北京课改版八年级数学下册初二数学期末试题.docx
新北师大版八年级下期末数学试卷(WORD文档有答案)
新北师大版八年级(下)期末数学试卷==本文档为word格式有参考答案,下载后可随意编辑修改!==注意事项:1.本试卷分选择题)和非选择题两部分。
2.答卷前,考生务必在答题卡上用直径0.5毫米的黑色字迹签字笔将自己的学校、班级、姓名及座位号,在右上角的信息栏填写自己的考号,并用2B铅笔填涂相应的信息点。
3.答Ⅰ卷时,选出每题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案,答在本试卷上无效。
4.答第Ⅱ卷时,请用直径0.5毫米黑色字迹签字笔在答题卡上各题的答题区域内作答。
答在本试卷上无效。
一、选择题(共12小题,每小题3分,满分36分)1.以下是节水、回收、低碳、绿色包装四个标志,其中是中心对称图形的是()A. B.C. D.2.若a<b,则下列各式中一定成立的是()A.﹣a<﹣b B.ac<bc C.a﹣1<b﹣1 D.>3.使分式有意义的x的取值范围是()A.x≥1 B.x≤1 C.x>1 D.x≠14.下列从左边到右边的变形,因式分解正确的是()A.2a2﹣2=2(a+1)(a﹣1)B.(a+3)(a﹣3)=a2﹣9C.﹣ab2+2ab﹣3b=﹣b(ab﹣2a﹣3)D.x2﹣2x﹣3=x(x﹣2)﹣35.如图,▱ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是()A.6 B.8 C.10 D.125题图 6题图6.如图,直线l1的解析式为y1=k1x+b1,直线l2的解析式为y2=k2x+b2,则不等式k1x+b1>k2x+b2的解集是()A.x>2 B.x<2 C.x>﹣2 D.x<﹣27.若x2﹣kx+9是一个完全平方式,则k的值为()A.﹣3 B.﹣6 C.±3 D.±68.对分式,通分时,最简公分母是()A.4(a﹣3)(a+3)2B.4(a2﹣9)(a2+6a+9) C.8(a2﹣9)(a2+6a+9) D.4(a﹣3)2(a+3)29.一个长为2、宽为1的长方形以下面的四种“姿态”从直线l的左侧水平平移至右侧(下图中的虚线都是水平线).其中,所需平移的距离最短的是()A.B.C.D.10.下列说法错误的是()A.x=4是方程的增根B.一组对边平行,另一组对边相等的四边形是平行四边形C.命题“平行四边形的对角线互相平分”和它的逆命题是以对互逆定理D.把点A的横坐标不变,纵坐标乘以﹣1后得到点B,则点A与点B关于y轴对称11.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=100°,则∠DAE的度数为()A.20° B.25° C.30° D.35°12.如图所示,△ABC的两条外角平分线AP、CP相交于点P,PH⊥AC于H.若∠ABC=60°,则下面的结论:①∠ABP=30°;②∠APC=60°;③PB=2PH;④∠APH=∠BPC,其中正确结论的个数是()A.1个B.2个C.3个D.4个11题图 12题图 16题图二、填空题(共4小题,每小题3分,满分12分)13.七边形的内角和是.14.化简+的结果是.15.若x=5是关于x的不等式2x+5>a的一个解,但x=4不是它的解,则a的取值范围是.16.如图所示,长方形ABCD绕点C顺时针旋转90°后得到长方形CEFG,连接DG交EF于H连接AF交DG 于点M,若AB=4,BC=1,则AM= .三、解答题(共7小题,满分52分)17.分解因式:(1)3x2﹣12xy+12y2;(2)(x﹣y)2+16(y﹣x).18.先化简,再求值:(﹣)•(a+3),其中a=3+2.19.如图所示,点P的坐标为(4,3),把点P绕坐标原点O逆时针旋转90°后得到点Q.(1)写出点Q的坐标是;(2)若把点Q向右平移m个单位长度,向下平移2m个单位长度后,得到的点Q′恰好落在第三象限,求m 的取值范围.20.解方程:.21.如图,△ABC和△BEF都是等边三角形,点D在BC边上,点F在AB边上,且∠EAD=60°,连接ED、CF.(1)求证:△ABE≌△ACD;(2)求证:四边形EFCD是平行四边形.22.给点燃的蜡烛加上一个特质的外罩后,蜡烛燃烧的时间会更长,为了测量蜡烛在有、无外罩条件下的燃烧时长,某天,小明同时点燃了A、B、C三只同样质地、同样长的蜡烛,他给其中的A、B两只加了外罩,C没加外罩,一段时间后,小明发现自己忘了记录开始时间,于是,他马上请来了小聪,小聪根据现场情况采取了如下的补救措施,在C刚好燃烧完时,他马上拿掉了B的外罩,但没有拿掉A的外罩,结果发现:B 在C燃烧完以后12分钟才燃烧完,A在B燃烧完以后8分钟燃烧完(假定蜡烛在“有罩”或“无罩”条件下都是均匀燃烧)设无外罩时,已知蜡烛可以燃烧x分钟,则:(1)填空:把已知蜡烛的总长度记为单位1,当蜡烛B燃烧完时,它在“有罩”条件下燃烧的长度为;在“无罩”条件下燃烧的长度为;(两个空都用含有x的代数式表示)(2)求无外罩时,已知蜡烛可以燃烧多少分钟;(3)如果一支点燃的蜡烛至少能够燃烧40分钟,则无罩燃烧至多几分钟后就要给这支蜡烛加上外罩?23.如图1、2,A、B是y轴上的两点(点A在点B的上边),C、D是x轴上的两点(点C在点D的左边),E、F分别是BC、AD的中点.(1)如图1,过点C作x轴的垂线交AE的延长线于点P,求证:AB=PC;(2)如图1,连接EF,若AB=4,CD=2,求EF的长;(3)如图2,若AB=CD,当线段AB、CD分别在y轴、x轴上滑动时,直线EF与x轴正方向的夹角∠α的大小是否会发生变化?若变化,请你说明理由;若不变,请你求出∠α的大小.八年级(下)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.以下是节水、回收、低碳、绿色包装四个标志,其中是中心对称图形的是( D )A. B.C. D.2.若a<b,则下列各式中一定成立的是( C )A.﹣a<﹣b B.ac<bc C.a﹣1<b﹣1 D.>3.使分式有意义的x的取值范围是(D )A.x≥1 B.x≤1 C.x>1 D.x≠14.下列从左边到右边的变形,因式分解正确的是( A )A.2a2﹣2=2(a+1)(a﹣1)B.(a+3)(a﹣3)=a2﹣9C.﹣ab2+2ab﹣3b=﹣b(ab﹣2a﹣3)D.x2﹣2x﹣3=x(x﹣2)﹣35.如图,▱ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是(C.)A.6 B.8 C.10 D.126.如图,直线l1的解析式为y1=k1x+b1,直线l2的解析式为y2=k2x+b2,则不等式k1x+b1>k2x+b2的解集是( D )A.x>2 B.x<2 C.x>﹣2 D.x<﹣27.若x2﹣kx+9是一个完全平方式,则k的值为( D )A.﹣3 B.﹣6 C.±3 D.±68.对分式,通分时,最简公分母是( A )A.4(a﹣3)(a+3)2B.4(a2﹣9)(a2+6a+9) C.8(a2﹣9)(a2+6a+9) D.4(a﹣3)2(a+3)2 9.一个长为2、宽为1的长方形以下面的四种“姿态”从直线l的左侧水平平移至右侧(下图中的虚线都是水平线).其中,所需平移的距离最短的是( C )A.B.C.D.【解答】解:A、平移的距离=1+2=3,B、平移的距离=2+1=3,C、平移的距离==,D、平移的距离=2,所以选C.10.下列说法错误的是( C )A.x=4是方程的增根B.一组对边平行,另一组对边相等的四边形是平行四边形C.命题“平行四边形的对角线互相平分”和它的逆命题是以对互逆定理D.把点A的横坐标不变,纵坐标乘以﹣1后得到点B,则点A与点B关于y轴对称11.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=100°,则∠DAE的度数为()A.20° B.25° C.30° D.35°【解答】解:∵▱ABCD与▱DCFE的周长相等,且CD=CD,∴AD=DE,∵∠DAE=∠DEA,∵∠BAD=60°,∠F=100°,∴∠ADC=120°,∠CDE═∠F=100°,∴∠ADE=360°﹣120°﹣100°=140°,∴∠DAE=(180°﹣140°)÷2=20°,故选:A.12.如图所示,△ABC的两条外角平分线AP、CP相交于点P,PH⊥AC于H.若∠ABC=60°,则下面的结论:①∠ABP=30°;②∠APC=60°;③PB=2PH;④∠APH=∠BPC,其中正确结论的个数是()A.1个B.2个C.3个D.4个【解答】解:如图作,PM⊥BC于M,PN⊥BA于N.∵∠PAH=∠PAN,PN⊥AD,PH⊥AC,∴PN=PH,同理PM=PH,∴PN=PM,∴PB平分∠ABC,∴∠ABP=∠ABC=30°,故①正确,∵在Rt△PAH和Rt△PAN中,,∴△PAN≌△PAH,同理可证,△PCM≌△PCH,∴∠APN=∠APH,∠CPM=∠CPH,∵∠MPN=180°﹣∠ABC=120°,∴∠APC=∠MPN=60°,故②正确,在Rt△PBN中,∵∠PBN=30°,∴PB=2PN=2PH,故③正确,∵∠BPN=∠CPA=60°,∴∠CPB=∠APN=∠APH,故④正确.【点评】本题考查角平分线的判定定理和性质定理.全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识,属于中考常考题型.二、填空题(共4小题,每小题3分,满分12分)13.七边形的内角和是900°.14.化简+的结果是 a .【解答】解:原式=﹣===a,15.