化工原理实验讲义(学生版)

合集下载

化工原理实验讲义(版本)

化工原理实验讲义(版本)

化工原理实验实验讲义西南科技大学材料科学与工程学院材料基础中心实验室二O—三年十二月目录实验一、流体力学综合阻力实验A (2)实验二、固体流态化的流动特性实验 (6)实验三、除尘性能实验................................................... 1..1. 实验四、圆球法测固体材料导热系数.. (13)实验一、流体力学综合阻力实验A实验前介绍双台综合阻力实验台(图1)为流体力学综合性多用途教学实验装置。

为双台型,可供两组学生同时进行实验。

利用本装置可进行下列实验:1•沿程阻力实验2•局部(阀门)阻力实验3•孔板流量计流量系数测定实验4•文丘里流量计流量系数测定实验实验装置实验台的结构简图如图1所示。

它主要由沿程阻力实验管路1、局部(阀门)阻力实验管路2、孔板流量计实验管路3和文丘里流量计实验管路4等四路实验管所组成,并有水泵及其驱动电机5,塑料储水箱6,有机玻璃回水水箱及计量水箱7 (实测流量时用)、压差显示板8(图中未示出)和一些闸门组成的实验水循环系统和压差显示系统等,双台实验装置安装在一个底架9和管道支架10上。

文丘里实验管路为所有其它实验管路共用的出流通道。

工业应用以水泥工业的预热预分解系统为例:对于预热器系统来说,系统的阻力损失直接关系到能耗问题,因此在设计时就要充分考虑到局部阻力和沿程阻力等,所以了解这两种阻力的性质、可能出现的情况、以及如何减少这类损失等知识是很有必要的。

对于其他生产工艺来说都是同样的重要。

在生产中经常要对系统的稳定运行进行热工标定,即:测定管道内的流体速度,以检测系统是否正常稳定运行,并依此数据进行调节。

这就会用到流量计和毕托管等测定流体速度,所以掌握其操作方法对科学研究和指导生产都有着重要的意义。

(一)沿程阻力实验1实验目的(1)测定流体在等直流管中流动状态下,不同雷诺数Re时的沿程阻力系数,并确定它们之间的关系。

(2)了解流体在管道中流动时能量损失的测量和计算方法。

化工原理实验讲义(doc 66页)

化工原理实验讲义(doc 66页)

化工原理实验讲义(doc 66页)化工原理实验讲义第一章化工原理实验的基本知识1.1 绪论《化工原理》主要研究生产过程中各种单元操作的规律,并利用这些规律解决实际生产中的过程问题。

该课程紧密联系实际,实践性很强,是化工、环工、生物化工等工科专业学生必修的技术基础课。

作为一门研究化工生产过程的工程学科,它已形成了完整的教学内容和教学体系。

化工原理实验是学习、掌握和运用这门课程必不可少的重要教学环节。

它与课堂讲授、习题课和课程设计等教学环节构成一个有机的整体。

化工原理实验属于工程实验范畴,具有典型的工程特点。

每一个单元操作按照其操作原理设置,工艺流程、操作条件和参数变量等都比较接近于工业应用,因此,一个单元操作实验相当于化工生产中的一个基本过程,通过它能建立起一定的工程概念。

随着实验的进行,会遇到大量的工程实际问题,对学生来说,可以在实验过程中更实际、更有效地学到更多的工程实验方面的原理和测试手段,可以看到复杂的真实设备与工艺过程同描述这一过程的数学模型之间的关系。

学习和掌握化工原理的实验及其研究方法,是学生从理论学习到工程应用的一个重要实践过程。

长期以来,化工原理实验常以验证课堂理论为主,教学安排上也仅作为《化工原理》课程的一部分。

近20年来,由于化学工程、石油化工、生物工程的飞跃发展,要求研制新材料,寻找新能源,开发高新科技产品,对化工过程与设备的研究提出了格外能够高的要求,新型高效率低能耗的化工设备的研究也更为迫切。

为适应新形势的要求,化工原理实验单独设课,指定实验课的教学大纲,加强学生实践环节的教育,培养有创造性和有独立的科技人才,从而确立化工原理实验在培养学生中应有地位。

1.2 实验教学目的和要求1.2.1 化工原理实验的教学目的为提高实验课教学质量,我们在调整理论课教学内容的同时,编写了实验课教材-----《化工实验技术基础》。

按照实验课教学大纲的基本要求,针对学生普遍存在的实践薄弱环节,在内容编排上,我们从以下几个方面进行了考虑:1.巩固和深化课堂所学的理论根据全国高校化工原理教学指导委员会的规定,从实验目的、实验原理、装置流程、数据处理等方面,组织各单元操作的实验内容。

化工原理实验讲义

化工原理实验讲义

化工原理实验讲义化工原理实验讲义(新增)湖南大学化学化工学院实验中心2012.04目录实验1 雷诺实验 (1)实验2 柏努利实验 (3)实验3板式塔流体力学性能的测定 (5)实验4流体阻力测定实验 (9)实验5离心泵性能测定和流量计标定实验 (12)实验6传热实验 (18)实验7精馏实验 (22)实验8过滤实验 (26)实验9氧解吸实验 (29)实验10 液—液萃取实验 (36)实验11干燥速率曲线测定实验 (41)实验12 固体流态化实验 (45)实验13 化工管路拆装实训 (49)实验14 化工仪表综合实训 (54)实验1 雷诺实验一、目的1.观察流体在层流和湍流时两种不同的流动形态,观察层流时流体在导管中的速度分布。

2.测定各种流动状态下的Re,建立层流、湍流与Re之间的联系。

二、原理1.层流与湍流的根本区别,在于流体内部质点的运动方式不同。

层流时,流体的质点沿着与管轴平行的方向成直线运动,互不碰撞,互不混合,湍流时流体质点的运动是不规则的,质点之间发生剧烈的碰撞与混合并导致整个流体的湍动,无论层流和湍流,管壁处速度都为零,离开管壁以后速度渐快,管中心处速度最大。

