因式分解专项练习题(含答案).

合集下载

因式分解练习100题及答案

因式分解练习100题及答案
因式分解练习100题及答案
一、 提取公因式
( 1) (9a+5)(-4b+5)+(b+2)(9a+5) (2) (3m-2)(-2n+3)+(3m-2)(-9n-1)+(3m-2)(-6n+4) (3) (9a-4)(2b+3)+(9a-4)(2b-2) (4) I4a3x4 -35a4x3y3 (5) 18x千-I2x 3y 千 (6) 2ab4c2— 8bc2 (7) x 3y4+5ax3y4 (8) (9x— 4)(—8x+l)+(9x— 4)(9x+2)
(57) (3a2+2ab-2b2 )(3a2 -2ab-2b2 ) (58) (2x2 +5x+9)(2x 2 -5x + 9) (59) (8x+7y-3)(8x-7y-1 1) (60) (9m + 7n-7)(9m-7n-3)
五、 十字相乘法
(6 1) 2(3b+2)(1lb-4) (62) -(4m+I)(2m-9) (63) (b+3)(8b+l) (64) 6(9a+4)(a+2) (65) 2(4x-5y)(l lx+5y) (66) -6(a-b)(4a+5b) (67) (x+17)(x+2) (68) -(b+4)(l lb-2) (69) (2a+9)(13a— 4) (70) —(7n— 5)(2n— 5) (7 1) 2(8x-1)(5x-4) (72) (12b+19)(4b + 3) (73) 4(y+5)(5y+3) (74) 13(x-l)(4x+15) (75) —24(m— 2n)(m+2n) (76) -6(5y+l)(y+2)

因式分解练习题加答案200道分解因解题目

因式分解练习题加答案200道分解因解题目

因式分解练习题加答案200道分解因解题目因式分解3a3b2c—6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac +3c^2)3.因式分解xy+6—2x-3y=(x-3)(y-2)4.因式分解x2(x-y)+y2(y—x)=(x+y)(x-y)^25。

因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)7.若已知x3+3x2-4含有x—1得因式,试分解x3+3x2-4=(x—1)(x+2)^28、因式分解ab(x2-y2)+xy(a2—b2)=(ay+bx)(ax—by)9、因式分解(x+y)(a-b-c)+(x-y)(b+c—a)=2y(a—b-c) 10、因式分解a2-a-b2-b=(a+b)(a—b—1)11。

因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a—7b)^212、因式分解(a+3)2-6(a+3)=(a+3)(a-3)13、因式分解(x+1)2(x+2)—(x+1)(x+2)2=-(x+1)(x+2)abc+ab—4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2—30x+25=(3x-5)^2(4)x2-7x—30=(x—10)(x+3)35。

因式分解x2-25=(x+5)(x-5)36。

因式分解x2-20x+100=(x-10)^237。

因式分解x2+4x+3=(x+1)(x+3)38.因式分解4x2-12x+5=(2x—1)(2x—5)39、因式分解下列各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)—x=x(x+1)(3)x2-4x—ax+4a=(x—4)(x—a)(4)25x2—49=(5x-9)(5x+9)(5)36x2—60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x—3)(x-6)(8)2x2-5x—3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x—4)40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41。

因式分解专项练习题(含答案)

因式分解专项练习题(含答案)

因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq (2)2x2+8x+82.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.3.分解因式(1)a2(x﹣y)+16(y﹣x)(2)(x2+y2)2﹣4x2y24.分解因式:(1)2x2﹣x (2)16x2﹣1 (3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y)25.因式分解:(1)2am2﹣8a (2)4x3+4x2y+xy26.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2 7.因式分解:(1)x2y﹣2xy2+y3 (2)(x+2y)2﹣y28.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+19.分解因式:a2﹣4a+4﹣b210.分解因式:a2﹣b2﹣2a+111.把下列各式分解因式:(1)x4﹣7x2+1 (2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+112.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq;(2)2x2+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p2﹣6pq=3p(p﹣2q),(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2.2.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.3.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.4.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.分析:(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.解答:解:(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.5.因式分解:(1)2am2﹣8a;(2)4x3+4x2y+xy2分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2.6.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.7.因式分解:(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).8.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.9.分解因式:a2﹣4a+4﹣b2.分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.解答:解:(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)﹣(x﹣a)2=(x2+1+x﹣a)(x2+1﹣x+a);(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1﹣y)]2=(1+y﹣x2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.分析:(1)需把﹣31x拆项为﹣x﹣30x,再分组分解;(2)把2a2b2拆项成4a2b2﹣2a2b2,再按公式法因式分解;(3)把x5+x+1添项为x5﹣x2+x2+x+1,再分组以及公式法因式分解;(4)把x3+5x2+3x﹣9拆项成(x3﹣x2)+(6x2﹣6x)+(9x﹣9),再提取公因式因式分解;(5)先分组因式分解,再用拆项法把因式分解彻底.解答:解:(1)4x3﹣31x+15=4x3﹣x﹣30x+15=x(2x+1)(2x﹣1)﹣15(2x﹣1)=(2x﹣1)(2x2+1﹣15)=(2x﹣1)(2x﹣5)(x+3);(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4=4a2b2﹣(a4+b4+c4+2a2b2﹣2a2c2﹣2b2c2)=(2ab)2﹣(a2+b2﹣c2)2=(2ab+a2+b2﹣c2)(2ab﹣a2﹣b2+c2)=(a+b+c)(a+b﹣c)(c+a﹣b)(c﹣a+b);(3)x5+x+1=x5﹣x2+x2+x+1=x2(x3﹣1)+(x2+x+1)=x2(x﹣1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3﹣x2+1);(4)x3+5x2+3x﹣9=(x3﹣x2)+(6x2﹣6x)+(9x﹣9)=x2(x﹣1)+6x(x﹣1)+9(x﹣1)=(x﹣1)(x+3)2;(5)2a4﹣a3﹣6a2﹣a+2=a3(2a﹣1)﹣(2a﹣1)(3a+2)=(2a﹣1)(a3﹣3a﹣2)=(2a﹣1)(a3+a2﹣a2﹣a﹣2a﹣2)=(2a﹣1)[a2(a+1)﹣a(a+1)﹣2(a+1)]=(2a﹣1)(a+1)(a2﹣a﹣2)=(a+1)2(a﹣2)(2a﹣1).。

因式分解练习题加答案-200道

因式分解练习题加答案-200道

因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)3.因式分解xy+6-2x-3y=(x-3)(y-2)4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^25.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^28.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)10.因式分解a2-a-b2-b=(a+b)(a-b-1)11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^212.因式分解(a+3)2-6(a+3)=(a+3)(a-3)13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)abc+ab-4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2-30x+25=(3x-5)^2(4)x2-7x-30=(x-10)(x+3)35.因式分解x2-25=(x+5)(x-5)36.因式分解x2-20x+100=(x-10)^237.因式分解x2+4x+3=(x+1)(x+3)38.因式分解4x2-12x+5=(2x-1)(2x-5)39.因式分解下列各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)-x=x(x+1)(3)x2-4x-ax+4a=(x-4)(x-a)(4)25x2-49=(5x-9)(5x+9)(5)36x2-60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x-3)(x-6)(8)2x2-5x-3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x-4)40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)42.因式分解9x2-66x+121=(3x-11)^243.因式分解8-2x2=2(2+x)(2-x)44.因式分解x2-x+14 =整数内无法分解45.因式分解9x2-30x+25=(3x-5)^246.因式分解-20x2+9x+20=(-4x+5)(5x+4)47.因式分解12x2-29x+15=(4x-3)(3x-5)48.因式分解36x2+39x+9=3(3x+1)(4x+3)49.因式分解21x2-31x-22=(21x+11)(x-2)50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2)51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)53.因式分解x(y+2)-x-y-1=(x-1)(y+1)54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3)55.因式分解9x2-66x+121=(3x-11)^256.因式分解8-2x2=2(2-x)(2+x)57.因式分解x4-1=(x-1)(x+1)(x^2+1)58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)59.因式分解4x2-12x+5=(2x-1)(2x-5)60.因式分解21x2-31x-22=(21x+11)(x-2)61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)63.因式分解下列各式:(1)3x2-6x=3x(x-2)(2)49x2-25=(7x+5)(7x-5)(3)6x2-13x+5=(2x-1)(3x-5)(4)x2+2-3x=(x-1)(x-2)(5)12x2-23x-24=(3x-8)(4x+3)(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)(8)9x2+42x+49=(3x+7)^2 。

初中因式分解经典题型(含详细答案)

初中因式分解经典题型(含详细答案)

初中因式分解经典题型(含详细答案) 初中因式分解经典题型精选第一组:基础题1.a²b+2ab+b答案:b(a+1)²2.2a²-4a+2答案:2(a-1)²3.16-8(m-n)+(m-n)²答案:(4-m+n)²4.a²(p-q)-p+q答案:(p-q)(a+1)(a-1)5.a(ab+bc+ac)-abc答案:a²(b+c)第二组:提升题6.(x-y-1)²-(y-x-1)²答案:-4(x-y)7.ab-ab⁄4答案:ab(a+b)(a-b)8.b-14b²+1答案:(b²+4b+1)(b²-4b+1)9.x+x²+2ax+1-a²答案:(x+1+a)(x+1-a)10.a+a+1答案:2(a+1)11、化简表达式x-2y-2xy+xy x + xy - 2y - 2xyx(1+y) - 2y(1+x)x+y)(x-2y)12、展开表达式(ac-bd)²+(bc+ad)²a²c² - 2abcd + b²d² + b²c² + 2abcd + a²d²a²c² + b²c² + a²d² + b²d²a²+b²)(c²+d²)13、化简表达式x²(y-z)+y²(z-x)+z²(x-y)x²y - x²z + y²z - y²x + z²x - z²yx²y - y²x + z²x + y²z - x²z - z²yx-y)(x²+y²-z²)14、化简表达式x²-4ax+8ab-4b²x-2a)² - (2a-4b)²x-2a+2a-4b)(x-2a-2a+4b)x-4b)(x-2a)15、化简表达式xy²+4xz-xz²-4xx(y²-4) - z(x²-4)x-2)(x+z)(y+2z)16、将a(a²-b²)和b(b²-a²)的公因式提取出来,得到(a-b)(a+b)a和(b-a)(b+a)b,再利用立方差公式,化简为(a-b)²(a+b)(a²b²+a+b)。

