最新改性淀粉胶粘剂的研究与应用

合集下载

制浆造纸工业中改性淀粉的应用论文

制浆造纸工业中改性淀粉的应用论文

制浆造纸工业中改性淀粉的应用论文制浆造纸工业中改性淀粉的应用论文1淀粉改性技术1.1化学改性化学改性是利用各种化学试剂处理原始淀粉,使之结构发生变化而导致它们的性质转变,从而得到造纸所需要应用的改性淀粉。

化学改性淀粉主要可以分为两大类:一类是使淀粉分子量下降,如酸解淀粉、氧化淀粉、焙烤糊精等;另一类是使淀粉分子量增加,如交联淀粉、酯化淀粉、醚化淀粉、接枝淀粉等。

羧甲基淀粉能封闭分子上的活泼羟基,提高糊料的给色量,改善印花织物的手感。

赵扬等以乙醇为介质,接受有机溶剂氯乙酸的分步加碱法改性玉米淀粉自制羧甲基淀粉。

通过转变工艺条件,测试羧甲基淀粉黏度、流变性、印花得色量和脱糊率等物理性能和印花效果,发觉其具有假塑性好、热稳定性高的优势,某种程度上可取代海藻酸钠。

黄芳等在湿法条件下接受烯基琥珀酸酐(ASA)对淀粉进行改性,将ASA通过酯化反应接枝到淀粉上,引进疏水基团,合成新型的淀粉改性表面施胶剂。

改性淀粉长链疏水基在纸张上向外排列,降低了纤维的表面能,提高了施胶性能。

作为表面施胶剂具有显著的增加效果,且改性后的表面施胶剂为固体,易于保存运输。

Imti-azAli等争论了硼砂改性淀粉(BMS)作为湿部纸强度的添加剂,对纸张物理强度尤其是小麦秸秆基纸张的强化效果。

依据特种小麦秸秆生产的手抄纸的造纸配料,试验结果显示BMS显著提高了纸张的物理性能。

抗张指数、伸长率、抗张能量吸取和湿抗张指数分别增加了17%、23%、20%和21%。

笔者也进行了工厂试验,其与试验室试验具有相像的强度性质,但是利用BMS后,针叶木浆在造纸配料中从30%削减到25%,纸张的裂断长较长,抗张强度高,这项争论有力地表明BMS能显著改善纸张物理强度,削减针叶木浆的成本,作为湿部强度添加剂有着巨大的潜力。

1.2酶法改性(生物改性)酶法改性是通过各种酶制剂处理淀粉,从而转变淀粉的分子大小和结构,链长分布及糊的性质等特性,形成特定的颗粒或分子形态,如α、β、γ-环状糊精、麦芽糊精、直链淀粉、抗性淀粉、缓慢消化淀粉及多孔淀粉等。

天然淀粉改性机制及应用概述

天然淀粉改性机制及应用概述
关键词 :天然淀粉 ;改性机制 ;应用 ;研究进展 中图分类号 :TU52 文献标志码 :B 文章编号 :1003–6490(2021)07–0165–02
Overview of Modification Mechanism and Application of Natural Starch
Chen Yan-shuang
性就是通过各种特定方法改变其颗粒的结构分布,使其具有 的产品成膜性、光亮度、稳定性流动性好,可较好地应用于
新的且符合要求的特性。目前这些方法大体可分为物理改性、 造纸行业和纺织工业,并且能代替琼脂和阿拉伯胶制造果冻
化学改性、复合改性以及生物酶改性四种,以下对四种方法 和软糖,建材方面还可作黏合剂制造墙板、纸板等。高锰酸
分子材料与工程。
1.2.2 醚化、酯化淀粉 这两种改性方法都是通过在特定反应条件下引入功能性
基团,使改性后的淀粉具有特定的性质。醚化是天然淀粉分
·165·
第47卷第7期
2021年7月
资源与环境
Resources and Environment
化工设计通讯
Chemical Engineering Design Communications
天然淀粉来源广泛,价格低廉,对环境污染小且具有和 纤维类似的结构,因此被广泛应用于造纸行业 [8]。改性后的天 然淀粉能赋予纸张优良的性能,例如改善表面纹理,提高纸 张强度等。据文献报道磷酸酯淀粉可用于纸页表面施胶,能 够改善纸张的平滑度,提高成膜性能,并且淀粉改性填料与 纤维的黏结性和接触性较好,粒径较大,研究表明当在纸张 配料中添加量为 10% 时,可使纸张强度提高约 15%。
由于淀粉具有无毒无害,良好的生物相容性,且容易被 人体吸收的特性,因此被广泛应用于生物制药行业。根据不 同需要可制成功能不同的药物制剂。例如靶向给药载体“接 枝交联淀粉纳米粒”具有较高的膨胀性,能有效传递药物至 病灶处,有助于药物的精确吸收达到良好的药效,在癌症肿

淀粉及改性材料的应用

淀粉及改性材料的应用

淀粉及改性材料的应用淀粉是一种由葡萄糖分子组成的多糖,广泛存在于植物的根、茎、叶、果实等部位,也是人类主要的食物之一。

除了作为食物外,淀粉还有多种应用,尤其是在改性材料领域。

本文将重点探讨淀粉及其改性材料的应用。

淀粉及其改性材料在食品工业中起到了重要的作用。

淀粉具有增稠、胶固、稳定、吸附等特性,使其成为食品加工中不可或缺的原料。

添加适量的淀粉可以改善食品的质地、口感和储存稳定性。

常见的淀粉改性剂包括淀粉酯化剂、淀粉醚化剂、淀粉磷酸化剂等。

这些改性材料通过化学反应改变淀粉分子的结构和性质,从而赋予其更多的功能。

例如,淀粉酯化剂可以提高淀粉的温度稳定性和胶溶性,淀粉醚化剂可以增加淀粉的黏度和胶凝能力,淀粉磷酸化剂可以提高淀粉的抗水性。

在食品加工中,改性淀粉常用于调味品、肉制品、面点、果冻等的生产,以提高产品的品质和口感。

淀粉及其改性材料在纺织工业中也有广泛的应用。

由于淀粉具有良好的可溶性和粘接性,常用于纺织品的粘合剂。

改性淀粉可以用作纺织品的浆料,提高纺织品的强度、耐久性和尺寸稳定性。

此外,淀粉还可以用作纺织品的加工助剂,如缩小剂、柔顺剂等,改善纺织品的手感和光泽度。

另外,淀粉还可以与其他纤维素材料结合,形成复合纤维,增强纺织品的性能。

淀粉及其改性材料在包装工业中也有重要的应用。

淀粉膨胀剂是一种常见的包装材料,主要用于保护灌装食品的形状和外观。

在包装过程中,膨胀剂与灌装食品一起封装,随着温度的升高释放气体,使包装袋膨胀,保护食品不受挤压和外界环境的影响。

此外,淀粉还可以制备可降解包装材料,这对于减少塑料浪费和环境保护非常重要。

淀粉及其改性材料在医药领域也有广泛的应用。

改性淀粉可以作为药物的载体,用于控制药物的释放速度和提高药物的稳定性。

淀粉还可以用于制备生物可降解的医用材料,如手术缝合线、骨科植入物等。

此外,淀粉还可以用于制备生物胶,如淀粉糊剂、淀粉糖胶等,用于药物包衣、胶囊制备、创口贴等。

淀粉在医药领域的应用不仅提高了药物的疗效和递送效率,还减少了对环境的污染。

PSM改性淀粉基复合材料的制备与性能研究

PSM改性淀粉基复合材料的制备与性能研究

PSM改性淀粉基复合材料的制备与性能研究淀粉是一种常见的天然高分子化合物,具有良好的可再生性、可降解性和低成本等优点,因此被广泛应用于食品工业、医药领域以及环境保护等方面。