层流时,速度沿管子的直径按抛物线的规律分布。

2.流体流动状态是由多方面因素决定的,把这些因素组合成,称为雷诺准数(Re),根据Re的数值,可判断流动属于层流还是湍流。

三、实验设备及流程实验装置如图所示。

试验时水由稳压水槽进入玻璃管,此玻璃管供观察流体流动形态和层流时导管中流速分布之用。

为了使玻璃管内的流动稳定,槽内设有缓冲器和溢流器,实验时应维持稳压水槽液面稳定。

雷诺实验装置四、实验步骤1.层流速度分布演示先将流量计后的出口调节阀关闭,将水加满整个试验系统,并保持溢流水槽内有一定的溢流量。

打开示踪剂管路阀,让示踪剂充满整个试验导管的截面,再调节自由夹至能观察到管内红色细流。

少许开启转子流量计调节阀,将流量调至最小,以便观察稳定的层流流型及层流时流体在管截面上的速度分布(切勿扰动)。

化工原理实验讲义

化工原理实验讲义

化工原理实验(上、下)讲义专业:应用化学应用化学教研室2012.6实验一 流体机械能转化实验一、实验目的1、了解流体在管内流动情况下,静压能、动能、位能之间相互转化关系,加深对柏努利方程的理解。

2、了解流体在管内流动时,流体阻力的表现形式。

二、实验原理流动的流体具有位能、动能、静压能、它们可以相互转换。

对于实际流体, 因为存在内摩擦,流动过程中总有一部分机械能因摩擦和碰撞,而被损失掉。

所以对于实际流体任意两截面,根据能量守恒有:2211221222f p v p v z z H g g g gρρ++=+++上式称为柏努利方程。

三、实验装置(d A =14mm ,d B =28mm ,d C =d D =14mm ,Z A -Z D =110mm )实验装置与流程示意图如图1-1所示,实验测试导管的结构见图1-2所示:图1-1 能量转换流程示意图图2-2实验导管结构图四、操作步骤1.在低位槽中加入约3/4体积的蒸馏水,关闭离心泵出口上水阀及实验测试导管出口流量调节阀和排气阀、排水阀,打开回水阀后启动离心泵。

2.将实验管路的流量调节阀全开,逐步开大离心泵出口上水阀至高位槽溢流管有液体溢流。

3.流体稳定后读取并记录各点数据。

4.关小流量调节阀重复上述步骤5次。

5.关闭离心泵出口流量调节阀后,关闭离心泵,实验结束。

五、数据记录和处理五、结果与分析1、观察实验中如何测得某截面上的静压头和总压头,又如何得到某截面上的动压头?2、观察实验,对于不可压缩流体在水平不等径管路中流动,流速与管径的关系如何?3、实验观测到A、B截面的静压头如何变化?为什么?4、实验观测到C、D截面的静压头如何变化?为什么?5、当出口阀全开时,计算从C到D的压头损失?六、注意事项1.不要将离心泵出口上水阀开得过大以免使水流冲击到高位槽外面,同时导致高位槽液面不稳定。

2.流量调节阀开大时,应检查一下高位槽内的水面是否稳定,当水面下降时应适当开大泵上水阀。

化工原理实验讲义

化工原理实验讲义

实验Ⅰ:实验一 流量计校核实验一、实验目的1.了解孔板流量计、文丘里流量计的构造、原理、性能及使用方法。

2.掌握流量计的标定方法。

3.测定节流式流量计的流量系数C ,掌握流量系数C 随雷诺数Re 的变化规律。

4.学习合理选择坐标系的方法。

5.学习对实验数据进行误差估算的具体方法。

二、实验原理流体通过节流式流量计时在流量计上、下游两取压口之间产生压强差,它与流量有如下关系:采用正U 形管压差计测量压差时,流量Vs 与压差计读书R 之间关系有: (1)式中: V s 被测流体(水或空气)的体积流量,m 3/s ; C 流量系数(或称孔流系数),无因次; A 0 流量计最小开孔截面积,m 2,A 0=(π/4)d 02; 下上-P P 流量计上、下游两取压口之间的压差,P a ;ρ 被测流体(水或空气)的密度,Kg/m 3; A ρ U 形管压差计内指示液的密度,Kg/m 3;ρ1 空气的密度,Kg/m 3;R U 形管压差计读数,m ; 式3-1也可以写成如下形式:()ρ下上-P P CA V s 20=()ρρρ120-=A s gR CA V(1a)若采用倒置U 形管测量压差:ρgR P P =-下上(忽略空气对测量的影响)则流量系数C 与流量的关系为:(2)用体积法测量流体的流量V s ,可由下式计算:(3) (4)式中:V s 水的体积流量,m 3/s ;△t 计量桶接受水所用的时间,s ;A 计量桶计量系数;△h 计量桶液面计终了时刻与初始时刻的高度差,mm ,△h=h 2-h 1; V 在△t 时间内计量桶接受的水量,L 。

改变一个流量在压差计上有一对应的读数,将压差计读数 R 和流量V s 绘制成一条曲线即流量标定曲线。

同时用式(1a )或式(2)整理数据可进一步得到流量系数C —雷诺数Re 的关系曲线。

(5)式中:d —实验管直径,m ; u —水在管中的流速,m/s 。

三、实验内容1、以涡轮流量计为基准,对孔板流量计进行校核,并绘制校核曲线。

化工原理实验讲义(学生版)

化工原理实验讲义(学生版)

化工原理实验实验一 流体力学综合实验一、实验目的1、了解管路粗糙度及管件对流动阻力的影响。

2、测定水在管道内流动时的直管阻力损失,作出λ与Re 的关系曲线。

3、测定水在管道内流动时的局部阻力损失,测量和计算不同开度下截止阀的局部阻力系数ζ或当量长度l e 。

4、测定一定转速下,离心泵的特性曲线。

二、实验原理1. 摩擦阻力系数 λ~Re流体在管道内流动时,由于内摩擦力的存在,必然有能量损耗,此损耗能量为直管阻力损失。

根据柏努利方程,对等直径的1、2两截面间的直管阻力损失为:图1 直管阻力测量原理示意图ρph f ∆=(1)由因次分析法得22u d l h f ⋅⋅=λ(2)22d pl u λρ∆=⋅ (2) μρ⋅⋅=u d Re (3)⎪⎭⎫ ⎝⎛=d f ελRe,(4)式中: h f − 直管阻力损失 (J/kg); λ − 摩擦阻力系数;l 、d 、ε − 直管的长度、管内径和绝对粗糙度 (m); ∆p − 流体流经直管的压降 (Pa);ρ 、μ − 分别是流体的密度 (kg/m 3) 和粘度 (Pa ⋅s); u − 流体在管内的平均流速 (m/s)。

