参数化设计案例
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.1 主要面(#main surfaces) 该openbody内有零件设计过程中,基础面(#basic
surface)、压筋结构(#depressions)、翻边结构(#flanges)、 裁剪结构(#trimmed_part)和孔(#holes)这些特征完成以 后的面。 7.2 基础面(#basic surface)
#part definition包括主要面(#main surfaces)、基础面(#basic surface)、压筋 结构(#depressions)、翻边结构(#flanges)、 裁剪结构(#trimmed_part)、孔(#holes)
和左右件共同特征 (Common_LH/RH_Features)、左件单一特 征(Unique_LH Side_Features)、右件单一 特征(Unique_RH Side_Features)。
• 通过以上介绍,我们了解了基础面(#basic surface)的设计思路,下面 再看具体到一个单面片的设计方法。
• 上面讲到在基础面(#basic surface)内只包含#reference_structure和 face两部分。其中#reference_structure内的几何元素是被套用来设计 单面片的固定格式。
• 5.外部引用数据(#external geometry)
6.最终结果(#final part)
• 该openboy用来存放零件的最终设计曲面数 据、材料的矢量方向、冲压方向、零件 MLP信息以及对部件的设计修改信息。如 图
7、 零件设计过程(#part definition)
• 在结构树上的这一部分是零件设计的主体 工作,也是工作量最大,最关键的部分。 这部分#part definition的构成如图
• 如图所示,决定该零件形状的基础面可由如上二个子基础面组成,二 个主要子基础面相互倒角得到大的基础面,在子基础面设计过程中要 注意不同结构的命名和它们之间的相互历史层次关系。往往每个子基 础面又由许多面元素构成,这些面元素同样要求用清晰的命名和历史 层次关系体现在结构树上。
• 子基础面basic surface由多个面片通过依次倒角 Shape Fillet得到 (在通常情况下较少采用 Edge Fillet和 Variable Radius Fillet 命令倒角,因其不利于参数化控制)。
• 如图所示,要构建#basic surface 1内face 01面片,先将 #reference_structure内的元素全部复制粘贴到face 01内,调整 reference_point的坐标值以确定其空间位置,随后Update更新三个基 准平面和三个草绘的位置(因为三个基准平面和三个草绘与 reference_point有参数关联关系),此时,在其中的两个草绘上分别 做出引导线(guide curve)和轮廓线(profile),再用 Sweep或 Extrude拉伸生成直纹面(直纹面在参数化设计中更便于控制面的参 数)。
在零件设计过程中要有大局观,整体意识。即由整体 到局部,由简单到复杂的过程,Start_Part就是遵循这样 一个思路来进行零件设计的。当接到一个设计任务时,首 先考虑构成该零件的主要型面是怎样的,即该零件的形状 是怎样的。在该型面的基础上怎样来很好的实现零件的功 能,就是接下来要考虑零件的结构设计,即增加必要的压 筋结构(#depressions)、翻边结构(#flanges)和孔(#holes) 特征。当然基础面和零件结构这两者是相互影响的,要综 合考虑。 首先看基础面的设计。基础面是零件结构的基础,零件形 状由基础面的形状来决定。
基础面(#basic surface)内只包含 #reference_structure和face两部分, #reference_structure内有Start Model模板内给定 的其个元素,一个参考点(坐标值可任意给定)、 三个plane面(分别平行与三个系统平面)、三个 基于plane绘制的草绘( Sketch with Absolute Axis Definition 相对于 Sketcher更便于参数化 控制其空间位置和草绘形状)。基础面的制定没 有MLP一样严谨的设计规范,由于零件形状的不 同,设计人员的不同,基础面有着不同的设计思 路和方法。以下面的零件为例来说明。
• 4.零件实体数据(PartBody)
• 5.外部数据(external geometry)
• 6.最终结果(final part) • 7.零件设计过程(part definition)
整体结构树形 式如图所示
• 其次,详细介绍各个组成部分在模版的具 体应用方法。
1.零件名称(PART NUMBER)
3.参数(Parameters) Parameters内是用来存放零件的厚度参数。
4.零件实体数据(#Part Body)
Part Body内是用来存放零件实 体数据,一般是设计的最终结果实 体数据。如果需要更改Part Body的 名称,可以在Part Body右键属性内 更改,如果要反映该零件设计的不 同阶段或不同状态的实体数据,或 者是周边相关零件的实体数据(周 边相关零件的Parent信息来自 #external geometry),可以在零 件内插入多个Part Body来分别定义。
参数化案例
建模思路参考附件: 5401000.CATPart
在建模过程中应尽量避免使用以下操作:
因其不利于参数化控制
首先,此模板根据车身零件3D数据的结构特征,将历史树分成如下组成部分:
· 1.零件名称(PART NUMBER)
• 2.车身坐标系(Axis Systems)
• 3.参数(Parameters)
零件名称定义的规范性和准确性对一个汽车主机厂来说wenku.baidu.com在整个汽车产品生命周期内对产品的采购、生产、销售都具 有重要意义。所以首先要确定零件的准确件号和尽量简单且 详尽的名称。 2.车身坐标系(Axis Systems) 该坐标原点为车身坐标原点即是世界坐标原点,定义该坐 标系以后后期设计过程中的几何元素的空间坐标都以该坐标系 为基准。