因式分解练习题及答案

因式分解练习题及答案

因式分解练习题及答案篇一:因式分解练习题一、填空题:2.(a-3)(3-2a)=_______(3-a)(3-2a);12.若m2-3m+2=(m+a)(m+b),则a=______,b=______;15.当m=______时,x2+2(m-3)x+25是完全平方式.二、选择题:1.下列各式的因式分解结果中,正确的是A.a2b+7ab-b=b(a2+7a)B.3x2y-3xy-6y=3y(x-2)(x+1)][C.8xyz-6x2y2=2xyz(4-3xy)D.-2a2+4ab-6ac=-2a(a+2b-3c)2.多项式m(n-2)-m2(2-n)分解因式等于A.(n-2)(m+m2)B.(n-2)(m-m2)C.m(n-2)(m+1)D.m(n-2)(m-1)3.在下列等式中,属于因式分解的是A.a(x-y)+b(m+n)=ax+bm-ay+bnB.a2-2ab+b2+1=(a-b)2+1C.-4a2+9b2=(-2a+3b)(2a+3b)D.x2-7x-8=x(x-7)-8 4.下列各式中,能用平方差公式分解因式的是A.a2+b2B.-a2+b2C.-a2-b2D.-(-a2)+b25.若9x2+mxy+16y2是一个完全平方式,那么m的值是A.-12B.±24C.12D.±126.把多项式an+4-an+1分解得A.an(a4-a)B.an-1(a3-1)C.an+1(a-1)(a2-a+1)D.an+1(a-1)(a2+a+1)7.若a2+a=-1,则a4+2a3-3a2-4a+3的值为[][][][][]A.8B.7C.10D.128.已知x2+y2+2x-6y+10=0,那么x,y的值分别为A.x=1,y=3B.x=1,y=-3C.x=-1,y=3D.x=1,y=-39.把(m2+3m)4-8(m2+3m)2+16分解因式得A.(m+1)4(m+2)2B.(m-1)2(m-2)2(m2+3m-2)C.(m+4)2(m-1)2D.(m+1)2(m+2)2(m2+3m-2)210.把x2-7x-60分解因式,得A.(x-10)(x+6)B.(x+5)(x-12)C.(x+3)(x-20)D.(x-5)(x +12)11.把3x2-2xy-8y2分解因式,得A.(3x+4)(x-2)B.(3x-4)(x+2)C.(3x+4y)(x-2y)D.(3x-4y)(x+2y)12.把a2+8ab-33b2分解因式,得A.(a+11)(a-3)B.(a-11b)(a-3b)C.(a+11b)(a-3b)D.(a-11b)(a+3b)13.把x4-3x2+2分解因式,得[][][][][][]A.(x2-2)(x2-1)B.(x2-2)(x+1)(x-1)C.(x2+2)(x2+1)D.(x2+2)(x+1)(x-1)14.多项式x2-ax-bx+ab可分解因式为[]A.-(x+a)(x+b)B.(x-a)(x+b)C.(x-a)(x-b)D.(x+a)(x+b)15.一个关于x的二次三项式,其x2项的系数是1,常数项是-12,且能分解因式,这样的二次三项式是[]A.x2-11x-12或x2+11x-12B.x2-x-12或x2+x-12C.x2-4x-12或x2+4x-12D.以上都可以16.下列各式x3-x2-x+1,x2+y-xy-x,x2-2x-y2+1,(x2+3x)2-(2x+1)2中,不含有(x-1)因式的有[]A.1个B.2个C.3个D.4个17.把9-x2+12xy-36y2分解因式为A.(x-6y+3)(x-6x-3)B.-(x-6y+3)(x-6y-3)C.-(x-6y +3)(x+6y-3)D.-(x-6y+3)(x-6y+3)18.下列因式分解错误的是[]A.a2-bc+ac-ab=(a-b)(a+c)B.ab-5a+3b-15=(b-5)(a+3)C.x2+3xy-2x-6y=(x+3y)(x-2)D.x2-6xy-1+9y2=(x+3y+1)(x+3y-1)19.已知a2x2±2x+b2是完全平方式,且a,b都不为零,则a与b 的关系为A.互为倒数或互为负倒数B.互为相反数C.相等的数D.任意有理数20.对x4+4进行因式分解,所得的正确结论是A.不能分解因式B.有因式x2+2x+2C.(xy+2)(xy-8)D.(xy-2)(xy-8)21.把a4+2a2b2+b4-a2b2分解因式为A.(a2+b2+ab)2B.(a2+b2+ab)(a2+b2-ab)C.(a2-b2+ab)(a2-b2-ab)D.(a2+b2-ab)222.-(3x-1)(x+2y)是下列哪个多项式的分解结果A.3x2+6xy-x-2yB.3x2-6xy+x-2yC.x+2y+3x2+6xyD.x+2y-3x2-6xy23.64a8-b2因式分解为A.(64a4-b)(a4+b)B.(16a2-b)(4a2+b)C.(8a4-b)(8a4+b)D.(8a2-b)(8a4+b)24.9(x-y)2+12(x2-y2)+4(x+y)2因式分解为[][][][]篇二:因式分解练习题加200道因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2c(a^2-2ac+3c^2)3.因式分解xy+6-2x-3y=(x-3)(y-2)4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^25.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^28.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)10.因式分解a2-a-b2-b=(a+b)(a-b-1)11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^212.因式分解(a+3)2-6(a+3)=(a+3)(a-3)13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)abc+ab-4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2-30x+25=(3x-5)^2(4)x2-7x-30=(x-10)(x+3)35.因式分解x2-25=(x+5)(x-5)36.因式分解x2-20x+100=(x-10)^237.因式分解x2+4x+3=(x+1)(x+3)38.因式分解4x2-12x+5=(2x-1)(2x-5)39.因式分解下列各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)-x=x(x+1)(3)x2-4x-ax+4a=(x-4)(x-a)(4)25x2-49=(5x-9)(5x+9)(5)36x2-60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x-3)(x-6)(8)2x2-5x-3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x-4)40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)42.因式分解9x2-66x+121=(3x-11)^243.因式分解8-2x2=2(2+x)(2-x)44.因式分解x2-x+14=整数内无法分解45.因式分解9x2-30x+25=(3x-5)^246.因式分解-20x2+9x+20=(-4x+5)(5x+4)47.因式分解12x2-29x+15=(4x-3)(3x-5)48.因式分解36x2+39x+9=3(3x+1)(4x+3)49.因式分解21x2-31x-22=(21x+11)(x-2)50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2)51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)53.因式分解x(y+2)-x-y-1=(x-1)(y+1)54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3)55.因式分解9x2-66x+121=(3x-11)^256.因式分解8-2x2=2(2-x)(2+x)57.因式分解x4-1=(x-1)(x+1)(x^2+1)58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)59.因式分解4x2-12x+5=(2x-1)(2x-5)61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)63.因式分解下列各式:(1)3x2-6x=3x(x-2)(2)49x2-25=(7x+5)(7x-5)(3)6x2-13x+5=(2x-1)(3x-5)(4)x2+2-3x=(x-1)(x-2)(5)12x2-23x-24=(3x-8)(4x+3)(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)(8)9x2+42x+49=(3x+7)^2。

中考数学《因式分解》专项练习题及答案

中考数学《因式分解》专项练习题及答案

中考数学《因式分解》专项练习题及答案一、单选题1.下列多项式中,能用提公因式法因式分解的是()A.x2-y B.x2+2x C.x2+y2 D.x2-xy+y22.下列式子变形是因式分解的是()A.x2-5x+6=x(x-5)+6B.x2-5x+6=(x-2)(x-3)C.(x-2)(x-3)=x2-5x+6D.x2-5x+6=(x+2)(x+3)3.下列因式分解正确的是()A.x2y2﹣z2=x2(y+z)(y﹣z)B.﹣x2y﹣4xy+5y=﹣y(x2+4x+5)C.(x+2)2﹣9=(x+5)(x﹣1)D.9﹣12a+4a2=﹣(3﹣2a)24.把多项式ax3﹣2ax2+ax分解因式,结果正确的是()A.ax(x2﹣2x)B.ax2(x﹣2)C.ax(x+1)(x﹣1)D.ax(x﹣1)25.下面从左到右的变形是因式分解的是()A.6xy=2x⋅3y B.(x+1)(x−1)=x2−1C.x2−3x+2=x(x−3)+2D.2x2−4x=2x(x−2)6.对于①(x+3)(x−1)=x2+2x−3,②x−3xy=x(1−3y)从左到右的变形,表述正确的是()A.都是因式分解B.都是整式的乘法C.①是因式分解,②是整式的乘法D.①是整式的乘法,②是因式分解7.若x2+kx+16=(x−4)2,那么()A.k=-8,从左到右是乘法运算B.k=8,从左到右是乘法运算C.k=-8,从左到右是因式分解D.k=8,从左到右是因式分解8.把代数式mx2-6mx+9m分解因式,下列结果中正确的是()A.m(x+3)2B.m(x+3)(x-3)C.m(x-4)2D.m(x-3)29.下列等式中,从左到右的变形是因式分解()A.2x2y+8xy2+6=2xy(x+4y)+6B.(5x−1)(x+3)=5x2−14x−3C.x2−y2=(x+y)(x−y)D.x3+y2+2x+1=(x+1)2+y210.下列等式中,从左到右的变形是因式分解的是()A .x(x −2)=x 2−2xB .(x −1)2=x 2−2x −1C .x 2−4=(x +2)(x −2)D .x 2+3x +2=x(x +3)+211.若多项式mx 2-1n 可分解因式为(3x+15)(3x-15),则m 、n 的值为( )A .m=3,n=5B .m=-3,n=5C .m=9,n=25D .m=-9,n=-2512.下列因式分解正确的是( )A .a 4b ﹣6a 3b +9a 2b =a 2b (a 2﹣6a +9)B .x 2﹣x + 14 =(x ﹣ 12 )2C .x 2﹣2x +4=(x ﹣2)2D .x 2﹣4=(x +4)(x ﹣4)二、填空题13.分解因式: 2a 2−2= . 14.分解因式:2 a 3−8a = . 15.因式分解:a 3﹣2a 2b+ab 2= . 16.已知x+y=6,xy=3,则x 2y+xy 2的值为 . 17.因式分解: 3a 2−6a +3 = . 18.分解因式:xy 2﹣9x= .三、综合题19.综合题(1)已知a+b=1,ab= 14 ,利用因式分解求a(a+b)(a-b)-a(a+b)2的值.(2)若x 2+2x=1,试求1-2x 2-4x 的值.20.我们用xyz ̅̅̅̅̅表示一个三位数,其中x 表示百位上的数,y 表示十位上的数,z 表示个位上的数,即xyz̅̅̅̅̅=100x +10y +z . (1)说明abc ̅̅̅̅̅+bca ̅̅̅̅̅+cab̅̅̅̅̅一定是111的倍数; (2)①写出一组a 、b 、c 的取值,使abc ̅̅̅̅̅+bca ̅̅̅̅̅+cab̅̅̅̅̅能被11整除,这组值可以是a= ,b= ,c= ;②若abc ̅̅̅̅̅+bca ̅̅̅̅̅+cab̅̅̅̅̅能被11整除,则a 、b 、c 三个数必须满足的数量关系是 .21.把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.如:①用配方法分解因式:a 2+6a+8 解:原式=a 2+6a+8+1-1=a 2+6a+9-1=(a+3)2-12= [(a +3)+1][(a +3)−1]=(a +4)(a +2)②M=a2-2a-1,利用配方法求M的最小值.解:a2−2a−1=a2−2a+1−2=(a−1)2−2∵(a-b)2≥0,∴当a=1时,M有最小值-2.请根据上述材料解决下列问题:2+2x−3.(1)用配方法...因式分解:x(2)若M=2x2−8x,求M的最小值.(3)已知x2+2y2+z2-2xy-2y-4z+5=0,求x+y+z的值.22.由多项式乘法:(x+a)(x+b)=x2+(a+b)x+ab,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x2+(a+b)x+ab=(x+a)(x+b)示例:分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3)(1)尝试:分解因式:x2+6x+8=(x+)(x+);(2)应用:请用上述方法解方程:x2﹣3x﹣4=0.23.将下列各式分解因式:(1)2x2y−8xy+8y(2)a2(x−y)−9b2(x−y)24.因式分解:(1)−20a−15ax(2)(a−3)2−(2a−6)参考答案1.【答案】B 2.【答案】B 3.【答案】C 4.【答案】D 5.【答案】D 6.【答案】D 7.【答案】C 8.【答案】D 9.【答案】C 10.【答案】C 11.【答案】C 12.【答案】B13.【答案】2(a+1)(a-1) 14.【答案】2a(a+2)(a-2) 15.【答案】a (a ﹣b )2 16.【答案】18 17.【答案】3(a -1)2 18.【答案】x (y ﹣3)(y+3)19.【答案】(1)解:原式=a(a+b)(a-b-a-b)=-2ab(a+b).∵a+b=1,ab= 14∴原式=-2× 14 ×1=- 12 .(2)解:∵x 2+2x=1, ∴1-2x 2-4x=1-2(x 2+2x) =1-2×1=-1.20.【答案】(1)解:abc ̅̅̅̅̅+bca ̅̅̅̅̅+cab̅̅̅̅̅ =100a +10b +c +100b +10c +a +100c +10a +b=111a +111b +111c =111(a +b +c)∵a 、b 、c 都是整数 ∴a +b +c 也是整数∴111(a +b +c)是111的倍数∴abc ̅̅̅̅̅+bca ̅̅̅̅̅+cab̅̅̅̅̅一定是111的倍数 (2)2;4;5(答案不唯一);a +b +c =11或a +b +c =22(1≤a ≤9,1≤b ≤9,1≤c ≤9)21.【答案】(1)解:原式 =x 2+2x −3+4−4=x 2+2x +1−4 =(x +1)2−22 =[(x +1)+2][(x +1)−2]=(x +3)(x −1) ;(2)解: 2x 2−8x =2(x 2−4x)=2(x 2−4x +4−4) =2[(x −2)2−4] =2(x −2)2−8 ∵(x −2)2≥0∴ 当 x =2 时, M 有最小值 −8 ; (3)解: x 2+2y 2+z 2−2xy −2y −4z +5=(x 2−2xy +y 2)+(y 2−2y +1)+(z 2−4z +4)=(x −y)2+(y −1)2+(z −2)2 ∵(x −y)2+(y −1)2+(z −2)2=0∴{x −y =0y −1=0z −2=0解得 {x =1y =1z =2则 x +y +z =1+1+2=4 .22.【答案】(1)2;4(2)解:∵x 2﹣3x ﹣4=0 x 2+(﹣4+1)x+(﹣4)×1=0 ∴(x ﹣4)(x+1)=0 则x+1=0或x ﹣4=0 解得:x=﹣1或x=4.23.【答案】(1)解:原式=2y (x 2﹣4x+4)=2y (x ﹣2)2;(2)解:原式=(x ﹣y )(a 2﹣9b 2) =(x ﹣y )(a+3b )(a ﹣3b ).24.【答案】(1)解: −20a −15ax= −5a×4−5a⋅3x=−5a(4+3x);(2)解:(a−3)2−(2a−6) = (a−3)2−2(a−3)= (a−3)(a−3−2)=(a−3)(a−5)。