由公式(2)可以看出,流体流动时的摩擦阻力损失与管道的长度成正比,与管道的直径成反比。

流体的平均速度越高,阻力损失越大。

利用公式(2)计算直管阻力损失时,需要知道不同雷诺数下摩擦阻力系数的值。

穆迪图给出了λ~Re 的关系曲线。

本实验装置可以利用上面的公式来验证直管阻力损失计算,测定λ~Re 的关系曲线。

流体在长度和直径一定的管道内流动时,利用U 型管压差计实验测出一定流量下流体流经该长度管段所产生的压降,即可算得 h f ,利用公式(2)可得到λ,根据流速和物性数据可按公式(5)计算出对应的雷诺数Re ,从而关联出 λ 与Re 的关系曲线。

改变实验管可得出不同粗糙度(不同材质直管)的λ 与Re 的关系曲线。

2. 当量长度l e 和局部阻力系数 ζ流体在流经阀门、管件时,由于流道方向或大小的改变,造成流体的剧烈湍动,造成的能量损失称为局部阻力损失。

实验讲义(化工原理)

实验讲义(化工原理)

实验一、雷诺实验一、实验目的1.了解管内流体质点的运动方式,认识不同流动形态的特点,掌握判别流型的准则。

2.观察圆直管内流体作层流、过渡流、湍流的流动型态。

观察流体层流流动的速度分布。

二、实验内容1. 以红墨水为示踪剂,观察圆直玻璃管内水为工作流体时,流体作层流、过渡流、湍流时的各种流动型态。

2.观察流体在圆直玻璃管内作层流流动的速度分布。

三、实验装置实验装置流程如图1-1所示。

图1-1 雷诺实验装置1 溢流管;2 墨水瓶;3 进水阀;4示踪剂注入管5水箱;6 水平玻璃管;7 流量调节阀实验管道有效长度: L=600 mm外径: Do=30 mm内径: Di=24.5 mm孔板流量计孔板内径: do=9.0 mm四、实验步骤1. 实验前的准备工作(1) 实验前应仔细调整示踪剂注入管4的位置,使其处于实验管道6的中心线上。

(2) 向红墨水储瓶2 中加入适量稀释过的红墨水,作为实验用的示踪剂。

(3) 关闭流量调节阀7,打开进水阀3,使水充满水槽并有一定的溢流,以保证水槽内的液位恒定。

(4) 排除红墨水注入管4中的气泡,使红墨水全部充满细管道中。

2. 雷诺实验过程(1) 调节进水阀,维持尽可能小的溢流量。

轻轻打开阀门7,让水缓慢流过实验管道。

(2) 缓慢且适量地打开红墨水流量调节阀,即可看到当前水流量下实验管内水的流动状况(层流流动如图1-2所示)。

用体积法(秒表计量时间、量筒测量出水体积)可测得水的流量并计算出雷诺准数。

因进水和溢流造成的震动,有时会使实验管道中的红墨水流束偏离管的中心线或发生不同程度的摆动;此时, 可暂时关闭进水阀3,过一会儿,即可看到红墨水流束会重新回到实验管道的中心线。

图1-2层流流动示意图(3) 逐步增大进水阀3和流量调节阀7的开度,在维持尽可能小的溢流量的情况下提高实验管道中的水流量,观察实验管道内水的流动状况(过渡流、湍流流动如图1-3所示)。

同时,用体积法测定流量并计算出雷诺准数。

化工原理实验讲义(学生版)教材

化工原理实验讲义(学生版)教材

化工原理实验实验一 流体力学综合实验一、实验目的1、了解管路粗糙度及管件对流动阻力的影响。

2、测定水在管道内流动时的直管阻力损失,作出λ与Re 的关系曲线。

3、测定水在管道内流动时的局部阻力损失,测量和计算不同开度下截止阀的局部阻力系数ζ或当量长度l e 。

4、测定一定转速下,离心泵的特性曲线。

二、实验原理1. 摩擦阻力系数 λ~Re流体在管道内流动时,由于内摩擦力的存在,必然有能量损耗,此损耗能量为直管阻力损失。

根据柏努利方程,对等直径的1、2两截面间的直管阻力损失为:图1 直管阻力测量原理示意图ρph f ∆=(1)由因次分析法得22u d l h f ⋅⋅=λ(2)22d pl u λρ∆=⋅ (2) μρ⋅⋅=u d Re (3)⎪⎭⎫ ⎝⎛=d f ελRe,(4)式中: h f − 直管阻力损失 (J/kg); λ − 摩擦阻力系数;l 、d 、ε − 直管的长度、管内径和绝对粗糙度 (m); ∆p − 流体流经直管的压降 (Pa);ρ 、μ − 分别是流体的密度 (kg/m 3) 和粘度 (Pa ⋅s); u − 流体在管内的平均流速 (m/s)。

由公式(2)可以看出,流体流动时的摩擦阻力损失与管道的长度成正比,与管道的直径成反比。

流体的平均速度越高,阻力损失越大。

利用公式(2)计算直管阻力损失时,需要知道不同雷诺数下摩擦阻力系数的值。

穆迪图给出了λ~Re 的关系曲线。

本实验装置可以利用上面的公式来验证直管阻力损失计算,测定λ~Re 的关系曲线。

流体在长度和直径一定的管道内流动时,利用U 型管压差计实验测出一定流量下流体流经该长度管段所产生的压降,即可算得 h f ,利用公式(2)可得到λ,根据流速和物性数据可按公式(5)计算出对应的雷诺数Re ,从而关联出 λ 与Re 的关系曲线。

改变实验管可得出不同粗糙度(不同材质直管)的λ 与Re 的关系曲线。

2. 当量长度l e 和局部阻力系数 ζ流体在流经阀门、管件时,由于流道方向或大小的改变,造成流体的剧烈湍动,造成的能量损失称为局部阻力损失。

化工原理实验讲义(上)共56页

化工原理实验讲义(上)共56页

实验一 流体摩擦阻力系数测定一、实验目的及任务1、学习流体在管道内摩擦阻力f P ∆及摩擦阻力系数λ的测定方法;2、确定摩擦阻力系数λ与雷诺数Re 和相对粗糙度d ε之间的关系;3、在双对数坐标纸上绘出λ~Re 曲线并与莫迪图进行比较;4、测定局部(阀门)阻力系数ζ。

