有理数知识框架图ppt课件

合集下载

七年级数学上册有理数(共8张PPT)

七年级数学上册有理数(共8张PPT)
[(-2)×5]×(-4)=(-2) ×[5×(-4)]=40
(-2)×[(-3) +4]=(-2)×(-3)+(-2)×4=-2
6、结合例子说明如何合并有相同字母因数的式子;结合例子说明去括号的法则。
答:例如:-2x+3x=(-2+3)x=x 一般地,合并含有相同字母因数的式子时,只需要
它们的系数合并,所得结果作为系数,再乘字母因数。即ax+bx=(a+b)x 式中x是
4、有理数的加法与减法有什么关系,乘法与除法有什么关系?有理数的 混合运算都能转化为加法与乘法运算吗?
答:有理数的加法与减法互为逆运算,乘法与除法互为逆运算。
都能。
5、有理数满足哪些运算律?结合例子说明在有理数运算中运算律。 答:有理数的加法足于交换律、结合律,乘法满足于交换律、结合律、分配律。
例如:例如加法:-5+8=8+(-5)=3 -2+3-5+7=[(-2)+(-5)]+(3+7)=3 乘法:(-2)×(-3)=(-3)×(-2)=6
括号去掉,得
-5(x-y+3)
=-5x+(-5) ·(-2y) +(-5)×3 =-5x+10y-15
特别地,+(x-2y+3)与-(x-2y+3)可以分别看作1与-1乘(x-2y
+3),利用分配律,可以将式子中的括号去掉,得
+(x-2y+3)=x-2y+3 -(x-2y+3)=-x+2y-3
括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;
七年级数学上册有理数
一、本章知识结构图
正整数
0
负整数
整数
正分数
负分数
分数
有理数
有理数的运算
点与数的对应
数轴
比较大小
加法
减法

有理数概念ppt课件

有理数概念ppt课件
置,但是在调换时,要连可编辑同课件PP其T 运算符号和性质符号28 一
减法法则
有理数的加减混合运算
方法:
(1)运用减法法则,将有理数加减混合运算 中的减法转化 为加
法,转化为加法后的式子是几个正数、负数的 和的形式。
正整数:正数 负整数:负数 正分数:分数且正
5
数轴
1、概念:规定了原点、正方向、单位长度的直线 。 原点
三要素: 正方向 单位长度
可编辑课件PPT
6
数轴
2、数轴上的点与有理数的关系 所有的有理数都可以在数轴上表示 正有理数可以用原点右边的点表示 负有理数可以用原点左边的点表示 0可以用原点表示
可编辑课件PPT
互为相反数的两个数相加为0
3、一个数同0相加,扔得这个数
可编辑课件PPT
19
加法法则
提示:有理数的加法运算遵循规律 “一定二求三加减” 即第一步:确定和的符号
第二步:求加数的绝对值 第三步:依据加法法则把绝对值相加还有 相减
可编辑课件PPT
20
加法法则
可编辑课件PPT
21
加法法则
互为相反数的两个数相加等于0 即a和b互为相反数,那么a+b=0
(5)带分数可拆成整数和正分数两部分再相
可编辑课件PPT
25
减法法则
减法法则:
减去一个数等于加上这个数的相反数
注意:两变一不变
即:一是减法变加法
二是把减数变成相反数,被减数不变
注意:有理数的减法在转化为加法之前,被减 数与减数的位置不能
改变,因为对于减法来说,没有交换律
可编辑课件PPT
26
减法法则
可编辑课件PPT
9
相反数

有理数PPT课件(北师大版)

有理数PPT课件(北师大版)
(2)在某次乒乓球质量检测中,一只乒乓球超出标 准质量0.02克记作+0.02克,那么﹣0.03克表示什么? (3)某大米包装袋上标注着:“净重量: 10kg±150g”, 这里的“10kg±150g” 表示什么?
解:(1)沿顺时针方向转了12圈记作-12圈;
(2)-0.03克表示乒乓球的质量低于标准质量 0.03克;
例4、把下列各数填在相应的大括号里:
1
- 11,4.8,+73,12,- 100.5…
2,7, 6
7
,12
Hale Waihona Puke ,- 83,正数集合:{4.8,+73,7,1 ,7 ,12… }
6 12
负数集合:{ -11,-2,- 8 ,-100.5… }
3
三、实际应用
例 (1)某人转动转盘,如果用+5圈表示沿逆时针方向 转了5圈,那么沿顺时针方向转了12圈怎样表示?
…………
西