然而,纯淀粉材料的性能有限,对于一些特殊要求的应用而言,需要对淀粉进行改性。

PSM(磷酸酯键交联淀粉)是一种常用的淀粉改性方法,通过磷酸酯键的引入,可以提升淀粉材料的热稳定性、机械性能以及耐湿性能。

在PSM改性淀粉的基础上,进一步制备PSM改性淀粉基复合材料可以进一步拓展淀粉材料的应用范围。

本文将重点研究PSM改性淀粉基复合材料的制备方法和性能研究。

首先,PSM改性淀粉的制备方法如下。

按照一定的质量比例将淀粉和磷酸酯化剂溶解在有机溶剂中,经过适当的搅拌和反应时间,使淀粉中的羟基与磷酸酯化剂发生反应形成磷酸酯键。

然后,将反应后的淀粉材料进行洗涤和干燥,最终得到具有磷酸酯键交联结构的PSM改性淀粉。

接下来,我们将PSM改性淀粉与其他适合的复合材料进行混合,制备PSM改性淀粉基复合材料。

选取适当的复合材料可以根据具体应用需要,如提高材料的强度、改善耐热性等。

常见的复合材料包括纤维增强复合材料、纳米材料填充复合材料以及无机颗粒填充复合材料等。

纤维增强复合材料是PSM改性淀粉基复合材料中常见的一种类型。

通过将纤维材料(如玻璃纤维、碳纤维等)与PSM改性淀粉进行混合,可以有效提高材料的强度和刚度。

这是因为纤维材料的引入可以增加材料的表面积,并且在受力时能够吸收更多的能量,同时还能有效防止材料的裂纹扩展。

另一种常见的PSM改性淀粉基复合材料是纳米材料填充复合材料。

通过将纳米颗粒(如纳米氧化物、纳米碳材料等)加入到PSM改性淀粉中,可以显著改善材料的热稳定性和电性能。

纳米颗粒的引入可以提高材料的界面效应和界面电荷传递速率,从而提高材料的性能。

此外,无机颗粒填充复合材料也是PSM改性淀粉基复合材料的一种重要类型。

通过将无机颗粒(如氧化锌、氢氧化铝等)加入到PSM改性淀粉中,可以提高材料的硬度和耐磨性。

丙烯酸接枝改性淀粉共聚物的合成与应用的开题报告

丙烯酸接枝改性淀粉共聚物的合成与应用的开题报告

丙烯酸接枝改性淀粉共聚物的合成与应用的开题报告一、研究背景淀粉是一种来源广泛、价格低廉的天然多糖,在许多领域具有广泛应用前景。

然而,淀粉在水中易溶性和粘稠性较差,限制了其在工业领域的应用。

为了克服这一缺点,人们发展了许多淀粉改性技术。

其中,丙烯酸接枝改性是一种常用的方法,可以大幅增强淀粉的水溶性和粘稠性。

由于丙烯酸接枝改性淀粉的制备工艺较为复杂,需要精密的控制反应条件和反应过程中的溶液体系。

此外,丙烯酸接枝改性后的淀粉在应用中也有一些问题需要解决,如溶胀性能、稳定性等方面的问题。

因此,本次研究旨在探究丙烯酸接枝改性淀粉共聚物的制备工艺和性能,解决其在应用中的问题,并寻求其可能的应用领域。

二、研究内容1.建立丙烯酸接枝改性淀粉共聚物的制备工艺利用常规溶液聚合方法,控制反应参数,包括反应温度、反应时间、反应物浓度等,建立丙烯酸接枝改性淀粉共聚物的制备工艺,同时对反应过程中的溶液体系进行调控,探究影响反应的因素。

2.研究丙烯酸接枝改性淀粉共聚物的性能考察丙烯酸接枝改性后的淀粉共聚物的吸水性、稳定性、黏度、溶胀性等性能,分析其性能改善的原因。

3.检测丙烯酸接枝改性淀粉共聚物的应用前景通过实验和理论分析,探究丙烯酸接枝改性淀粉共聚物在哪些领域有应用前景。

比如,作为油田用水性压裂剂、医用胶粘剂、纤维素改性剂等方面的应用。

三、研究意义1.深入研究丙烯酸接枝改性淀粉共聚物的制备工艺和机理,为淀粉改性技术的研究提供新思路和方向。

2.通过提高淀粉的水溶性和粘稠性等性能,推动淀粉在工业领域的应用,降低工业用水的成本,降低环境污染。

3.为新型功能化淀粉材料的开发提供技术和理论支持,推动材料科学的发展。

四、研究方法1.实验设计根据丙烯酸接枝改性淀粉共聚物制备过程中的不同因素,设计一组较为完备的实验方案,采用正交试验法综合比较反应条件对淀粉性能影响的程度和先后顺序。

2.实验检测应用现代分析仪器、测试设备和方法对所制备的丙烯酸接枝改性淀粉共聚物的各项性能进行精密检测。

淀粉接枝丙烯酰胺改性研究

淀粉接枝丙烯酰胺改性研究

摘要淀粉接枝丙烯酰胺聚合物絮凝效果影响的因素有很多,PH值,反应温度,反应时间,单体的浓度,引发剂的质量,反应时间,单体的配比等因素,本文主要对四个因素进行研究:淀粉与丙烯酰胺质量比,引发剂的质量,反应温度,反应时间。

用正交设计法取得最佳的工艺条件。

对淀粉进行接枝共聚改性,制得的淀粉接枝共聚物具有絮凝效果好、凝胶颗粒分散性好的优点。

采用丙烯酰胺(AM)单体通过水溶液聚合法,以过硫酸钾为引发体系,制得了淀粉接枝丙烯酰胺改性聚合物。

研究了不同反应因素对接枝共聚反应相关参数的影响,以及对絮凝效果的影响。

淀粉-AM接枝共聚物的最佳优化反应条件为:聚合反应温度为55℃,聚合反应时间为3h,S(淀粉) :AM(丙烯酰胺) =1:3,引发剂质量为0.3g,此时透光率达到78.5%,接枝效率98.5%,接枝率140.7%,单体转化率68.3%。