若x=5是关于x的不等式2x+5>a的一个解,但x=4不是它的解,则a的取值范围是13≤a<15 .16.如图所示,长方形ABCD绕点C顺时针旋转90°后得到长方形CEFG,连接DG交EF于H连接AF交DG于点M,若AB=4,BC=1,则AM= .【解答】解:如图,连结AC、CF.∵长方形ABCD绕点C顺时针旋转90°后得到长方形CEFG,∴DC=GC,AC=FC,∠ACF=90°,∴△ACF是等腰直角三角形.∵在Rt△ABC中,∠B=90°,AB=4,BC=1,∴AC==,∴FC=AC=.在Rt△CAF中,由勾股定理得,AF==.∵DC=GC,∠DCG=90°,∴∠DGC=45°,∴∠FGH=90°﹣∠DGC=45°,∴△FHG是等腰直角三角形,∴FH=FG,∵FG=AD,∴FH=AD.在△ADM与△FHM中,∴△ADM≌△FHM,∴AM=FM,∵AM+FM=AF=,∴AM=.故答案为.三、解答题(共7小题,满分52分)17.分解因式:(1)3x2﹣12xy+12y2;(2)(x﹣y)2+16(y﹣x).【解答】解:(1)原式=3(x2﹣4xy+4y2)=3(x﹣2y)2;18.先化简,再求值:(﹣)•(a+3),其中a=3+2.【解答】解:原式=[﹣]•(a+3)=•(a+3)=,当a=3+2时,原式=.19.如图所示,点P的坐标为(4,3),把点P绕坐标原点O逆时针旋转90°后得到点Q.(1)写出点Q的坐标是(﹣3,4);(2)若把点Q向右平移m个单位长度,向下平移2m个单位长度后,得到的点Q′恰好落在第三象限,求m 的取值范围.【解答】解:(1)点Q的坐标为(﹣3,4);故答案为(﹣3,4);(2)把点Q(﹣3,4)向右平移m个单位长度,向下平移2m个单位长度后,得到的点Q′的坐标为(﹣3+m,4﹣2m),而Q′在第三象限,所以,解得2<m<3,即m的范围为2<m<3.20.解方程:.【解答】解:方程的两边同乘(x﹣2),得:1﹣x=﹣1﹣2(x﹣2),解得:x=2.检验:当x=2时,(x﹣2)=0,即x=2不是原分式方程的解.则原方程无解.21.如图,△ABC和△BEF都是等边三角形,点D在BC边上,点F在AB边上,且∠EAD=60°,连接ED、CF.(1)求证:△ABE≌△ACD;(2)求证:四边形EFCD是平行四边形.【解答】证明:(1)∵△ABC和△BEF都是等边三角形,∴AB=AC,∠EBF=∠ACB=∠BAC=60°,∵∠EAD=60°,∴∠EAD=∠BAC,∴∠EAB=∠CAD,在△ABE和△ACD中,∴△ABE≌△ACD.(2)由(1)得△ABE≌△ACD,∴BE=CD,∵△BEF、△ABC是等边三角形,∴BE=EF,∴∠EFB=∠ABC=60°,∴EF∥CD,∴BE=EF=CD,∴EF=CD,且EF∥CD,∴四边形EFCD是平行四边形.22.给点燃的蜡烛加上一个特质的外罩后,蜡烛燃烧的时间会更长,为了测量蜡烛在有、无外罩条件下的燃烧时长,某天,小明同时点燃了A 、B 、C 三只同样质地、同样长的蜡烛,他给其中的A 、B 两只加了外罩,C 没加外罩,一段时间后,小明发现自己忘了记录开始时间,于是,他马上请来了小聪,小聪根据现场情况采取了如下的补救措施,在C 刚好燃烧完时,他马上拿掉了B 的外罩,但没有拿掉A 的外罩,结果发现:B 在C 燃烧完以后12分钟才燃烧完,A 在B 燃烧完以后8分钟燃烧完(假定蜡烛在“有罩”或“无罩”条件下都是均匀燃烧)设无外罩时,已知蜡烛可以燃烧x 分钟,则:(1)填空:把已知蜡烛的总长度记为单位1,当蜡烛B 燃烧完时,它在“有罩”条件下燃烧的长度为 1﹣ ;在“无罩”条件下燃烧的长度为 ;(两个空都用含有x 的代数式表示)(2)求无外罩时,已知蜡烛可以燃烧多少分钟;(3)如果一支点燃的蜡烛至少能够燃烧40分钟,则无罩燃烧至多几分钟后就要给这支蜡烛加上外罩?【考点】一元一次不等式的应用;列代数式.【解答】解:(1)把已知蜡烛的总长度记为单位1,当蜡烛B 燃烧完时,在“无罩”条件下燃烧的长度为,它在“有罩”条件下燃烧的长度为1﹣,故答案为:1﹣,;(2)设无外罩时,一支蜡烛可以燃烧x 分钟,由题意得:=,解得:x=30, 经检验x=30是原分式方程的解,答:无外罩时,一支蜡烛可以燃烧30分钟.(3)设无罩燃烧a 分钟后就要给这支蜡烛加上外罩,由题意得:+≥1,解得:a ≤15,答:无罩燃烧至多15分钟后就要给这支蜡烛加上外罩. 【点评】此题考查分式方程与不等式的实际运用,找出题目蕴含的等量关系和不等关系是解决问题的关键.23.如图1、2,A 、B 是y 轴上的两点(点A 在点B 的上边),C 、D 是x 轴上的两点(点C 在点D 的左边),E、F分别是BC、AD的中点.(1)如图1,过点C作x轴的垂线交AE的延长线于点P,求证:AB=PC;(2)如图1,连接EF,若AB=4,CD=2,求EF的长;(3)如图2,若AB=CD,当线段AB、CD分别在y轴、x轴上滑动时,直线EF与x轴正方向的夹角∠α的大小是否会发生变化?若变化,请你说明理由;若不变,请你求出∠α的大小.【解答】(1)证明:∵OA⊥OD,PC⊥OD,∴AB∥PC,∴∠EAB=∠EPC,在△ABE和△PCE中,∴△ABE≌△PCE,∴AE=EP.(2)如图1中,连接DP,∵△AEB≌△PEC,∴AE=EP,∵CP=AB=4,CD=2,∴DP==2,∵E、F分别是AP、AD中点,∴EF=DP=.(3)结论:∠α的大小不变,∠α=45°理由:如图2中,过点C作x轴的垂线交AE的延长线于点P,由(1)可知,CP=AB=CD,∴∠CDP=45°,∵EF∥DP,∴∠α=∠CDP=45°.【点评】本题考查三角形综合题、全等三角形的判定和性质、勾股定理、三角形中位线定理等知识,解题的关键是学会利用(1)的证明方法,添加辅助线构造全等三角形解决问题,属于中考常考题型.。
京改版八年级下册数学期末测试卷及含答案
京改版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、点P(-3,5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2、在平面直角坐标系中,下列各点位于第三象限的是( )A.(0,3)B.(-2,1)C.(1,-2)D.(-1,-1)3、使函数有意义的自变量的取值范围是( )A. B. C. D.4、洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y(升)与浆洗一遍的时间x(分)之间函数关系的图象大致为()A. B. C. D.5、如果关于x的方程是一元二次方程,则m为()A.-1B.-1或3C.3D.1或-36、如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(a, 2),则关于x的不等式x+1≥mx+n的解集为()A. x≥mB. x≥2C. x≥1D. y≥27、下列关于正比例函数的说法中,正确的是().A.当时,B.它的图象是一条经过原点的直线C.y随x 的增大而增大D.它的图象经过第一、三象限8、如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm2,四边形ABCD面积是11cm2,则①②③④四个平行四边形周长的总和为()A.48cmB.36cmC.24cmD.18cm9、已知是方程x2+x﹣3=0的两个实数根,则的值是()A.2023B.2021C.2020D.201910、如果-1是方程x2-3x+k=0的一个根,则常数k的值为()A.4B.2C.-4D.-211、已知:如图,四边形AOBC是矩形,以O为坐标原点,OB、OA分别在x 轴、y轴上,点A的坐标为(0,3),∠OAB=60°,以AB为轴对折后,C点落在D点处,则D点的坐标为()A. B. C. D.12、在函数y= 中,自变量x的取值范围是()A.x<2B.x≤2C.x>2D.x≥213、如图,∠1+∠2+∠3=180°,那么∠4+∠5+∠6的度数是()A.540°B.360°C.180°D.不能确定14、若关于x的方程(a+1)x2+2x–1=0是一元二次方程,则a的取值范围是( )A.a≠–1B.a>–1C.a<–1D.a≠015、如图,长方形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过C.则长方形的一边CD的长度为()A.1B.C.D.2二、填空题(共10题,共计30分)16、对于实数a、b,定义运算“◎”如下:.若,则m的值为________.17、已知a、b是一元二次方程x2-2x-1=0的两个实数根,则代数式(a-b)(a+b-2)+ab的值等于________.18、如图,将长方形纸片ABCD分别沿EF,EB翻折,点D恰好落在AB边上,点C恰好落在D'E上,若FD=5,DE=10,BC=8,则EC的长度为________.19、设矩形的两条邻边长分别为x,y,且满足.若此矩形能被分割成3个全等的正方形,则这个矩形的对角线长是________.20、如图,平行四边形ABCD的顶点A,B的坐标分别是A(﹣2,0),B(0,﹣4),顶点C,D在双曲线y=上,边AD交y轴于E点,且四边形BCDE的面积是△ABE面积的5倍,则k=________21、如图,已知直线,直线和点,过点作y轴的平行线交直线a于点,过点作x轴的平行线交直线b于点,过点作y轴的平行线交直线a于点,过点作x轴的平行线交直线b于点,…,按此作法进行下去,则点的横坐标为________.22、关于x的一元二次方程x2-x-n=0无实数根,则抛物线y=x2-x-n的顶点在第________象限.23、已知一次函数y=kx+b(k≠0)的图象与x轴交于(﹣5,0),则关于x 的一元一次方程kx+b=0的解为________.24、美丽的丹东吸引了许多外商投资,某外商向丹东连续投资3年,初投资2亿元,初投资3亿元.设每年投资的平均增长率为x,则列出关于x的方程为________.25、如果关于x的方程(m﹣3)﹣x+3=0是关于x的一元二次方程,那么m的值为________。