因式分解专项训练及解析答案

因式分解专项训练及解析答案

因式分解专项训练及解析答案一、选择题1.下列从左到右的变形,是因式分解的是( )A .2(a ﹣b)=2a ﹣2bB .221(a b)(a b)1-=-+++a bC .2224(2)x x x -+=-D .22282(2)(2)x y x y x y -=-+ 【答案】D【解析】【分析】根据因式分解的定义,把一个多项式变形为几个整式的积的形式是分解因式进行分析即可得出.【详解】解:由因式分解的定义可知:A. 2(a ﹣b)=2a ﹣2b ,不是因式分解,故错误;B. 221(a b)(a b)1-=-+++a b ,不是因式分解,故错误;C. 2224(2)x x x -+=-,左右两边不相等,故错误;D. 22282(2)(2)x y x y x y -=-+是因式分解;故选:D【点睛】本题考查了因式分解的定义,熟知因式分解的定义和分解的规范要求是解题关键.2.若()()21553x kx x x --=-+,则k 的值为( )A .-2B .2C .8D .-8【答案】B【解析】【分析】 利用十字相乘法化简()()253215x x x x -+=--,即可求出k 的值.【详解】∵()()253215x x x x -+=--∴2k -=-解得2k =故答案为:B .【点睛】本题考查了因式分解的问题,掌握十字相乘法是解题的关键.3.将多项式4x 2+1再加上一项,使它能分解因式成(a+b )2的形式,以下是四位学生所加的项,其中错误的是( )A .2xB .﹣4xC .4x 4D .4x【答案】A【解析】【分析】分别将四个选项中的式子与多项式4x 2+1结合,然后判断是否为完全平方式即可得答案.【详解】A 、4x 2+1+2x ,不是完全平方式,不能利用完全平方公式进行因式分解,故符合题意;B 、4x 2+1-4x=(2x-1)2,能利用完全平方公式进行因式分解,故不符合题意;C 、4x 2+1+4x 4=(2x 2+1)2,能利用完全平方公式进行因式分解,故不符合题意;D 、4x 2+1+4x=(2x+1)2,能利用完全平方公式进行因式分解,故不符合题意,故选A.【点睛】本题考查了完全平方式,熟记完全平方式的结构特征是解题的关键.4.已知4821-可以被在60~70之间的两个整数整除,则这两个数是( )A .61、63B .61、65C .61、67D .63、65 【答案】D【解析】【分析】由()()()()()()24242412686421212121221121=+-=+++--,多次利用平方差公式化简,可解得.【详解】解:原式()()24242121=+-,()()()()()()()()()24121224126624122121212121212163652121=++-=+++-=⨯⨯++ ∴这两个数是63,65.选D.【点睛】本题考查的是因式分解的应用,熟练掌握平方差公式是解题的关键.5.把代数式322363x x y xy -+分解因式,结果正确的是( )A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .2(3)x x y -D .23()x x y -【答案】D【解析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.解答:解:322363x x y xy -+,=3x (x 2-2xy+y 2),=3x (x-y )2.故选D .6.下列分解因式正确的是( )A .x 2-x+2=x (x-1)+2B .x 2-x=x (x-1)C .x-1=x (1-1x )D .(x-1)2=x 2-2x+1 【答案】B【解析】【分析】根据因式分解的定义对各选项分析判断后利用排除法求解.【详解】A 、x 2-x+2=x (x-1)+2,不是分解因式,故选项错误;B 、x 2-x=x (x-1),故选项正确;C 、x-1=x (1-1x),不是分解因式,故选项错误; D 、(x-1)2=x 2-2x+1,不是分解因式,故选项错误.故选:B .【点睛】本题考查了因式分解,把一个多项式写成几个整式的积的形式叫做因式分解,也叫做分解因式.掌握提公因式法和公式法是解题的关键.7.把多项式分解因式,正确的结果是( )A .4a 2+4a+1=(2a+1)2B .a 2﹣4b 2=(a ﹣4b )(a+b )C .a 2﹣2a ﹣1=(a ﹣1)2D .(a ﹣b )(a+b )=a 2+b 2【答案】A【解析】【分析】本题考查的是因式分解中的平方差公式和完全平方公式【详解】解:A. 4a 2+4a+1=(2a+1)2,正确;B. a 2﹣4b 2=(a ﹣2b )(a+2b ),故此选项错误;C. a 2﹣2a+1=(a ﹣1)2,故此选项错误;D. (a ﹣b )(a+b )=a 2﹣b 2,故此选项错误;故选A8.下列分解因式,正确的是( )A .()()2x 1x 1x 1+-=+B .()()29y 3y y 3-+=+- C .()2x 2x l x x 21++=++ D .()()22x 4y x 4y x 4y -=+- 【答案】B【解析】【分析】把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.据此作答.【详解】A. 和因式分解正好相反,故不是分解因式;B. 是分解因式;C. 结果中含有和的形式,故不是分解因式;D. x 2−4y 2=(x+2y)(x−2y),解答错误.故选B.【点睛】本题考查的知识点是因式分解定义和十字相乘法分解因式,解题关键是注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.9.多项式225a -与25a a -的公因式是( )A .5a +B .5a -C .25a +D .25a -【答案】B【解析】【分析】直接将原式分别分解因式,进而得出公因式即可.【详解】解:∵a 2-25=(a+5)(a-5),a 2-5a=a (a-5),∴多项式a 2-25与a 2-5a 的公因式是a-5.故选:B .【点睛】此题主要考查了公因式,正确将原式分解因式是解题的关键.10.把代数式2x 2﹣18分解因式,结果正确的是( )A .2(x 2﹣9)B .2(x ﹣3)2C .2(x +3)(x ﹣3)D .2(x +9)(x ﹣9)【答案】C【解析】试题分析:首先提取公因式2,进而利用平方差公式分解因式得出即可.解:2x 2﹣18=2(x 2﹣9)=2(x+3)(x ﹣3).故选C .考点:提公因式法与公式法的综合运用.11.将多项式x 2+2xy+y 2﹣2x ﹣2y+1分解因式,正确的是( )A .(x+y )2B .(x+y ﹣1)2C .(x+y+1)2D .(x ﹣y ﹣1)2 【答案】B【解析】【分析】此式是6项式,所以采用分组分解法.【详解】解:x 2+2xy+y 2﹣2x ﹣2y+1=(x 2+2xy+y 2)﹣(2x+2y )+1=(x+y )2﹣2(x+y )+1=(x+y ﹣1)2.故选:B12.下列从左边到右边的变形,属于因式分解的是( )A .2(1)(1)1x x x +-=-B .221(2)1x x x x -+=-+C .224(4)(4)x y x y x y -=+-D .26(2)(3)x x x x --=+-【答案】D【解析】A. 和因式分解正好相反,故不是分解因式;B. 结果中含有和的形式,故不是分解因式;C. 22x 4y -=(x+2y)(x−2y),解答错误;D. 是分解因式。

因式分解题库100题专题训练经典练习题(含答案)

因式分解题库100题专题训练经典练习题(含答案)