解:-60m表示向西走60m
1、填空:
(1)-50元表示支出50元,那么+100元表示 _收__入__1_0_0_元___.
(2)正常水位为0m ,水位高于正常水位0.2m记 作_+_0_._2_m_,低于正常水位0.3m记作
-_0_._3_m__.
(3)乒乓球比标准重量重0.039kg记作 +_0_._0_3_9_k_g__; 比标准重量轻0.019kg记作_-_0_._0_1_9_k_g; 同标准重量一致记作_0_k_g___.
正整数:如1,2,3
整数 零:0
有理数
分数
负整数:如-1,-2,… 正分数:如 12,13 5,.2 … 负分数:如 15, 3.5 , 65 ,…

《有理数》PPT课件 (共10张PPT)

《有理数》PPT课件 (共10张PPT)
601 4
133 5.32= 25
150 .25=

思考
Rational number原意为可写成两个整数的比的 2 数,例如,分数 是2与3的比;整数5可以看作分 5 3 母为1的分数 ,1.5可以看作哪两个整数的比?
1
1.5可以写成3与2的比,如果要求两个整 数互质,答案就是唯一的
把下列各数填入它所属的集合圈内:
义务教育课程标准实验教科书 数学 七年级 上册
复习回顾
1、什么是正数与负数 2、“0”的意义 3、到目前为止,我们学过的数的 分类。
集合 1、概念:具有某一特征的一类数 的全体就组成了一个数的集合。 例:所有正整数组成正整数集合; 所以负整数组成负整数集合; 所有正分数组成正分数集合; 等等。 2、集合的表示法 (1)圆圈法 (2)大括号法
挫折的名言 1、 我觉得坦途在前,人又何必因为一点小障碍而不走路呢?——鲁迅 2、 “不耻最后”。即使慢,弛而不息,纵会落后,纵会失败,但一定可以达到他所向的目标。——鲁迅 3、 故天将降大任于是人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为,所以动心忍性,曾益其所不能。 战胜挫折的名言 1、卓越的人一大优点是:在不利与艰难的遭遇里百折不饶。——贝多芬 2、每一种挫折或不利的突变,是带着同样或较大的有利的种子。——爱默生 3、我以为挫折、磨难是锻炼意志、增强能力的好机会。——邹韬奋 4、斗争是掌握本领的学校,挫折是通向真理的桥梁。——歌德 激励自己的座右铭 1、 请记得,好朋友的定义是:你混的好,她打心眼里为你开心;你混的不好,她由衷的为你着急。 2、 要有梦想,即使遥远。 3、 努力爱一个人。付出,不一定会有收获;不付出,却一定不会有收获,不要奢望出现奇迹。 4、 承诺是一件美好的事情,但美好的东西往往不会变为现实。 工作座右铭 1、 不积跬步,无以至千里;不积小流,无以成江海。——《荀子劝学》 2、 反省不是去后悔,是为前进铺路。 3、 哭着流泪是怯懦的宣泄,笑着流泪是勇敢的宣言。 4、 路漫漫其修远兮,吾将上下而求索。——屈原《离骚》 5、 每一个成功者都有一个开始。勇于开始,才能找到成功的路。 国学经典名句 1、知我者,谓我心忧,不知我者,谓我何求。(诗经王风黍离) 2、人而无仪,不死何为。 (诗经风相鼠) 3、言者无罪,闻者足戒。 (诗经大序) 4、他山之石,可以攻玉。 (诗经小雅鹤鸣) 5、投我以桃,报之以李。 (诗经大雅抑) 6、天作孽,犹可违,自作孽,不可活。(尚书) 7、满招损,谦受益。 (尚书大禹谟) 青春座右铭 1、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 2、把手握紧,什么也没有;把手伸开,你就拥有了一切。 3、不在打击面前退缩,不在困难面前屈服,不在挫折面前低头,不在失败面前却步。勇敢前进! 4、当你能飞的时候就不要放弃飞。 5、当你能梦的时候就不要放弃梦。 激励向上人生格言 1、实现自己既定的目标,必须能耐得住寂寞单干。 2、世界会向那些有目标和远见的人让路。 3、为了不让生活留下遗憾和后悔,我们应该尽可能抓住一切改变生活的机会。 4、无论你觉得自己多么的不幸,永远有人比你更加不幸。 5、无论你觉得自己多么的了不起,也永远有人比你更强。 6、打击与挫败是成功的踏脚石,而不是绊脚石。 激励自己的名言 1、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 2、销售是从被别人拒绝开始的。 3、好咖啡要和朋友一起品尝,好机会也要和朋友一起分享。 4、生命之灯因热情而点燃,生命之舟因拼搏而前行。 5、拥有梦想只是一种智力,实现梦想才是一种能力。 6、有识有胆,有胆有识,知识与胆量是互相促进的。 7、体育锻炼可以(有时可以迅速)使人乐观(科学实验证明)。 8、勤奋,机会,乐观是成功的三要素。(注意:传统观念认为勤奋和机会是成功的要素,但是经过统计学和成功人士的分析得出,乐观是成功的第三要素) 9、自信是人格的核心。 10、获得的成功越大,就越令人高兴。