关键词:淀粉;丙烯酰胺;絮凝剂;接枝反应;正交试验ABSTRACTStarch of grafting acrylamide polymer flocculating effect of the factors, pH value, reaction temperature, reaction time, monomer concentration, initiator of the quality of the agent, reaction time, monomer ratio and other factors, this paper mainly on the fourfactors: the quality of starch with acrylamide, causing the quality of the agent, the reaction temperature, reaction time. Orthogonal design method to obtain the optimum process conditions.Graft copolymerization of starch, the starch graft copolymer obtained with flocculation, gel particle dispersion to good advantage. Using acrylamide (AM) monomer solution polymerization, potassium persulfate as initiator system, the system had a modified polymer of starch graft acrylamide.Different reactions on the graft copolymerization reaction parameters, as well as the impact of flocculation. AM graft copolymer of starch-optimized reaction conditions: reaction temperature was 55℃, the reaction time of 3h, S (starch): AM (acrylamide) = 1:3, the quality of the initiator 0.3g The light transmission rate of 78.5 percent, 98.5 percent of the grafting efficiency, grafting ratio of 140.7%, 68.3% of the monomer conversion.Keywords: Starch;Acrylamide;Flocculants;The Grafting Reaction;Orthogonal Test目录摘要 (I)ABSTRACT......................................................................................................................... I I 第1章绪论. (1)1.1课题背景与研究意义 (1)1.2絮凝剂的种类 (2)1.2.1 有机高分子絮凝剂 (2)1.2.2无机高分子絮凝剂 (3)1.2.3 天然高分子絮凝剂 (3)1.3淀粉接枝丙烯酰胺改性物应用 (4)1.4国内外研究现状 (4)1.4.1 国内主要技术进展 (4)1.4.2 国外研究现状 (5)1.5淀粉接枝共聚物前景 (6)1.6论文研究的主要内容 (7)第2章实验部分 (8)2.1实验内容 (8)2.2实验药品及仪器 (8)2.3实验原理及合成方法 (9)2.3.1 实验原理 (9)2.3.2 合成方法 (11)2.4正交实验方案 (14)2.5实验产品制备及性能检测 (16)2.5.1 淀粉糊化 (16)2.5.2 产品制备 (17)2.6分离提纯方法 (17)2.6.1 接枝聚合生成的粗产物的分离提纯 (17)2.6.2 均聚物的分离 (18)2.6.3 未接枝淀粉的分离 (18)2.7性能检测 (18)2.7.1 絮凝效果测定 (18)2.7.2 接枝效率、接枝率以及单体转化率测定 (18)2.8本章小结 (19)第3章结果与讨论 (20)3.1正交实验结果与分析 (20)3.2引发剂用量对接枝反应的影响 (24)3.3反应温度对接枝反应的影响 (26)3.4淀粉与单体质量配比对接枝反应的影响 (28)3.5反应时间对接枝反应的影响 (30)3.6最佳工艺条件的验证实验 (32)3.7本章小结 (32)结论 (34)参考文献 (35)致谢 (37)第1章绪论1.1 课题背景与研究意义随着工业的飞速发展和农村城市化水平的不断提高,今后几年供水紧张和污水净化将成为我国乃至世界各地面临的主要难题之一,由于水资源分布极不平衡以及水污染程度增加,可采用的源水量和水质急剧下降。

淀粉类胶粘剂氧化性能的应用研究

淀粉类胶粘剂氧化性能的应用研究

目录前言 (2)第一章淀粉及其氧化 (2)1.1 天然淀粉及其结构 (2)1.1.1 淀粉的物化特性 (2)1.1.2 淀粉的结构 (3)1.2 氧化淀粉 (4)1.2.1 氧化淀粉的发展 (4)1.2.2 淀粉的氧化机理 (5)第二章淀粉粘合剂 (6)2.1 淀粉粘合剂 (6)2.1.1 淀粉粘合剂简介 (6)2.1.2 淀粉粘合剂的改进 (6)2.2 国内外改性淀粉粘合剂的发展状态 (6)2.2.1改性淀粉粘合剂国外研究进展 (6)2.2.2 改性淀粉粘合剂国内研究进展 (7)2.2.3 目前研究存在的问题 (7)第三章淀粉基粘合剂的制备方法 (8)3.1 原理 (8)3.2 制备方法 (8)3.2.1 氧化阶段 (8)3.2.2 糊化阶段 (9)3.2.3 还原阶段 (9)3.2.4 交联阶段 (9)3.2.5 消泡和稀释阶段 (9)3.3淀粉粘合剂性能的表征方法 (10)第四章影响淀粉粘合剂性能的因素 (10)4.1 氧化剂用量对淀粉粘合剂性能的影响 (10)4.2 水分比对淀粉粘合剂性能的影响 (11)4.3 氧化时间对淀粉粘合剂性能的影响 (12)4.4 催化剂用量对淀粉粘合剂性能的影响 (13)参考文献 (15)摘要:本研究主要是以马铃薯淀粉为原料,硫酸亚铁为催化剂,双氧水为氧化剂,制备氧化淀粉,再在氧化淀粉中加碱糊化,加入交联剂进行交联改性,降温后依次添加稀释剂,增塑剂,消泡剂等助剂,最终得到一种环保的!成本较低的,性能优良的淀粉基瓦楞纸板用粘合剂"论文主要对氧化淀粉的制备和表征粘合剂的配方和制备工艺以及粘合剂的性能进行了研究。

首先,对双氧水氧化制备马铃薯氧化淀粉进行研究,利用红外光谱!X-射线粉末衍射和扫描电镜等手段对氧化淀粉进行了表征,通过单因素实验研究了反应温度!双氧水用量!催化剂用量和反应时间等影响因素对氧化淀粉的羧基含量!羰基含量等指标的影响,其次以马铃薯淀粉为原料,热法制得淀粉基无甲醛粘合剂,并探索热法制淀粉基无甲醛粘合剂的最佳原料配比和工艺条件,最后对淀粉粘合剂的进行添加不同质量的钠基膨润土和聚乙烯醇的催干改性对比研究。