因式分解题库100题专题训练经典练习题(含答案)、填空题(共20题) 1、 a2-9b 2= ____________ 2、 2x3-12x2+4x =2x ( )3、 -27a3=( __ )34、 2xy2-8x 3 = 2x (_) ( __ )5、 ( x+2y )( y-2x )= - (x+2y )( __ )6、 x ( x-y ) +y ( y-x )= _________7、 a-a 3= a ( a+1)( )8、 1600a2-100=100( ___ ) (___ )9、 9a2+(_)+4 =( )2 10、 ( x+2)x-x-2= ( x+2) ___ ( ) 11、 ____________ a 3-a =a ( ) (12、 ( ____ )x2+4x+16 =( ______ )2 13、 ________________ 3a3+5a2+ ( ) = ( a+ ) ( +2a-4 ) 14、 (_)-2y2 = -2 ( —+1 )2 15、 x2-6x-7= ( x ) ( x_ 16、 3xy+6y2+4x2+8xy=3y ( )+4x ( ) =( ) ()17、 a2+3a-10= ( a+m ( a+n ),贝U m= ,n= ___18、 8a3-b 3= (2a-b ) (19、 ______________________________ xy+y2+mx+my=(y2+my + ( ) = ( ) ( )20、 ( x2+y2) 2-4x2y2= ___________3、下列各式中,能有平方差公式分解因式的是( )A 4x2+4B 、( 2x+3) 2 -4 (3x2+2) 2C 、9x2-2xD 、a2+b21、 多项式2a2+3a+1因式分解等于( ) A (a+1 ) (a-1 ) B 、( 2a+1 ) (2a-1)C 、 2a+1 ) ( a+1)D 、( 2a+1 )(a-1 ) 2、 下列各式分解因式正确的是( ) A 3x2+6x+3= 3 (x+1) 2 B、2x2+5xy-2y 2= (2x+y ) C 、 2x2+6xy= (2x+3) (x+2y ) D 、a2-6=(a-3) ( a-2) 二、选择题(共32题)(x+2y )4、把多项式x2-3x-70因式分解,得()A、(x-5 )(x+14) B 、(x+5 )(x-14 )C、(x-7)(x+10 ) D 、(x+7)(x-10)5、已知a+b=O,则多项式a3+3a2+4ab+b2+b3的值是( )A 0B 、1C 、-2D 、2 6把4a2+3a-1因式分解,得( ) A 、( 2a+1)( 2a-1) B 、( 2a-1 )( a-3) C 、( 4a-1)( a+1) D 、( 4a+1)( a-1 ) 7、 下列等式中,属于因式分解的是( ) A 、 a ( 1+b ) +b ( a+1) = ( a+1)( b+1) B 、 2a ( b+2) +b ( a-1 ) =2ab-4a+ab-b C 、 a 2-6a+10 =a ( a-6) +10 D ( x+3)2-2(x+3) =(x+3)( x+1)8、 2m2+6x+2x2是一个完全平方公式,则 m 的值是( ),3, 5 9 A 、0 B 、± - C 、 ±二 D 、二 22 49、 多项式3x3-27x 因式分解正确的是()A 、3x (x2-9 )B 、3x (x2+9 )C 、3x (x+3)( x-3)D 、3x (3x-1 ) ( 3x+1) 10、已知x >0,且多项式x3+4x2+x-6=0,贝U x 的值是( )A 、1B 、2C 、3D 、411、 多项式2a2+4ab+2b2+k 分解因式后,它的一个因式是(a+b-2),贝U k 的值 是( ) A 、4B、-4 C 、8 D 、-812、对a 4 + 4进行因式分解,所得结论正确的是( )A (a2+2)2B 、 (a2+2) (a2-2)C 、有一个因式为(a2+2a+2) D、不能因式分解+9 (n-m )分解因式得( )B 、( m-n )( a+3)( a-3) D 、( m+r) ( a+3)214、多项式m i -14m2+1分解因式的结果是()13、多项式 a2 (m-n ) A 、( a2+9)( m-n ) C 、( a2+9)( m+nB 、( m2+3m+1 ( m2-6m+1) D 、( m2-1 ) (m2+1))B 、 x2+xy+x=x (x+y )A 、( n2+4m+1 ( n2-4m+1)C 、( n2-m+1)( m2+m+1 15、下列分解因式正确的是(C、2m(2m-n) +n (n-2m) = (2m-n)2D、a2-4a+4= (a+2)( a-2)16、下列等式从左到右的变形,属于因式分解的是( )A 2x (a-b) =2ax-2bxB 、2a2+a-仁a (2a+1) -1C、( a+1)( a+2) = a 2+3a+2D、3a+6a2=3a (2a+1)17、下列各式① 2m+n 和m+2n ③x3+y3 和x2+xy 其中有公因式的是(A、①② B 、② 3n (a-b )和-a+b④a2+b2 和a2-b2)②③ C 、①④ D 、③④18、下列四个多项式中,能因式分解的是(A、x2+1 B 、x 2-1 C 、x 2+5y D 、x2-5y19、将以下多项式分解因式,结果中不含因式x-1的是(A、1 -x 3 B 、x2-2x+1C、x (2a+3)- (3-2a)D 、2x (m+n -2 (m+n20、若多项式2x2+ax可以进行因式分解,则a不能为()A、0 B 、-1 C 、1 D 、221、已知x+y= -3,xy=2,贝U x3y+xy3的值是()A、2 B 、4 C 、10 D 、20a a22、多项式x -y因式分解的结果是(x2+y2)(x+y)(x-y ),则a的值是()A、2 B 、4 C 、-2 D-423、对8 (a2-2b2) -a (7a+b) +ab进行因式分解,其结果为()A、(8a-b)(a-7b) B 、(2a+3b)( 2a-3b) C、a+2b)a-2b) D 、(a+4b)( a-4b)24、下列分解因式正确的是(A、x2-x-4= (x+2)( x-2 ) C、x(x-y)- y(y-x)= (x-y ) 2)B 、2x2-3xy+y 2 = (2x-y ) (x-y ) D 、4x-5x 2+6= (2x+3)( 2x+2)25、多项式a=2x2+3x+1,b=4x2-4x-3,贝U M和N的公因式是()A、2x+1 B 、2x-3 C 、x+1 D 、x+326、多项式(x-2y )2+8xy因式分解,结果为( )A、( x-2y+2 ) (x-2y+4 ) B 、( x-2y-2 ) (x-2y-4 )C、( x+2y)2 D 、( x-2y ) 227、下面多项式① x 2+5X-50 ②x3-1③ x3-4x ④ 3x2-12他们因式分解后,含有三个因式的是()A、①②、B、③④ C ③D、④128、已知x=.,则代数式(x+2)(x+4)+x2-4的值是()A 4+2「2B 、4-2「2C 、2_2D 、4 一229、下列各多项式中,因式分解正确的()A 4x2 -2 = (4x-2)x2B 、1-x 2=(1-x)2C、x2+2 = (x+2)(x+1) D 、x2-仁(x+1)(x-1)30、若x2+7x-30与x2-17x+42有共同的因式x+m贝U m的值为()A -14B 、-3 C、3 D 、1031、下列因式分解中正确的个数为()① x 2+y2= (x+y)(x-y )② x2-12x+32= (x-4 )(x-8 )③ x3+2xy+x=x (x2+2y)④x4-仁(x2+1)(x2-1A 1B 、2C 、3D 、432、下列各式中,满足完全平方公式进行因式分解的是()A、0.0 9- x 2 B 、x2+20x+100C、4x 2+4x+4 D 、x2-y2-2xy三、因式分解(共42题)1、x2 (a-b)+ (b-a)2、x3-xy 23、(a+1)2-9 (a-1 ) 24、x (xy+yz+xz)-xyz5、(x-1 )(x-3 )+16 a2-4a+4-b 27、(x2-2x )2+2x (x-2 )+18、(x+y+z)3 -x 3-y 3-z 349、x -5x 2+410、5+7 (x+1)+2 (x+1 )2412、x +x2+1513、a -2a 3-8a15、a2 (x-y ) +16 (y-x )16、x2+6xy+9y2-x-3y-3017、(x2+y2-z2)2-4x2y218、xy2-xz 2+4xz-4x19、x2 (y-z ) +y2 (z-x ) +z2 (x-y )20、3x2-5x-11221、3n2x-4n 2y-3n2x+4n2y22、x2 (2-y ) + (y-2 )4 423、x +x2y2+y424、x -1625、(x-1 ) 2- (y+1) 226、( x-2) ( x-3) -2027、2 (x+y ) 2-4 (x+y ) -3028、x2+1-2x+4 (x-129、( a2+a) ( a2+a+1 ) -1230、5x+5y+x2+2xy+y231、x3+x2-x-132、x (a+b) 2 +x2 (a+b)33、( x+2 ) 2 -y 2-2x-334、( x2-6) ( x2-4) -1535、(x+1) 2-2 (x2-1 )36、( ax+by ) 2+ (ax-by ) 2-2 (ax+by ) (ax-by )37、( a+1) ( a+2) (a+3)(a+4)-3438、( a+1) + (a+1 ) 2 +1439、x +2x3+3x2+2x+140、4a3-31a+15541、a +a+142、a3+5a2+3a-9四、求值(共10题)1、x+y=1, xy=2 求x2+y2-4xy 的值2、x2+x-1=0,求x4+x3+x 的值亠a2+b2 + 3、已知a (a-1 ) - (a2-b) +仁0,求一2 — -ab 的值5、若(x+m) (x+n) =x2-6x+5,求2mn的值4、xy=1,求囂争+ -^2-的值x2+2x+1 y2+y5、6 已知x>y>0, x-y=1 , xy=2,求x2-y2的值7、已知a=「2+1 , b=「3-1,求ab+a-b-1 的值8、已知x=m+1,y= -2m+1, z=m-2,求x2+y2-z 2+2xy 的值。