有理数课件ppt

有理数课件ppt

在物理中的应用
有理数在描述物理现象和规律时具有重要的作用,如时间、速度、加速度等物理量 都可以用有理数表示。
在解决物理问题时,有理数也是计算各种物理量的基础,如力、能量、动量等。
物理学中的许多公式和定律都涉及到有理数的运算,如牛顿第二定律、欧姆定律等 。
在日常生活中的应用
有理数在日常生活中的应用非常 广泛,如时间、金钱、度量衡等
VS
详细描述
有理数乘法是指将两个有理数相乘,得到 一个新的有理数。同号数相乘时,取相同 的符号,并将绝对值相乘;异号数相乘时 ,取绝对值较大的数的符号,并将绝对值 相乘。
有理数的除法
总结词
有理数除法是通过乘法来实现的,即用乘法代替除法。
详细描述
有理数除法是指将一个有理数除以另一个有理数,得到一个新的有理数。具体操作是将除数变为相应 的乘法运算,例如:$a / b = a times (1/b)$。
有理数课件
contents
目录
• 有理数的定义与性质 • 有理数的运算 • 有理数的混合运算 • 有理数的应用 • 有理数的扩展知识
01
有理数的定义与性质
有理数的定义
总结词
有理数是可以表示为两个整数之比的数,包括整数和分数。
详细描述
有理数定义为可以表示为两个整数之比的数。其中,分子和 分母都是整数,分母不为零。整数属于有理数,例如:-5、0 、5都是有理数。
都涉及到有理数的计算。
在商业中,有理数被用于计算成 本、利润和折扣等。
在科学实验和工程设计中,有理 数也被用于测量、计算和分析数
据。
05
有理数的扩展知识
有理数的历史与发展
早期数学文明中的有理数
古埃及和巴比伦数学中已经有了分数和比例 的概念。

人教版七年级数学上册 有理数ppt课件

人教版七年级数学上册 有理数ppt课件
4、若2mn (3n6)2 0, 则( 2 mn)的值是多少?
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
的最大整数;
(2)不大于
9 4
的最大整数;
(3)不小于-3.14的最小整数。
例5计算: (1) 10010
(2)
2 5
11 3
例6:比较下列各对数的大小:
(1)-0.1与-2;
(2)
1 3

3
实践应用
例7:课桌的高度比标准高度高2毫米,记作+2 毫米,那么比标准高度低3毫米,记作什么? 现在有5张课桌,量得它们的高度比标准高+1 毫米,-1毫米,0毫米,+3毫米,-1.5毫米,若 规定课桌的高度比标准高度最高不能超过2毫 米,最低不能超过2毫米,就算合格,问上述5 张课桌中有几张合格?
32 mam xa3 2 x,(1)m , in 4 3, (3 2) =
选一选:
(1)、-3不是( C ) A、有理数 B、整数 C、自然数 D、负有理数 2、一个数的绝对值等于它的本身,这个数必定是( D ) A、0 B、负数 C、非正数 D、非负数 3、某人第一次向南走了40千米,第二次向北走了30千 米,第三次向北走了40千米,最后相当于这人( D )
4
负数: 2,4,11,40.03
33
例2:求-3,0,+1.5的相反数,并把这 些数及其相反数表示在数轴上。
解:-3的相反数是3; 0的相反数是0;
+1.5的相反数是-1.5
. -1。.5 . 1.5
-3
3
例3:填空题
2
2
5
2
5
5
2