淀粉的改性与功能性开发

淀粉的改性与功能性开发

淀粉的改性与功能性开发淀粉作为地球上最丰富的生物大分子之一,不仅在自然界中扮演着重要的角色,而且在人类社会中也具有广泛的应用。

本文将重点探讨淀粉的改性以及功能性开发,以期为淀粉的进一步研究和应用提供参考。

淀粉的改性淀粉的改性是指通过物理、化学或生物方法对淀粉的结构和性质进行改变,从而赋予其新的功能。

淀粉改性的目的是提高淀粉的溶解性、稳定性和生物降解性,增强其与其他材料的相互作用,以及改善其加工性能。

物理改性物理改性主要包括热处理、机械研磨和射线辐射等方法。

这些方法可以破坏淀粉颗粒的结构,增加其溶解性,提高其稳定性和生物降解性。

例如,热处理可以分解淀粉颗粒中的部分支链,从而增加其溶解性和粘度。

机械研磨可以将淀粉颗粒细化,增加其表面积,提高其与其他材料的相互作用。

射线辐射可以破坏淀粉颗粒中的部分氢键,从而增加其溶解性和粘度。

化学改性化学改性主要包括酯化、醚化、酰化等方法。

这些方法可以引入不同的官能团到淀粉分子中,从而赋予其新的功能。

例如,酯化可以引入脂肪酸官能团,从而提高淀粉的稳定性和生物降解性。

醚化可以引入羟基官能团,从而提高淀粉的溶解性和与其他材料的相互作用。

酰化可以引入酰胺官能团,从而改善淀粉的加工性能和生物降解性。

生物改性生物改性是指利用酶、微生物或其他生物催化剂对淀粉进行改性的方法。

这种方法可以特异性地改变淀粉分子的结构,从而赋予其新的功能。

例如,使用酶可以分解淀粉颗粒中的部分支链,从而增加其溶解性和粘度。

利用微生物可以合成淀粉分子中的不同官能团,从而提高其稳定性和生物降解性。

淀粉的功能性开发淀粉的功能性开发是指利用淀粉的改性产物开发出具有特定功能的材料和产品。

淀粉的功能性开发可以拓宽淀粉的应用领域,提高淀粉的附加值,为人类社会带来更多的利益。

作为食品添加剂淀粉的改性产物可以作为食品添加剂应用到食品工业中。

例如,改性淀粉可以作为增稠剂、稳定剂和乳化剂等,用于改善食品的质地、口感和稳定性。

此外,改性淀粉还可以作为甜味剂和脂肪替代剂等,用于降低食品的热量和脂肪含量。

山西改性木薯淀粉用途

山西改性木薯淀粉用途

山西改性木薯淀粉用途山西改性木薯淀粉是通过对木薯淀粉进行改性处理而得到的一种新型淀粉产品,具有许多广泛的应用领域。

以下是山西改性木薯淀粉的一些主要用途:1. 食品工业:山西改性木薯淀粉作为增稠剂、胶凝剂和稳定剂广泛应用于食品工业。

它可以增加食品的黏度和粘合性,提高食品的质地和口感。

例如,在面食制品中可以使用改性木薯淀粉来增加面团的弹性和柔软度,改善口感。

在果酱、果冻和果汁等食品中可以应用改性木薯淀粉来增加产品的浓度和稠度,提高品质。

2. 化妆品和个人护理品:山西改性木薯淀粉被广泛应用于化妆品和个人护理品中,用作稳定剂、乳化剂和剂型调理剂。

它可以改善产品的稳定性和性能,提高乳化性,增加黏度和柔软度。

例如,在洗发水和护发素中,改性木薯淀粉可以增加产品的粘度,改善乳化效果,使头发更加柔软顺滑。

3. 纸浆和纸张工业:山西改性木薯淀粉被广泛应用于纸浆和纸张工业中,用作增稠剂和增强剂。

它可以调节纸浆的黏度和浓度,提高纸张的强度和质量。

例如,在造纸过程中,改性木薯淀粉可以作为纸浆的强化剂,增加纸张的机械性能,提高耐久性和抗冲击性。

4. 医药工业:山西改性木薯淀粉在医药工业中被广泛应用,用作胶囊和片剂的包衣剂和填充剂。

它可以使药物更容易吞咽和吸收,并帮助延缓药物的释放速度。

改性木薯淀粉还具有良好的流动性和压缩性,使其在制备药品时具有良好的加工性能。

5. 纺织工业:山西改性木薯淀粉在纺织工业中被广泛用作印花浆料和纺丝助剂。

它可以提高纺纱和印花过程中的黏度和稳定性,提高纺纱的工艺性能和纸浆的分散性。

此外,山西改性木薯淀粉还可以用于造纸工业中的纸张涂层、食品包装材料和胶粘剂等领域。

由于其良好的性能和稳定性,山西改性木薯淀粉在各种行业中有着广泛的应用潜力。

WPU改性防水高黏型淀粉胶黏剂的合成与性能研究

WPU改性防水高黏型淀粉胶黏剂的合成与性能研究
2 结果与讨论
表 3 试 样 的 黏 度 测试 结 果 及 分 析
Table 3 Viscosity of samples and the analysis
在文献资料分析 中发现 ,对改性淀粉 胶黏剂 性能影 响显著 的四个 因素分别 是 :淀粉溶 液浓 度 CO淀粉、PVA溶 液浓度 COPvA、 WPU相对淀粉 的质 量 比 ‘|) 和氧 化反应 时 间 ,故设 计正 交试 验 ,探 究每个 因素对该胶 黏剂 稳定性 和耐水性 的影 响。见 因素 水平 表 1,实 验方案表 2。
第 45卷第 17期 2017年 9月
广 州 化 工
Guangzho Sep.2017
WPU改性 防水 高黏 型淀 粉胶 黏 剂 的合 成 与性 能研 究 木
张 楠 ,张艳维 ,陈世金
(安 阳工 学 院化 学与环 境 工程 学院 ,河 南 安 阳 455000)
由表 7分 析得四因素对耐热水性 能的影 响为 :(1) >60 > 氧化反 应时间>∞淀粉。3、4、6号试 样符合 QB/T 1094—1991中 耐 热水 性 能 的 要 求 。
2.4 耐水 时 间测 定 2.4.1 常温水 测定
将试 样放入常温水 中浸泡 30 d,观察有无 开胶现 象 ,测定 结 果 如 表 6所 示 。
关键 词 :淀粉胶黏剂;wPu改性 ;防水
中 图分 类号 :TQ433.9
文 献标 志码 :A
文章 编号 :1001—9677(2017)17—0054—03
Synthesis and Properties of W PU M odified W aterproof and H ighly Viscous Starch Adhesive