北师大版数学八年级下册期末考试试卷附答案
北师大版数学八年级下册期末考试试题一.选择题(每小题3分,共36分)1.若x<y,则下列式子不成立的是()A.x﹣1<y﹣1B.﹣2x<﹣2y C.x+3<y+3D.2.下列各式从左到右的变形中,是因式分解的为()A.a(x+y)=ax+ayB.y2﹣4y+4=(y﹣2)2C.t2﹣16+3t=(t+4)(t﹣4)+3tD.6x3y2=2x2y•3xy3.若分式有意义,则x的取值应该该满足()A.x=B.x=C.x≠D.x≠4.如图,在△ABC中,点D,E分别是边AB,AC的中点,已知DE=3,则BC的长为()A.3B.4C.6D.55.下列条件中,不能判定四边形ABCD是平行四边形的是()A.AB∥CD,AB=CD B.AB=CD,AD=BCC.AB∥CD,∠B=∠D D.AB∥CD,AD=BC6.剪纸是中国古老的汉族传统民间艺术之一.下面是制作剪纸的简单流程,展开后的剪纸图案从对称性来判断()A.是轴对称图形但不是中心对称图形B.是中心对称图形但不是轴对称图形C.既是轴对称图形也是中心对称图形D.既不是轴对称图形也不是中心对称图形7.如果一个等腰三角形的两边长为4、9,则它的周长为()A.17B.22C.17或22D.无法计算8.如图,四边形ABCD是边长为5cm的菱形,其中对角线BD与AC交于点O,BD=6cm,则对角线AC的长度是()A.8cm B.4cm C.3cm D.6cm9.关于x的方程=有增根,则k的值是()A.2B.3C.0D.﹣310.如图,在△ABC中,AB=AC,∠BAC=130°,AB的垂直平分线交AB于点E,交BC 于点F,连接AF,则∠FAB的度数()A.50°B.35°C.30°D.25°11.如图,已知正方形ABCD与正方形AEFG的边长分别为4cm、1cm,若将正方形AEFG 绕点A旋转,则在旋转过程中,点C、F之间的最小距离为()cm.A.3B.2C.4﹣1D.312.如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴.直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么ABCD面积为()A.4B.4C.8D.8二.填空题(共6小题)13.分式的值为0,那么x的值为.14.在△ABC中,已知∠A=∠B=45°,BC=3,则AB=.15.正十边形的每个外角都等于度.16.如图,已知一次函数和y=ax﹣2的图象交于点P(﹣1,2),则根据图象可得不等式>ax﹣2的解集是.17.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=2,CE=6,H是AF的中点,那么CH的长是.18.把一副三角板如图1放置,其中∠ACB=∠DEC=90°,斜边AB=6,DC=7,把三角板DCE绕着点C顺时针旋转使CD边恰好过AB的中点O,得到△D1C1E1,如图2,则线段AD1的长度为.三.解答题19.将下列各式因式分解:(1)m3n﹣9mn(2)a3+a﹣2a220.解不等式组:,并把解集在数轴上表示出来.21.先化简(1﹣)÷,再从0,1,2中选择一个合适的x值代入求值.22.阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为:;(3)本题正确的结论为:.23.已知(如图),在四边形ABCD中AB=CD,过A作AE⊥BD交BD于点E,过C作CF⊥BD交BD于F,且AE=CF.求证:四边形ABCD是平行四边形.24.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1)、B(1,﹣2)、C(3,﹣3).(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于原点的中心对称的△A2B2C2;(3)请写出A1、A2的坐标.25.某体育用品商店用4000元购进一批足球,全部售完后,又用3600元再次购进同样的足球,但这次每个足球的进价是第一次进价的1.2倍,且数量比第一次少了10个.求第一次每个足球的进价是多少元?26.如图1,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴相交于A、B两点,点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB 上,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B'C'D',当B'C'经过点D时,求△BCD平移的距离及点D的坐标;(3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的P点的坐标;若不存在,请说明理由.27.如图,四边形ABCD、BEFG均为正方形,(1)如图1,连接AG、CE,试判断AG和CE的数量关系和位置关系并证明;(2)将正方形BEFG绕点B顺时针旋转β角(0°<β<180°),如图2,连接AG、CE相交于点M,连接MB,当角β发生变化时,∠EMB的度数是否发生变化?若不变化,求出∠EMB的度数;若发生变化,请说明理由.(3)在(2)的条件下,过点A作AN⊥MB交MB的延长线于点N,请直接写出线段CM 与BN的数量关系:.参考答案与试题解析一.选择题(共12小题)1.若x<y,则下列式子不成立的是()A.x﹣1<y﹣1B.﹣2x<﹣2y C.x+3<y+3D.【分析】各项利用不等式的基本性质判断即可得到结果.【解答】解:由x<y,可得:x﹣1<y﹣1,﹣2x>﹣2y,x+3<y+3,,故选:B.2.下列各式从左到右的变形中,是因式分解的为()A.a(x+y)=ax+ayB.y2﹣4y+4=(y﹣2)2C.t2﹣16+3t=(t+4)(t﹣4)+3tD.6x3y2=2x2y•3xy【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:y2﹣4y+4=(y﹣2)2,故B正确,故选:B.3.若分式有意义,则x的取值应该该满足()A.x=B.x=C.x≠D.x≠【分析】根据分式有意义的条件是分母不等于零列出不等式,解不等式得到答案.【解答】解:分式有意义,则2x﹣3≠0,解得,x≠,故选:C.4.如图,在△ABC中,点D,E分别是边AB,AC的中点,已知DE=3,则BC的长为()A.3B.4C.6D.5【分析】根据三角形的中位线定理“三角形的中位线等于第三边的一半”,有DE=BC,从而求出BC.【解答】解:∵D、E分别是AB、AC的中点.∴DE是△ABC的中位线,∴BC=2DE,∵DE=3,∴BC=2×3=6.故选:C.5.下列条件中,不能判定四边形ABCD是平行四边形的是()A.AB∥CD,AB=CD B.AB=CD,AD=BCC.AB∥CD,∠B=∠D D.AB∥CD,AD=BC【分析】根据平行四边形的判定定理分别进行分析即可.【解答】解:A、∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,故此选项不合题意;B、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,故此选项不合题意;C、∵AB∥CD,∠B=∠D,∴四边形ABCD是平行四边形,故此选项不合题意;D、∵AB∥CD,AD=BC,不能得出四边形ABCD是平行四边形,故此选项符合题意;故选:D.6.剪纸是中国古老的汉族传统民间艺术之一.下面是制作剪纸的简单流程,展开后的剪纸图案从对称性来判断()A.是轴对称图形但不是中心对称图形B.是中心对称图形但不是轴对称图形C.既是轴对称图形也是中心对称图形D.既不是轴对称图形也不是中心对称图形【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:既是轴对称图形也是中心对称图形,故选:C.7.如果一个等腰三角形的两边长为4、9,则它的周长为()A.17B.22C.17或22D.无法计算【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:(1)若4为腰长,9为底边长,由于4+4<9,则三角形不存在;(2)若9为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为9+9+4=22.故选:B.8.如图,四边形ABCD是边长为5cm的菱形,其中对角线BD与AC交于点O,BD=6cm,则对角线AC的长度是()A.8cm B.4cm C.3cm D.6cm【分析】首先根据菱形的性质可得BO=DO,AC⊥DB,AO=CO,然后再根据勾股定理计算出AO长,进而得到答案.【解答】解:∵四边形ABCD是菱形,∴BO=DO,AC⊥DB,AO=CO,∵BD=6cm,∴BO=3cm,∵AB=5cm,∴AO==4(cm),∴AC=8cm.故选:A.9.关于x的方程=有增根,则k的值是()A.2B.3C.0D.﹣3【分析】依据分式方程有增根可求得x=3,将x=3代入去分母后的整式方程从而可求得k的值.【解答】解:∵方程有增根,∴x﹣3=0.解得:x=3.