有理数ppt课件

有理数ppt课件

03
有理数的混合运算
顺序法则
总结词
在进行有理数的混合运算时,应遵循运算的顺序法则,即先进行乘除运算,再进 行加减运算。
详细描述
在数学中,有理数的混合运算需要遵循一定的顺序,即先进行乘除运算,再进行 加减运算。这是由于乘除运算是全域性的,而加减运算不是。因此,在进行混合 运算时,必须先完成乘除运算,然后再进行加减运算。
有理数的性质
总结词
有理数具有封闭性、有序性、可数性等性质。
详细描述
有理数具有封闭性,即有理数的四则运算结果仍为有理数。有理数具有有序性 ,可以比较大小和排列。有理数还具有可数性,即有理数集与自然数集之间存 在一一对应关系。
有理数在数学中的地位
总结词
有理数是数学中基本且重要的概念之一,是解决实际问题的重要 工具。
04
有理数的应用
在日常生活中的应用
80%
购物时找零钱
在购物时,我们经常使用到有理 数,如找零钱,计算折扣等。
100%
测量和计算
在日常生活中,我们经常需要进 行测量和计算,如长度、重量、 时间等,这些都需要用到有理数 。
80%
金融计算
在金融领域,如股票交易、保险 计算等,都需要用到有理数进行 计算。
有理数可以用于描述几何图形的长度、面积和体 积等属性。
有理数在数学中的未来发展
数学教育改革
01
随着数学教育的发展,有理数作为基础数学知识,将在数学教
育中得到更加广泛的重视和应用。
数学与其他学科的交叉
02
有理数作为数学的基础概念,将进一步与其他学科进行交叉融
合,促进跨学科的发展。
数学研究的新领域
03
随着数学研究的不断深入,有理数理论将进一步发展,并应用

有理数教学ppt课件

有理数教学ppt课件

详细描写
有理数是数学分析中函数和极限理论的基础,也是代数中方 程和不等式理论的基础。有理数的概念和性质是数学教育中 不可或缺的一部分,对于培养学生的逻辑思维和数学素养具 有重要意义。
02
有理数的运算
加法运算
总结词
理解有理数的加法法则,掌握加法运算的步骤和技能。
详细描写
介绍有理数的加法法则,包括同号数相加、异号数相加以及整数与分数相加的情 况。通过例题演示加法运算的步骤,强调结果的符号和绝对值,并总结加法运算 的技能和注意事项。
详细描写
在气象、科学实验和工业生产等领域中,温 度测量是重要的环节之一。使用有理数来表 示温度,可以方便地记录和比较不同位置的 温度值。同时,通过将实际温度与标准单位 进行比较,可以得出有理数的数值,从而得
到准确的测量结果。
05
有理数的扩大知识
分数与小数的关系
1 2
分数与小数是可以相互转化的
任何一个分数都可以表示为小数,小数也可以表 示为分数。
同级运算从左到右
当运算式中存在同级的运 算(如乘除和加减)时, 应从左到右依次进行,确 保运算的正确性。
括号优先
在运算式中遇到括号时, 应优先进行括号内的运算 ,再继续进行其他运算。
运算技能
灵活运用交换律、结合律
在进行有理数的混合运算时,可以灵 活运用交换律和结合律,改变运算的 顺序或分组,简化计算进程。
除法运算
总结词
理解有理数的除法法则,掌握除法运算的步骤和技能。
详细描写
介绍有理数的除法法则,即除以一个数等于乘以这个数的倒数。通过例题演示除法运算的步骤,强调 结果的符号和绝对值,并总结除法运算的技能和注意事项。
03
有理数的混合运算

有理数ppt课件

有理数ppt课件

03
有理数的混合运算
运算顺序
先算乘方或开方,再 算乘除,最后算加减 。
同一级运算按从左到 右的顺序进行。
如果有括号,先算括 号里面的,再算括号 外面的。
运算律
加法交换律:a+b=b+a
分配律:a(b+c)=ab+ac 乘法结合律:(ab)c=a(bc)
加法结合律:(a+b)+c=a+(b+c) 乘法交换律:ab=ba
几何应用
有理数在几何学中常被用于描述 长度、面积和体积等几何量。
借助有理数的运算,可以方便地 求解几何量之间的关系,如计算 两点之间的距离、三角形或四面
体的面积和体积等。
有理数在几何作图中的应用也十 分广泛,如绘制直线、圆、椭圆 等图形时,有理数可以提供重要
的数学依据。
实际应用
有理数在实际生活中有着广泛的应用 ,如物理学中的力学、热学、电磁学 等都离不开有理数的运算。
有理数ppt课件
目录
• 有理数的定义 • 有理数的运算 • 有理数的混合运算 • 有理数的应用 • 有理数的扩展知识
01
有理数的定义
整数
整数的分类
整数可以分为正整数、负整数和 零。
整数的性质
整数具有封闭性、可数性等性质。
整数的运算
整数可以进行加、减、乘、除等运 算。
分数
01
02
03
分数的定义
在信息科学领域,有理数被用于计算 机编码、信息压缩、加密和纠错等技 术中。
在金融领域,有理数被用于计算利息 、汇率、投资回报等经济指标。
在统计学中,有理数被用于描述数据 分布特征、进行假设检验和回归分析 等。
05