改性淀粉(PSM)的流变性能研究

改性淀粉(PSM)的流变性能研究

改性淀粉(PSM)的流变性能研究改性淀粉(PSM)是一种经过化学改性的淀粉,在多个工业领域中被广泛应用。

流变性能是评估物质流动行为的重要特征,因此对改性淀粉的流变性能进行研究至关重要。

本文将探讨改性淀粉的流变性能研究,并聚焦于其在食品、纺织和胶粘剂领域中的应用。

首先,我们将关注改性淀粉在食品领域中的流变性能研究。

改性淀粉作为食品添加剂被广泛应用于增加食品的稳定性、改善质地和增加黏性。

针对改性淀粉的流变性能研究主要关注其粘度、流变应力和剪切应力等参数。

通过调整改性淀粉的改性方式和条件,可以获得不同流变性能的产品,以满足不同食品制造需求。

研究显示,改性淀粉可以有效提高食品的稳定性和口感,同时还可以增加食品的弹性和流动性,提高加工的效率和产品的品质。

其次,我们将探讨改性淀粉在纺织领域中的流变性能研究。

纺织品生产过程中,改性淀粉常被用作浆料的粘合剂和加强剂。

研究改性淀粉的流变性能可以帮助我们了解其在纺织浆料中的流动行为,并优化纺织工艺。

改性淀粉的流变性能与其粒径、浓度、pH值以及温度等因素密切相关。

通过调控这些参数,可以实现纺织品浆料的粘度、黏度和流变应力等性能的控制和调整,从而提高纺织品的质量和生产效率。

最后,我们将关注改性淀粉在胶粘剂领域中的流变性能研究。

改性淀粉广泛应用于胶粘剂的制备中,可用于制造各种类型的粘接剂、胶水和胶带等。

研究改性淀粉的流变性能可以帮助我们了解其在胶粘剂中的粘附性和流动性,并优化胶粘剂的黏附力和剪切强度等性能。

通过调整改性淀粉的配方、溶剂和工艺条件等因素,可以实现胶粘剂的流动性、可加工性和耐久性等性能的调控和提升,从而满足不同应用场景的需求。

总之,改性淀粉的流变性能研究对于各个领域的应用具有重要意义。

食品、纺织和胶粘剂等行业的科研人员和工程师们可以通过深入研究改性淀粉的流变性能,不断优化产品配方和工艺流程,提高产品的质量和竞争力。

未来,我们期待进一步的研究能够深入了解改性淀粉的流变性能,并将其应用于更多领域中,为我们生活带来更多的便利和创新。

环氧氯丙烷改性淀粉基胶黏剂的制备及性能研究

环氧氯丙烷改性淀粉基胶黏剂的制备及性能研究

环氧氯丙烷改性淀粉基胶黏剂的制备及性能研究申嘉伟;滕建送;董新荣【摘要】以玉米淀粉为原料,经双氧水氧化、环氧氯丙烷交联改性后以碱糊化制得环氧氯丙烷改性淀粉基胶黏剂.通过单因素实验及正交设计实验优化了环氧氯丙烷交联改性的实验条件.最佳工艺条件为:环氧氯丙烷用量为2%(相对于淀粉的质量分数)、反应温度为50 ℃、反应时间为4 h、交联反应体系的pH值为11.制备的胶黏剂的胶合强度可达4.4 kg/m2,耐水时间为10 h,交联度为1.2.环氧氯丙烷交联改性淀粉基胶黏剂的性能明显优于氧化淀粉胶黏剂.%The starch-based adhesive cross-linked with epichloropropane was prepared by oxidation of starch of hydrogen peroxide,cross-linked with epichlorohydrin, and gelatinization with alkali. The cross-linked conditions were optimized through single factor experiments and orthogonal design experiment. The optimum reaction conditions were as follows:epichlorohydrin was 2% (relative to the mass of starch),the reaction temperature was 50 ℃,the reaction time was 4 h with pH=11 of reaction mixtures. The average crosslinking degree of the adhesive prepared under these conditions was 1.2. And its adhesive strength and the water-resistance time were 4.4 kg/m2and 10 h, respectively, which were significantly better than that of oxidized starch adhesive.【期刊名称】《广州化工》【年(卷),期】2018(046)004【总页数】4页(P39-42)【关键词】玉米淀粉;环氧氯丙烷;交联;淀粉基胶黏剂【作者】申嘉伟;滕建送;董新荣【作者单位】湖南农业大学理学院,湖南长沙 410128;湖南农业大学理学院,湖南长沙 410128;湖南农业大学理学院,湖南长沙 410128【正文语种】中文【中图分类】TB484我国木材工业胶黏剂用量占全国胶黏剂总用量的75%,而绝大多数的木材工业胶黏剂应用于人造板的生产[1]。

经化学改性后淀粉在胶粘剂中的应用

经化学改性后淀粉在胶粘剂中的应用

经化学改性后淀粉在胶粘剂中的应用淀粉胶粘剂是一种环保型、可再生型生物质产品,具有广阔应用前景。

淀粉具有粘接强度低、耐水性差、干燥速度慢等缺点,需对其进行化学改性。

本文综述了淀粉经氧化、酯化、交联化、接枝化等化学手段改性后在胶粘剂中的应用以及发展趋势。

标签:淀粉;化学改性;胶粘剂;应用淀粉的分子结构是葡萄糖通过α-1,4糖苷键(直链淀粉)以及α-1,6糖苷键(支链淀粉)缩聚而成的生物大分子[1]。

淀粉具有来源广泛、产量充足、价格低廉、环保无毒、易被生物降解[2]、粘接性和成膜性良好等优势,但其存在初粘性低、干燥速率慢、胶膜硬脆、对基材附着力差、固含量低、耐水性差等缺点[3、4]限制了其应用范围。

因此通过对淀粉的化学改性来改善淀粉胶粘剂性能的研究已成为该领域的重要课题之一。

淀粉的化学改性方法繁多,其中氧化、酯化、交联和接枝等是淀粉分子化学改性常用方法,也是提高淀粉分子功能、拓宽其应用领域的重要途径。

1 淀粉的氧化天然淀粉相对分子质量较大,聚合度较高[5],约800~3 000,相对分子质量为106~107数量级,不溶于水,其糊化后胶液固含量低、固化速度慢、粘接强度低、流动性差,利用氧化剂对原淀粉分子改性,将化学性质较为活泼的C2、C3、C6位上的醇羟基有限程度被氧化为酮基、醛基和羧基(其中醛基具有防霉防腐能力,羧基对于基材具有较大的亲和性,能增强与基材的附着力),而且分子中的糖苷键部分发生断裂,聚合度和分子量显著降低,易被糊化,易做成固含量高、胶液黏度低且稳定、成膜性良好、对基材附着力好、粘接性佳的胶粘剂。

目前氧化淀粉的氧化剂主要有次氯酸钠(NaClO)、双氧水(H2O2)、高锰酸钾(KMnO4)和高碘酸(HIO4)等[6]。

不同的氧化剂对淀粉进行化学改性制得的氧化淀粉性能不同。

1.1 NaClO改性淀粉NaClO主要作用于C2、C3和C1原子上醇羟基,它不但发生在非结晶区,而且渗透到分子内部,并有少量葡萄糖单元在C2和C3处开环形成羧酸。

改性玉米淀粉在食品加工中的应用

改性玉米淀粉在食品加工中的应用

改性玉米淀粉在食品加工中的应用一、改性玉米淀粉的概述改性玉米淀粉是经过化学或物理处理后,使其具有更多的功能性特性的一种玉米淀粉。

其在食品加工中的应用不仅可以提高产品的稳定性和质量,而且还可以优化加工过程和节约原材料成本。

近年来,随着人们对健康食品需求的增加,改性玉米淀粉的应用也得到了进一步的推广。

二、改性玉米淀粉在食品中的应用1.增稠剂和凝胶剂改性玉米淀粉在食品中的主要应用之一是作为增稠剂和凝胶剂。

加入其可使食品具有更高的粘稠度和黏度,增加产品的质感和口感,比如汤和酱汁等。

此外,改性玉米淀粉还可以作为铺垫填充剂,在制作饼干、蛋糕等烘焙食品时具有重要作用。

2.稳定剂改性玉米淀粉在制作乳制品如酸奶、芝士等中也广泛应用。

其可以避免乳酸菌分离或沉淀,通过加强乳制品体系的稳定性和黏性来提高产品的质量。

3.膨化剂改性玉米淀粉还可以作为膨化剂在制作膨化食品,如薯片、麦芽片、脆米等中使用,以使食品更有口感和疏松度。

4.防结剂在制作沙拉酱、植物蛋白、肉类制品等食品时,改性玉米淀粉可以作为防结剂,阻止物料降解和分离,使食品质地均匀,口感柔软,同时可以防止过量水分的蒸发。

5.提高色泽和口感改性玉米淀粉因其优越的稳定性和黏性,可以作为为食品添加剂,改变食品的结构和性质,使得食品的口感更好,更具有弹性。

此外,改性玉米淀粉还可以提高食品的色泽和光泽度,增加观感,使食品看起来更有食欲。

三、改性玉米淀粉选择的注意事项虽然改性玉米淀粉的应用广泛,但在选择其用途和种类时需要注意以下几点:1.应用目的:在使用改性玉米淀粉前,应根据具体的食品加工需要,选择功能性特性相应的改性淀粉,以达到最佳使用效果。

2.加工温度:改性玉米淀粉在使用过程中,需要在特定的温度范围内进行加工操作,以避免对其功能性的影响。

3.成本控制:改性玉米淀粉的成本通常较高,因此在选择时需要权衡成本和产品质量之间的关系,以确保产品的整体经济效益。

四、结论改性玉米淀粉作为食品加工中的一种重要原材料,其应用已经得到了越来越广泛的推广。

新型淀粉粘合剂的研制及其应用

新型淀粉粘合剂的研制及其应用
左右 。
进行糊化 , 制得新型 的山薯 淀粉粘 合剂 , 行性 能测试 和应 进
用试验 。
收稿 日期 :0 7— 2— 5 2 0 0 0 作者简介 : 王士财(9 6一) 男 , 16 , 硕士 , 教授, 主要从事高分子材料 和应用化学专业的科研 和教学 工作 , 出版专著 1部 , 发表论 文 4 0余 篇。
粘合剂用关 系不大 , 但作 为内墙 涂料 的粘合剂就 不适用 。为 了改善 和提高进行 改性或采 用新 型的合成 工艺 方法 始终 是人
们关注 的热点 J 。 本工作是在酸 眭介质 中以氯酸钠 为氧化剂 、 过硫 酸铵 为 引发剂制得氧化淀粉 , 然后 再糊 化 的新 工 艺技术 , 研制 了性
维普资讯
研 究报 告 及 专论
粘 接 20, ) 072c 8 l4
新 型 淀粉 粘 合 剂 的研 制 及 其应 用
王 士财 , 宝霞 , 晓 东 李 张
( 岛大学 化工 学院, 青 山东 青岛 2 6 7 ) 60 1
摘要 : 考查 了淀粉 酸性氧化 阶段和糊化 阶段 的各 个工艺参数对 制品性能 的影响 , 定 了最佳 工艺条件 。研 制 确
6 稳定度 )
将制备的胶粘剂 在放 置 1 后分别测 其 2h前
黏度 , 前后 黏度 的 比值 , 为“ 即 稳定 度 ” 。稳 定 度 在 0 9 . 5~ 10 即为稳定 , .5 贮存期可达 3 0d以上。 7 纸箱压缩强度 ) 8 纸箱耐破强度 ) 9 纸 箱戳穿强度 )
2 结 果 与 讨 论
市售 山薯淀粉( 新鲜 、 干燥 ) 氯酸钠 、 , 过硫酸铵 、 稀硫 酸 、 硼砂 、 氧化钠等 , 氢 均为化学纯 。 1 2 实验装置 . 5 0m 0 L的三 口烧瓶 , 电动搅拌器 , 恒温水浴锅 , 过滤装 置