方程=两边同时乘以(x﹣3)得:x﹣1=k,将x=3代入得:k=3﹣1=2.故选:A.10.如图,在△ABC中,AB=AC,∠BAC=130°,AB的垂直平分线交AB于点E,交BC 于点F,连接AF,则∠FAB的度数()A.50°B.35°C.30°D.25°【分析】先由等腰三角形的性质求出∠B的度数,再由垂直平分线的性质可得出∠BAF =∠B,进而可得出结论.【解答】解:∵AB=AC,∠BAC=130°,∴∠B=(180°﹣130°)÷2=25°,∵EF垂直平分AB,∴BF=AF,∴∠BAF=∠B=25°,故选:D.11.如图,已知正方形ABCD与正方形AEFG的边长分别为4cm、1cm,若将正方形AEFG 绕点A旋转,则在旋转过程中,点C、F之间的最小距离为()cm.A.3B.2C.4﹣1D.3【分析】如图,连接AF,CF,AC.利用勾股定理求出AF,AC即可解决问题.【解答】解:如图,连接AF,CF,AC.∵正方形ABCD与正方形AEFG的边长分别为4cm、1cm,∴∠B=∠G=90°,AB=BC=4cm,AG=GF=1cm,∴AF===,AC===4,∵CF≥AC﹣AF,∴CF≥3,∴CF的最小值为3,故选:D.12.如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴.直线y=﹣x 从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么ABCD面积为()A.4B.4C.8D.8【分析】根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则AB=8﹣4=4,当直线经过D点,设交AB与N,则DN=2,作DM⊥AB于点M.利用三角函数即可求得DM即平行四边形的高,然后利用平行四边形的面积公式即可求解.【解答】解:根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则AB=8﹣4=4,如图1,当直线经过D点,设交AB与N,则DN=2,作DM⊥AB于点M.∵y=﹣x与x轴形成的角是45°,又∵AB∥x轴,∴∠DNM=45°,∴DM=DN•sin45°=2×=2,则平行四边形的面积是:AB•DM=4×2=8.故选:C.二.填空题(共6小题)13.分式的值为0,那么x的值为3.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得:x2﹣9=0且x+3≠0,解得x=3.故答案为:3.14.在△ABC中,已知∠A=∠B=45°,BC=3,则AB=3.【分析】利用勾股定理求解即可.【解答】解:∵∠A=∠B=45°,∴AC=BC=3,∠C=90°,∴AB===3,故答案为3.15.正十边形的每个外角都等于36度.【分析】直接用360°除以10即可求出外角的度数.【解答】解:360°÷10=36°.故答案为:36.16.如图,已知一次函数和y=ax﹣2的图象交于点P(﹣1,2),则根据图象可得不等式>ax﹣2的解集是x>﹣1.【分析】根据一次函数的图象和两函数的交点坐标即可得出答案.【解答】解:∵一次函数和y=ax﹣2的图象交于点P(﹣1,2),∴不等式>ax﹣2的解集是x>﹣1,故答案为:x>﹣1.17.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=2,CE=6,H是AF的中点,那么CH的长是2.【分析】连接AC、CF,根据正方形的性质求出AC、CF,并判断出△ACF是直角三角形,再利用勾股定理列式求出AF,然后根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:如图,连接AC、CF,在正方形ABCD和正方形CEFG中,AC=BC=2,CF=CE=6,∠ACD=∠GCF=45°,所以,∠ACF=45°+45°=90°,所以,△ACF是直角三角形,由勾股定理得,AF===4,∵H是AF的中点,∴CH=AF=×4=2.故答案为:2.18.把一副三角板如图1放置,其中∠ACB=∠DEC=90°,斜边AB=6,DC=7,把三角板DCE绕着点C顺时针旋转使CD边恰好过AB的中点O,得到△D1C1E1,如图2,则线段AD1的长度为5.【分析】如图2中,作D1H⊥CA交CA的延长线于H.在Rt△AHD1中,求出AH,HD1利用勾股定理即可解决问题.【解答】解:如图2中,作D1H⊥CA交CA的延长线于H.∵CA=CB,∠ACB=90°,AO=OB,∴OC⊥AB,OC=OA=OB=3,∴AC=3,∵D1H⊥CH,∴∠HCD1=90°,∵∠HCD1=∠ACB=45°,CD1=7,∴CH=HD1=,∴AH=CH﹣AC=,在Rt△AHD1中,AD1===5,故答案为5.三.解答题19.将下列各式因式分解:(1)m3n﹣9mn(2)a3+a﹣2a2【考点】55:提公因式法与公式法的综合运用.【专题】44:因式分解;66:运算能力.【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=mn(m2﹣9)=mn(m+3)(m﹣3);(2)原式=a(a2﹣2a+1)=a(a﹣1)2.20.解不等式组:,并把解集在数轴上表示出来.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【专题】524:一元一次不等式(组)及应用.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:,解不等式①,得x>﹣1,解不等式②,得x≤3,所以,原不等式组的解集为﹣1<x≤3,在数轴上表示为:.21.先化简(1﹣)÷,再从0,1,2中选择一个合适的x值代入求值.【考点】6D:分式的化简求值.【专题】513:分式;66:运算能力.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=•=,当x=0时,原式=.22.阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:C;(2)错误的原因为:没有考虑a=b的情况;(3)本题正确的结论为:△ABC是等腰三角形或直角三角形或等腰直角三角形.【考点】59:因式分解的应用;KS:勾股定理的逆定理.【专题】1:常规题型.【分析】(1)根据题目中的书写步骤可以解答本题;(2)根据题目中B到C可知没有考虑a=b的情况;(3)根据题意可以写出正确的结论.【解答】解:(1)由题目中的解答步骤可得,错误步骤的代号为:C,故答案为:C;(2)错误的原因为:没有考虑a=b的情况,故答案为:没有考虑a=b的情况;(3)本题正确的结论为:△ABC是等腰三角形或直角三角形或等腰直角三角形,故答案为:△ABC是等腰三角形或直角三角形或等腰直角三角形.23.已知(如图),在四边形ABCD中AB=CD,过A作AE⊥BD交BD于点E,过C作CF⊥BD交BD于F,且AE=CF.求证:四边形ABCD是平行四边形.【考点】KD:全等三角形的判定与性质;L6:平行四边形的判定.【专题】555:多边形与平行四边形.【分析】只要证明AB∥CD即可解决问题.【解答】证明:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在Rt△ABE和Rt△CDF中,,∴Rt△ABE≌Rt△CDF,∴∠ABE=∠CDF,∴AB∥CD,∵AB=CD,∴四边形ABCD是平行四边形.24.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1)、B(1,﹣2)、C(3,﹣3).(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于原点的中心对称的△A2B2C2;(3)请写出A1、A2的坐标.【考点】Q4:作图﹣平移变换;R8:作图﹣旋转变换.【专题】558:平移、旋转与对称;69:应用意识.【分析】(1)利用点平移的坐标变换规律写出A1、B1、C1的坐标,然后描点即可;(2)利用关于原点对称的点的坐标特征写出A2、B2、C2的坐标,然后描点即可;(3)由(1)、(2)得到A1、A2的坐标.【解答】解:(1)如图,△A1B1C1;为所作;(2)如图,△A2B2C2为所作;(3)A1的坐标为(2,3),A2的坐标(﹣2,1).25.某体育用品商店用4000元购进一批足球,全部售完后,又用3600元再次购进同样的足球,但这次每个足球的进价是第一次进价的1.2倍,且数量比第一次少了10个.求第一次每个足球的进价是多少元?【考点】B7:分式方程的应用.【专题】513:分式.【分析】设第一次每个足球的进价是x元,则第二次每个足球的进价是1.2x元,根据数量关系:第一次购进足球的数量﹣10个=第二次购进足球的数量,可得分式方程,然后求解即可.【解答】解:设第一次每个足球的进价是x元,则第二次每个足球的进价是1.2x元,根据题意得,﹣=10,解得:x=100,经检验:x=100是原方程的根,答:第一次每个足球的进价是100元.26.如图1,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴相交于A、B两点,点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB 上,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B'C'D',当B'C'经过点D时,求△BCD平移的距离及点D的坐标;(3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的P点的坐标;若不存在,请说明理由.