二、实验基本原理由于有粘性和涡流的影响,流体流动时会产生流动阻力。

其大小与管子的长度、直径、流体流速和管道摩擦阻力系数有关。

本实验分为直管摩擦系数和局部(阀门)阻力系数ζ两种情况。

1、直管摩擦系数与雷诺数Re 的测定直管的摩擦阻力系数是雷诺数和相对粗糙度的函数,即)/(Re,d f ελ=,对一定的相对粗糙度而言,(Re)f =λ。

流体在一定长度等直径的水平圆管内流动时,其管路阻力引起的能量损失为:ρρff P P P h ∆=-=21 (1-1)又因为摩擦阻力系数与阻力损失之间有如下关系(范宁公式)22u d l h fP f λρ==∆ (1-2) 整理(1-1)(1-2)两式得22u P l d f∆⋅⋅=ρλ (1-3)μρ⋅⋅=u d Re (1-4)式中:-d 管径,m ;-∆f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 流速,m / s ;-ρ流体的密度,kg / m 3; -μ流体的粘度,N ·s / m 2。

在实验装置中,直管段管长l 和管径d 都已固定。

若水温一定,则水的密度ρ和粘度μ也是定值。

所以本实验实质上是测定直管段流体阻力引起的压强降f P ∆与流速u (流量V )之间的关系。

根据实验数据和式(1-3)可计算出不同流速下的直管摩擦系数λ,用式(1-4)计算对应的Re ,从而整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。

2、局部(阀门)阻力系数ζ的测定22'u P h ff ζρ=∆=' (1-5) 2'2u P f∆⋅⎪⎪⎭⎫ ⎝⎛=ρζ (1-6)式中:-ζ局部阻力系数,无因次; -∆'f P 局部阻力引起的压强降,Pa ;-'f h 局部阻力引起的能量损失,J /kg 。

化工原理实验讲义-化工本

化工原理实验讲义-化工本

化工原理实验讲义-化工本1. 实验目的本实验旨在通过对化工原理的实验操作,在实践中掌握化工原理的基本原理和实验技巧,培养学生的实验能力和综合素质。

2. 实验材料和仪器设备2.1 实验材料•硫酸铜•硝酸银•氢氧化钠•蒸馏水•滤纸2.2 仪器设备•量筒•试管•灯台•滴定管•镊子•烧杯3. 实验原理化工原理是化学工程中的基础课程之一,其实验实践主要涉及以化学反应为基础的物质转化过程。

本实验主要讲解了三个基本实验,包括硫酸铜溶液的制备、硝酸银与盐酸反应以及氢氧化钠的滴定。

3.1 硫酸铜溶液的制备硫酸铜溶液是一种常用的化学试剂,用于常规实验和工业生产中的染料、催化剂等。

制备硫酸铜溶液的原理是将硫酸铜与蒸馏水按一定的配比混合,并进行搅拌,最终得到所需的溶液。

3.2 硝酸银与盐酸反应硝酸银与盐酸反应是一种重要的化学反应,常用于药物合成、污染检测等领域。

此反应的原理是将硝酸银溶液与盐酸按一定的摩尔配比混合,通过氯化银的生成来观察反应的进行。

3.3 氢氧化钠的滴定氢氧化钠的滴定是一种常用的分析方法,可用于测定溶液中的盐酸含量。

滴定的原理是将酸溶液与氢氧化钠的溶液按一定的滴定体积比进行滴定,通过酸碱中和反应的终点变化来确定溶液中酸的浓度。

4. 实验步骤4.1 硫酸铜溶液的制备步骤1.准备所需材料和仪器设备。

2.称取一定质量的硫酸铜固体。

3.将硫酸铜固体倒入量筒中。

4.加入适量蒸馏水,使溶液浓度符合要求。

5.用玻璃棒搅拌溶液,直至硫酸铜溶解完全。

4.2 硝酸银与盐酸反应步骤1.准备所需材料和仪器设备。

2.取一定体积的硝酸银溶液并倒入试管中。

3.加入适量的盐酸溶液,等待反应进行。

4.观察反应的产物,记录颜色和形态的变化。

4.3 氢氧化钠的滴定步骤1.准备所需材料和仪器设备。

2.量取一定体积的盐酸溶液。

3.将盐酸溶液倒入烧杯中。

4.加入几滴酚酞指示剂。

5.取适量氢氧化钠溶液,并用滴定管滴定,直至颜色变化。

5. 实验结果分析通过对以上三个实验的操作和观察,我们可以得到以下实验结果:•硫酸铜溶液制备完全溶解,呈现蓝色。

【免费阅读】化工原理实验讲义

【免费阅读】化工原理实验讲义

雷诺演示实验一、实验目的1 观察流体流动时的不同流动型态2 观察层流状态下管路中流体的速度分布状态3 熟悉雷诺准数(Re)的测定与计算4 测定流动型态与雷诺数(Re)之间的关系及临界雷诺数二、实验原理流体在流动过程中由三种不同的流动型态,即层流、过渡流和湍流。

主要取决于流体流动时雷诺数Re的大小,当Re大于4000时为湍流,小于2000 时为层流,介于两者之间为过渡流。

影响流体流动型态的因素,不仅与流体流速、密度、粘度有关,也与管道直径和管型有关,其定义式如下:1.1-1式中: d 管子的直径mu 流体的速度m/sρ流体的密度kg/m 3μ流体的粘度 Pa· s三、实验装置雷诺演示实验装置如图1.1所示,其中管道直径为20 mm。

图1.1 雷诺演示实验装置图1—有机玻璃水槽;2 —玻璃观察管;3 —指试液;4,5 —阀门;6 —转子流量计四、实验步骤1 了解实验装置的各个部件名称及作用,并检查是否正常。

2 打开排空阀排气,待有机玻璃水槽溢流口有水溢出后开排水阀调节红色指示液,消去原有的残余色。

3 打开流量计阀门接近最大,排气后再关闭。

4 打开红色指示液的针形阀,并调节流量(由小到大),观察指示液流动形状,并记录指示液成稳定直线,开始波动,与水全部混合时流量计的读数。

5 重复上述实验3~5次,计算Re临界平均值。

6 关闭阀1、11,使观察玻璃管6内的水停止流动。

再开阀1,让指示液流出1~2 cm 后关闭1,再慢慢打开阀9,使管内流体作层流流动,观察此时速度分布曲线呈抛物线形状。

7 关闭阀1、进水阀,打开全开阀9排尽存水,并清理实验现场。

五、数据处理及结果分析1 实验原始数据记录见下表:序号123456q(l/h)U(m/s)Re2 利用Re的定义式计算不同流动型态时的临界值,并与理论临界值比较,分析误差原因。

六、思考题1雷诺数的物理意义是什么?2 有人说可以只用流体的流速来判断管中流体的流动型态,当流速低于某一数值时是层流,否则是湍流,你认为这种看法对否?在什么条件下可以只用流速来判断流体的流动型态?流体流动阻力系数的测定一、实验目的1 学习管路阻力损失( h f ) 、管路摩擦系数(λ)、管件局部阻力系数(ζ)的测定方法,并通过实验了解它们的变化规律,巩固对流体阻力基本理论的认识。