因式分解练习题加答案_200道-分解因解题目

因式分解练习题加答案_200道-分解因解题目

因式分化3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)之羊若含玉创作3.因式分化xy+6-2x-3y=(x-3)(y-2)4.因式分化x2(x-y)+y2(y-x)=(x+y)(x-y)^25.因式分化2x2-(a-2b)x-ab=(2x-a)(x+b)6.因式分化a4-9a2b2=a^2(a+3b)(a-3b)7.若已知x3+3x2-4含有x-1的因式,试分化x3+3x2-4=(x-1)(x+2)^28.因式分化ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)9.因式分化(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)10.因式分化a2-a-b2-b=(a+b)(a-b-1)11.因式分化(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^212.因式分化(a+3)2-6(a+3)=(a+3)(a-3)13.因式分化(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)abc+ab-4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2-30x+25=(3x-5)^2(4)x2-7x-30=(x-10)(x+3)35.因式分化x2-25=(x+5)(x-5)36.因式分化x2-20x+100=(x-10)^237.因式分化x2+4x+3=(x+1)(x+3)38.因式分化4x2-12x+5=(2x-1)(2x-5)39.因式分化下列各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)-x=x(x+1)(3)x2-4x-ax+4a=(x-4)(x-a)(4)25x2-49=(5x-9)(5x+9)(5)36x2-60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x-3)(x-6)(8)2x2-5x-3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x-4)40.因式分化(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41.因式分化2ax2-3x+2ax-3= (x+1)(2ax-3)42.因式分化9x2-66x+121=(3x-11)^243.因式分化8-2x2=2(2+x)(2-x)44.因式分化x2-x+14 =整数内无法分化45.因式分化9x2-30x+25=(3x-5)^246.因式分化-20x2+9x+20=(-4x+5)(5x+4)47.因式分化12x2-29x+15=(4x-3)(3x-5)48.因式分化36x2+39x+9=3(3x+1)(4x+3)49.因式分化21x2-31x-22=(21x+11)(x-2)50.因式分化9x4-35x2-4=(9x^2+1)(x+2)(x-2)51.因式分化(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)52.因式分化2ax2-3x+2ax-3=(x+1)(2ax-3)53.因式分化x(y+2)-x-y-1=(x-1)(y+1)54.因式分化(x2-3x)+(x-3)2=(x-3)(2x-3)55.因式分化9x2-66x+121=(3x-11)^256.因式分化8-2x2=2(2-x)(2+x)57.因式分化x4-1=(x-1)(x+1)(x^2+1)58.因式分化x2+4x-xy-2y+4=(x+2)(x-y+2)59.因式分化4x2-12x+5=(2x-1)(2x-5)60.因式分化21x2-31x-22=(21x+11)(x-2)61.因式分化4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)62.因式分化9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)63.因式分化下列各式:(1)3x2-6x=3x(x-2)(2)49x2-25=(7x+5)(7x-5)(3)6x2-13x+5=(2x-1)(3x-5)(4)x2+2-3x=(x-1)(x-2)(5)12x2-23x-24=(3x-8)(4x+3)(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)(8)9x2+42x+49=(3x+7)^2 .1.若(2x)n−81 = (4x2+9)(2x+3)(2x−3),那么n的值是( B )A.2B. 4C.6D.82.若9x2−12xy+m是两数和的平方法,那么m的值是( B )A.2y2B.4y 2C.±4y2D.±16y23.把多项式a4− 2a2b2+b4因式分化的成果为( D )A.a2(a2−2b2)+b4 B.(a2−b2)2C.(a−b)4 D.(a+b)2(a−b)24.把(a+b)2−4(a2−b2)+4(a−b)2分化因式为( C )A.( 3a−b)2 B.(3b+a)2C.(3b−a)2 D.( 3a+b)26.已知x,y为任意有理数,记M = x2+y2,N = 2xy,则M 与N的大小关系为(B )A.M>N B.M≥NC.M≤ND.不克不及确定7.对于任何整数m,多项式( 4m+5)2−9都能( A ) A.被8整除B.被m整除C.被(m−1)整除 D.被(2n−1)整除9.下列变形中,是正确的因式分化的是(D )A.0.09m2− n2 = ( 0.03m+ n )( 0.03m−n)B.x2−10 = x2−9−1 = (x+3)(x−3)−1C.x4−x2 = (x2+x)(x2−x)D.(x+a)2−(x−a)2 = 4ax10.多项式(x+y−z)(x−y+z)−(y+z−x)(z−x−y)的公因式是( A )A.x+y−z B.x−y+z C.y+z−x D.不存在11.已知x为任意有理数,则多项式x−1−x2的值( ) A.一定为负数B.不成能为正数C.一定为正数D.可能为正数或负数或零二、解答题:分化因式:(1)(ab+b)2−(a+b)2(2)(a2−x2)2−4ax(x−a)2(3)7xn+1−14xn+7xn−1(n为不小于1的整数)答案:一、选择题:1.B说明:右边进行整式乘法后得16x4−81 = (2x)4−81,所以n应为4,答案为B.2.B说明:因为9x2−12xy+m是两数和的平方法,所以可设9x2−12xy+m = (ax+by)2,则有9x2−12xy+m = a2x2+2abxy+b2y2,即a2 = 9,2ab = −12,b2y2 = m;得到a = 3,b = −2;或a = −3,b = 2;此时b2 = 4,因此,m = b2y2 = 4y2,答案为B.3.D说明:先运用完全平方公式,a4− 2a2b2+b4 =(a2−b2)2,再运用两数和的平方公式,两数分离是a2、−b2,则有(a2−b2)2 = (a+b)2(a−b)2,在这里,注意因式分化要分化到不克不及分化为止;答案为D.4.C说明:(a+b)2−4(a2−b2)+4(a−b)2 = (a+b)2−2(a+b)[2(a−b)]+[2(a−b)]2 = [a+b−2(a−b)]2 = (3b−a)2;所以答案为C.6.B说明:因为M−N = x2+y2−2xy = (x−y)2≥0,所以M≥N.7.A说明:( 4m+5)2−9 = ( 4m+5+3)( 4m+5−3) = ( 4m+8)( 4m+2) = 8(m+2)( 2m+1).9.D说明:选项A,,则0.09m2− n2 = ( 0.3m+n)( 0.3m−n),所以A错;选项B的右边不是乘积的形式;选项C右边(x2+x)(x2−x)可持续分化为x2(x+1)(x−1);所以答案为D.10.A说明:本题的症结是符号的变更:z−x−y = −(x+y−z),而x−y+z≠y+z−x,同时x−y+z≠−(y+z−x),所以公因式为x+y−z.11.B说明:x−1−x2 = −(1−x+x2) = −(1−x)2≤0,即多项式x−1−x2的值为非正数,正确答案应该是B.二、解答题:(1) 答案:a(b−1)(ab+2b+a)说明:(ab+b)2−(a+b)2 = (ab+b+a+b)(ab+b−a−b) =(ab+2b+a)(ab−a) = a(b−1)(ab+2b+a).(2) 答案:(x−a)4说明:(a2−x2)2−4ax(x−a)2= [(a+x)(a−x)]2−4ax(x−a)2= (a+x)2(a−x)2−4ax(x−a)2= (x−a)2[(a+x)2−4ax]= (x−a)2(a2+2ax+x2−4ax)= (x−a)2(x−a)2 = (x−a)4.(3) 答案:7xn−1(x−1)2说明:原式= 7xn−1 •x2−7xn−1 •2x+7xn−1 = 7xn−1(x2−2x+1) = 7xn−1(x−1)2.因式分化之十字相乘法专项演习题(1)a2-7a+6; (2)8x2+6x-35;(3)18x2-21x+5; (4) 20-9y-20y2;(5)2x2+3x+1; (6)2y2+y-6;(7)6x2-13x+6; (8)3a2-7a-6;(9)6x2-11x+3; (10)4m2+8m+3;(11)10x2-21x+2; (12)8m2-22m+15;(13)4n2+4n-15; (14)6a2+a-35;(15)5x2-8x-13; (16)4x2+15x+9;(17)15x2+x-2; (18)6y2+19y+10;(19) 2(a+b) 2+(a+b)(a-b)-6(a-b) 2; (20)7(x-1)2+4(x-1)-20;(1)(a-6)(a-1),(2)(2x+5)(4x-7)(3)(3x-1)(6x-5),(4)-(4y-5)(5y+4)(5)(x+1)(2x+1),(6)(y+2)(2y-3)(7)(2x-3)(3x-2),(8)(a-3)(3a+2)(9)(2x-3)(3x-1),(10)(2m+1)(2m+3)(11)(x-2)(10x-1),(12)(2m-3)(4m-5)(13)(2n+5)(2n-3),(14)(2a+5)(3a-7)(15)(x+1)(5x-13),(16)(x+3)(4x+3)(17)(3x-1)(5x=2),(18)(2y+5)(3y+2)(19)(3a-b)(5b-a),(20)(x+1)(7x-17)例1 分化因式思路1 因为所以设原式的分化式是然后展开,应用多项式的恒等,求出m, n,的值.解法1因为所以可设比较系数,得由①、②解得把代入③式也成立.∴思路2 前面同思路1,然后给x,y取特殊值,求出m,n 的值.解法2 因为所以可设因为该式是恒等式,所以它对所有使式子有意义的x,y都成立,那么无妨令得令得解①、②得或把它们分离代入恒等式磨练,得∴说明:本题解法中方程的个数多于未知数的个数,必须把求得的值代入过剩的方程逐一磨练.若有的解对某个方程或所设的等式不成立,则需将此解舍去;若得方程组无解,则说明原式不克不及分化成所设形成的因式.例2 分化因式思路本题是关于x的四次多项式,可斟酌用待定系数法将其分化为两个二次式之积.解设由恒等式性质有:由①、③解得代入②中,②式成立.∴说明若设原式由待定系数法解题知关于a与b的方程组无解,故设原式例3 在关于x的二次三项式中,当时,其值为0;当时,其值为0;当时,其值为10,求这个二次三项式.思路1 先设出关于x的二次三项式的表达式,然后应用已知条件求出各项的系数.可斟酌应用恒待式的性质.解法1 设关于x的二次三项式为把已知条件分离代入,得解得故所求的二次三项为思路2 依据已知时,其值0这一条件可设二次三项式为然后再求出a的值.解法2 由已知条件知当时,这个二次三项式的值都为0,故可设这个二次三项式为把代入上式,得解得故所求的二次三项式为即说明要注意应用已知条件,巧设二次三项式的表达式.例4 已知多项式的系数都是整数.若是奇数,证明这个多项式不克不及分化为两个整系数多项式的乘积.思路先设这个多项式能分化为两个整系数多项式的乘积,然后应用已知条件及其他知识推出这种分化是不成能的.证明:设(m,n,r都是整数).比较系数,得因为是奇数,则与d都为奇数,那么mr也是奇数,由奇数的性质得出m,r也都是奇数.在①式中令,得②由是奇数,得是奇数.而m为奇数,故是偶数,所以是偶数.这样②的左边是奇数,右边是偶数.这是不成能的.因此,题中的多项式不克不及分化为两个整系数多项式的乘积.说明:所要证的命题涉及到“不克不及”时,经常斟酌用反证法来证明.例5 已知能被整除,求证:思路:可用待定系数法来求展开前后系数之间的关系.证明:设展开,比较系数,得由①、②,得,代入③、④得:,∴例6若a是自然数,且的值是一个质数,求这个质数.思路:因为质数只能分化为1和它自己,故可用待定系数法将多项式分化因式,且使得因式中值较小的为1,即可求a的值.进而解决问题.解:由待定系数法可解得由于a是自然数,且是一个质数,∴解得当时,不是质数.当时,是质数.∴=11 .1、分化因式_______.2、若多项式能被整除,则n=_______.2、-4.提示:设原式=比较系数,得由①、②解得代入③得3、二次三项式当时其值为-3,当时其值为2,当时其值为5 ,这个二次三项式是_______.4、m, n是什么数时,多项式能被整除?5、多项式能分化为两个一次因式的积,则k=_____.6、若多项式能被整除,则_______.7、若多项式当 2 时的值均为0,则当x=_____时,多项式的值也是0.8、求证:不克不及分化为两个一次因式的积.参考答案或提示:1.提示:设原式比较双方系数,得由①、②解得将代入③式成立.∴原式3、提示:设二次三项式为把已知条件代入,得解得∴所求二次三项式为4.设比较系数,得解得∴当m=-11,n=4已知多项式能被整除.提示:设原式.比较系数,得解得提示:设原式比较系数,得解得∴7.3.提示:设原式比较系数,得解得c=3.∴当x=3时,多项式的值也是0.且展开后比较系数,得由④、⑤得代入③,再由①、③得将上述入②得.而这与③抵触,即方程组无解.故命题得证.。

因式分解练习题加答案_200道

因式分解练习题加答案_200道

因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)3.因式分解xy+6-2x-3y=(x-3)(y-2)4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^25.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^28.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)10.因式分解a2-a-b2-b=(a+b)(a-b-1)11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^212.因式分解(a+3)2-6(a+3)=(a+3)(a-3)13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)abc+ab-4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2-30x+25=(3x-5)^2(4)x2-7x-30=(x-10)(x+3)35.因式分解x2-25=(x+5)(x-5)36.因式分解x2-20x+100=(x-10)^237.因式分解x2+4x+3=(x+1)(x+3)38.因式分解4x2-12x+5=(2x-1)(2x-5)39.因式分解下列各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)-x=x(x+1)(3)x2-4x-ax+4a=(x-4)(x-a)(4)25x2-49=(5x-9)(5x+9)(5)36x2-60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x-3)(x-6)(8)2x2-5x-3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x-4)40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)42.因式分解9x2-66x+121=(3x-11)^243.因式分解8-2x2=2(2+x)(2-x)44.因式分解x2-x+14 =整数内无法分解45.因式分解9x2-30x+25=(3x-5)^246.因式分解-20x2+9x+20=(-4x+5)(5x+4)47.因式分解12x2-29x+15=(4x-3)(3x-5)48.因式分解36x2+39x+9=3(3x+1)(4x+3)49.因式分解21x2-31x-22=(21x+11)(x-2)50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2)51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)53.因式分解x(y+2)-x-y-1=(x-1)(y+1)54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3)55.因式分解9x2-66x+121=(3x-11)^256.因式分解8-2x2=2(2-x)(2+x)57.因式分解x4-1=(x-1)(x+1)(x^2+1)58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)59.因式分解4x2-12x+5=(2x-1)(2x-5)60.因式分解21x2-31x-22=(21x+11)(x-2)61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)63.因式分解下列各式:(1)3x2-6x=3x(x-2)(2)49x2-25=(7x+5)(7x-5)(3)6x2-13x+5=(2x-1)(3x-5)(4)x2+2-3x=(x-1)(x-2)(5)12x2-23x-24=(3x-8)(4x+3)(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)(8)9x2+42x+49=(3x+7)^2 。