【考点】FI:一次函数综合题.【专题】537:函数的综合应用.【分析】(1)利用同角的余角相等可得出∠OBC=∠ECD,由旋转的性质可得出BC=CD,结合∠BOC=∠CED=90°即可证出△BOC≌△CED(AAS);(2)利用一次函数图象上点的坐标特征可求出点B的坐标,设OC=m,则点D的坐标为(m+3,m),利用一次函数图象上点的坐标特征可求出m值,进而可得出点C,D的坐标,由点B,C的坐标,利用待定系数法可求出直线BC的解析式,结合B′C′∥BC及点D在直线B′C′上可求出直线B′C′的解析式,再利用一次函数图象上点的坐标特征可求出点C′的坐标,结合点C的坐标即可得出△BCD平移的距离;(3)设点P的坐标为(0,m),点Q的坐标为(n,﹣n+3),分CD为边及CD为对角线两种情况考虑,利用平行四边形的对角线互相平分,即可得出关于m,n的二元一次方程组,解之即可得出点P的坐标.【解答】(1)证明:∵∠BOC=∠BCD=∠CED=90°,∴∠OCB+∠OBC=90°,∠OCB+∠ECD=90°,∴∠OBC=∠ECD.∵将线段CB绕着点C顺时针旋转90°得到CD,∴BC=CD.在△BOC和△CED中,,∴△BOC≌△CED(AAS).(2)解:∵直线y=﹣x+3与x轴、y轴相交于A、B两点,∴点B的坐标为(0,3),点A的坐标为(6,0).设OC=m,∵△BOC≌△CED,∴OC=ED=m,BO=CE=3,∴点D的坐标为(m+3,m).∵点D在直线y=﹣x+3上,∴m=﹣(m+3)+3,解得:m=1,∴点D的坐标为(4,1),点C的坐标为(1,0).∵点B的坐标为(0,3),点C的坐标为(1,0),∴直线BC的解析式为y=﹣3x+3.设直线B′C′的解析式为y=﹣3x+b,将D(4,1)代入y=﹣3x+b,得:1=﹣3×4+b,解得:b=13,∴直线B′C′的解析式为y=﹣3x+13,∴点C′的坐标为(,0),∴CC′=﹣1=,∴△BCD平移的距离为.(3)解:设点P的坐标为(0,m),点Q的坐标为(n,﹣n+3).分两种情况考虑,如图3所示:①若CD为边,当四边形CDQP为平行四边形时,∵C(1,0),D(4,1),P(0,m),Q(n,﹣n+3),∴,解得:,∴点P1的坐标为(0,);当四边形CDPQ为平行四边形时,∵C(1,0),D(4,1),P(0,m),Q(n,﹣n+3),∴,解得:,∴点P2的坐标为(0,);②若CD为对角线,∵C(1,0),D(4,1),P(0,m),Q(n,﹣n+3),∴,解得:,∴点P的坐标为(0,).综上所述:存在,点P的坐标为(0,)或(0,).27.如图,四边形ABCD、BEFG均为正方形,(1)如图1,连接AG、CE,试判断AG和CE的数量关系和位置关系并证明;(2)将正方形BEFG绕点B顺时针旋转β角(0°<β<180°),如图2,连接AG、CE相交于点M,连接MB,当角β发生变化时,∠EMB的度数是否发生变化?若不变化,求出∠EMB的度数;若发生变化,请说明理由.(3)在(2)的条件下,过点A作AN⊥MB交MB的延长线于点N,请直接写出线段CM 与BN的数量关系:CM=BN.【考点】KD:全等三角形的判定与性质;LE:正方形的性质.【专题】15:综合题.【分析】(1)AG=EC,AG⊥EC,理由为:由正方形BEFG与正方形ABCD,利用正方形的性质得到两对边相等,一对直角相等,利用SAS得出三角形ABG与三角形CBE全等,利用全等三角形的对应边相等,对应角相等得到CE=AG,∠BCE=∠BAG,再利用同角的余角相等即可得证;(2)∠EMB的度数为45°,理由为:过B作BP⊥EC,BH⊥AM,利用SAS得出三角形ABG与三角形BEC全等,由全等三角形的面积相等得到两三角形面积相等,而AG=EC,可得出BP=BH,利用到角两边距离相等的点在角的平分线上得到BM为角平分线,再由∠BAG=∠BCE,及一对对顶角相等,得到∠AMC为直角,即∠AME为直角,利用角平分线定义即可得证;(3)CM=BN,在AN上截取NQ=NB,可得出三角形BNQ为等腰直角三角形,利用等腰直角三角形的性质得到BQ=BN,接下来证明BQ=CM,即要证明三角形ABQ 与三角形BCM全等,利用同角的余角相等得到一对角相等,再由三角形ANM为等腰直角三角形得到NA=NM,利用等式的性质得到AQ=BM,利用SAS可得出全等,根据全等三角形的对应边相等即可得证.【解答】解:(1)AG=EC,AG⊥EC,理由为:∵正方形BEFG,正方形ABCD,∴GB=BE,∠ABG=90°,AB=BC,∠ABC=90°,在△ABG和△BEC中,,∴△ABG≌△BEC(SAS),∴CE=AG,∠BCE=∠BAG,延长CE交AG于点M,∴∠BEC=∠AEM,∴∠ABC=∠AME=90°,∴AG=EC,AG⊥EC;(2)∠EMB的度数不发生变化,∠EMB的度数为45°理由为:过B作BP⊥EC,BH⊥AM,在△ABG和△CEB中,,∴△ABG≌△CEB(SAS),=S△EBC,AG=EC,∴S△ABG∴EC•BP=AG•BH,∴BP=BH,∴MB为∠EMG的平分线,∵∠AMC=∠ABC=90°,∴∠EMB=∠EMG=×90°=45°;(3)CM=BN,理由为:在NA上截取NQ=NB,连接BQ,∴△BNQ为等腰直角三角形,即BQ=BN,∵∠AMN=45°,∠N=90°,∴△AMN为等腰直角三角形,即AN=MN,∴MN﹣BN=AN﹣NQ,即AQ=BM,∵∠MBC+∠ABN=90°,∠BAN+∠ABN=90°,∴∠MBC=∠BAN,在△ABQ和△BCM中,,∴△ABQ≌△BCM(SAS),∴CM=BQ,则CM=BN.故答案为:CM=BN。
北京市密云区八年级数学下学期期末考试试题 京改版-人教版初中八年级全册数学试题
市密云区2015-2016学年八年级数学下学期期末考试试题考生须知 1.本试卷共8页,共四道大题,28道小题,满分120分.考试时间120分钟. 2.在试卷和答题卡上准确填写学校、班级、某某和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效,作图必须使用......2B ..铅笔... 4.考试结束,请将本试卷和答题纸一并交回. 一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..选项是符合题意的. 1. 函数2y x =-的自变量x 的取值X 围是A .2x ≥ B.2x > C.2x ≠ D.x 为任意实数 2. 下列图形中是中心对称图形的是A B C D3.如图,在ABCD 中,40A ∠=︒,则C ∠大小为 A .40︒ B.80︒ C. 140︒ D. 180︒(3)230n m x x -+-=是关于x 的一元二次方程,则A.3,2m n =≠B. 3,2m n ==C .3,2m n ≠= D. 3,2m n ≠≠5.如图,A 、B 两地被池塘隔开,在没有任何测量工具的情况下,小强通过下面的方法估测出A 、B 间的距离:先在AB 外选一点C ,然后步测出AC 、BC 的中点D 、E ,并且步测出DE 长,由此知道AB 长.若步测DE 长为50m ,则A ,B 间的距离是AA.25mB.50mC.75m(2,3)P 关于x 轴的对称点的坐标是A.(2,3)B.(2,-3)C.(3,-2)D.(-3,-2)7.如图,点A(1,m),B(2,n)在一次函数y kx b =+的图象上,则 A.m n = B.m n > C.m n < D. m 、n 的大小关系不确定.8.如图,菱形ABCD 中,AC 与BD 交于点O.120ADC ∠=︒,BD=2,则AC 的长为D.9. 星期天,小明和爸爸去大剧院看电影.爸爸步行先走,小明在爸爸离开家一段时间后骑自行车去,两人按相同的路线前往大剧院,他们所走的路程()s 米和时间t (分)的关系如图所示.则小明追上爸爸时,爸爸共走了AC10.→B →C →D →A 的方向跑步一周,小明跑步的路程为x 米,小明与爸爸之间的距离为y 米.y 与x 之间的函数关系如下图所示,则爸爸所在的位置可能为 A. D 点 B . M 点 C. O 点 D. N 点Oxy二、填空题(本题共18分,每题3分)1y x m =+-是正比例函数,则m=________________.12.多边形的内角和是外角和的2倍,则这个多边形的边数为____________.x 的一元二次方程220x x m -+=有两个不相等的实根,则m 的取值X 围是______14.中国象棋是一个具有悠久历史的游戏.如图的棋盘上,可以把每个棋子看作是恰好在某个正方形顶点上的一个点,若棋子“帅”对应的数对(1,0 ),棋子“象”对应的数对(3,-2),则图中棋盘上“卒”对应的数对是___________.NOM DCBA小明爸爸t (分)O s (米)3600454030201015.某校在趣味运动嘉年华活动中安排了投掷飞镖比赛,要求每班限报1人.八年级(1)班的小明和小强都想参加比赛,班主任王老师先安排他们在班内进行比赛,两人各投掷10次,每次得分均为0-10环中的一个整数值.两人得分情况如下图.则小明和小强成绩更稳定的是__________________.“中点四边形”的数学游戏,具体步骤如下:(1)任画两条线段AB 、CD ,且AB 与CD 交于点O ,O 与A 、B 、C 、D 任意一点均不重合. 