoding技术
5
10
10X单细胞外出试验流
a/ 细胞悬液制备(客户完成)
程 流式分选
细胞悬浮缓冲液:1XPBS with 0.04%BSA

单细胞测序

单细胞测序
癌症研究 胚胎研究 原始材料很少的法医学、古生物学 干细胞研究
2、样本高度异质,细胞之间存在重要差异
肿瘤遗传异质性研究,如化疗前后细胞种群及疗效分析 神经元的差异机制 辐射前后细胞差异分析
B: 当延伸遇到另一条新链随 机引物时,Φ29 DNA聚合酶替 换掉引物继续延伸,形成支链 结构,新的引物会在支链上重 新结合延伸。
B
MALBAC、MDA、Bulk比较
MALBAC技术方法
• 结果
• Cnv图
MALBAC技术方法
单细胞测序技术应用
1、样本稀少,用常规方法无法进行基因组或转录组分析
微流控芯片分离技术
• 利用微加工技术,在硅、玻璃、聚二 甲基硅氧烷等材料上,根据需要制作各 种结构、大小的微米量级的管道进行实 验,结合微流控技术对细胞进行分离。 (亲和性、物理特征、电学性能、免疫 磁珠)
优势:通量大,检测灵敏度高、分析速度快、自动高效。
劣势:微流控自身限制;芯片设计难度大。
单细胞全基因组扩增技术
单细胞测序技术
单细胞测序技术背景 单细胞分离技术
单细胞全基因组扩增技术 单细胞测序技术应用
单细胞测序技术背景
• 大量细胞测序反映的是细胞群体中信号表达的均值, 或者代表其中在数量上占优势的细胞信息,单个细胞 的独有细胞特性被掩盖或者忽略。
• 从单个细胞获取完整的基因组信息的应用场景增多, 如:循环肿瘤细胞转录组分析、人胚胎发生最早期的 分化特征研究等。
优势:高准确度、高灵敏度、高通量、 技术成熟、标准统一。
劣势:需要大量的悬浮细胞作为原始材料,会影响低丰度细胞亚 群的产出;快速液流影响细胞活性和状态。
梯度稀释分离
• 通过将细胞进行梯度稀释,最终得到 单个细胞。适用于样本可以培养的研究 中,如单个大肠杆菌与原绿球藻进行基 因组测序。

《NGS基础培训》课件

《NGS基础培训》课件

诊断罕见遗传病
通过分析患者的基因变异,对罕见的遗传病进行确诊和病理 分析。
预测遗传风险
通过对家族遗传史的研究,预测患者或亲属患某种遗传疾病 的风险。
肿瘤个性化治疗
靶向治疗
通过基因测序找到肿瘤的特异基因变异,设计个性化治疗方案,提高治疗效 果和减少副作用。
免疫治疗
分析肿瘤细胞的免疫逃逸机制,为患者提供更加精准的免疫治疗。
单细胞RNA测序
通过对单个细胞进行RNA测序,研究细胞异质性和基因表达的复杂性,具有 更高的灵敏度和分辨率。
单细胞DNA测序
通过对单个细胞进行DNA测序,研究基因组变异和遗传多样性,具有更高的 灵敏度和分辨率。
空间转录组测序技术
空间RNA测序
通过对组织样本进行空间定位,研究基因表达的空间分布和细胞异质性,为研究 复杂的生物组织提供新的工具。
VS
详细描述
序列组装是将测序得到的数千至上百万条 序列拼接成较大片段的过程,需要使用高 效的算法和计算资源。基因组构建是在序 列组装完成后,利用生物信息学手段将获 得的基因组组装成完整的图谱。这些步骤 对于研究生物体的基因组变异、基因结构 和功能等具有重要意义。
03
ngs在临床医学中的应用
遗传疾病的诊断与预测
数据质量控制与处理
数据质量评估
采用FASTQC等工具对数据质量进行评估,确保数据质量符 合要求。
数据过滤与去噪
使用Trimmomatic、Novoalign等工具进行数据过滤和去噪 ,以提高数据质量。
基因变异检测与注释
基因变异检测方法
采用SOAPsnp、GATK等工具进行基因变异检测,并依据SNP位点在基因组 上的位置进行注释。
《ngs基础培训》课件

单细胞测序技术课件

单细胞测序技术课件
细胞裂解与RNA提取 在分离出的单个细胞上裂解细胞膜,释放细胞内 的RNA。使用特定的试剂或方法提取RNA,并 进行纯化。
逆转录与cDNA合成 使用逆转录酶将建原理
将逆转录合成的cDNA进行一 录
• 单细胞测序技术概述 • 单细胞测序技术原理 • 单细胞测序实验设计 • 单细胞测序数据分析 • 单细胞测序技术的应用案例 • 单细胞测序技术的未来发展与挑战
contents
01
单细胞测序技术概述
定义与特点
定义
单细胞测序技术是一种高通量的分子 生物学技术,可以对单个细胞进行基 因组、转录组或表观组测序,以揭示 进行酶切、连接和文 库构建,以便后续的测序 分析。
技术优势与局限性
优势
能够对单个细胞进行基因组或转录组 分析,分辨率高,能够揭示细胞异质 性。
局限性
由于技术复杂度高,成本较高,且存 在一定的误差率。
03
单细胞测序实验设计
实验准备
确定研究目标
在开始单细胞测序实验前,需要明确研究目标,例如鉴定特定组 织或疾病中的细胞类型、分析细胞发育过程等。
预测模型构建
基于单细胞测序数据,构建预测模型,用于 疾病诊断、药物筛选和个性化治疗等。
技术伦理与法规问题
数据隐私保护
确保单细胞测序数据的隐私保护,防止数据泄露和 滥用。
伦理审查与知情同意
建立严格的伦理审查机制,确保单细胞测序技术的 合理使用和伦理规范。
法规监管
制定相关法规和政策,规范单细胞测序技术的研发 和应用,保障科技发展的安全和可控性。
应用领域
基础研究
01
用于揭示细胞发育、分化、功能和相互作用的机制,以及探索
疾病发生、发展和治疗的分子机制。