改性淀粉(PSM)对纺织品性能的影响

改性淀粉(PSM)对纺织品性能的影响

改性淀粉(PSM)对纺织品性能的影响改性淀粉(PSM)是一种常用的纺织品加工助剂,其对纺织品性能的影响是非常显著的。

本文将从吸湿性、染色性、抗菌性和疏水性等方面,详细探讨改性淀粉对纺织品性能的影响。

首先,改性淀粉对纺织品的吸湿性能有着重要的影响。

纺织品经过改性淀粉处理后,其表面形成一层亲水薄膜,使得纤维更容易吸湿。

这一特性使得纺织品更具舒适性,能够更好地吸收和排除身体的湿气,减少了皮肤不适感。

此外,改性淀粉还能有效地降低纺织品的静电,减少纤维之间的摩擦,提高了穿着的舒适度。

其次,改性淀粉对纺织品的染色性能也有很大的影响。

改性淀粉作为一种印染助剂,可以提高纺织品的染料吸附能力,增强染色的均匀性和牢度。

通过改性淀粉的处理,纺织品在染色过程中得到更好的颜色分布,并且具有更好的色牢度,不易褪色。

此外,改性淀粉还可以提供一定的防染效果,使得纺织品在与其他颜色接触时不易发生染色污染。

第三,改性淀粉还具有良好的抗菌性能。

改性淀粉与纺织品中的纤维结合后,可以释放出一种抑制细菌生长的物质。

这种物质可以有效地抑制细菌的繁殖,减少纺织品与皮肤之间的细菌感染风险,起到一定的抗菌保护作用。

因此,应用改性淀粉处理的纺织品尤其适用于内衣、床上用品等与人体直接接触的产品。

最后,改性淀粉还能够改善纺织品的疏水性能。

经过改性淀粉处理后,纺织品的纤维表面形成一层水滑层,减少了纤维与水的接触面积,使得水分更容易滑落。

这一特性不仅使得纺织品在遇到水时更容易干燥,还能有效地防止液体渗透到纤维内部,减少污渍的产生。

因此,应用改性淀粉处理的纺织品尤其适用于户外运动装备、雨衣等需要具备防水功能的产品。

综上所述,改性淀粉(PSM)对纺织品性能的影响是多方面、多角度的。

它可以改善纺织品的吸湿性、染色性、抗菌性和疏水性能,提高纺织品的舒适度、美观度和持久度。

因此,改性淀粉在纺织品加工中的应用前景非常广阔,有着重要的实际意义和经济效益。

希望今后能够进一步研究和开发出更高性能、更环保的改性淀粉助剂,为纺织品产业的发展做出更大的贡献。

淀粉制造及应用研究方向

淀粉制造及应用研究方向

淀粉制造及应用研究方向淀粉是一种重要的生物大分子,广泛存在于植物体内,包括谷物、豆类、根茎类等许多植物种类中。

淀粉具有许多优良的物理化学性质,如可溶性、吸湿性、多孔性等,这些特性使得淀粉在食品工业、纺织工业、纸浆工业等领域具有广泛的应用潜力。

淀粉制造及应用研究方向主要包括淀粉的制备、改性及其应用研究。

就淀粉的制备而言,目前主要采用的方法是从植物材料中提取淀粉,在此基础上进行精细研磨、沉淀、洗涤等过程,最终得到纯度较高的淀粉。

然而,传统的淀粉制备方法存在着工艺复杂、污染环境、产品纯度低等问题。

因此,淀粉制备的研究方向之一是开发新的淀粉提取技术,例如利用酶法、微波技术、超声波技术等提高淀粉提取的效率和纯度。

淀粉的改性研究是淀粉领域的重要方向之一。

传统淀粉在应用过程中存在一些问题,如易退火、不耐热、不耐酸等。

因此,通过物理、化学、酶法等手段对淀粉进行改性,可以增强其稳定性、增加其溶解性、调节其吸湿性,提高其使用性能。

目前,对淀粉的改性研究主要集中在化学改性(如酯化、醚化、交联)、物理改性(如淀粉糊化、软化、纳米化)等领域。

淀粉在食品工业中的应用研究是一个广泛而重要的课题。

淀粉作为食品的主要成分之一,具有增稠、保湿、稳定等功能,被广泛应用于面粉、调味品、果冻、甜点等食品中。

此外,淀粉还可以用作食品添加剂,如抗结剂、乳化剂、安定剂等。

随着消费者对食品品质的要求不断提高,对淀粉的研究将更加注重其在食品中的功能性应用。

此外,在纺织工业领域,淀粉也有着广泛的应用。

淀粉可以作为纺织品的整理剂,改善纺织品的手感、外观和易打理性,提高纺织品的附着力和耐水洗性。

在纸浆工业领域,淀粉可以用作纸浆的增稠剂、胶粘剂、纸张强度增强剂等,提高纸张的质量和性能。

总结来看,淀粉制造及应用研究方向主要包括淀粉的制备、改性及其在食品工业、纺织工业、纸浆工业等领域的应用。

随着科技的发展,人们对淀粉的研究也将更加深入和广泛,不仅可以提高淀粉的提取和应用效率,还可以开发出更多新颖的淀粉制品,满足人们对食品、纺织品和纸张等能源和材料的需求。

ⅱ型ⅱ类淀粉基api木材胶粘剂的研究

ⅱ型ⅱ类淀粉基api木材胶粘剂的研究

ⅱ型ⅱ类淀粉基api木材胶粘剂的研究
在木材加工和制造领域中,胶粘剂是一种非常重要的材料,它可
以将木材及其他材料固定在一起,形成各种木材制品。

而随着消费者
对环保和安全的要求越来越高,衍生出的一种新型胶粘剂——ⅱ型ⅱ
类淀粉基api木材胶粘剂逐渐受到人们的认可。

首先,什么是ⅱ型ⅱ类淀粉基api木材胶粘剂?它是以ⅱ型ⅱ类
淀粉为原料,加入一定的单体和助剂,经过发酵、转化、精制制成的
一种环保型水性胶粘剂。

相比于传统的木材胶粘剂,它具有以下优点:
1.环保:由于采用环保材料,不含苯、甲醛等有害成分,因此不
会对环境和人体健康造成危害。

2.粘接性:因为ⅱ型ⅱ类淀粉的分子链是非常细长的,能够充分
地渗透到木材的毛细孔中,粘接力度更大、更牢固。

3.稳定性:它具有较好的抗水性和耐热性,即使在高温和潮湿的
环境下,也可以保持稳定的粘接效果。

4.加工性:该胶粘剂具有优异的加工性能,能够适应多种加工需要。

ⅱ型ⅱ类淀粉基api木材胶粘剂的应用范围也非常广泛,主要应
用于家具、地板、门窗等木制品制造领域。

同时,该胶粘剂也可以用
于纸品、纺织品等领域的粘合。

总之,随着人们消费观念的不断升级,对环保性能要求不断提高,ⅱ型ⅱ类淀粉基api木材胶粘剂必将成为未来胶粘剂市场的新趋势。

改性玉米淀粉胶的配方与应用

改性玉米淀粉胶的配方与应用

改性玉米淀粉胶的配方与应用•浏览:185 发布时间:2011-08-24•1、配方组成:Wt%玉米淀粉:18-20双氧水30%:2.0氢氧化钠:1.0-1.8磷酸三丁脂:少量硼破:0.1-0.5分散剂:0.5添加剂:0.5PVA:1.0催干剂:4-6水:72.9-73.72、工艺过程在总量二分之一的水中加入PVA搅拌升温到98℃,使其完全溶解。