连结AC 、BC 、BD 、AD ,得到四边形ACBD ;(2)分别作出AC 、CB 、BD 、DA 的中点1111,,,A B C D ,这样就得到一个“中点四边形”. ①若AB ⊥CD ,则四边形1111A B C D 的形状一定是_________,这样作图的依据是_________. ②请你再给出一个AB 与CD 之间的关系,并写出在该条件下得到的“中点四边形”1111A B C D 的形状___________________________________.三、解答题(本题共50分,其中17题10分,18~25每题5分) 17.解方程:(1)220x x -= (2)2210x x --=3y x =-+与x 轴、y 轴分别交于A B 、两点.(1)求A 、B 两点的坐标.(2)在坐标系中画出已知中一次函数的图象,并结合图象直接写出不等式y<0时x 的取值X 围.19.如图,E 、F 是ABCD 的对角线 AC 上两点,ABE CDF ∠=∠. 求证:BE=DF.1y kx =+经过A (1,2),O 为坐标轴原点.(1)求k 的值.(2)点P 是x 轴上一点,且满足45APO ∠=︒,直接写出P 点坐标.ABC ∆在平面直角坐标系中位置如图所示,ABC ∆的顶点A 、B 、C 都在格点上.(1)作出ABC ∆关于原点O 的中心对称图形111A B C ∆(点A 、B 、C 关于原点O 的对称点分别为1A 、1B 、1C ). (2)写出点1C 的坐标及1CC 长. (3)BC 与1BC 的位置关系为_______.22.如图,AC=BC,D 是CD 中点,CE//AB ,CE=12AB . (1)求证:四边形CDBE 是矩形.(2)若AC=5,CD=3,F 是BC 上一点,且DF BC ⊥,求DF 长.AC“互联网+”时代,中国的在线教育得到迅猛发展.根据中国产业信息网数据统计及分析,2014年中国的在线教育市场产值约为1000亿元,2016年中国在线教育市场产值约为1440亿元.求我国在线教育市场产值的年增长率.24.阅读材料后解决问题:2016年,市在深化基础教育综合改革,促进区域基础教育的绿色发展,实现教育从“需求侧拉动”到“供给侧推动”的转变上开展了很多具体工作.如2015年9月至2016年7月,门头沟、平谷、怀柔区和密云区及延庆区的千余名学生体验了为期5天的进城“游学”生活.东城、某某等城五区共8所学校作为承接学校,接待郊区“游学”学生与本校学生同吃、同住、同上课,并与“游学”学生共同开展实践活动.密云区在突破资源供给,解决教育资源差异,促进教育公平方面也开展了系列工作.如通过开通直播课堂,解决本区初高中学生周六日及假期的学习需求问题.据统计,自2016年3月5日-5月14日期间,初二学生利用直播课堂在线学习情况如下:3月5日在线学生人数40%,3月19日在线学生30%,4月2日在线学生人数28%,4月30日在线学生人数39%,5月14日在线学生人数29%.密云区A 校初二年级共有学生240名,为了解该校学生在3月5日-5月14日期间通过直播课堂进行在线学习的情况,从A 校初二年级学生中任意抽取若干名学生进行统计,得到如下频数分布表及频数分布图.学生通过直播课堂在线学习次数的频数分布表 次数 频数 频率 0 1 b 1 1 2 a 3 2 4 35 2 c合计 d1根据以上信息,解决以下问题:(1)在学生观看直播课堂次数频数分布表中,a =______,d =________. (2)补全学生观看直播课堂频数分布直方图.(3)试估计A 校初二学生中收看次数为3次的有______人.(4)有人通过以上信息做出了如下结论,估计A 校初二学生每次利用直播课堂学习的学生在线率低于全区学生在线率.你认为是否正确?说明你的理由.(注:A 校学生在线率=A A 校在线学习学生人数校总人数;全区学生在线率=全区在线学习学生人数全区总人数).25.小明遇到下面的问题:求代数式223x x --的最小值并写出取到最小值时的x 值.经过观察式子结构特征,小明联想到可以用解一元二次方程中的配方法来解决问题,具体分析过程如下:222232131(1)4x x x x x --=-+--=-- 所以,当1x =时,代数式有最小值是-4.(1)请你用上面小明思考问题的方法解决下面问题. ①22x x -的最小值是_______ ②22425x x y y -+++的最小值是____________.(2)小明受到上面问题的启发,自己设计了一个问题,并给出解题过程及结论如下: 问题:当x 为实数时,求4227x x ++的最小值. 解:42422227216(1)6x x x x x ++=+++=++ ∴原式有最小值是6请你判断小明的结论是否正确,并简要说明理由. _________________________.D四、解答题(本题共22分,其中26,27题各7分,28题8分)2(3)30mx m x +--=是关于x 的一元二次方程.(1)求证:方程总有两个实根.(2)若方程的两根异号且都为整数,求满足条件的m 的整数值.27.已知四边形ABCD 是正方形,点E 、F 分别在射线AB 、射线BC 上,AE=BF ,DE 与AF 交于点O.(1)如图1,当点E 、F 分别在线段AB 、BC 上时,则线段DE 与线段AF 的数量关系是_____________,位置关系是____________.(2)将线段AE 沿AF 进行平移至FG ,连结DG.①如图2,当点E 在AB 延长线上时,补全图形,写出AD ,AE ,DG 之间的数量关系.②若DG=1BE =,直接写出AD 长.28.已知菱形OABC 在坐标系中的位置如图所示,O 是坐标原点,点C (1,2),点A 在x 轴上. 点M(0,2).(1)点P 是直线OB 上的动点,求PM+PC 最小值. (2)将直线1y x =--向上平移,得到直线y kx b =+.①当直线y=kx+b 与线段OC 有公共点时,结合图象,直接写出b 的取值X 围. ②当直线y=kx+b 将四边形OABC 分成面积相等的两部分时,求k ,b. (只需写出解题的主要思路,不用写出计算结果).图2A备用图D A备用图1备用图2密云区2015-2016学年度第二学期期末初二数学试题参考答案 一、选择题二、填空题11. 1 12. 6 13.m<1 14. (3,-1) 15.小明16.①矩形 ,三角形中位线定理,平行四边形的定义(或判定定理),矩形的定义(或判定定理).②AB=CD ,菱形 (其它情况视条件能否推出结论酌情给分). 17.解方程:(1)220x x -=解:(2)0x x -=……………………………………………………………………………………………3分120,2x x ==∴方程的解为120,2x x ==………………………………………………………………..5分(2)2210x x --= 解: 移项,得221x x -=配方,得 22111x x -+=+ ……………………………………………………………2分2(1)2x -=开方,得1x -=3分∴方程的解为11x =21x =…………………………………………..5分18.解:(1)令x=0,解得y=3,令y=0,解得x=3.∴A (3,0),B (0,3) (2)分 (2)x>3……………………………………………………………………………………………………5分(画图1分,写出不等式的解集2分) 19. 证明:四边形ABCD 是ABCD∴AB=CD,AB//CD …………………………………………………………………………….2分AB//CD ,∴BAE DCF ∠=∠……………………………………………………………….3分在ABE ∆和CDF ∆中,ABE CDF AB CDBAE DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABE CDF ∆≅∆……………………………………………………………………….4分 ∴BE=DF. ………………………………………………………………………5分20.解: (1)一次函数1y kx =+经过A (1,2)∴21k =+ (2)分∴1k =…………………………………………………………………………………3分(2)P (3,0)或P(-1,0)…………………………………………………………………………..5分 21.(1)..2分(2)1C (2,1),1CC = ……………………………………………………………..4分 (3)垂直 ……………………………………………………………………………………………………5分22. 证明:(1) AC=BC ,∴ACB ∆是等腰三角形.D 是AB 中点,∴DB=12AB ,CD DB ⊥. CE=12AB ,∴DB=CE.CE//AB ,∴四边形CDBE 是平行四边形………………………………………………………………2分又CD DB ⊥,∴四边形CDBE 是矩形. …………………………………………………………….3分(2)在Rt CDB ∆中,90CDB ∠=︒,CB=AC=5,CD=3,∴4BD == ……………………………………………………4分DF ⊥BC 于F , ∴DF.BC=CD.BD , 解得:DF=125. …………………………………………………………5分 23.解:设我国在线教育市场产值的年增长率为x. …………………………………………..1分则,21000(1)1440x +=, …………………………………………….3分 解得x=-2.2(舍负)0.220%x ==.答:我国在线教育市场产值的年增长率为20%. ……………………………………..5分.24.(1)a=1,d=10. …………………………………………………………………………….2分(2) (3)分(3)48 (4)分01111232435231⨯+⨯+⨯+⨯+⨯+⨯=.