因式分解练习题加答案_200道-分解因解题目

因式分解练习题加答案_200道-分解因解题目

因式分化3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)之五兆芳芳创作3.因式分化xy+6-2x-3y=(x-3)(y-2)4.因式分化x2(x-y)+y2(y-x)=(x+y)(x-y)^25.因式分化2x2-(a-2b)x-ab=(2x-a)(x+b)6.因式分化a4-9a2b2=a^2(a+3b)(a-3b)7.若已知x3+3x2-4含有x-1的因式,试分化x3+3x2-4=(x-1)(x+2)^28.因式分化ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)9.因式分化(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)10.因式分化a2-a-b2-b=(a+b)(a-b-1)11.因式分化(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^212.因式分化(a+3)2-6(a+3)=(a+3)(a-3)13.因式分化(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2) abc+ab-4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2-30x+25=(3x-5)^2(4)x2-7x-30=(x-10)(x+3)35.因式分化x2-25=(x+5)(x-5)36.因式分化x2-20x+100=(x-10)^237.因式分化x2+4x+3=(x+1)(x+3)38.因式分化4x2-12x+5=(2x-1)(2x-5)39.因式分化下列各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)-x=x(x+1)(3)x2-4x-ax+4a=(x-4)(x-a)(4)25x2-49=(5x-9)(5x+9)(5)36x2-60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x-3)(x-6)(8)2x2-5x-3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x-4)40.因式分化(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41.因式分化2ax2-3x+2ax-3= (x+1)(2ax-3)42.因式分化9x2-66x+121=(3x-11)^243.因式分化8-2x2=2(2+x)(2-x)44.因式分化x2-x+14 =整数内无法分化45.因式分化9x2-30x+25=(3x-5)^246.因式分化-20x2+9x+20=(-4x+5)(5x+4)47.因式分化12x2-29x+15=(4x-3)(3x-5)48.因式分化36x2+39x+9=3(3x+1)(4x+3)49.因式分化21x2-31x-22=(21x+11)(x-2)50.因式分化9x4-35x2-4=(9x^2+1)(x+2)(x-2)51.因式分化(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)52.因式分化2ax2-3x+2ax-3=(x+1)(2ax-3)53.因式分化x(y+2)-x-y-1=(x-1)(y+1)54.因式分化(x2-3x)+(x-3)2=(x-3)(2x-3)55.因式分化9x2-66x+121=(3x-11)^256.因式分化8-2x2=2(2-x)(2+x)57.因式分化x4-1=(x-1)(x+1)(x^2+1)58.因式分化x2+4x-xy-2y+4=(x+2)(x-y+2)59.因式分化4x2-12x+5=(2x-1)(2x-5)60.因式分化21x2-31x-22=(21x+11)(x-2)61.因式分化4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)62.因式分化9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)63.因式分化下列各式:(1)3x2-6x=3x(x-2)(2)49x2-25=(7x+5)(7x-5)(3)6x2-13x+5=(2x-1)(3x-5)(4)x2+2-3x=(x-1)(x-2)(5)12x2-23x-24=(3x-8)(4x+3)(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)(8)9x2+42x+49=(3x+7)^2 .1.若(2x)n−81 = (4x2+9)(2x+3)(2x−3),那么n的值是( B )A.2B. 4C.6D.82.若9x2−12xy+m是两数和的平方法,那么m的值是( B )A.2y2B.4y 2C.±4y2D.±16y23.把多项式a4− 2a2b2+b4因式分化的结果为( D )A.a2(a2−2b2)+b4 B.(a2−b2)2C.(a−b)4 D.(a+b)2(a−b)24.把(a+b)2−4(a2−b2)+4(a−b)2分化因式为( C )A.( 3a−b)2 B.(3b+a)2C.(3b−a)2 D.( 3a+b)26.已知x,y为任意有理数,记M = x2+y2,N = 2xy,则M与N的大小关系为(B )A.M>N B.M≥NC.M≤ND.不克不及确定7.对于任何整数m,多项式( 4m+5)2−9都能( A ) A.被8整除B.被m整除C.被(m−1)整除 D.被(2n−1)整除9.下列变形中,是正确的因式分化的是(D )A. 0.09m2− n2 = ( 0.03m+ n )( 0.03m−n)B.x2−10 = x2−9−1 = (x+3)(x−3)−1C.x4−x2 = (x2+x)(x2−x)D.(x+a)2−(x−a)2 = 4ax10.多项式(x+y−z)(x−y+z)−(y+z−x)(z−x−y)的公因式是( A )A.x+y−z B.x−y+z C.y+z−x D.不存在11.已知x为任意有理数,则多项式x−1−x2的值( ) A.一定为正数B.不成能为正数C.一定为正数D.可能为正数或正数或零二、解答题:分化因式:(1)(ab+b)2−(a+b)2(2)(a2−x2)2−4ax(x−a)2(3)7xn+1−14xn+7xn−1(n为不小于1的整数)答案:一、选择题:1.B说明:右边进行整式乘法后得16x4−81 = (2x)4−81,所以n应为4,答案为B.2.B说明:因为9x2−12xy+m是两数和的平方法,所以可设9x2−12xy+m = (ax+by)2,则有9x2−12xy+m = a2x2+2abxy+b2y2,即a2 = 9,2ab = −12,b2y2 = m;得到 a = 3,b = −2;或 a = −3,b = 2;此时b2 = 4,因此,m = b2y2 = 4y2,答案为B.3.D说明:先运用完全平方公式,a4− 2a2b2+b4 = (a2−b2)2,再运用两数和的平方公式,两数辨别是a2、−b2,则有(a2−b2)2 = (a+b)2(a−b)2,在这里,注意因式分化要分化到不克不及分化为止;答案为D.4.C说明:(a+b)2−4(a2−b2)+4(a−b)2 = (a+b)2−2(a+b)[2(a−b)]+[2(a−b)]2 = [a+b−2(a−b)]2 = (3b−a)2;所以答案为C.6.B说明:因为M−N = x2+y2−2xy = (x−y)2≥0,所以M≥N.7.A说明:( 4m+5)2−9 = ( 4m+5+3)( 4m+5−3) = ( 4m+8)( 4m+2) = 8(m+2)( 2m+1).9.D说明:选项A,,则0.09m2−n2 = ( 0.3m+n)( 0.3m−n),所以A错;选项B的右边不是乘积的形式;选项C右边(x2+x)(x2−x)可持续分化为x2(x+1)(x−1);所以答案为D.10.A说明:本题的关头是符号的变更:z−x−y = −(x+y−z),而x−y+z≠y+z−x,同时x−y+z≠−(y+z−x),所以公因式为x+y−z.11.B说明:x−1−x2 = −(1−x+x2) = −(1−x)2≤0,即多项式x−1−x2的值为非正数,正确答案应该是B.二、解答题:(1) 答案:a(b−1)(ab+2b+a)说明:(ab+b)2−(a+b)2 = (ab+b+a+b)(ab+b−a−b) = (ab+2b+a)(ab−a) = a(b−1)(ab+2b+a).(2) 答案:(x−a)4说明:(a2−x2)2−4ax(x−a)2= [(a+x)(a−x)]2−4ax(x−a)2= (a+x)2(a−x)2−4ax(x−a)2= (x−a)2[(a+x)2−4ax]= (x−a)2(a2+2ax+x2−4ax)= (x−a)2(x−a)2 = (x−a)4.(3) 答案:7xn−1(x−1)2说明:原式 = 7xn−1 •x2−7xn−1 •2x+7xn−1 = 7xn−1(x2−2x+1) = 7xn−1(x−1)2.因式分化之十字相乘法专项练习题(1)a2-7a+6; (2)8x2+6x-35;(3)18x2-21x+5; (4) 20-9y-20y2;(5)2x2+3x+1; (6)2y2+y-6;(7)6x2-13x+6; (8)3a2-7a -6;(9)6x2-11x+3; (10)4m2+8m+3;(11)10x2-21x+2; (12)8m2-22m+15;(13)4n2+4n-15; (14)6a2+a -35;(15)5x2-8x-13;(16)4x2+15x+9;(17)15x2+x-2;(18)6y2+19y+10;(19) 2(a+b) 2+(a+b)(a-b)-6(a-b) 2;(20)7(x-1) 2+4(x-1)-20;(1)(a-6)(a-1),(2)(2x+5)(4x-7)(3)(3x-1)(6x-5),(4)-(4y-5)(5y+4)(5)(x+1)(2x+1),(6)(y+2)(2y-3)(7)(2x-3)(3x-2),(8)(a-3)(3a+2)(9)(2x-3)(3x-1),(10)(2m+1)(2m+3)(11)(x-2)(10x-1),(12)(2m-3)(4m-5)(13)(2n+5)(2n-3),(14)(2a+5)(3a-7)(15)(x+1)(5x-13),(16)(x+3)(4x+3)(17)(3x-1)(5x=2),(18)(2y+5)(3y+2)(19)(3a-b)(5b-a),(20)(x+1)(7x-17)例1 分化因式思路1 因为所以设原式的分化式是然后展开,利用多项式的恒等,求出m, n,的值.解法1因为所以可设比较系数,得由①、②解得把代入③式也成立.∴思路2 前面同思路1,然后给x,y取特殊值,求出m,n 的值.解法2 因为所以可设因为该式是恒等式,所以它对所有使式子有意义的x,y都成立,那么无妨令得令得解①、②得或把它们辨别代入恒等式查验,得∴说明:本题解法中方程的个数多于未知数的个数,必须把求得的值代入多余的方程逐一查验.若有的解对某个方程或所设的等式不成立,则需将此解舍去;若得方程组无解,则说明原式不克不及分化成所设形成的因式.例2 分化因式思路本题是关于x的四次多项式,可考虑用待定系数法将其分化为两个二次式之积.解设由恒等式性质有:由①、③解得代入②中,②式成立.∴说明若设原式由待定系数法解题知关于a与b的方程组无解,故设原式例3 在关于x的二次三项式中,当时,其值为0;当时,其值为0;当时,其值为10,求这个二次三项式.思路1 先设出关于x的二次三项式的表达式,然后利用已知条件求出各项的系数.可考虑利用恒待式的性质.解法1 设关于x的二次三项式为把已知条件辨别代入,得解得故所求的二次三项为思路2 按照已知时,其值0这一条件可设二次三项式为然后再求出a的值.解法2 由已知条件知当时,这个二次三项式的值都为0,故可设这个二次三项式为把代入上式,得解得故所求的二次三项式为即说明要注意利用已知条件,巧设二次三项式的表达式.例4 已知多项式的系数都是整数.若是奇数,证明这个多项式不克不及分化为两个整系数多项式的乘积.思路先设这个多项式能分化为两个整系数多项式的乘积,然后利用已知条件及其他知识推出这种分化是不成能的.证明:设(m,n,r都是整数).比较系数,得因为是奇数,则与d都为奇数,那么mr 也是奇数,由奇数的性质得出m,r也都是奇数.在①式中令,得②由是奇数,得是奇数.而m为奇数,故是偶数,所以是偶数.这样②的左边是奇数,右边是偶数.这是不成能的.因此,题中的多项式不克不及分化为两个整系数多项式的乘积.说明:所要证的命题涉及到“不克不及”时,经常考虑用反证法来证明.例5 已知能被整除,求证:思路:可用待定系数法来求展开前后系数之间的关系.证明:设展开,比较系数,得由①、②,得,代入③、④得:,∴例6若a是自然数,且的值是一个质数,求这个质数.思路:因为质数只能分化为1和它自己,故可用待定系数法将多项式分化因式,且使得因式中值较小的为1,便可求a 的值.进而解决问题.解:由待定系数法可解得由于a是自然数,且是一个质数,∴解得当时,不是质数.当时,是质数.∴=11 .1、分化因式_______.2、若多项式能被整除,则n=_______.2、-4.提示:设原式=比较系数,得由①、②解得代入③得3、二次三项式当时其值为-3,当时其值为2,当时其值为5 ,这个二次三项式是_______.4、m, n是什么数时,多项式能被整除?5、多项式能分化为两个一次因式的积,则k=_____.6、若多项式能被整除,则_______.7、若多项式当 2 时的值均为0,则当x=_____时,多项式的值也是0.8、求证:不克不及分化为两个一次因式的积.参考答案或提示:1.提示:设原式比较两边系数,得由①、②解得将代入③式成立.∴原式3、提示:设二次三项式为把已知条件代入,得解得∴所求二次三项式为4.设比较系数,得解得∴当m=-11,n=4已知多项式能被整除.提示:设原式.比较系数,得解得提示:设原式比较系数,得解得∴7.3.提示:设原式比较系数,得解得c=3.∴当x=3时,多项式的值也是0.且展开后比较系数,得由④、⑤得代入③,再由①、③得将上述入②得.而这与③矛盾,即方程组无解.故命题得证.。