化工原理实验讲义

化工原理实验讲义

化工原理实验讲义一、引言化工原理是化学工程专业的核心课程,旨在通过实验教学形式,掌握化工原理的基本原理与操作技能。

本实验讲义将介绍一些常见的化工原理实验,以帮助学生更好地理解相关知识,并提高实验操作的能力。

二、实验一:物质的密度测定实验原理物质的密度是指单位体积物质的质量,可以通过以下公式计算:密度(ρ)= 质量(m)/ 体积(V)本实验将通过测量物质的质量和体积,计算物质的密度。

实验步骤1.准备一个空容器,并称重记录容器的质量(m1);2.将容器装满待测物质,并再次称重记录质量(m2);3.计算物质的质量(m)= m2 - m1;4.测量容器的体积(V),可以通过测量容器的长宽高,并计算体积;5.计算物质的密度(ρ)= m / V。

实验注意事项1.在称重过程中,应注意零点的调整,确保准确度;2.测量容器体积时,应尽量减少误差,可以多次测量并取平均值。

三、实验二:化学反应速率测定实验原理化学反应速率是指单位时间内反应产物浓度的变化量,可以通过以下公式计算:速率(v)= ΔC / Δt本实验将通过测量酶催化反应中产物的浓度随时间变化的曲线,计算化学反应速率。

实验步骤1.准备酶的溶液和底物的溶液,并将它们混合在一起;2.将混合溶液倒入试管中,并立即开始计时;3.每隔一段时间,取出试管,用分光光度计测量产物的浓度;4.将测得的产物浓度与时间绘制曲线图;5.根据曲线图上某一时间点的斜率,计算该时间点的反应速率。

实验注意事项1.在混合溶液时,要快速并彻底地混合,保证反应能够迅速发生;2.测量产物浓度时,要注意校正光度计,以消除干扰;3.绘制曲线图时,应注意选择合适的刻度和线条粗细。

四、实验三:蒸馏分离混合物实验原理蒸馏是利用液体的沸点差异,将混合物中的成分分离的常用方法。

蒸馏通常包括加热液体混合物,将产生的蒸汽冷凝并收集成为纯净的液体。

实验步骤1.将混合物加入蒸馏瓶中,并安装冷凝管;2.加热混合物,使其中沸点较低的成分先蒸发,然后冷凝成液体;3.收集冷凝液体,即得到分离的成分。

化工原理实验讲义(最终版)

化工原理实验讲义(最终版)

目录绪论 (1)实验一雷诺实验 (3)实验二伯努利方程实验 (4)实验三流体流动阻力的测定 (6)实验四流量计校核实验 (10)实验六恒压过滤常数的测定 (15)实验七传热实验 (17)实验八精馏实验 (23)实验十干燥实验 (29)绪论一、化工原理实验的特点《化工原理》是化工、食品、生物工程、环境工程等专业的重要技术基础课,它属于工程技术学科,故化工原理实验也是解决工程问题必不可少的重要部分。

面对实际的工程问题,其涉及的物料千变万化,操作条件也随各工艺过程而改变,使用的各种设备结构、大小相差悬殊,很难从理论上找出反映各过程本质的共同规律,一般采用两种研究方法解决实际工程问题,即实验研究法和数学模型法。

对于实验研究法,在析因实验基础上应用因次分析法规划实验,再通过实验得到应用于各种情况下的半理论半经验关联式或图表。

例如找出流体流动中摩擦系数与雷诺准数和相对粗糙度关系的实验。

对于数学模型法,在简化物理模型的基础上,建立起数学模型,再通过实验找出联系数学模型与实际过程的模型参数,使数学模型能得到实际的应用。

例如精馏中通过实验测出塔板效率将理论塔板数和实际塔板数联系起来。

可以说,化工原理实验基本包含了这两种研究方法的实验,这是化工原理实验的重要特征。

虽然化工原理实验测定内容及方法是复杂的,但是所采用的实验装备却是生产中最常用的设备和仪表,这是化工原理实验的第二特点。

例如流体阻力实验中,虽然要测定摩擦系数与雷诺数及相对粗糙度的复杂关系,但使用的却是极其简单的泵、管道、压力计、流量计等设备仪表。

化工原理实验的这些特点,同学们应该在实验中认真体会,通过化工原理实验对这些处理工程问题的方法加深认识并初步得以应用。

1二、化工原理实验的要求1.巩固和深化理论知识。

化工原理课堂上讲授的主要是化工过程即单元操作的原理,包括物理模型和数学模型。

这些内容是很抽象的,还应通过化工原理实验及实习这些实践性环节,深入理解和掌握课堂讲授的内容。

化工原理实验简明讲义

化工原理实验简明讲义

化工原理实验简明讲义实验目的:通过本实验,学生将了解化工原理中的一些基本概念、实验方法和实验技巧。

实验设备和材料:1.进样泵和进样泵管2.液相色谱仪3.毫升量筒4.烧杯和试管5.甲醇和乙酸乙酯6.试剂:硝酸银溶液、氢氧化钠溶液、硫酸、氯化钠溶液、酸碱指示剂等。