由此可以预估A校初二学生每次利用直播课堂学习的学生在线率为310.6250=.而5次统计区在线率不超过40%,故此预估A校初二学生每次利用直播课堂学习的学生在线率高于全区在线率. ……………5分.25.(1)①-1 ……………………………………………………………………………………………………………….2分②0 ………………………………………………………………………………………………………………..3分(2)210x+=无实数根.………………………………………………….5分26.证明:由已知,0m ≠.2(3)4(3)m m ∆=--⨯⨯- (1)分=269m m ++…………………………………………………………………….2分 =2(3)m +0≥…………………………………………………………………….3分 (2)若方程的两根异号且都为整数,求满足条件的m 的整数值.解:由(1)可得,x =1231,x x m=-=. ……………………………………………………………………..5分 方程的两根异号且都为整数,∴满足条件的m 的整数值为1,3. …………………………………………………7分27.(1)DE=AF ,DE ⊥AF.………………………………………………………………………2分 (2)①22222DG AD AE =+. ………………………………………………………….5分②AD=3或AD=4. …………………………………………………………7分. 28. (1)图2GA由已知,连接AC、OB,设AC与OB交于点D.∵四边形OABC是菱形∴AC⊥OB,CD=DA.∴PC+PM≤PM+PA≤AM.即PC+PM≤3==………………………………………………….3分(2)①0≤b≤3. ……………………………………5分②第一步:由OC=OA点A在x轴上,可求点A的坐标;第二步:由CB//OA,CB=OA,可求点B的坐标;第三步:利用待定系数法求出直线OB、直线AC的表达式;第四步:求出直线AC、直线OB的交点D的坐标;第五步:因为直线y kx b=+是由1y x=--平移得到,可得1k=-;由直线y x b=-+经过点D,可求b值.……………………………………………………………………..8分.。
京改版八年级下册数学期末测试卷及含答案
京改版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、已知x=2是一元二次方程x2﹣mx+2=0的一个解,则m的值是()A.﹣3B.3C.0D.0或32、一组数据3,2,2,1,2的中位数,众数及方差分别是()A.2,1,0.4B.2,2,0.4C.3,1,2D.2,1,0.23、已知方程x2﹣3x+1=0的两个根分别是x1, x2,则x12x2+x1x22的值为( )A.﹣6B.﹣3C.3D.64、在平面直角坐标系中,把△ABC的各顶点的横坐标都除以,纵坐标都乘,得到△DEF,把△DEF与△ABC相比,下列说法中正确的是( ) A.横向扩大为原来的4倍,纵向缩小为原来的 B.横向缩小为原来的,纵向扩大为原来的3倍 C.△DEF的面积为△ABC面积的12倍 D.△DEF的面积为△ABC面积的5、下列图象中,表示y是x的函数的是()A. B. C. D.6、如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A. B. C. D.7、周末小石去博物馆参加综合实践活动,乘坐公共汽车0.5小时后想换乘另一辆公共汽车,他等候一段时间后改为利用手机扫码骑行摩拜单车前往.已知小石离家的路程s(单位:千米)与时间t(单位:小时)的函数关系的图象大致如图.则小石骑行摩拜单车的平均速度为()A.30千米/小时B.18千米/小时C.15千米/小时D.9千米/小时8、一个多边形每一个外角都等于,则这个多边形的边数为()A.12B.10C.8D.69、若按照横排在前,纵列在后的编号,甲同学的位置是(3,6),而乙同学所在的位置是第3列第6排,则甲、乙同学()A.在同一列上B.在同一位置上C.在同一排上D.不在同一列或同一排上10、在平面直角坐标系中,▱ABCD的顶点A(0,0),B(5,0),D(2,3),则顶点C的坐标是()A.(3,7)B.(5,3)C.(7,3)D.(8,2)11、用边长相等的黑色正三角形与白色正六边形镶嵌图案,按图①②③所示的规律依次下去,则第n个图案中,所包含的黑色正三角形和白色正六边形的个数总和是()A.n 2+4n+2B.6n+1C.n 2+3n+3D.2n+412、教师节期间,某校数学组教师向本组其他教师各发一条祝福短信.据统计,全组共发了240条祝福短信,如果设全组共有x名教师,依题意,可列出的方程是()A.x(x+1)=240B.x(x-1)=240C.2x(x+1)=240D. x (x+1)=24013、如图所示,在□ABCD中,对角线AC与BD相交于点O , M , N在对角线AC上,且AM=CN ,则BM与DN的关系是().A. BM∥ DNB.BM∥DN,BM =DNC. BM= DND.没有关系14、一次函数y=x+1不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限15、下列命题中,真命题是()A.两对角线相等的四边形是矩形B.两对角线互相平分的四边形是平行四边形C.两对角线互相垂直的四边形是菱形D.两对角线相等的四边形是等腰梯形二、填空题(共10题,共计30分)16、已知m,n是方程的两实数根,则________.17、一组数据共有100个,分成四组后其中前三组的频率分别是0.14,0.20,0.36.则第四组数据的个数为________.18、一元二次方程的解是________.19、如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH 的面积为1,则矩形ABCD的面积等于________.20、从一个多边形的某个顶点出发,分别连接这个点和其余各顶点,可以把这个多边形分割成10个三角形,则这个多边形的边数为________.21、如图,长方形ABCD沿AE折叠,使D点落在BC边上的F点处,如果∠BAF=60°,则∠DAE等于________度22、关于的一元二次方程有两个相等的实数根,则的取值为________.23、如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若OF的长为,则△CEF的周长为________.24、方程(3x+1)(2x﹣3)=1化成一般式的常数项是________.25、公园路中学组织了一次教师踢毽子比赛,甲、乙两教研组每队各10人的比赛成绩如表(10分制):甲7 9 8 7 10 10 9 10 10 10乙10 7 8 9 8 10 10 9 10 9(1)甲队成绩的中位数是________分,乙队成绩的众数是________分;(2)计算乙队的平均成绩和方差________ ,________ ;(3)已知甲队的成绩的方差是1.4,则成绩较为整齐的是________ 队.三、解答题(共5题,共计25分)26、已知x=1是关于x的一元二次方程x2+3x﹣m=0的一个根,求m的值和方程的另一个根.27、阅读下面的例题.解方程:.解:(1)当时,原方程化为,解得,(不合题意,舍去).( 2 )当时,原方程化为,解得,(不合题意,舍去).∴原方程的解是,.请参照上述方法解方程.28、解方程2x2﹣3x﹣2=0;29、阅读下列解方程x2﹣9=2(x﹣3)的过程,并解决相关问题.解:将方程左边分解因式,得(x+3)(x﹣3)=2(x﹣3),…第一步方程两边都除以(x﹣3),得x+3=2,…第二步解得x=﹣1…第三步①第一步方程左边分解因式的方法是________,解方程的过程从第________步开始出现不符合题意,错误的原因是________;②请直接写出方程的根为________.30、汽车产业的发展,有效促进我国现代化建设,某汽车销售公司盈利1500万元,到盈利2160万元,且从到,每年盈利的年增长率相同.(1)求该公司盈利的年增长率;(2)若该公司盈利的年增长率继续保持不变,预计盈利多少万元?参考答案一、单选题(共15题,共计45分)1、B2、B3、C4、A5、C6、B7、C8、B9、D10、C11、B12、B13、B14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
【三套打包】北京市八年级下学期期末数学试卷及答案