有理数ppt课件

有理数ppt课件

重量测量中的应用
总结词
有理数在重量测量中同样扮演着重要的角色 ,它使我们能够准确地表示和比较物体的重 量。
详细描述
在购物时,我们经常需要比较不同商品之间 的重量,以确定哪个更重或更轻。这时,我 们通常会使用天平或电子秤等工具来测量商 品的重量,而这些工具的读数通常是有理数 。通过比较有理数的大小,我们可以准确地 比较不同商品之间的重量。
联系
有理数和无理数都是实数的子集,实数包括有理数、无理数和无穷小数
等。有理数和无理数在一定条件下可以相互转化,例如开方运算可以将
有理数转化为无理数,反之亦然。
THANKS
感谢观看
有理数的性质
总结词
有理数具有一些基本的性质,如加法、减法、乘法和除法的封闭性。
详细描述
有理数可以进行加法、减法、乘法和除法运算,并且运算结果仍然是有理数。例如,两个有理 数相加、相减、相乘或相除,其结果仍然是有理数。此外,有理数还有序的性质和稠密的性质 。
有理数在数学中的地位
总结词
有理数在数学中具有重要地位,是数学的基础和重要组成部分。
除法运算
总结词
有理数除法运算的基本法则
详细描述
有理数的除法运算可以通过乘法来实现,即除以一个数等于乘以这个数的倒数。此外,除以一个数等 于减去这个数与被除数的乘积也是除法运算的重要法则。
03
有理数的混合运算
顺序法则
总结词
先乘除后加减,同级运算按照从左到 右的顺序进行。
详细描述
在进行有理数的混合运算时,应先进 行乘除运算,再进行加减运算。对于 同级的运算,如加法或减法,应按照 从左到右的顺序进行,以避免混淆和 错误。
减法运算
总结词
有理数减法运算的基本法则

初中数学有理数知识树图 PPT课件 图文

初中数学有理数知识树图 PPT课件 图文

易错警示: 对于一个近似数写成a×10n 后,精确度跟10n有关。例如 2.10×103就精确到十位,而 2.10就精确到百分位;而有效
1.数轴上的两个数 右 边的数总比 左 边 2.正数>0>负数;两个负数比较,绝对值 大 3.a>b 4.差值法比较:
a<0时,-a表示a的相反数,此时-a是 以用原数的整数数位减去 的可以通过查看原数的 数字只看a的部分,与10的乘
一个正数。② 由定义可知一个数的绝对 1得到.
第一个不是O的数前面的 方没有关系.如2.10×103与
值是数轴上的点到原点的距离,这说明
所有的 0 个数得到. 2.10的有效数字就相同了.
了有理数的绝对值是非负数,即对任意
有理数总有|a|≥0。③ 绝对值等于0的数
一定是0,绝对值为正数m的数一共有两
绝对值 相反数
倒数
温馨提示:数轴上的 点与实数是一一对应 的。即数轴上的每一 个点都有唯一的一个 实数与它对应;反之,
数轴
实数

0的任何非零 正整数次幂都 是 零.
a0= 1 (a≠0), 1
a-p= a p (a≠0).
实数的运算
加法法则 减 法法则
减去一 这个数 a-b=a 运算转 体现了 想。 规律总 变为加 变成原 ② 按照 计算.
有理数树形图
温馨提示:① -a不一定表示负数,当
把一个大于10的数表示成 把一个小于1的正数表示 a×10n的形式,(其中a是 成 a×10-n的形式(其中a 整数数位只有一位的正数, 是整数数位只有 一 位的 n是正整数),所用的就是 正数,n是 整数 ).所用 科学记数法.这里的n可 的也是科学记数法,这里
运算规律