实验步骤:1.实验前准备:清洗实验器材,准备好实验所需的试剂和溶液。

2.加样进样泵:将所需的溶液倒入进样泵中,并连接进样泵管到液相色谱仪。

3.开启液相色谱仪:按照仪器说明书正确操作,打开电源,启动仪器。

4.进样操作:调整进样泵的进样流量和进样时间,使得待测样品能够正常进入色谱柱。

5.数据采集:根据仪器的要求,设置采集数据的时间间隔和仪器参数。

开始采集数据。

6.分析结果:通过液相色谱仪上的显示屏或计算机软件,实时观察实验结果,并记录下峰值的时间和峰面积。

7.数据处理:根据实验结果,计算得到所需的数据,并进行后续的分析和处理。

8.清洗仪器:实验结束后,关闭液相色谱仪,按照仪器说明书正确进行仪器的清洗和保养工作。

实验注意事项:1.实验操作要规范,注意安全,佩戴好实验室所需的个人防护设备。

2.实验器材和试剂要洁净,避免杂质和外部因素对实验结果的影响。

3.操作仪器时要仔细阅读仪器说明书,并按照要求正确操作。

4.实验过程中要注意观察,并记录下实验现象、数据和结果。

5.实验结束后要及时清洗仪器,归位器材,并按照实验室规定进行废物处理。

实验原理和应用:液相色谱法是一种常用的化工分析方法,广泛应用于制药、环保、食品、化工等领域。

该方法通过采用不同的液相固定相和流动相,利用了不同物质的分配行为,实现了对复杂混合物中化合物的定性和定量分析。

液相色谱法具有灵敏度高、分离效果好、分析速度快等优点,适用于分析复杂的有机物和无机物混合物。

总结:通过本实验,学生了解到了液相色谱法的基本原理和应用,并掌握了液相色谱仪的操作方法和实验技巧。

这些知识对于今后的化工原理实验和研究工作具有重要的指导意义。

化工原理实验讲义讲义资料

化工原理实验讲义讲义资料

化工原理实验讲义专业:环境工程应用化学教研室2015.3实验一 流体机械能转化实验一、实验目的1、了解流体在管内流动情况下,静压能、动能、位能之间相互转化关系,加深对伯努利方程的理解。

2、了解流体在管内流动时,流体阻力的表现形式。

二、实验原理流动的流体具有位能、动能、静压能、它们可以相互转换。

对于实际流体, 因为存在内摩擦,流动过程中总有一部分机械能因摩擦和碰撞,而被损失掉。

所以对于实际流体任意两截面,根据能量守恒有:2211221222f p v p v z z H g g g g ρρ++=+++上式称为伯努利方程。

三、实验装置(d A =14mm ,d B =28mm ,d C =d D =14mm ,Z A -Z D =110mm )实验装置与流程示意图如图1-1所示,实验测试导管的结构见图1-2所示:图1-1 能量转换流程示意图图1-2实验导管结构图四、操作步骤1.在低位槽中加入约3/4体积的蒸馏水,关闭离心泵出口上水阀及实验测试导管出口流量调节阀和排气阀、排水阀,打开回水阀后启动离心泵。

2.将实验管路的流量调节阀全开,逐步开大离心泵出口上水阀至高位槽溢流管有液体溢流。

3.流体稳定后读取并记录各点数据。

4.关小流量调节阀重复上述步骤5次。

5.关闭离心泵出口流量调节阀后,关闭离心泵,实验结束。

五、数据记录和处理五、结果与分析1、观察实验中如何测得某截面上的静压头和总压头,又如何得到某截面上的动压头?2、观察实验,对于不可压缩流体在水平不等径管路中流动,流速与管径的关系如何?3、实验观测到A、B截面的静压头如何变化?为什么?4、实验观测到C、D截面的静压头如何变化?为什么?5、当出口阀全开时,计算从C到D的压头损失?六、注意事项1.不要将离心泵出口上水阀开得过大以免使水流冲击到高位槽外面,同时导致高位槽液面不稳定。

2.流量调节阀开大时,应检查一下高位槽内的水面是否稳定,当水面下降时应适当开大泵上水阀。

化工原理实验讲义20101013

化工原理实验讲义20101013

化工原理实验讲义中国石油大学化学化工学院化学工程系二00八年四月目录目录 (2)序言 (1)实验一流体摩擦阻力系数测定 (3)实验二流量计校核 (9)实验三离心泵特性曲线的测定 (12)实验四恒压过滤常数的测定 (16)实验五固体流态化 (21)实验六空气在圆形直管中对流传热系数的测定 (26)实验七板式精馏塔塔板效率的测定 (31)实验八吸收实验——填料塔吸收传质系数的测定 (35)序言一、化工原理实验的特点化工原理实验属于工程实验范畴,它不同于基础课程的实验。

后者面对的是基础科学,采用的方法是理论的、严密的,处理的对象通常是简单的、基本的甚至是理想的,而工程实验面对的是复杂的实际问题和工程问题。

对象不同,实验研究方法也必然不同。

工程实验的困难在于变量多,涉及的物料千变万化,设备大小悬殊,实验工作量之大之难是可想而知的。

因此不能把处理一般物理实验的方法简单地套用于化工原理实验。

数学模型方法和因次分析方法是研究工程问题的两个基本的实验研究方法,因为这两种方法可以成功地使实验研究结果由小见大,由此及彼地应用于大设备的生产设计上。

例如,在因次分析法指导下的实验,可不需要过程的深入理解,不需要采用真实的物料、真实流体或实际的设备尺寸,只需借助模拟物料(如空气、水等)在实验室规模的小设备中,经一些设备性的实验或理性的推断得出过程的因素,从而加以归纳和概括成经验方程。