单细胞测序技术相关知识点

单细胞测序技术相关知识点

单细胞测序技术相关知识点一、知识概述《单细胞测序技术》①基本定义:单细胞测序技术呢,就是能对单个细胞进行基因组测序的技术。

简单说就是以前是一群细胞一起测序,现在能精确到单个细胞了,就像以前是看一群人的整体特征,现在能细致到一个人的个性了。

②重要程度:在生物学学科里是个很厉害的技术啊。

它能让我们更深入地理解细胞间的差异,细胞发育呀,还有疾病发生机制这些。

就好比以前是模糊地看一片树林的大致情况,现在能看清每棵树的细微之处了,对生物研究是个很大的跨越。

③前置知识:需要知道一些基本的基因知识,像基因是怎么构成的,还有测序的基本知识,基本流程那种。

要是不知道测序一般是怎么回事,那单细胞测序技术就更难理解了。

④应用价值:它能用于研究肿瘤细胞的异质性。

比如说肿瘤,我们知道肿瘤细胞不是都一样的,有些细胞很危险,有些细胞还好。

通过单细胞测序就能找出那些危险的细胞到底有什么不一样,从而开发更精准的治疗方法。

还能用于胚胎发育研究,看看胚胎里的细胞是怎么分化成各种组织器官的。

二、知识体系①知识图谱:单细胞测序技术在生物学里,特别是细胞生物学这个分支里占了很重要的位置。

它像是一个放大镜,看细胞看得更精细深入。

②关联知识:和基因编辑技术有关联,因为都涉及基因层面的操作研究。

也和细胞培养技术有关,毕竟得有细胞来源才能做单细胞测序。

③重难点分析:掌握难度嘛,说实话我觉得它概念理解不容易,因为涉及到很多微观的东西。

然后分析结果也不轻松,数据很多很复杂。

关键点就是准确地采集单细胞,还有很好地分析那些测序数据。

④考点分析:考试中要是考细胞相关的,挺重要的。

可能考查单细胞测序技术原理,或者给个细胞相关疾病的场景,问如何用单细胞测序技术解决问题。

三、详细讲解【理论概念类】①概念辨析:单细胞测序技术核心就是精确到单个细胞的基因测序,和传统测序相比,传统测序把细胞当一个整体测,它是一个一个来。

就像数一堆硬币,传统只能称出一堆的重量,单细胞测序能数清楚每个硬币。

科普讲堂一文讲明白什么是单细胞测序

科普讲堂一文讲明白什么是单细胞测序

科普讲堂一文讲明白什么是单细胞测序简介单细胞测序技术,简单来说,就是在单个细胞水平上,对基因组、转录组及表观基因组水平进行测序分析的技术。

传统的测序,是在多细胞基础上进行的,实际上得到的是一堆细胞中信号的均值,丢失了细胞异质性(细胞之间的差异)的信息。

而单细胞测序技术能够检出混杂样品测序所无法得到的异质性信息,从而很好的解决了这一问题。

图1 单细胞转录组测序示意图单细胞测序技术自从2009年首次问世,在这十几年以来持续不断地发展。

尤其是近几年,单细胞测序出现了爆发式的发展和普及。

2011年,《Nature Methods》杂志将单细胞研究方法列为未来几年最值得关注的技术领域之一。

2013年,《Science》杂志将单细胞测序列为年度最值得关注的六大领域榜首,《Nature Methods》杂志将单细胞测序的应用列为2013年年度最重要的方法学进展。

2017年10月16日,与“人类基因组计划” 相媲美的“人类细胞图谱计划” 首批拟资助的38个项目正式公布,引爆单细胞测序新时代。

单细胞表达谱测序与bulk RNA测序对比传统的二代测序中,最为人熟知的就要数RNA-seq了(图2)。

RNA-seq是提取组织、器官或一群细胞的混合RNA(bulk RNA)进行测序,能够得到的是一群细胞的转录组的平均数据,细胞群体中单个细胞的特异性信息往往被掩盖(比如特异表达的基因或RNA不同的剪接体)。

而随着对生物结构功能的深入研究,人们越来越清楚地认识到,哪怕看似相同的细胞群,细胞之间的转录组表达水平也是存在差异的。

以肿瘤为例,肿瘤中心的细胞,肿块边缘的细胞和肿块周围的细胞,乃至远端转移的细胞,其转录组等遗传信息一定是存在差异的,而传统的研究手段通常将整个肿块整体进行研究,或者将肿块简单分区分割,得到每一部分细胞基因表达的平均值,丢失了每个细胞的异质性信息,使科研人员对肿瘤微环境中各种细胞转录组表达及免疫功能的理解和认识始终无法深入。