降解到60℃加入玉米淀粉搅拌,保温到60min改性处理。

加入双氧水、氧氧化钠搅拌半小时,加入磷酸三丁脂、硼砂、分散络合40min,加入添加剂、催干剂搅拌均匀。

3、结果与讨论1)PVA的影响PVA与玉米淀粉都是多羟基(R-OH)高分子化合物,部分氧化的玉米淀粉还含有一些羟基(R′OH)在一定条件下产生接枝脱水形成(R′O-R)网络结构,使粘接强度明显提高。

干燥速度加快。

表1PVA含量对胶粘剂初粘力影响PVA含量(%)0012 3初粘力(%)破纸率10min4565859093表2PVA含量对干燥速度的影响项目/含量00.512 3初粘力:初粘1514121210(min)全粘3030252020粘度(mpa·s)80909095100干燥时间(h) 3.0 2.7 2.3 2.0 2.0由表1、2,加入1%PVA可使初粘力由45%到85%,干燥速度由3h减少到2.3h。

再加大PVA用量,成本加大,综合考虑加入1.0%PVA较佳。

2)钙基土转化为钠基上钙基膨润土,吸水量少,易分层沉淀。

钠革土吸水量大,悬浮性好,不沉淀,质量稳定。

使用钙基土首先改造成钠基土十分重要。

改造办法:150%钙基土中加入15克Na2Co3。

进行改性,将混合物充分搅拌加水,放置24小时后再用。

3)钠基膨润土改性玉米淀粉胶加入钠基上的目的是加速胶层干燥,能有效地堵塞纸纤维表面的孔隙,阻止胶粘剂中的水分向纸内部渗透,达到快干的目的。

经多次实验,得出钠基膨润土含量与玉米淀粉胶粘接性能关系如下表:表3膨润土含量与粘接性能关系项目/含量(%)0245 6初粘力:初粘1510888(min)全粘3025171515粘度(mpa·s)80100150250300干燥时间(h) 3.0 2.5 2.0 1.8 1.5综合分析,钠基膨润土适宜加入量为4%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

改性淀粉胶粘剂的研究与应用淀粉胶粘剂具有原料来源丰富、价格低廉、可降解等优点,可广泛应用于瓦楞纸板包装箱、纤维板、建筑等领域。

但是,未改性的淀粉胶粘剂流动性差,施胶困难,且耐水性差,潮湿环境下容易吸潮开胶等缺陷,限制了淀粉胶粘剂的进一步应用。

因此,对淀粉胶粘剂进行改性,可以扩大其应用领域。

淀粉是一种多糖类天然高分子化合物,分子链上有大量亲水性强的羟基基团。

在淀粉分子链的亲水性及氢键作用下,淀粉胶粘剂的粘度大,耐水性差。

近年来,用化学交联方法提高淀粉耐水性的研究已有报导,但是,交联改性在提高淀粉胶粘剂耐水性的同时,体系粘度也相应增大,难以在高速瓦楞纸板生产线上应用。

笔者用过硫酸铵(APS)对玉米淀粉进行部分氧化降解,通过减小淀粉分子链长度,解决胶粘剂的粘度大、流动性差等问题。

在氧化降解淀粉的基础上,用官能度大的三聚氰胺甲醛(MF)作为交联剂,与淀粉分子链的羟基反应,制得了耐水性和流动性均好,具有网状分子结构的氧化交联改性淀粉胶粘剂。

此外,还通过SEM和X-ray测试,研究了改性对淀粉颗粒微观结构和结晶度的影响。

1实验1.1原料原料:玉米淀粉,工业级,合肥雪公胶粘剂科技有限责任公司;过硫酸铵,分析纯,上海国药集团化学试剂有限公司;三聚氰胺,化学纯,上海化学试剂公司;30%甲醛水溶液,分析纯,宜兴市辉煌化学试剂厂;氢氧化钠,分析纯,广东汕头西陇化工厂;氯化铵,分析纯,柳州化工股份公司。

1.2仪器与设备主要仪器与设备:NDJ-79型旋转粘度计,同济大学机电厂;Spectrum100傅里叶红外光谱仪,美国PE公司;D/max-RA型旋转阳极X射线衍射仪,日本Rigaku公司;JSM-6490LV型扫描电子显微镜,日本Jeol公司。

1.3方法采用简单的一锅法合成工艺,通过氧化和交联二步反应过程,制得氧化交联改性淀粉胶粘剂。

在500mL配有搅拌器和温度计的三口烧瓶中加入玉米淀粉和水,开启搅拌,加入过硫酸铵,升温至65℃,保温反应0.5 h,得到相对分子质量较小的氧化淀粉。

在氧化淀粉液中,加入30%甲醛水溶液和三聚氰胺(甲醛与三聚氰胺物质的量比为6∶1),实时测定体系pH 值,用2%(质量分数)氢氧化钠水溶液保持反应物pH值为8.0~9.0,继续保温反应2 h。

氧化交联反应结束后,将改性淀粉升温至90℃糊化0.5 h,降至室温,得到固含量约25%,外观呈半透明浅黄色的淀粉胶粘剂。

1.4测试与表征1) 淀粉胶粘剂耐水性能的测试。

改性淀粉胶粘剂中加入1.0%氯化铵固化剂(以淀粉质量计,下同),手工涂胶粘合2片5 cm×5 cm瓦楞纸,40℃烘箱鼓风干燥10 min,室温放置1 d后待用。

瓦楞纸片在25℃水中浸泡至自动脱落的时间为耐水时间。

2) 淀粉胶流动性能的测定。

25℃下,用NDJ-79型旋转粘度计测定粘度。

3) 淀粉胶的FT-IR表征。

胶粘剂烘干至恒重,研磨成细粉,KBr压片制样,用傅里叶红外光谱仪进行表征。

4) X射线衍射(X-ray)。

在样品槽内将淀粉粉末压实、压平,用D/max-RA型旋转阳极X射线衍射仪扫描;测试条件,Cu2Kα射线,Ni滤波,狭缝系统为DS/RS/SS = 1°/0.16 mm/1°。