有理数课件ppt课件

有理数课件ppt课件
详细描述
有理数的乘法运算可以表示为 a × b = c,其中 a 和 b 是两个有 理数,c 是它们的积。在进行乘 法运算时,应将被乘数 a 和乘数 b 相乘,得到一个新的有理数 c 。
有理数的除法运算
总结词
有理数的除法运算是将一个有理数除以另一个有理数,得到一个新的有理数。
详细描述
有理数的除法运算可以表示为 a / b = c,其中 a 和 b 是两个有理数,c 是它们的商。在进行除法运 算时,应将被除数 a 除以除数 b,得到一个新的有理数 c。
有理数的减法运算
总结词
有理数的减法运算是两个有理数相减,得到一个新的有理数。
详细描述
有理数的减法运算可以表示为 a - b = c,其中 a 和 b 是两个有理数,c 是它们的差。在进行减法运算时,应将 被减数 a 放在减数 b 的上方,然后进行相减,得到一个新的有理数。
有理数的乘法运算
总结词
有理数的乘法运算是将两个或多 个有理数相乘,得到一个新的有 理数。
详细描述
距离是空间几何的基本概念之一,它可以通 过有理数进行测量和表示。在现实生活中, 我们经常需要测量和表示各种距离,例如公 路里程、航空里程等。这些距离的测量和表 示都需要用到有理数。
时间的测量与表示
总结词
有理数在时间的测量与表示中有着广泛的应 用。
详细描述
时间是有理数的一个重要应用领域。时间的 测量和表示需要用到日、时、分、秒等单位 ,这些单位都是基于有理数进行定义的。此 外,在金融领域,利息的计算也需要用到有
01
02
03
04
加法
有理数的加法运算满足交换律 和结合律。
减法
有理数的减法运算满足交换律 和结合律。

有理数ppt课件

有理数ppt课件
分析:零既不是正数,也不是负数;正整数、零、负整数统称为整数;非负数是正数和零,反之,正数和零统称为非负数;能被2整除的数是偶数. 答案:(1)× (2)√ (3)√(4)×(5)√(6)×
链接中考
1.(2011.贵阳)如果“盈利10‰”记为+10‰,那么“亏损6‰”记为( ) A. -16‰ B. -6‰ C.+6‰ D.+4‰ 2.(2011.湖北宜昌)如果用+0.02克表示一个乒乓球质量超出标准质量0.02克,那么一个乒乓球质量低于标准质量0.02克记作( ) A. +0.02克 B. -0.02克 C. 0 克 D.+0.04克
支出6元
低于海平面789米
增加80千克
公元前20年
—15
— 4
向东
— 6 %
4
— 2
练习2
2、若将28计为0,则可以将27计为-1,试猜想若将27计 为0,28应计为 。
1、如果全班某次数学测试的平均成绩为83分,某同学考 了85分,记作+2分,得90分应记作______,得80分应 记作______ 。
珠穆朗玛峰的海拔高度为8 844.43 m
吐鲁番盆地的海拔高度为―155 m
上面图中的正数和负数的含义是什么?你能再举一些用正数、负数表示数量的实际例子吗?
思考
参考答案:左图中的正负数表示,A地高于海平面4 600米,B地低于海平面100米. 右图中的正负数分别表示,存入 2 300元,支出 800元.
地位和作用:
本章是九年制义务教育第三学段“数与代数”的起始内容,是初等数学的重要基础.
有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础.

有理数ppt课件

有理数ppt课件
有理数ppt课件
汇报人:可编辑 2023-12-23
目录
• 有理数的定义与性质 • 有理数的运算 • 有理数的混合运算 • 有理数的应用 • 有理数的扩展知识
01
有理数的定义与性质
有理数的定义
总结词
有理数是可以表示为两个整数之 比的数。
详细描述
有理数包括整数和分数,它们都 可以表示为两个整数之比。整数 可以看作分母为1的有理数。
乘方的性质
乘方运算具有一些基本性质,如 $a^{m+n}=a^mtimes a^n$, $(a^m)^n=a^{mn}$等。
有理数的开方运算
开方的定义
开方运算是指求一个数的平方根 或立方根等,表示为根式形式。
例如,$sqrt{16}=4$。
开方的性质
开方运算具有一些基本性质,如 $sqrt[n]{a^n}=a$,
有理数的性质
总结词
有理数具有封闭性、有序性、对称性和稠密性等性质。
详细描述
有理数集是一个封闭的集合,即对于任何两个有理数,都可以通过加、减、乘、除等运算得到另一个有理数。有 理数集是有序的,可以比较大小并建立大小关系。有理数集具有对称性,即对于任意一个有理数,都存在一个相 反数。有理数集是稠密的,即在任意两个不相等的有理数之间,都存在另一个有理数。
02
有理数的运算
加法运算
总结词
有理数加法运算的基本规则
详细描述
有理数的加法运算可以通过将绝对值相加,然后根据同号或异号来决定结果的符 号。例如,两个正数相加,结果仍然是正数;两个负数相加,结果仍然是负数; 一个正数和一个负数相加,结果的正负取决于正数的数量。
减法运算
总结词
有理数减法运算的基本规则