单细胞测序技术-

单细胞测序技术-

受精卵可能只有一个是正常的
单细胞测序技术的优势与技术难题
用传统的随机引物PCR的方法来扩增,那么 常规的、用大量的DNA建库的方法,因为打断、 不同的扩增片段的扩增效率多少会有一些差异, 补平、加 A、加 这些扩增效率的差异会随着扩增循环数的增加呈 DNA 片段的损失,结果就是初始出指数放大的效果,其结果就是会发生严重的 优势: 表在单细 胞测序中,丢失大部分的起始 DNA 是不可接受的。 覆盖不均一,极少数区段的DNA 被大量扩增,测 分子,在上机的时候是被水冲走的,所以单细胞基因 1.测量基因表达水平更加精确; 单细胞测序要求几乎所有的原始基因组片段都得到 序后它深度非常深,但在大多数区段只有很低的 组扩增的方法还要有较高的扩增效率,至少要有上万 扩增,并且在后续的测序过程中被测序测到。这就 2.能检测到微量的基因表达子或罕见非编码 RNA 覆盖,甚至没有覆盖,那么我们就无法有效地判 倍到几十万倍的扩增效率,才能保证在全基因组测序 要求几乎所有的片段都会被得到扩增,而不只是少 的时候,大部分的片段都被测序测到。 断那些低扩增效率区段的基因序列的情况; 数片段得到有效扩增;
单细胞测序技术是指在单个细胞水平上对基因组进行扩增与测序的一项 新技术。 单细胞测序主要涉及单细胞基因组测序和转录组测序两方面,分别针对 单个细胞的DNA和RNA进行序列分析和比较,进而揭示基因组和转录组的变 化。
单细胞全基因组测序是对选定的目的细胞的全部基因组序列进行非选择
性、均匀扩增,随后利用外显子捕获技术进而高通量测序。 单细胞转录组测序是利用高通量测序技术进行cDNA测序,从而获取特 定器官或组织在某一状态下的几乎所有转录本
MDA方法是使用随机引物,让这些引物与基因组广泛结合,同时使用 一种特定的聚合酶,这种聚合酶能够置换与它自身附着在同一模板上的 DNA链片段,形成一种反复分支结构,扩增出大段的DNA。

测序技术介绍 PPT

测序技术介绍 PPT

测序过程中得常见问题分析
5:酒精如果没有挥发完全,在约300bp处会出现连续异常得G峰,酒精挥发时间过 长会导致DNA断裂。
第一个峰,重叠干扰。如果不判读为干扰峰,那就说明样品不纯,如果就是基因组DNA,就很 好地说明了样品为杂合子,该位点可能存在SNP现象(T/G)。如果判读为干扰峰,我们只需认 定样品此处碱基为T为行了。
454测序仪得整个实验步骤可大致应板准备
• 上机测序
2022/9/16
454测序原理
1. 样品处理: 样品处理主要就是针对大片段得DNA分子,如基因组DNA、Fosmid或BAC
质粒等,利用超声或氮气打断将这些DNA分子片段化,然后采用琼脂糖凝 胶电泳回收或磁珠纯化,选择500-800bp得DNA片段。对于非编码RNA或 PCR产物,则不需要这一步骤。
致测序信号得衰减。解决办法:使用反向引物对模板进行测序,测到该poly结构 处,即可完成模板全长得拼接。
第二代测序技术(Next-Generation Sequencing)
各自得优点
454 测序平台得到得片段能够达到400 bp,并且读长得 质量高;
Solexa 测序平台得性价比最高,在数据量相同得情况下, 测序成本仅为454 测序平台得1/10;
在Sanger测序时代,美国应用生物系统公司(ABI)一直就是该行业得龙头老大, 其垄断地位无人能撼,从早期得377到全自动化得3730xl,ABI得测序仪被广泛应用 在基因组学研究得各个方面。然而在第二代测序技术迅猛发展之初,ABI起步较 晚,显得有些漫不经心。直到2005年454公司推出GS平台,ABI得领先地位受到威 胁,这才开始发力,迅速收购了研发NGS得一家小公司Agencourt,并于2007年推出 了它得SOLiD测序平台。此后SOLiD不断升级,目前已到SOLiD 5版本(SOLiD 5500xl)。 SOLiD得全称就是Sequencing by Oligo Ligation Detection,即寡聚物连接检测测序, 其基本原理就是通过荧光标记得8碱基单链DNA探针与模板配对连接,发出不同 得荧光信号,从而读取目标序列得碱基排列顺序。在该方法下,目标序列得所有 碱基都被读取了两遍,因此SOLiD最大得优势就就是它得高准确率。据悉,SOLiD 5 平台得测序通量已达到30Gb/天,成本低于60美元/Gb,准确率高达99、99%。并 且由于SOLiD系统采用得不就是PCR反应进行DNA合成与测序,因此对于高GC含 量得样本,SOLiD系统具有非常大得优势。