(完整版)因式分解专项练习试题[含答案解析]

(完整版)因式分解专项练习试题[含答案解析]

因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq (2)2x2+8x+82.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.3.分解因式(1)a2(x﹣y)+16(y﹣x)(2)(x2+y2)2﹣4x2y24.分解因式:(1)2x2﹣x (2)16x2﹣1 (3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y)25.因式分解:(1)2am2﹣8a (2)4x3+4x2y+xy26.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y27.因式分解:(1)x2y﹣2xy2+y3 (2)(x+2y)2﹣y28.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+19.分解因式:a2﹣4a+4﹣b210.分解因式:a2﹣b2﹣2a+111.把下列各式分解因式:(1)x4﹣7x2+1 (2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+112.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq;(2)2x2+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p2﹣6pq=3p(p﹣2q),(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2.2.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.3.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.4.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.分析:(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.解答:解:(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.5.因式分解:(1)2am2﹣8a;(2)4x3+4x2y+xy2分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2.6.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.7.因式分解:(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).8.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.9.分解因式:a2﹣4a+4﹣b2.分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.解答:解:(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)﹣(x﹣a)2=(x2+1+x﹣a)(x2+1﹣x+a);(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1﹣y)]2=(1+y﹣x2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.分析:(1)需把﹣31x拆项为﹣x﹣30x,再分组分解;(2)把2a2b2拆项成4a2b2﹣2a2b2,再按公式法因式分解;(3)把x5+x+1添项为x5﹣x2+x2+x+1,再分组以及公式法因式分解;(4)把x3+5x2+3x﹣9拆项成(x3﹣x2)+(6x2﹣6x)+(9x﹣9),再提取公因式因式分解;(5)先分组因式分解,再用拆项法把因式分解彻底.解答:解:(1)4x3﹣31x+15=4x3﹣x﹣30x+15=x(2x+1)(2x﹣1)﹣15(2x﹣1)=(2x﹣1)(2x2+1﹣15)=(2x﹣1)(2x﹣5)(x+3);(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4=4a2b2﹣(a4+b4+c4+2a2b2﹣2a2c2﹣2b2c2)=(2ab)2﹣(a2+b2﹣c2)2=(2ab+a2+b2﹣c2)(2ab﹣a2﹣b2+c2)=(a+b+c)(a+b﹣c)(c+a﹣b)(c﹣a+b);(3)x5+x+1=x5﹣x2+x2+x+1=x2(x3﹣1)+(x2+x+1)=x2(x﹣1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3﹣x2+1);(4)x3+5x2+3x﹣9=(x3﹣x2)+(6x2﹣6x)+(9x﹣9)=x2(x﹣1)+6x(x﹣1)+9(x﹣1)=(x﹣1)(x+3)2;(5)2a4﹣a3﹣6a2﹣a+2=a3(2a﹣1)﹣(2a﹣1)(3a+2)=(2a﹣1)(a3﹣3a﹣2)=(2a﹣1)(a3+a2﹣a2﹣a﹣2a﹣2)=(2a﹣1)[a2(a+1)﹣a(a+1)﹣2(a+1)]=(2a﹣1)(a+1)(a2﹣a﹣2)=(a+1)2(a﹣2)(2a﹣1).。

因式分解专项练习100题及答案

因式分解专项练习100题及答案

因式分解专项练习100题及答案一、提取公因式(1)(61)(53)(61)(23)(61)(62)-++---+---m n m n m n(2)4242-66x yz x y(3)(72)(81)(72)(74)(72)(41)--++--++--x x x x x x(4)4442a a x y-45(5)2333323++61515x y z x z x z(6)(53)(34)(53)(33)-----+a b a b(7)323a c bc+515(8)43-1216xyz xyz(9)431025c b c +(10)3333189ax y a x y +(11)324226a bc a b c-(12)23341435a x y x -(13)(61)(25)(91)(61)x x x x -+-+-(14)33434332816x y z y z y z++(15)(32)(41)(32)(75)(32)(21)x x x x x x -++-++-+(16)(52)(2)(25)(52)m n n m +-++-+(17)(65)(43)(65)(64)x x x x +--+-(18)(85)(91)(85)(94)(85)(42)+--+++++-+a b a b a b(19)(23)(35)(23)(71)(23)(93)--+--++---m n m n m n (20)(35)(32)(35)(4)(35)(1)x x x x x x---+-++-+二、公式法(21)22-+x xy y12122(22)22-a b481(23)22-x y784529(24)2-+x x12396324(25)22-x y289121(26)2290064a b -(27)2281450625m mn n -+(28)2249238289m mn n ++(29)225628881x x ++(30)257664x -三、分组分解法(31)281040xy x y --+(32)8122842ab a b --+(33)221635262124x y xy yz zx-++-(34)21187060ax ay bx by+--(35)2294221469a c ab bc ca++--(36)45352721mx my nx ny-+-(37)2212621728a b ab bc ca--++(38)863224xy x y -+-+(39)4102870ab a b +++(40)142070100ax ay bx by+--(41)222720452057x z xy yz zx++--(42)2273554426a b ab bc ca++++(43)302064xy x y ----(44)4101640ax ay bx by--+(45)2212354928x y xy yz zx-+--(46)363060mx my nx ny--+(47)424954xy x y -++-(48)18168172ab a b --+(49)2438010ab a b +++(50)819182ax ay bx by-+-四、拆添项(51)2281491268413a b a b -+++(52)229143024m n m n -+++(53)4224-+x x y y363316(54)4224m m n n++364716 (55)22m n m n---+8191621277 (56)22----449249813x y x y (57)4224-+m m n n93364(58)22-+--m n m n64251289017 (59)22----x y x y9643611213 (60)22-+--x y x y81610827五、十字相乘法(61)223579424942x xy y x y++--(62)2228114254545x y z xy yz---+(63)22458835434510x xy y x y -++-+(64)22145521455025x xy y x y -++-+(65)2221261539236x xy y x y -----(66)2216232876a ab b a b --+++(67)22225424450x y z yz xz-++-(68)2243014192912m mn n m n +++++(69)221526713152m mn n m n ++--+(70)222523x xy y x y +-+++(71)22228630463111x y z xy yz xz+-+-+(72)2222415821432x y z xy yz xz-+--+(73)2285921556742m mn n m n -+-++(74)22915412133x xy y x y ++--+(75)22232237a b c ab bc ac-+---(76)2159341515x xy x y ++++(77)226271510174x xy y x y +---+(78)22241128602624x xy y x y --+++(79)22812839228x xy y x y +--++(80)23036553025p pq p q --++六、双十字相乘法(81)2223520245342x y z xy yz xz+--+-(82)22273422113x y z xy yz xz+-+-+(83)22256356212910x y z xy yz xz-----(84)22228282065198a b c ab bc ac+-+-+(85)22264212946x y z xy yz xz-----(86)2214133592635x xy y x y -+-++(87)22227493042769x y z xy yz xz-+-++(88)2226184242711x y z xy yz xz+++--(89)22243110472921x xy y x y ++---(90)22228101827354a b c ab bc ac-++++七、因式定理(91)3222x x x +--(92)321845192a a a -+-(93)323744x x x +++(94)3228115x x x +++(95)32--+671510y y y (96)3212351710++-x x x (97)32x x x+++526356 (98)32+++x x x157911745 (99)32-+-522236x x x (100)32--+35159x x x因式分解专项练习100题答案一、提取公因式(1)(61)(32)m n---(2)426()x y z y-(3)(72)(114)x x--+ (4)442(45)a x y-(5)2333(255)x z y x++(6)(53)(67)a b--+ (7)235(3)c a bc+(8)34(34)xyz z-(9)425(25)c b c+(10)3229(2)ax y a y+(11)32(3)a bc c ab-(12)3237(25)x a y x-(13)(61)(74)x x---(14)33338(42)y z x z z++ (15)(32)(137)x x-+ (16)(52)(3)m n+-(17)(65)(21)x x-+-(18)(85)(45)a b+-+ (19)(23)(137)m n---(20)(35)(3)x x--+二、公式法(21)2(11)x y-(22)(29)(29)a b a b+-(23)(2823)(2823)x y x y+-(24)2(1118)x-(25)(17)(17)x y x y+-(26)(308)(308)a b a b+-(27)2(925)m n-(28)2(717)m n+(29)2(169)x+(30)(248)(248)x x+-三、分组分解法(31)2(5)(4)x y--(32)2(27)(23)a b--(33)(87)(253)x y x y z-+-(34)(310)(76)a b x y-+(35)(7)(926)a c ab c-+-(36)(53)(97)m n x y+-(37)(4)(367)a b a b c+-+ (38)2(4)(43)x y-+-(39)2(7)(25)a b++(40)2(5)(710)a b x y-+(41)(94)(355)x z x y z-+-(42)(7)(756)a b a b c+++(43)2(51)(32)x y-++(44)2(4)(25)a b x y--(45)(357)(47)x y z x y--+(46)3(10)(2)m n x y--(47)(49)(6)x y---(48)(29)(98)a b--(49)(310)(81)a b++(50)(92)(9)a b x y+-四、拆添项(51)(971)(9713)a b a b++-+(52)(32)(312)m n m n++-+(53)2222(694)(694)x xy y x xy y++-+ (54)2222(64)(64)m mn n m mn n++-+ (55)(937)(9311)m n m n+---(56)(271)(2713)x y x y++--(57)2222(398)(398)m mn n m mn n++-+ (58)(8517)(851)m n m n++--(59)(381)(3813)x y x y++--(60)(99)(93)x y x y++--五、十字相乘法(61)(577)(76)x y x y+-+ (62)(925)(975)x y z x y z+--+ (63)(955)(572)x y x y-+-+ (64)(275)(735)x y x y-+-+ (65)(731)(356)x y x y++--(66)(832)(23)a b a b++-+ (67)(524)(526)x y z x y z--+-(68)(423)(74)m n m n++++ (69)(32)(571)m n m n+-+-(70)(23)(1)x y x y-+++ (71)(465)(76)x y z x y z+++-(72)(434)(652)x y z x y z++-+ (73)(76)(837)m n m n----(74)(33)(341)x y x y+-+-(75)(2)(32)a b c a b c--+-(76)(533)(35)x y x+++ (77)(634)(51)x y x y--+-(78)(346)(874)x y x y-+++(79)(847)(24)x y x y--+-(80)(65)(565)p p q---六、双十字相乘法(81)(544)(756)x y z x y z-+--(82)(3)(74)x y z x y z+++-(83)(852)(773)x y z x y z++--(84)(745)(474)a b c a b c+-++ (85)(273)(364)x y z x y z--++ (86)(27)(735)x y x y----(87)(975)(376)x y z x y z++-+ (88)(334)(26)x y z x y z+-+-(89)(853)(327)x y x y+++-(90)(456)(723)a b c a b c++-+七、因式定理(91)(1)(1)(2)x x x+-+(92)(2)(61)(31)a a a---(93)2(2)(32)x x x+++ (94)2(1)(265)x x x+++ (95)2(2)(655)y y y-+-(96)(2)(31)(45)x x x+-+ (97)(3)(51)(2)x x x+++ (98)(3)(35)(53)x x x+++ (99)(1)(52)(3)x x x---(100)2(3)(343)x x x-+-。