有理数ppt课件

有理数ppt课件
有理数ppt课件
汇报人:可编辑 2023-12-27
目 录
• 有理数的定义与性质 • 有理数的运算 • 有理数的混合运算 • 有理数的应用 • 有理数的扩展知识
01
有理数的定义与性质
有理数的定义
总结词
有理数是可以表示为两个整数之比的 数,包括整数和分数。
详细描述
有理数包括所有可以表示为两个整数 之比的数。这意味着有理数包括整数 和分数。整数可以看作是特殊的分数 ,分子和分母相同。
有理数在数学中的地位
总结词
有理数在数学中占据重要地位,是数学研究和应用的基础。
详细描述
有理数在数学中占据着非常重要的地位。它们是数学研究和应用的基础,特别是在代数、几何和三角 学等领域。有理数是实数的一个子集,是研究连续数学模型的基础。在物理学、工程学和其他科学领 域中,有理数也广泛应用于测量、计算和建模等方面。
数学教育改革
随着数学教育的发展,有理数作为基础数学知识,将在数学教育 中占据更加重要的地位。
数学与其他学科的交叉
有理数作为数学的基础概念,将进一步与其他学科如物理、工程和 计算机科学等交叉融合。
数学研究的新方向
随着数学研究的深入发展,有理数理论可能会涌现出新的研究方向 和应用领域。
THANKS
感谢观看
03
有理数的混合运算
顺序法则
总结词
先乘除后加减,同级运算按从左到右 的顺序进行。
进 行乘法和除法运算,再进行加法和减 法运算。如果存在同级的运算,如加 法和减法,应按照从左到右的顺序进 行计算。
结合律与交换律
总结词
结合律允许改变有理数混合运算中的括 号和组合方式,交换律允许改变加法和 乘法的顺序。
05

1.4有理数的大小课件(共17张PPT)

1.4有理数的大小课件(共17张PPT)
随堂练习
1.有理数a,b,c在数轴上的对应点的位置如图所示.(1)在横线上填入“>”或“<”:a______0,b______0,c______0,|c|______|a|,|a|______|b|,|-b|______|c|;
【思路点拨】在数轴上找到表示a,b,c的相反数的点,然后利用数轴直观地比较大小.
绝对值的一个重要性质是非负性,即对任意有理数a,均有|a|≥0.若几个非负数的和为0,则这些非负数均为0.
归纳小结
比较有理数大小的方法方法一:在数轴上表示的两个数,右边的数总比左边的数大.方法二:(1)正数大于0,0大于负数,正数大于负数; (2)两个负数,绝对值大的反而小.
同学们再见!
两数同号
同为正号,绝对值大的数大
同为负号,绝对值大的反而小
两数异号
正数大于负数
一数为0
正数与0,正数大于0
负数与0,负数小于0
例2 比较下列各数的大小.
(1)0和-6;(2)3和-4.4;(3)
1.如图,在数轴上有A,B,C,D四个点.(1)写出数轴上的点A,B,C,D表示的数;
(2)将点A,B,C,D表示的数按从小到大的顺序用“<”号连接起来.
第 一章 有理数
1.4 有理数的大小
学习目标
能利用数轴及绝对值的知识,比较两个有理数的大小.
学习重难点
能利用数轴及绝对值的理数的大小.
难点
重点
回顾复习
1.在数轴上,表示一个数的点到原点的距离叫作这个数的绝对值,有理数a的绝对值表示为|a|,读作“a的绝对值”.2.符号不同、绝对值相等的两个数,我们称其中一个数是另一个数的相反数,也称这两个数互为相反数. 规定0的相反数为0.3.一个正数的绝对值是它本身. 一个负数的绝对值是它的相反数. 0的绝对值是0.4.互为相反数的两个数的绝对值相等.