单细胞基因测序

单细胞基因测序

Highthroughput with microfluidic dropletbarcodingThe application of single-cell genome sequencing to large cell populations has beenhindered by technical challenges in isolating single cells during genome preparation. Herewe present single-cell genomic sequencing (SiC-seq), which uses droplet microfluidics toisolate, fragment, and barcode the genomes of single cells, followed by Illumina sequencingof pooled DNA.We demonstrate ultra-high sequencing throughput of >50,000 cells per runin a synthetic community of Gram negative and Gram-positive bacteria and fungi. Thesequenced genomes can be sorted in silico based on characteristic sequences.We use thisapproach to analyze the distributions of antibiotic resistance genes, virulence factors, andphage sequences in microbial communities from an environmental sample.The ability toroutinely sequence large populations of single cells will enable the de-convolution of geneticheterogeneity in diverse cell populations.Main:Organisms are living expressions of their genomes and, hence, genome sequencing is apowerful way to study how they grow and function.Organisms are phenotypically diverse,and this diversity is mirrored by heterogeneity at the genomic level and plays important rolesin populations as a whole, particularly among populations of single cells.A commonchallenge when applying single cell sequencing to heterogeneous systems is that they oftencontain massive numbers of cells: a centimeter-sized tumor can contain hundreds of millionsof cancer cells1, while a milliliter of seawater can contain millions of microbes2.Moreover,each cell has a tiny quantity of DNA, making itchallenging to accurately amplify andsequence singlecells.The sparseness of the sampling limits the questions that canbe addressed, with the majority of findings relating to the most abundant subpopulations. Amethod that could markedly increase the number of cells sequenced at the single cell levelwould impact a broad range of problems across biology where heterogeneity is important.Droplet microfluidics enables millions of independent picoliterreactions, and has recentlybeen used to deep sequence single DNA molecules10, tag nucleosomes to enable single-cellChIP-seq11, and to profile the transcriptomes of single cells all at high throughput. However, sequencing the genomes of single cells presents unique challenges, becausegenomic DNA must be purified from the cellular matter and processed through a series ofenzymatic steps to prepare it for sequencing.Consequently, while droplet microfluidicsprovides the potential for sequencing of single cell genomes at ultra high-throughput, noapproach for accomplishing this has yet been described.We describe a method for single cell genome sequencing at ultrahigh-throughput (SiC-seq)using droplet microfluidics.In SiC-seq, we encapsulate cells in hydrogel microspheres(microgels) that are permeable to molecules with hydraulic diameters smaller than the poresize, including enzymes, detergents, and small molecules, but sterically trap large moleculessuch as genomic DNA.This allows us to use a series of “washes” on encapsulated cells, toperform the requisite steps of cell lysis and genome processing, while maintainingcompartmentalization of each genome.Using a combination of microgel andmicrofluidicprocessing steps, we lyse the cells, fragment the genomes, and attach unique barcodes toallfragments, in a workflow that processes >50,000 cells in a few hours.pooled and sequenced,and the reads grouped bybarcode,providing a library of single cell genomesthat can be subjected to additionaldownstreamprocessing, including demographiccharacterization and in silico cytometry (Fig. 1ResultsSiC-seq workflowThe principal strategy of SiC-seq is to label all DNAfragments originating from the samegenome with asequence identifier (barcode) unique to that cell.The resultant products arechimeric, comprising abarcode sequence covalently linked to a randomfragment of the cellgenome.The barcodes allow all reads belonging to a givencell to be identified throughshared sequence.We use libraries of barcode droplets containing thebarcode sequences thatare merged with the genomecontaining droplets to be barcoded10.To prepare a barcodedroplet library, we encapsulateinto droplets at limiting dilution, oligonucleotidescomprising15 random bases flanked by constantsequences with PCR reagents andprimerscomplementary to the constant regions of thebarcodes with one side containing the IlluminaP7flow cell adapter (Fig. 2a)16.The droplets are then thermal cycled to amplify thebarcodesequences via digital droplet PCR, generating~10 million barcode droplets in a few hours.Before the single cell genomes can be barcoded, theymust be physically isolated, purified,and fragmented.To accomplish this, we encapsulate single cells inagarose microgels usinga two-stream co-flow dropletmaker, which merges a cell suspension stream with amoltenagarose stream, forming a droplet consistingof an equal volume of both streams (Fig. 2b andSupplementary Fig. 1a).The droplet maker runs at ~10 kHz, allowing us togenerate~10 million ~22 μm diameter droplets in ~20minutes in a total volume of aqueous emulsionof ~60μL.Hence, droplet generation is fast and the total volume consumed small, allowingus to load cells at a rate of 1:10 to minimize multi-cell encapsulation.microgels are then transferred from oil to aqueouscarrier phase to besubjected to cell lysis and genomepurification.To lyse the cells, we incubate the microgelsovernightin a mixture of lytic enzymes, digesting theprotective microbial cell walls (Onlinemethods).We then incubate them in a mixture of detergents andproteases for 30 minutes,solubilizing lipids and digesting proteins, preservingonly high molecular weight genomicDNA, which weverify by staining with SYBR green dye (Fig. 2c).To fragment the genomesand attach the universalsequences to act as PCR handles, we re-encapsulatethe gels in theNextera® reaction (Fig 2dandSupplementary Fig. 1b).Because the transposases aredimeric, the fragmentedgenome remains intact as a macromolecular complex,remainingsterically encased within the hydrogelnetwork (Supplementary Fig. 2) 17.Nevertheless, were-encapsulate the gels into separatedroplets during fragmentation to ensure that there isnocross-contamination of DNA between the gels.After the genomes are purified and fragmented, theyare