管压36 kV,管流20mA。

扫描速度4 (°)/min ,采样步宽0.02°,扫描方式为连续,重复次数1。

5) 扫描电镜(SEM)。

取少量淀粉样品在丙酮中分散,取1滴悬浮液在载玻片上,待丙酮挥发后,喷金。

2结果与讨论2.1改性剂质量分数对淀粉胶粘剂性能的影响改性剂使用了过硫酸铵氧化剂和三聚氰胺甲醛(MF)树脂交联剂。

先用过硫酸铵氧化剂与玉米淀粉反应,使淀粉分子部分断链,降低淀粉平均相对分子质量,制得粘度小的氧化淀粉,改善淀粉胶粘剂的流动性。

在氧化淀粉的基础上,用官能度大的三聚氰胺甲醛(MF)树脂与淀粉分子链的羟基发生缩合交联反应,得到耐水性和流动性好,具有网状分子结构的氧化交联改性淀粉胶粘剂。

当淀粉胶粘剂的固含量为25%时,过硫酸铵质量分数对淀粉耐水性和粘度的影响见表1。

由表1可知,过硫酸铵的质量分数对淀粉胶粘剂的耐水时间和粘度均有较大影响。

随着过硫酸铵质量分数的增加,淀粉的耐水时间和粘度都减小。

综合考虑耐水时间和粘度,过硫酸铵质量分数取试样3的2%较好,粘度为350 mPa·s,耐水为0.3 h。

在淀粉胶粘剂的固含量为25 %,过硫酸铵的质量分数为2%时,交联剂MF质量分数对淀粉耐水性及稳定性的影响见表2。

由表2知,由于MF对淀粉的交联作用,随着MF质量分数的增加,淀粉胶粘剂的耐水时间与粘度也相应增加。

考虑到瓦楞纸板生产线对施胶流动性能的要求,以及包装用单瓦楞纸箱和双瓦楞纸箱标准中对耐水24 h的要求,MF质量分数取试样8的2%比较好。

比较表1和表2中试样1(原淀粉)和试样8(氧化交联改性)的数据可知,经过2%过硫酸铵氧化和2%MF交联改性后,淀粉胶粘剂的耐水时间从0.5 h提高到96 h,粘度从凝胶状减小到500 mPa·s,可用于瓦楞纸板包装行业。

2.2红外光谱分析淀粉是以葡萄糖为结构单元的天然高聚物,由葡萄糖单元(C6H10O5)通过糖苷键(C—O—C)结合而成,分子通式为(C6H10O5)n, n值在160~6 000之间。

过硫酸铵(APS)以及三聚氰胺甲醛树脂(MF)与淀粉的化学反应如下所示。

1) 过硫酸铵的氧化反应。

2) 三聚氰胺甲醛树脂的交联反应。

淀粉改性前后的红外光谱见图1,曲线a中,3300 cm-1宽峰为淀粉的—OH伸缩振动峰; 2923cm-1为淀粉分子链的C—H伸缩振动峰;1454~1372cm-1为淀粉的环骨架振动峰;1160~1084 cm-1为C—OH的伸缩振动峰;998 cm-1为C—O—C的伸缩振动峰。

淀粉的红外谱图表明,淀粉含有大量的—OH亲水基团。

比较曲线a与b可知,氧化淀粉的红外光谱与原淀粉基本相同,只是在3 300 cm-1的C—OH伸缩振动峰强度略有增加,说明氧化淀粉发生了断链反应,亲水性羟基数量有所增加。

在曲线c中,出现了1 572 cm-1的酰胺峰和814cm-1的三聚氰胺骨架峰。

说明三聚氰胺甲醛树脂与氧化淀粉发生了交联反应,提高了试样8的耐水性和粘度。

2.3X-ray衍射分析X射线衍射法(XRD)是一种能直接“观察”到物质微观结构的实验手段,可以用于研究淀粉的聚集状态即结晶性。

淀粉是典型的二相结构,可分为微晶区和无定形区,以及介于结晶和非晶之间的亚微晶区,见图2。

玉米原淀粉具有4个比较明显的衍射角度,即图中特征峰对应的角度值,2θ分别是15.10°,17.05°,18.10°和22.95°,为典型的A 型结晶结构类型。

从图2可以看出,改性前后淀粉的4个衍射峰的位置与强度基本没有变化,但在图2曲线b中出现了2θ为12°,18°,28°的三聚氰胺甲醛树脂衍射峰。

相对结晶度可以定量反映被测物质结晶程度的大小。

通过结晶度的计算可知,淀粉相对结晶度为40.12%,改性淀粉的相对结晶度为39.82%,说明氧化和交联改性主要发生在淀粉的无定形区,对微晶区的结构几乎没有影响。

2.4扫描电镜分析通过扫描电镜分析,可以了解微观结构与宏观性能之间的联系。

淀粉改性前后的扫描电镜照片见图3。

从图3可知,淀粉改性前呈规则的椭圆状颗粒,表面光滑,颗粒与颗粒之间相互独立;氧化交联改性后,淀粉颗粒的表面发生了扭曲变形,表面有“絮状”漂浮,但仍保持了整体形貌不变,颗粒与颗粒之间部分通过“絮状”的穿插相互连接。

通过对图2的分析可知,MF的存在,可使淀粉的内部的微结晶区向表面渗透,形成“絮状”结构。

MF交联改性的是淀粉的表面,通过改性微结晶区,形成网状结构,提高耐水性能。

3结论1) MF改性淀粉胶粘剂、过硫酸铵氧化与酸解淀粉,可降低胶粘剂粘度,提高稳定性;三聚氰胺甲醛树脂交联淀粉,可形成交联网状结构,提高耐水性。

2) MF改性的淀粉胶粘剂,可作为瓦楞纸粘合剂使用,符合瓦楞纸粘合剂使用国家标准。

3) MF改性淀粉,提高了淀粉的结晶度,使淀粉塑化,增加了淀粉的粘结强度。

参考文献:[1]张玉龙,王化银.淀粉胶黏剂[M].第2版.北京:北京化学工业出版社,2008.[2]骆光林,王茜.淀粉粘合剂性能改善研究[J].上海包装,2006(12):38.[3]孙伟圣.氨基树脂改性淀粉胶粘剂合成,结构与性能的研究[D].广州:华南农业大学, 2006.[4]GB/T 6543-2008,运输包装用单瓦楞纸箱和双瓦楞纸箱[S].[5]LOIS E,SCHEYER M e of Chemically ModifiedWheat Gluten to Reduce Form aldehyde Emissions Dur-ing Curing of Pigment Print Pastes on Fabrics [J].Star ch/Stae,2000,52:420-422.[6]IMAM S H,MAO L,CHEN L.Environmentally Friend-ly Wood Adhesive from a Re newable Plant Polymer:Characteristics and Optimization[J]. Polymer Degrada-tion and Stability, 2001,73:529-533.[7]TOR S N,GREGORY R Z.Structural Features of Non-granular Spherulitic MaizeStarch[J].Carbohydrate Re-search,2002,337:1467-1475.[8]张本山,张友全,杨连生,等.淀粉多晶体系结晶度测定方法研究[J].华南理工大学学报(自然科学版),2001,29(5):55-58.[9]马骁飞,于九皋.尿素和甲酰胺塑化热塑性淀粉[J].高分子学报,2004,4(8):483-489.[10]张美珍,柳百坚,谷小昱.聚合物研究方法[M].北京:中国轻工业出版社,2007.作者:黄智奇,梁祝贺,张雷娜,吕建平(合肥工业大学,合肥 230009)中图分类号: TB484; TQ321.2文献标识码: A文章编号:1001-3563(2011)01-0029-04 1、有人说:腐败是经济的润滑剂。

你怎么看?答:1、如果腐败是经济的润滑剂,它对社会进步、经济发展有重大贡献,那么反腐败就是错误的。

但现今国际上,所有发达国家在抓经济的同时,反腐败也紧抓不放。

说明,腐败不仅对经济发展起不到任何积极作用,还是经济发展的拦路石。

相关文档
最新文档