因式分解练习题100道及答案

因式分解练习题100道及答案

因式分解练习题100道及答案2.) 16x2-813.) xy+6-2x-3y4.) x+y5.)x2-x-ab6.) a4-9a2b27.) x3+3x2-48.) ab+xy9.)+10.) a2-a-b2-b11.) 2-4+4212.)-613.)-14.)16x2-8115.)x2-30x+2516.) x2-7x-3017.) x-x18.) x2-4x-ax+4a19.) 5x2-4920.)x2-60x+2521.) x2+12x+922.) x2-9x+1823.) x2-5x-324.) 12x2-50x+825.) x2-6x26.)x2-2527.) x2-13x+528.) x2+2-3x29.) 12x2-23x-2430.) -31.) -32.) x2+42x+4933.) x4-2x3-35x34.) x6-3x235.) x2-2536.) x2-20x+10037.) x2+4x+338.)x2-12x+539.)ax2-6ax40.)+41.)ax2-3x+2ax-342.)x2-66x+12143.)-2x244.) x2-x+1445.)x2-30x+2546.)-20x2+9x+2047.) 12x2-29x+1548.)6x2+39x+949.)1x2-31x-2250.)x4-35x2-451.)+52.)ax2-3x+2ax-353.) x-x-y-154.) +55.) x2-66x+12156.) -2x257.) x4-158.) x2+4x-xy-2y+459.) x2-12x+560.) 1x2-31x-2261.) x2+4xy+y2-4x-2y-362.) x5-35x3-4x63.)若n?81 = ,那么n的值是若9x2?12xy+m是两数和的平方式,那么m的值是把多项式a4?a2b2+b4因式分解的结果为66.)把?4+4分解因式为 ) )1?67.) ?????2?2001?1?????2?200068)已知x,y为任意有理数,记M = x2+y2,N =xy,则M与N的大小关系为69)对于任何整数m,多项式?9都能A.被8整除B.被m整除C.被整除 D.被整除70.)将?3x2n?6xn分解因式,结果是71.)多项式?的公因式是272.)若x?2x?16是完全平方式,则m的值等于_____。

因式分解练习题(含答案)

因式分解练习题(含答案)

因式分解练习题(含答案)1.下列变形中,是因式分解的是()A。

x(x-1) = x^2 - xB。

x^2 - x + 1 = x(x-1) + 1C。

x^2 - x = x(x-1)D。

2a(b+c) = 2ab + 2ac2.多项式12ab3c + 8a3b中各项的公因式是() A。

4ab2B。

4abcC。

2ab2D。

4ab3.把多项式m2 - 9m分解因式,结果正确的是() A。

m(m-9)B。

(m+3)(m-3)C。

m(m+3)(m-3)D。

(m-3)^24.分解因式:1) 5a - 10ab = 5a(1-2b)2) x^4 + x^3 + x^2 = x^2(x^2 + x + 1)3) m(a-3) + 2(3-a) = -m(a-3) + 2(a-3) = (a-3)(2-m)5.计算: - 2018×2017 = - xxxxxxx = xxxxxxxx6.分解因式:1) 2mx - 6my = 2m(x-3y)2) 3x(x+y) - (x+y)^2 = (x+y)(2x-y)7.先分解因式,再求值:a2b + ab2,其中a+b=3,ab=2. a^2b + ab^2 = ab(a+b) = 2(3) = 614.3.2 公式法第1课时运用平方差公式分解因式1.多项式x^2 - 4分解因式的结果是()A。

(x+2)(x-2)B。

(x-2)^2C。

(x+4)(x-4)D。

x(x-4)2.下列多项式中能用平方差公式分解因式的是()A。

a^2 + b^2B。

5m^2 - 20mnC。

x^2 + y^2D。

x^2 - 93.分解因式3x^3 - 12x,结果正确的是()A。

3x(x-2)^2B。

3x(x+2)^2C。

3x(x^2 - 4)D。

3x(x-2)(x+2)4.因式分解:1) 9-b^2 = (3-b)(3+b)2) m^2 - 4n^2 = (m-2n)(m+2n)5.利用因式分解计算:752 - 252 = (7+5)(7-5)(2-5) = -1506.若a+b=1,a-b=2007,则a^2 - b^2 = (a+b)(a-b) = -20067.因式分解:1) 4x^2 - 9y^2 = (2x-3y)(2x+3y)2) -16 + 9a^2 = (3a-4)(3a+4)3) 9x^2 - (x+2y)^2 = (3x-x-2y)(3x+x+2y) = (2x-2y)(4x+2y)4) 5m^2a^4 - 5m^2b^4 = 5m^2(a^4-b^4) = 5m^2(a^2-b^2)(a^2+b^2) = 5m^2(a-b)(a+b)(a^2+b^2)3.若代数式x2+kx+49能分解成(x-7)2的形式,则实数k的值为多少?4.若x2+kx+9是完全平方式,则实数k=多少?5.因式分解:1) x2-6x+9=什么?2) -2a2+4a-2=什么?6.因式分解:1) 4m2-2m+1=什么?2) 2a3-4a2b+2ab2=什么?3) (x+y)2-4(x+y)+4=什么?7.先分解因式,再求值:x3y+2x2y2+xy3,其中x=1,y=2. 因式分解14.3.1 提公因式法1.C2.D3.A4.(1) 5(1-2b)(3+b)(3-b)2) (m+2n)(m-2n)5.50006.(1) 2m(x-3y)2) (x+y)(2x-y)7.(1) (2x+3y)(2x-3y)2) (3a-4)(3a+4)3) 4(2x+y)(x-y)4) 5m2(a-b)(a+b)(a2+b2)14.3.2 公式法第1课时运用平方差公式分解因式1.A2.D3.D4.(1) (3+b)(3-b)2) (m+2n)(m-2n)5.-144.±67.(1) (2x+3y)(2x-3y)2) (3a-4)(3a+4)3) (x+y-2)26.(1) 原式=2m/(2)2) 原式=2a(a-b)2 7.原式=18。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解专题过关
1.将下列各式分解因式
(1)3p2﹣6pq (2)2x2+8x+8
2.将下列各式分解因式
(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.
3.分解因式
(1)a2(x﹣y)+16(y﹣x)(2)(x2+y2)2﹣4x2y2
4.分解因式:
(1)2x2﹣x (2)16x2﹣1 (3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y)2
5.因式分解:
(1)2am2﹣8a (2)4x3+4x2y+xy2
6.将下列各式分解因式:
(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2
7.因式分解:(1)x2y﹣2xy2+y3 (2)(x+2y)2﹣y2
8.对下列代数式分解因式:
(1)n2(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+1
9.分解因式:a2﹣4a+4﹣b2
10.分解因式:a2﹣b2﹣2a+1
11.把下列各式分解因式:
(1)x4﹣7x2+1 (2)x4+x2+2ax+1﹣a2
(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1
12.把下列各式分解因式:
(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.
因式分解专题过关
1.将下列各式分解因式
(1)3p2﹣6pq;(2)2x2+8x+8
分析:(1)提取公因式3p整理即可;
(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.
解答:解:(1)3p2﹣6pq=3p(p﹣2q),
(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2.
2.将下列各式分解因式
(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.
分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;
(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.
解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);
(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.
3.分解因式
(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.
分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;
(2)先利用平方差公式,再利用完全平方公式继续分解.
解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);
(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.
4.分解因式:
(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.
分析:(1)直接提取公因式x即可;
(2)利用平方差公式进行因式分解;
(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;
(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.
解答:解:(1)2x2﹣x=x(2x﹣1);
(2)16x2﹣1=(4x+1)(4x﹣1);
(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;
(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.
5.因式分解:
(1)2am2﹣8a;(2)4x3+4x2y+xy2
分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;
(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.
解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);
(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2.
6.将下列各式分解因式:
(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.
分析:(1)先提公因式3x,再利用平方差公式继续分解因式;
(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.
解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);
(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.7.因式分解:
(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.
分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;
(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.
解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;
(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).
8.对下列代数式分解因式:
(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.
分析:(1)提取公因式n(m﹣2)即可;
(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);
(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.
9.分解因式:a2﹣4a+4﹣b2.
分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.
解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1
分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.
解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).
11.把下列各式分解因式:
(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2
(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1
分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;
(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;
(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;
(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.
解答:解:(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);
(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)﹣(x﹣a)2=(x2+1+x
﹣a)(x2+1﹣x+a);
(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1
﹣y)]2=(1+y﹣x2+x2y)2
(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.
12.把下列各式分解因式:
(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;
(3)x5+x+1;(4)x3+5x2+3x﹣9;
(5)2a4﹣a3﹣6a2﹣a+2.
分析:(1)需把﹣31x拆项为﹣x﹣30x,再分组分解;
(2)把2a2b2拆项成4a2b2﹣2a2b2,再按公式法因式分解;
(3)把x5+x+1添项为x5﹣x2+x2+x+1,再分组以及公式法因式分解;
(4)把x3+5x2+3x﹣9拆项成(x3﹣x2)+(6x2﹣6x)+(9x﹣9),再提取公因式因式分解;
(5)先分组因式分解,再用拆项法把因式分解彻底.
解答:解:(1)4x3﹣31x+15=4x3﹣x﹣30x+15=x(2x+1)(2x﹣1)﹣15(2x﹣1)=(2x﹣1)(2x2+1﹣15)=(2x﹣1)(2x﹣5)(x+3);
(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4=4a2b2﹣(a4+b4+c4+2a2b2﹣2a2c2﹣2b2c2)=(2ab)2﹣(a2+b2﹣c2)2=(2ab+a2+b2﹣c2)(2ab﹣a2﹣b2+c2)=(a+b+c)(a+b﹣c)(c+a﹣b)(c﹣a+b);
(3)x5+x+1=x5﹣x2+x2+x+1=x2(x3﹣1)+(x2+x+1)=x2(x﹣1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3﹣x2+1);
(4)x3+5x2+3x﹣9=(x3﹣x2)+(6x2﹣6x)+(9x﹣9)=x2(x﹣1)+6x(x﹣1)+9(x﹣1)=(x﹣1)(x+3)2;
(5)2a4﹣a3﹣6a2﹣a+2=a3(2a﹣1)﹣(2a﹣1)(3a+2)=(2a﹣1)(a3﹣3a﹣2)=(2a﹣1)(a3+a2﹣a2﹣a﹣2a﹣2)=(2a﹣1)[a2(a+1)﹣a(a+1)﹣2(a+1)]=(2a﹣1)(a+1)(a2﹣a﹣2)=(a+1)2(a﹣2)(2a﹣1).。

相关文档
最新文档