barcoded for sequencing.We use amicrofluidic device that merges eachmicrogel-containing droplet with dropletscontainingPCR reagents and a barcode droplet (Fig.2e andSupplementary Fig. 1c).The resultingdroplets, which containfragmented-genome and barcode DNA are collectedinto a PCR tubeand thermal cycled, splicing thebarcode sequences onto the genomic fragmentsviacomplementarity through the PCR handles addedby the transposase.At this point, thespliced fragments contain both theP5 and P7 Illumina sequencing adaptor requiredforsequencing on the Illumina platforms.We remove droplets that coalesce duringthermalcycling using a micropipette, then theremaining droplets are chemically merged andtheircontents pooled and prepared for sequencing(Online methods).Validation of SiC-seq on an artificial microbial communityThe objective of SiC-seq is to provide single cell genomic sequences bundled in barcodegroups.To validate that SiC-seq generates single cell barcode groups, we applied it to anartificial microbial community containing three Gram-negative bacteria, five Gram-positivebacteria, and two yeasts, which are typically difficult cell types to lyse.We prepared asingle-cell library from this community using SiC-seq and sequenced it on an IlluminaMiSeq, yielding ~6 million single-end reads of 150 bp after quality filtering.We groupedreads by barcode and discard groups with < 50 reads yielding the final 48,989 barcodegroups (Fig. 3a).Each barcode group represents a low-coverage genome of a cell, with asequencing depth of ~0.1% to ~1% (Supplementary Fig. 3)To determine whether the barcode groups indeed correspond to single cells, we mapped allreads to the reference genomes of the ten species.If two microbes reside within the samebarcode group, reads will map to two genomes.We defined a group purity score as thefraction of reads mapping to the most mapped reference (the ideal barcode group has apurity score of 1.0).The distribution of purity scores is strongly skewed to high values withthe majority of purity score over 0.95 suggesting that most barcode groups represent singlecells; this result is consis;tent even taking into account the different genome sizes of the tenspecies (Fig. 3b and Supplementary Fig. 4) as well as when purity is examined individuallyfor each species(Supplementary Fig. 5).To determine whether SiC-seq barcodes abundances reflect the organism abundances in thedataset, we compared abundance estimates calculated via short-read alignment, k-mer basedsequence classification, and counting under bright-field microscopy (Fig 3 andSupplementary Fig. 7).We found that all methods are in reasonable agreement when readsare pooled and analyzed in bulk and when species identities are assigned to each barcodebased on the most commonly mapped species in a group.This demonstrates that SiC-seqenables estimation of species abundance in a microbial population consistent with acceptedmetagenomic methods. Sequencing the genome of a single cell typically incurs coverage distribution bias18 due touneven amplification of DNA starting from a single genome copy.To investigate coveragedistribution bias in SiC-seq, we plotted the normalized coverage distribution for readsaggregated from all barcode groups for each microbe (Fig. 3d, 3e, and Supplementary Fig.8). With the exception of coverage gaps due to low abundances of cells of certain specieswithin the standard microbial community, we observed no substantial coverage bias.Thisindicates that the sampling of each genome within a barcode group is random, so that whenall groups are overlaid, a uniform distribution is obtained.We further inspected thedistribution of reads in individual barcode groups and found no substantial bias(Supplementary Fig. 9). We believe thatcoverage bias is minimal because each genomeisamplified in a tiny volume of ~65 pL, which has been shown to curtail bias-inducingrunaway of exponential amplification19.amplified genomes, the amplification of each genomecan be limited by the tinyvolume while still producingsufficient total DNA for sequencing.SiC-seq data analysis with in silico cytometryThe genomic sequences generated using SiC-seq aregrouped according to single cells,which iscomplementary to the sequences generated fromshotgun metagenomic sequencing.Existing computational tools are ill-suited to analyzethese data because they do not exploitthe single cellbarcode information unique to SiC-seq.To address this, we utilize a sequenceanalysis pipelinein which reads are organized hierarchically as barcodegroups, generating aSingle Cell Reads database(SiC-Reads) (Supplementary Fig. 10).To build SiC-Reads, wefilter raw sequences by quality,group them by barcode, and estimate ataxonomicclassification of each group usingphylogenetic profilers.We also estimate a purity scoreequal to the fraction ofreads mapping to the dominant taxon within theclassifiable set.Additional properties of barcode groups and reads,such as presence of sequencescorresponding toantibiotic resistance genes, can be added to thedatabase as they arediscovered during analysis.The massive set of single cell genomes present inSiC-Reads provides new opportunities fordiscoveringassociations between sequences within single cells, ina process we dub in silico cytometry.SiC-Reads comprises a collection of single cellgenomes that can be sorted insilico, analogous towhat is commonly done with flow cytometry onsingle cells. Thedatabase can be sorted repeatedly tomine for correlations between differentgeneticsequences and structures. Moreover, as newassociations are learned, new sorting parameterscanbe defined, enabling discoveries without having torepeat the experiment.resistance in microbesTo demonstrate in silico cytometry, we used SiC-seq to sequence a microbial community recovered from coastal seawater of San Francisco (Online methods). We obtained ~8 millionreads of 150 bp length after quality filtering(representing of ~55% of raw reads), withwhich we generated a SiC-Reads database(Supplementary Fig. 10). Using a phylogeneticprofiler, 601,348 (6.89%) of reads werebacteria, 0.04% archaea, and 0.16% viruses (Supplementary Fig. 11a). Barcode groups were assigned a taxonomic classification based on the reads they contained, following the rulethat more than 10% of reads in a barcode group must be classified, and the assigned classification is the taxon with the most supporting