这种因次分析法指导下的实验研究方法,是解决难于作出数学描述的复杂问题的一种有效方法。

数学模型方法是在对过程有比较深入认识的基础上,将过程进行概括,得到简单而不失真的物理模型,然后进行数学上的描述。

这种研究方法同样可以具备以小见大,由此及彼的功能(因次分析法指导下的实验方法和数学模型方法反映了工程实验和基础实验的主要区别)。

化工原理实验的另一目的是理论联系实际。

化工过程由很多单元过程和设备所组成,学生应该运用理论去指导并且能够独立进行化工单元的操作,应能在现有设备中完成指定的任务,并预测某些参数的变化对过程的影响。

化工原理实验讲义

化工原理实验讲义

化工原理实验讲义1.实验目的本实验旨在通过对化工原理的实际操作,探索化工原理的基本原理和实验方法,并培养学生的实验动手能力和观察数据分析能力。

2.实验材料和仪器材料:硫酸铜(CuSO4)、氢氧化钠(NaOH)、玻璃棒、试管、试管架、移液管等。

仪器:电子天平、热力学计算仪等。

3.实验步骤步骤一:制备硫酸铜溶液a.在一个容量为100mL的烧杯中,取适量的硫酸铜晶体。

b.用天平称取出硫酸铜晶体的质量,记录下来。

c.将烧杯放到电子天平上,用水慢慢加热烧杯底部,使其溶解。

d.待硫酸铜完全溶解后,用蒸馏水定容至100mL。

e.用玻璃棒搅拌均匀。

步骤二:制备氢氧化钠溶液a.在一个容量为100mL的烧杯中,取适量的氢氧化钠固体。

b.用天平称取出氢氧化钠固体的质量,记录下来。

c.用蒸馏水慢慢加热烧杯,使氢氧化钠溶解。

d.待氢氧化钠完全溶解后,用蒸馏水定容至100mL。

e.用玻璃棒搅拌均匀。

步骤三:制备氢氧化铜沉淀a.取两个试管,分别标记为“试管1”和“试管2”。

b.在试管1中取适量的硫酸铜溶液。

c.在试管2中取适量的氢氧化钠溶液。

d.将试管1和试管2并置,用试管架固定。

e.缓慢地将试管2中的氢氧化钠溶液滴入试管1中的硫酸铜溶液中。

f.观察试管1中的溶液的变化。

步骤四:观察、记录与分析a.观察试管1中的溶液是否发生颜色变化。

b.记录试管2中氢氧化钠溶液滴加进试管1中的滴数。

c.观察试管1中是否出现沉淀。

d.记录试管1中颜色变化的次数。

e.分析试管1中的反应是否达到平衡状态。

若没有达到平衡,需要继续添加氢氧化钠溶液。

4.结果与分析根据观察和实验记录,试验结果如下:a.试管1中的溶液从蓝色逐渐变为绿色,最后出现蓝色沉淀。

b.在添加氢氧化钠溶液的过程中,试管1中的溶液发生了颜色变化。

c.经过多次添加氢氧化钠溶液后,试管1中出现了蓝色沉淀。

根据观察结果,可以得出以下结论:反应过程为:硫酸铜(aq) + 氢氧化钠(aq) → 氢氧化铜(s) + 硫酸钠(aq)由此可见,试管1中的反应为硫酸铜与氢氧化钠的中和反应,生成了氢氧化铜沉淀和硫酸钠溶液。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化工原理实验实验一 流体力学综合实验一、实验目的1、了解管路粗糙度及管件对流动阻力的影响。

2、测定水在管道内流动时的直管阻力损失,作出λ与Re 的关系曲线。

3、测定水在管道内流动时的局部阻力损失,测量和计算不同开度下截止阀的局部阻力系数ζ或当量长度l e 。

4、测定一定转速下,离心泵的特性曲线。

二、实验原理1. 摩擦阻力系数 λ~Re流体在管道内流动时,由于内摩擦力的存在,必然有能量损耗,此损耗能量为直管阻力损失。

根据柏努利方程,对等直径的1、2两截面间的直管阻力损失为:图1 直管阻力测量原理示意图ρph f ∆=(1)由因次分析法得22u d l h f ⋅⋅=λ(2)22d pl u λρ∆=⋅ (2) μρ⋅⋅=u d Re (3)⎪⎭⎫ ⎝⎛=d f ελRe,(4)式中: h f − 直管阻力损失 (J/kg); λ − 摩擦阻力系数;l 、d 、ε − 直管的长度、管内径和绝对粗糙度 (m); ∆p − 流体流经直管的压降 (Pa);ρ 、μ − 分别是流体的密度 (kg/m 3) 和粘度 (Pa ⋅s); u − 流体在管内的平均流速 (m/s)。

由公式(2)可以看出,流体流动时的摩擦阻力损失与管道的长度成正比,与管道的直径成反比。

流体的平均速度越高,阻力损失越大。

利用公式(2)计算直管阻力损失时,需要知道不同雷诺数下摩擦阻力系数的值。

穆迪图给出了λ~Re 的关系曲线。

本实验装置可以利用上面的公式来验证直管阻力损失计算,测定λ~Re 的关系曲线。

流体在长度和直径一定的管道内流动时,利用U 型管压差计实验测出一定流量下流体流经该长度管段所产生的压降,即可算得 h f ,利用公式(2)可得到λ,根据流速和物性数据可按公式(5)计算出对应的雷诺数Re ,从而关联出 λ 与Re 的关系曲线。

改变实验管可得出不同粗糙度(不同材质直管)的λ 与Re 的关系曲线。

2. 当量长度l e 和局部阻力系数 ζ流体在流经阀门、管件时,由于流道方向或大小的改变,造成流体的剧烈湍动,造成的能量损失称为局部阻力损失。

(1)当量长度法流体通过管件、阀门等的局部阻力损失,若与流体流过一定长度的相同管径的直管阻力相当,则称这一直管长度为管件或阀门的当量长度,用符号le 表示,这样就可以用直管阻力的公式来计算局部阻力损失。

在管路计算时,可将管路中的直管长度与管件阀门的当量长度合并在一起计算,则流体在管路中的总阻力损失为22e f f f l l u h h h d λ+'∑=+=⋅⋅ (5)22e f l u h d λ'=⋅⋅(6)式中: f h ' − 局部阻力损失 (J/kg); l e − 当量长度 (m);(2)局部阻力系数法流体通过某一管件或阀门的阻力损失用流体在管路中的动能系数来表示,这种计算局部阻力的方法,称为阻力系数法,即22f u h ζ'=⋅(7)式中: ζ − 局部阻力系数;图2 局部阻力测量原理示意图测出一定流速时流体通过阀门或管件的压降h f ,就可利用公式(6)、(7)计算出对应的当量长度或局部阻力系数。

3.离心泵的特性曲线离心泵的特性,可用该泵在一定转速下,流量与扬程,流量与功率以及流量与效率三种曲线表示,即)(1Q f H =,)(2Q f N =,)(2Q f =η曲线。

若将H 、N 和η 对Q 间的关系分别标绘在同一直角坐标上所得的三条曲线,即为离心泵的特性曲线。

经离心泵输送的流量Q 由涡轮流量计测定。

如果水箱液面和离心泵入口高度相同,在水箱液面和离心泵出口压力表之间列出柏努利方程式,可确定水经离心泵所增加的能量(mH 2O ),此能量称为扬程H ,其计算式为:∑+++=f H gu g p g p H 22ρρ真表其中 H — 离心泵扬程(mH 2O);p 表—离心泵出口表压(Pa); p 真—离心泵入口真空度(Pa); u — 离心泵出口管内流速(m/s);ρ − 流体密度(kg/m 3);0≈∑fH离心泵的轴功率N (kW )是指泵轴所消耗的电功率,实验采用功率表测定后,以下式进行计算。

传电电ηη⨯⨯=N N式中:N — 离心泵轴功率(kW ); η电 — 电动机效率,近似取为0.75; η传 — 机械传动效率,近似取为0.95; N 电 — 电动机的输入功率,由功率表测定。

离心泵的效率η 是理论功率与轴功率的比值。

即NN t=η 而理论功率N t 是离心泵对水所作的有效功,即102ρQH N t =(kW )三、实验流程和主要设备1.综合流体力学实验流程综合流体力学实验流程见图1。