初一有理数ppt课件

初一有理数ppt课件

运算律与交换律
总结词
运算律和交换律是进行有理数混合运算的重要依据。
详细描述
在进行有理数的混合运算时,应遵循运算律和交换律。运算律包括加法交换律、 加法结合律、乘法交换律、乘法结合律等,这些是进行有理数混合运算的基本法 则。交换律允许我们在不改变结果的前提下,改变各项的顺序。
04
有理数在实际生活中的应用
对值除以较小的绝对值;与0相乘时结果为0。
除法运算
总结词
有理数除法运算规则
详细描述
有理数的除法运算可以通过乘法来实现,即用乘法代替除法。具体来说,除以一个数等于乘以 这个数的倒数。同时需要注意,除数不能为0,否则结果不确定。
03
有理数的混合运算
顺序与括号
总结词
先乘除后加减,括号内的优先计算。
详细描述
初一有理数ppt课件
目录
• 有理数的定义与性质 • 有理数的四则运算 • 有理数的混合运算 • 有理数在实际生活中的应用 • 有理数的扩展知识
01
有理数的定义与性质
有理数的定义
有理数是可以表示为两个整数之比的数,包括整 01 数、分数和十进制数。
有理数包括正数、负数和零,它们在数轴上表示 02 为离原点的距离。
有理数是整数和分数的统称,是数学 中最为基础的数系之一。
有理数的理论是数学发展的一个重要 里程碑,对数学的发展产生了深远的 影响。
有理数的应用广泛
有理数在科学、工程、经济等领域都 有广泛应用,如物理中的力、速度和 加速度等都可以用有理数表示。
THANKS
感谢观看
01 有理数与实数的关系
有理数是实数的子集,是实数的一个稠密子集。
02 有理数与代数方程的关系
有理数是代数方程的根的集合,代数方程的解通 常是有理数或其超越数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 -(- 1 ) 32
11
口答说一说 计算:(1)6×9
(2)(-4)×6 (3)(-6)×(-1) (4)(-6)×0
12
口答:
72÷9=__8__, (-12)÷(-4)=____, (-6) ÷2=____, 12÷(-4)=____, 0÷(-6)=____,
13
把一张纸进行对折、再对折……
这就是我们今天所要学习的内容——具有相反意义的量!
3
为了便于区分这些意义相反的量,数学上就规定:
在具有相反意义的一对量中,把其中的一种量用正数表示;
而另一种量用负数表示,它是在正数前面加上“-”(读作负号)。
两位同学背靠背,规定向前为正,
一人向前走5步,记作 +5 , 一人向后走5步 ,记作 -5 .
表示0的点(原点)与原点的距离是_0__,
所以0的绝对值是_0__. 0 0
9
比较一天5个城市的气温(用“高于”或“低于”)填空
哈尔滨 -20℃ 广州 10℃ 北京 -10℃ 上海 0℃ 武汉 5℃
广州 高于上海 上海 高于北京 北京 高于哈尔滨
哈尔滨 低于武汉
武汉 低于广州
同学们能不能将上述五个城市的最低气温用“<”依次排列?
它能不能用一个简单的式子表示呢?能不能有一个简单的读法14呢?
哈尔滨 北京 上海 武汉 广州
-20℃ < -10℃ < 0℃ < 5℃ < 10℃ 10
有理数的加法和减法
(1)7+13; (3)(+5)+ (+10);
(4)(-10)+(-4);
(1) (6) 5
(2) (7) (15)
(3) (7) (15)
(4) ( 1) ( 1) 44
(1)对折一次有几层? 2
(2)对折二次有几层? 2×2 =22
(3)对折三次有几层? 2×2 ×2 =23
(4)对折四次有几层?
……
2×2…×…2 ×220个=24
(5)对折二十次有几层? 2×2 ×2 …… 2×2 ×2 =220
……
30…个 …
(6)对折三十次有几层? 2×2 ×2 …… 2×2 ×2 =230
知识框架整体感知
1
有 理 数
基本概念
具有相反意义的量 数轴 相反数 绝对值
有理数大小的比较
有理数的加法和减法
运算
有理数的乘法和除法
有理数的乘方
有理数的 混合运算
2
宋代词人苏东坡有一句词被人们广泛流传: “人有悲欢离合,月有阴晴圆缺”,
哪些词是具有相反意义的真实描绘?
阴与晴、圆与缺、悲与欢、离与合
从数轴上看,哪家离学校较近?哪家离学校较远? 8
A
B
-4 -3 -2 -1 0 1 2 3 4
数轴上表示一个数的点与原点的距离,叫做这个 数的绝对值.
表示-3的点A与原点的距离是_3__,
所以-3的绝对值是_3__. 3 3 表示2的点B与原点的距离是_2__,
所以2的绝对值是_2__. 2 2
6
如图:小明家在学校西边3Km处,小丽家在学校东边2Km处.
小明家
学校
小丽家
如果把学校门前的大街看成一条数轴,把学校看作原 点,你能把小明和小丽家的位置在这条数轴上表示出 来吗?
7
如下图:小明的家在学校西边3Km处,小丽的家 在学校东边2Km处.
小明家
A
学校
B
小丽家
-4 -3 -2 -1 0 1 2 3 4
-5
0
5
4符号不同5 Nhomakorabea5
数字相同
数学上规定:只有符号不同的两个数叫做互为相反数
你还能说出其他的相反数吗?
5
在数学中,通常用一条直线上的点表示数,
2
4.5
012345
-3 -2 -1 0 1 2 3
1、画一条水平直线,在直线上取一点0 (叫原点), 2、规定直线上向右的方向为正方向, 3、选取一长度作为单位长度,就得到了数轴。
相关文档
最新文档