reads. Most barcode groups were high purity based on the classifiable sequences (~91% average), in accordance with our controlsample (~94% average) (Supplementary Fig. 11b). Using this SiC-reads database, we demonstrate in silico cytometry by exploring the distribution of antibiotic resistance,virulence factors, and phage sequences in the microbial community.Antibiotic resistance has become increasingly common and represents a significant threat to global human health20. While antibiotic resistance genes can be identified in mostenvironments by short-read sequencing, scant information on how they are distributedamong taxa is available, because obtaining this information usually requires testing or whole genome sequencing of single species; however, culture conditions for most species have notbeen identified, precluding such analyses.To determine the distribution of antibiotic resistance genes among taxa in our dataset, we searched our SiC-Reads database for known antibiotic resistance genes, finding 1,081(0.012% of reads), representing 108 (0.30%) ofbarcode groups. The taxonomic distributionof antibiotic resistance genes in our database has a clear structure, although it does notcorrelate with what is known from genomes in public databases (Fig. 4a and SupplementaryFig. 12a). This is unsurprising as differences are expected in the natural coastlineenvironment compared to the environment of isolated and sequenced strains. The mostabundant taxa associated with antibiotic resistance Array are not the most abundant communitymembers overall, suggesting that in this communitycertain taxa tend to associate more withantibiotic resistance genes.Association of virulence factors with hostbacteriaVirulence factors, like antibiotic resistance genes, areimportant genetic factors indetermining the threat that specific microbes pose tohuman health. Many opportunisticpathogens reside in natural communities in theenvironment and cause outbreaks whentransmitted to a suitable host21. Monitoring anddetecting potentially pathogenic microbes isimportant for public health. Like antibioticsresistance genes, traditional methods can detectthe presence of these genes but not their taxonomicdistribution.To examine the taxonomic distribution of virulencefactors in our dataset, we searched ourcoastal microbial community database for knownvirulence factor genes, yielding matches in1,949 (0.022%) reads in 101 (0.28%) barcode groupsconsisting of 29 prevalent virulencefactors distributed among 13 microbial genera. Theabundances of taxa where virulencefactors were found did not reflect that of the totalpopulation, suggesting that certain generatend to carry more virulence factors than others. Toquantify this, we calculated the virulencefactor ratio, the ratio between the number of barcodegroups containing virulence factors andthe total number of barcodes in the community forthat species, and normalized the results tothe highest virulence factor ratio for comparison (Fig.4b). Haemophilus and Escherichiastand out amongst all species, both of which areknown opportunistic human pathogens.Comparing the virulence factor ratios of the San Francisco coastline community with ones calculated for publicly-available whole genomes, and down sampled to match our per-cellread depth (Supplementary Fig. 12b), we found that the ratios are higher for the publicgenomes, an expected result given that isolated and sequenced genomes are are biasedtowards pathogenic strains.Determining transduction potential between bacteriaMany virulent bacterial strains are thought to arise from horizontal gene transfer aided bycross-infection of bacteriophages. Phages can modify the genomes of their hosts, leaving acopy of their own genome behind or transporting fragments of one species to another in aprocess known as transduction22,23. Characterizing the distribution of these mobile elementsis challenging in an ecological context because confident identification of foreign genomic fragments within a specific host requires sequencing large numbers of cultures of singlespecies or single cells. Nevertheless, this information is valuable for understanding howbacteria transfer genetic material in general, and how virulent new strains may emerge viathis mechanism.To explore transduction in the microbial community, we searched the SiC-Reads database ofthe San Francisco coastal community for barcode groups containing phage sequences. Aphage sequence found in a bacterial genome is evidence of infection, an association that isnormally extremely difficult to make for uncultivable microbes and their likely uncultivableinfecting phages. We found matches in 6,805 (0.078%) reads representing 260 (0.72%)barcode groups and 106 phage genomes. Since transduction can occur between two hostcells that can be infected by the same phage, the potential for transduction depends on thelikelihood of phages infecting both hosts. To visualize this, we plot the normalized sum ofthe number of times we detect the sequences matching to the same phage in two bacterialtaxa, normalized by the number of barcode groups in those taxa (Fig. 4c). According to this analysis, Delftia and Neisseria, which are closest related out of the taxa in our analysis, havethe highest potential for transduction. The dearth of representative phage genomes indatabases and the limited sequence information per barcode group, limits the accuracy ofthis approach. Therefore, higher coverage of the genomes and better phage genomedatabases are required to definitively identify the phages that are found in the database. Nevertheless, SiC-seq‟s ability to detect these sequences and correlate them within singlegenomes can provide a useful approach to studying phage-host interactions.DiscussionSiC-seq generates a metagenomic database grouped by single cell genomes amenable torepeated mining via in silico cytometry, for rapid hypothesis generation and testing. Wedemonstrated its use in measuring the distributions of antibiotic resistance genes, virulencefactors, and transduction potential in microbial communities. The ability to sequence allcells in a sample without the need to culture is a powerful aspect of SiC-seq that should aidin our ability to characterize t he …microbial dark matter‟.The barcoded nature of SiC-seq data necessitates additional quality control of measures forthe data, in addition to the quality control