2. 主要设备及仪表(1) 供水系统:循环水箱、离心泵IS50-32-125、电机2200W ; (2) 测压系统:差压变送器、测压环、连接管路、小球阀; (3) 流量系统:涡轮流量计LWGW40、变送器;(4) 控制柜:智能数显仪、功率表SWP-W-C80、转速表、变频器; (5) 管路系统:由不锈钢管、碳钢管构成循环体系。

图1 综合流体力学实验流程1-离心泵2-电机3-水箱4-涡轮流量计及变送器5-差压变送器6, 7-DN40闸阀8, 9, 10-球阀11~18-小球阀19-DN25闸阀20-压力表21-真空表22-小球阀23-转速传感器a -φ25⨯2.5不锈钢管b -φ25⨯2.5碳钢管c -φ25⨯2.5不锈钢管四.实验操作步骤摩擦阻力系数λ~Re及截止阀的局部阻力系数测定1.根据现场实验装置,按照实验指导书上的实验设备示意图理清流程,检查设备的完好性,熟悉各仪表的使用。

未经指导教师同意,不能随意开机。

2.检查水箱内是否有足够的水。

接通总电源,检查三相指示灯是否正常。

打开仪表电源,检查各仪表显示是否正常。

3.打开球阀22,用清水灌泵,待水灌满后关闭球阀22。

4.关闭闸阀6、7,打开小球阀11~18,球阀8、9、10和截止阀19,打开水泵电源,水泵开始工作,检查转速表、电机功率表读数。

检查泵进口真空表21、出口压力表20是否有读数。

如果压力表有读数,说明水泵工作正常。

打开闸阀6、7,水开始循环。

5.观察小球阀17、18出口胶管中排气的情况,等管路中的空气全部排尽后,才能关闭小球阀17、18。

6.关闭闸阀6、7,进行摩擦阻力系数及截止阀的局部阻力系数测定。

7.关闭小球阀11~14,球阀8、9,保持小球阀15、16和球阀10打开。

测量实验管a的直管阻力损失。

8.缓慢打开闸阀7,同时读取差压计的读数,直到可测量的最大量程(10000Pa),记录压差和流量读数。

逐步关小闸阀7,测定不同流量时的阻力损失(压差),直到最小流量时,结束实验管a的测定。

关闭闸阀7,球阀10和小球阀15、16。

9.打开小球阀13、14和球阀9,按步骤10测量实验管b的直管阻力损失。

完成后关闭闸阀7,球阀9和小球阀13、14。

10.打开小球阀11、12和球阀8,按步骤10测量实验管c上截止阀19的局部阻力损失。

完成后关闭闸阀7,球阀8和小球阀11、12。

离心泵的特性曲线1.全开闸阀6,分别读取流量、进口真空度、出口压力和电机功率读数。

2.将最大流量读数10等分,逐步关小闸阀6,每减小一次流量,重复读取以上数据。

3.直到测定流量为零的数据后,结束实验。

4.利用变频器调节转速,按上面的步骤可测定不同转速下的离心泵特性曲线。

5.依次关闭水泵电源、仪表电源和总电源。

6.所有参数测定完后,关闭所有阀门,经指导教师同意后,方能离开。

五. 实验数据记录及整理实验数据记录必需可靠、如实、不能任意改动数据,数据一律记在预习实验时所拟表格中。

直管阻力和局部阻力测定:数据记录表实验管号:管长:m 内径:mo数据整理实验管号:管长:m 内径:mo3实验管号:管长:m 内径:mo3离心泵的特性曲线o六. 实验思考与讨论问题1.直管阻力产生的原因是什么?如何测定及计算?2.影响本实验测量准确度的原因有哪些?怎样测准数据?3.根据实验测定数据,如何确定离心泵的工作点?4.水平或垂直管中,对相同直径、相同实验条件下所测出的阻力损失是否相同?5.流量变大,入口真空表和出口压力表读数如何变化?实验二对流传热实验一、实验目的1. 测定空气-水换热过程的总传热系数K;2. 测定不同空气流量时,Nu与Re之间的关系曲线,拟合准数方程式;3. 测定污垢对总传热系数K的影响。

二、实验原理1.总传热系数K 的计算空气-水逆流换热系统的传热速率方程为m t KA Q ∆=(1)其中,逆流传热对数平均温差为1222112121ln t T t t T t t t t t t m -=∆-=∆⎪⎪⎭⎫ ⎝⎛∆∆∆-∆=∆(2)传热面积为 dl A π=(3) 在计算换热面积时,应该注意内、外径的区别。

热负荷为)(21T T C V Q p -=ρ(4)式中: Q — 单位时间内的传热量(W ); A — 传热面积(m 2);∆t m — 传热对数平均温差(︒C 或K );K — 总传热系数(W/m 2·︒C ); d 1、d 2 — 换热管的内、外径(m ); l — 换热管长度(m ); V — 空气流量(m 3/s );ρ、C p — 分别是热空气平均密度(kg/m 3)和比热(J/kg ); T 1、T 2 — 分别是热空气进、出换热器的温度(︒C );t 1、t 2 —分别是水进、出换热器的温度(︒C )。

通过实验测量V 、T 1、T 2、t 1 、t 2,即可按公式(1)~(4)计算K 。

2.空气在管内强制对流给热系数α的计算空气与水的传热过程是由水在管外的对流传热、间壁的固体热传导热和壁面对空气的对流传热串联组成,其总热阻(以管内径d 1为基准)为22111111d d d bd K m αλα++= (5)式中: α1、α2 —分别为空气的对流给热系数和水的对流给热系数(W/m 2⋅ ︒C );d 1、d m 、d 2 —分别为换热管的内径、平均直径和外径(m ); b — 换热管的壁厚(m );λ— 换热管的导热系数(W/m ⋅ ︒C ),对钢管一般可取45。

对公式(5)中各阻力项进行分析后可以发现,因水的给热系数α2较大,对水平单管,可以达到2000(W/m 2⋅ ︒C )左右,所以 221d d 之值较小;对金属间壁,λ 较大,b 很小,所以m d bd 1之值也较小,与11h 项相比均可忽略,故有11α≅K 。

通过实验测量V 、T 1、T 2、t 1 、t 2,即可按公式(1)~(4)计算不同流速(雷诺数)时的K 1(即h 1),查出定性温度下空气的物性,则可根据定义计算出不同雷诺数时的努塞尔数。

μρdu =Re 11Nu λαd=式中: Nu − 努塞尔准数; ρ − 热空气密度(kg/m 3); u − 热空气在管内的流速(m/s );λ1— 空气的导热系数(W/m ⋅ ︒C ); Re — 雷诺准数。

相关文档
最新文档