measures utilized in standard sequencing. First,the barcode reads themselves must be of high quality, thus eliminating any reads containinglow quality barcode sequences, regardless of the quality of the genomic sequences. Second,barcode groups must be quality controlled to remove small-sized barcode groups, which arethe result of mutations in the barcode sequences and background contamination of freeDNA. These quality control measures together resultin a typical yield of ~55% of raw readscontributing to the SiC-reads database. Improvements in yield can be made by, for example,computationally ident ifying reads with mutated barcodes …correcting‟ their sequence, but wehave found only modest improvements in yields using this method alone10.The taxonomic classification of microbes remains an integral part of studying communitydynamics, from ecosystems on Earth to those residing in and on our bodies24,25. However,the taxonomic classification of short reads is error prone, due to the diversity of microbes inmost communities and the high degree of horizontal gene transfer that mixes genomicelements in unpredictable ways. SiC-seq improves upon traditional metagenomicssequencing in addressing this challenge because taxonomic identification can be made basedon hundreds of reads within a barcode group. Advanced strategies can be applied to estimatetaxonomy of a barcode group, including Bayesian probabilistic ones based on classificationof each read in the group, or ones weighted towards specific taxonomic markers. With eventhis improvement, accurate classification is difficult because the vast majority of sequencesremain unclassifiable and the classification of sequences are biased towards well-sequencedtaxa in the databases. As genome coverage improves in future iterations of SiC-seq,taxonomic classification of barcode groups should become more confident and precise,potentially arriving at strain level classifications under certain circumstances. It is worthnoting that taxonomic classification with SiC-seq is also subject to the fundamentallimitations of reference based classification paradigms where the classification is only asaccurate as the match between the sample and the references. Hence, like traditionalmethods, SiC-seq phylogenetic profiling will become more reliable and complete with theexpanding database of reference genomes.The degree of genome coverage impacts the usefulness of single cell data, including theability to generate assemblies or identify characteristic sequences for in silico cytometry. Alimitation of SiC-seq is that, while the number of cells sequenced far exceeds currentlydescribed methods, the coverage per cell is significantly lower. Therefore, dropouts incoverage and false negatives can be expected in in silico cytometry analysis. For abundantorganisms with a random distribution of coverage in each barcode group, the system isrobust to dropouts because results are averaged over many barcode groups. For example,approximately 7,000 Alteromonas barcode groups were taken into account to determine theantibioticresistance profile for Alteromonas bacteria. However, for less abundant species,such as Haemophilus, more dropouts can be expected because there may not be enough totalsequence information to detect a specific genetic factor. For this reason, the analysis of SiCreads databases should be limited to relative comparisons of species within the database, andthe abundance of target genes within subpopulations should be normalized to the number ofbarcode groups in the subpopulation. It is worth noting that the dropout phenomenon is notunique to SiC-seq data, but all metagenomic sequencing data where the subpopulation to beanalyzed represents a very small fraction.Although coverage can be increased by sequencing more reads, the coverage per cell perbarcode group will be below 100%. This is because the method begins with a single genomecopy without amplification and losses incurred during enzymatic and microfluidicprocessing are irrevocable, thus limiting the maximum coverage attainable. In futureiterations of SiC-seq, coverage may be increased by pre-amplifying genomes prior toprocessing, for example, with multiple displacement amplification in droplets7. Additionally,different strategies for barcoding genomes may yield higher coverage, such as recentlydescribed combinatorial indexing via transposase libraries40, which should be applicable tosingle cell genomes encapsulated in microgels.The de novo assembly of whole genomes from metagenomics sequences is a common goalin the field of metagenomics. Mate-paired sequencing can be used to bridge contigs inametagenomics sequencing dataset and potentially assemble whole genomes given sufficientcoverage26. Though powerful, the method is limited by the required micrograms of startingDNA that can be difficult to obtain from microbial ecosystems. Furthermore, many matepaired reads are required to assemble a whole genome, since each mate-pair bridges onlytwo contigs. SiC-seq data improves on mate-paired sequencing in this respect by requiringminimal amounts of sample as well as enabling the bridging of multiple contigs per barcodegroup. Consequently, SiC-seq should allow generation of draft genomes from shotgunmetagenomic data with far less DNA input requirement and sequencing effort.While we focused on microbial communities, SiC-seq is also applicable to populations ofmammalian cells, where it can have a more direct impact on human health. The groupedreads provided by SiC-seq should afford the information required to determine copy-numbervariations within the genome, which is relevant to cancer27. The enormous size ofmammalian genomes, however, limits the number of cells that can be sequenced for a targetlevel of coverage. Nevertheless, as the cost of sequencing continues to decrease, more cellscan be sequenced to greater depth, creating opportunities for characterizing mammaliantissues, cell-by-cell.SiC-seq method is a means to isolate and barcode large DNA molecules, irrespective of theentity from which they originate. While we have focused on cells, similar approaches can beapplied to any entities whose genomes can be trapped and processed within the gel matrix.SiC-seq‟s ability to build and mine large databases of genomes grouped by single cellsshould contribute to the characterization of heterogeneity across biology.。

0基础学单细胞测序

0基础学单细胞测序

0基础学单细胞测序单细胞测序(single-cell sequencing)是一种快速发展的高通量基因组学技术,它可以对单个细胞进行基因组、转录组和表观组学分析。

相比传统的测序方法,单细胞测序可以揭示细胞群体的细胞异质性,为研究细胞发育、疾病机制和药物研发提供了新的视角。

单细胞测序的基本原理是将单个细胞的DNA或RNA进行扩增和测序,从而获取细胞的基因组或转录组信息。

这种技术的关键在于如何对单个细胞进行分离和扩增。

目前常用的方法包括流式细胞术、微流控芯片和微滴式测序。

其中,流式细胞术是通过光学或电子的方式将单个细胞分离出来,然后进行扩增和测序。

微流控芯片则是通过微型孔隙和微通道将细胞进行分离和扩增。

而微滴式测序则是通过将细胞和反应液分别封装在液滴中,然后进行扩增和测序。

单细胞测序的应用非常广泛,可以应用于多个领域的研究。

首先,单细胞测序可以用于研究细胞发育和分化过程。

通过对不同发育阶段或不同类型的细胞进行测序,可以揭示细胞发育的分子机制和调控网络。

其次,单细胞测序可以用于研究疾病的发生和发展机制。

通过对正常细胞和疾病细胞进行比较分析,可以发现疾病相关基因的变化和调控网络的异常。

这对于疾病的早期诊断和治疗具有重要意义。

此外,单细胞测序还可以用于药物研发。

通过对药物对单个细胞的影响进行测序分析,可以筛选出具有治疗潜力的药物靶点。

然而,单细胞测序也存在一些挑战和限制。

首先,单细胞测序的成本较高,需要大量的测序和分析。

其次,单细胞测序的数据量较大,对数据处理和分析的要求较高。

另外,由于单细胞测序需要对细胞进行分离和扩增,可能会引入一定的噪音和偏差。

因此,在进行单细胞测序时需要谨慎操作,以保证数据的准确性和可靠性。

随着技术的不断进步,单细胞测序在基础研究和临床应用中的价值将不断凸显。

未来,随着单细胞测序技术的发展和应用,我们将能够更好地理解细胞的多样性和功能,揭示生命的奥秘,为疾病的诊断和治疗提供更精准的策略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MDA方法是使用随机引物,让这些引物与基因组广泛结合,同时使用 一种特定的聚合酶,这种聚合酶能够置换与它自身附着在同一模板上的 DNA链片段,形成一种反复分支结构,扩增出大段的DNA。
扩增引物 Phi 29 DNA聚合酶 基因组模板DNA
MALBAC法扩增
5’端有通用 扩增序列的 DNA片段
第一个循环下来,得到的是一批5’端有通用扩增序列的DNA片段
单细胞测序技 术
背景
过去二十几年里,随着基因测序技术水平的提高以及千人基因组计划、 癌症基因组计划等重大国际合作项目的相继开展,基因组研究日渐被推向 高潮。
我们能够得到全基因组序列信息,但是对其进行研究得到的结果只是 一群细胞中信号的平均值,或者只代表其中占优势数量的细胞信息,单个 细胞独有的特性被忽视。另外有些样品稀少无法在实验室培养,样品量不 足以进行全基因组分析,因此全基因组测序遇到难题。
第二个要解决的难题,这里是利用Phi29聚合酶能一次在模板上聚合出多个新链 的功能来达到这个目的。在5轮的扩增之后,每个模板都会有5*n2个扩增片段, 这样就可解决的问题,高效率扩增,还是利用了Phi29聚合酶的一次得到多个扩 增片段的效果来达成的。
请大家批评指正! 谢谢!
MDA扩增图
MDA方法的技术核心是用Phi29DNA聚合酶来进行直接的扩增,Phi29DNA聚合酶可 以把双链DNA进行解链,然后在常温条件下就把原始模板进行大量扩增
两种方法比较
MDA的特点: 扩增效率更高,实验方法简单
MALBAC的特点: 扩增均一性更好; 得到的扩增DNA的量相对较少,或者说他的扩增效率相对较低
58℃退链火内杂交
完整扩增产物,自我 锁定,无法扩增
这样3’端的序列就不能与新的、游离的引物发生杂交,也就不会引发 新的、发始于3’端的扩增,这样就避免了完整扩增产物的指数扩增

随机引物 随机扩增
线性扩增 现在,还是8个随机序列的引物在模板上随机地找结合位置,所有的 位点都有一样的机会被扩增。这样得到的产物分三种
2.能检测到倍的微扩要数覆到时量增求片盖断几候的,几段,那十 ,基并乎得甚些万大因且所到至低倍部表在有有没扩的分达后的效有增扩的子续片扩覆效增片或的段增盖率效段罕测都;,区率都见序会那段,被非过被么的才测编程得我基能序码中到们因保测R被扩N就序证到测增A无列在。序,法的全测而有情基到不效况因。只地;组这是判测就少序
需要克服的难题:
1.如何实现均匀扩增; 2.全基因组覆盖问题; 3.较高的扩增效率。
两种扩增技术:MALBAC方法和MDA方法
MALBAC技术,首先需要进行5轮MDA预扩增,然后就可以使新获得的扩 增产物形成闭合的环状分子。由于这些环状分子不能够被进一步扩增,所以整个 扩增过程就变成了线性扩增。然后再进行常规的PCR扩增,由于此时采用的模板 更加均一,所以在进行PCR扩增时就不易造成较大的差异。
单细胞转录组测序是利用高通量测序技术进行cDNA测序,从而获取特 定器官或组织在某一状态下的几乎所有转录本
单细胞测序技术的优势与技术难题
优1势.测:量基因建库表分组表补D会胞单覆不这现序好分面子扩达N平被测细盖同些出后A的子生,增水、浪序胞常片不的扩指它文 , 成 在 的平用加费中测规段均扩增数深库只簇上方更传A掉,序的的一增效放度在有,机法加统、,丢要、损,片率大非1测并的还精的加用而失求个失极段的的常序且时要确随接大没大几文,少的差效深仪被候有;机头量有部乎库结数扩异果,上测是较引等的形分所分果区增会,但机序被高物一成的有D子就段效随其在的测水的P长N有起的,是C的率着结大A时到冲扩串R效始原是初建D多扩果多候的走增的的的始DN能始库少增就数,,的效方操NA文基够D的会循是区A被大剩,率法作N库因在是方有环会段大约下所,来A,分组测不法中一数发只量每的以至扩每子片序可,很些的生有扩上大单少增一,段的接因大差增严很增机多细要,步在都F受为一异加重低,数胞有2那l都o单得万的打部,呈的的e测文基上么会c细到个。断e分库因万有ll文、
单细胞测序技术是指在单个细胞水平上对基因组进行扩增与测序的一项 新技术。
单细胞测序主要涉及单细胞基因组测序和转录组测序两方面,分别针对 单个细胞的DNA和RNA进行序列分析和比较,进而揭示基因组和转录组的变 化。
单细胞全基因组测序是对选定的目的细胞的全部基因组序列进行非选择 性、均匀扩增,随后利用外显子捕获技术进而高通量测序。
应用
目前最主要的2个应用:
(1)在胚胎植入前进行基因拷贝数变异检测; (2)进行肿瘤的染色体变异研究
胚胎植入前进行基因拷贝数变异检测
在有习惯性流产的夫妇当中,最 常见的病因就是染色体的平衡易位, 所谓染色体平衡易位也就是A染色体 的一段移到了B染色体上
如果夫妻一方有染色体易位,那 么这对夫妇的受精卵中,每4个 受精卵可能只有一个是正常的


5’端有通用

序列,3’端
有与通用序
5
列互补的序

列的DNA片段
在第二个循环完成后,所产生的扩增产物中大部分是5’端有通 用序列,而3’端有与通用序列互补的序列的这些片段
58℃退火
MALBAC的巧妙之处,就是在每个循环的最后,加了一步58度退火,这一 退火过程,他让完整扩增的产物的两端发生链内杂交
相关文档
最新文档