新八年级下册数学期末考试题(含答案)一、选择题(本大题共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卷上将正确答案的代号涂黑.1.(3x 的取值范围( )A .2x …B .2x …C .2x >D .2x <2.(3分)下列二次根式是最简二次根式的是( )A B C D 3.(3分)点(1,3)A 在一次函数2y x m =+的图象上,则m 等于( ) A .5-B .5C .1-D .14.(3分)下表是校女子排球队12名队员的年龄分布:则关于这12名队员的年龄的说法正确的是( ) A .中位数是14B .中位数是14.5C .众数是15D .众数是55.(3分)下列计算正确的是( )A +=B .=C =D 13= 6.(3分)已知一个直角三角形的两边长分别为3和5,则第三边长为( )A .4B .4或34C .16或34D .47.(3分)学校准备从甲、乙、丙、丁四名同学中选择一名同学参加市里举办的“汉字听写大赛”,下表是四位同学几次测试成绩的平均分和方差的统计结果,如果要选出一个成绩好且状态稳定的同学参赛,那么应该选择的同学是( ) A .甲B .乙C .丙D .丁8.(3分)已知一次函数y kx b =+的图象与x 轴交于点(2,0),且y 随自变量x 的增大而减小,则关于x 的不等式0kx b +…的解集是( ) A .2x …B .2x …C .2x >D .2x <9.(3分)如图,在平面直角坐标系xOy 中,一次函数142y x =-+的图象与x 轴、y 轴分别相交于点A ,B ,点P 的坐标为(1,1)m m +-,且点P 在ABO ∆的内部,则m 的取值范围是( )A .13m <<B .15m <<C .15m 剟D .1m >或3m <10.(3分)如图,90MON ∠=︒,矩形ABCD 在MON ∠的内部,顶点A ,B 分别在射线OM ,ON 上,4AB =,2BC =,则点D 到点O 的最大距离是( )A .2-B .2+C .2D 2+二、填空题(本题共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卷指定位置.11.(3= .12.(3分)直线31y x =-+与x 轴的交点坐标为 .13.(3分)函数y kx =与6y x =-的图象如图所示,则k = .14.(3分)某公司招聘一名公关人员甲,对甲进行了笔试和面试,其面试和笔试的成绩分别为86分和90分,面试成绩和笔试成绩的权分别是6和4,则甲的平均成绩为分.15.(3分)将菱形ABCD以点E为中心,按顺时针方向分别旋转90︒,180︒,270︒后形成如图所示的图形,若120AB=,则图中阴影部分的面积为.∠=︒,2BCD16.(3分)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,AB OB=,点E,F分别是OA,OD的中点,连接EF,EM BC∠=︒,CEF⊥于点M,EM交BD于点N,若45 FN=,则线段BC的长为.5三、解答题(共8个小题,共72分)下列各题需要在答题卷指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(8分)计算:(1-;(2)5)-+.18.(8分)如图,在ABCD中,点E,F分别在AB,CD上,且AE CF=,求证:四边形AECF 是平行四边形.19.(8分)国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,某市就“每天在校体育活动时间”的问题随机抽样调查了321名初中学生.根据调查结果将学生每天在校体育活动时间t (小时)分成A ,B ,C ,D 四组,并绘制了统计图(部分).A 组:0.5tB <组:0.51tC <…组:1 1.5tD <…组: 1.5t …请根据上述信息解答下列问题: (1)C 组的人数是 ;(2)本次调查数据的中位数落在 组内;(3)若该市约有12840名初中学生,请你估算其中达到国家规定体育活动时间的人数大约有多少.20.(8分)如图,在四边形ABCD 中,90B C ∠=∠=︒,点E 在BC 上,1AB BE ==,ED =,AD =.(1)求BED ∠的度数;(2)直接写出四边形ABCD 的面积为 .21.(8分)如图,直线12y x b=-+与x轴,y轴分别交于点A,点B,与函数y kx=的图象交于点(1,2)M.(1)直接写出k,b的值和不等式12x b kx-+剟的解集;(2)在x轴上有一点P,过点P作x轴的垂线,分别交函数12y x b=-+和y kx=的图象于点C,点D.若2CD OB=,求点P的坐标.22.(10分)某服装店准备购进甲、乙两种服装出售,甲种每件售价120元,乙种每件售价90元.每件甲服装的进价比乙服装的进价贵20元,购进3件甲服装的费用和购进4件乙服装的费用相等,现计划购进两种服装共100件,其中甲种服装不少于65件.(1)甲种服装进价为元/件,乙种服装进价为元/件;(2)若购进这100件服装的费用不得超过7500元.①求甲种服装最多购进多少件?②该服装店对甲种服装每件降价(020)a a<<元,乙种服装价格不变,如果这100件服装都可售完,那么该服装店如何进货才能获得最大利润?23.(10分)在矩形ABCD中,6AB=,8AD=,E是边BC上一点,以点E为直角顶点,在AE的右侧作等腰直角AEF∆.(1)如图1,当点F在CD边上时,求BE的长;(2)如图2,若EF DF⊥,求BE的长;(3)如图3,若动点E从点B出发,沿边BC向右运动,运动到点C停止,直接写出线段AF 的中点Q的运动路径长.24.(12分)如图,在平面直角坐标系xoy中,直线24=-+交y轴于点A,交x轴于点B.点y x=和直线BC相交于点D.C在y轴的负半轴上,且ABC∆的面积为8,直线y x(1)求直线BC的解析式;(2)在线段OA上找一点F,使得AFD ABO∠=∠,线段DF与AB相交于点E.①求点E的坐标;②点P在y轴上,且45PDF∠=︒,直接写出OP的长为.湖北省武汉市武昌区2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卷上将正确答案的代号涂黑.1.(3x 的取值范围( )A .2x …B .2x …C .2x >D .2x <【考点】72:二次根式有意义的条件【分析】二次根式有意义,被开方数为非负数,即20x -…,解不等式求x 的取值范围.【解答】解:20x ∴-…,解得2x ….故选:A .【点评】本题考查了二次根式有意义的条件.关键是明确二次根式有意义时,被开方数为非负数.2.(3分)下列二次根式是最简二次根式的是( )A B C D 【考点】74:最简二次根式【分析】根据最简二次根式的概念判断即可.=不是最简二次根式;==不是最简二次根式;故选:C .【点评】本题考查的是最简二次根式的概念,(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,满足上述两个条件的二次根式,叫做最简二次根式. 3.(3分)点(1,3)A 在一次函数2y x m =+的图象上,则m 等于( ) A .5-B .5C .1-D .1【考点】8F :一次函数图象上点的坐标特征【分析】根据待定系数法求得一次函数的解析式,解答即可.【解答】解:一次函数2y x m=+的图象经过点(1,3)A32m∴=+,解得:1m=,故选:D.【点评】此题主要考查了一次函数图象上点的坐标特征,关键是根据待定系数法求得一次函数的解析式.4.(3分)下表是校女子排球队12名队员的年龄分布:则关于这12名队员的年龄的说法正确的是()A.中位数是14B.中位数是14.5C.众数是15D.众数是5【考点】4W:中位数;5W:众数【分析】根据中位数和众数的定义求解.【解答】解:观察图表可知:人数最多的是5人,年龄是15岁,故众数是15.共12人,中位数是第6,7个人平均年龄,因而中位数是15.故选:C.【点评】本题考查了众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据中出现最多的一个数.5.(3分)下列计算正确的是()A+=B.=C=D13 =【考点】79:二次根式的混合运算【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、原式3=+,所以A选项错误;B、原式=,所以B选项正确;C、原式=,所以C选项错误;D、原式1=,所以D选项错误.故选:B.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6.(3分)已知一个直角三角形的两边长分别为3和5,则第三边长为()A.4B.4或34C.16或34D.4【考点】KQ:勾股定理【分析】由于此题中直角三角形的斜边不能确定,故应分5是直角三角形的斜边和直角边两种情况讨论.【解答】解:个直角三角形的两边长分别为3和5,x==;∴①当5是此直角三角形的斜边时,设另一直角边为x,则由勾股定理得到:4②当5是此直角三角形的直角边时,设另一直角边为x,则由勾股定理得到:x==.故选:D.【点评】本题考查的是勾股定理,解答此题时要注意要分类讨论,不要漏解.7.(3分)学校准备从甲、乙、丙、丁四名同学中选择一名同学参加市里举办的“汉字听写大赛”,下表是四位同学几次测试成绩的平均分和方差的统计结果,如果要选出一个成绩好且状态稳定的同学参赛,那么应该选择的同学是()A.甲B.乙C.丙D.丁【考点】1W:方差W:算术平均数;7【分析】先比较平均数得到乙同学和丙同学成绩较好,然后比较方差得到丙同学的状态稳定,于是可决定选丙同学去参赛.【解答】解:乙、丙同学的平均数比甲、丁同学的平均数大,∴应从乙和丙同学中选,丙同学的方差比乙同学的小,∴丙同学的成绩较好且状态稳定,应选的是丙同学;故选:C .【点评】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 8.(3分)已知一次函数y kx b =+的图象与x 轴交于点(2,0),且y 随自变量x 的增大新八年级下册数学期末考试题(含答案)一、选择题(本大题共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卷上将正确答案的代号涂黑.1.(3x 的取值范围( )A .2x …B .2x …C .2x >D .2x <2.(3分)下列二次根式是最简二次根式的是( )A B C D 3.(3分)点(1,3)A 在一次函数2y x m =+的图象上,则m 等于( ) A .5-B .5C .1-D .14.(3分)下表是校女子排球队12名队员的年龄分布:则关于这12名队员的年龄的说法正确的是( ) A .中位数是14B .中位数是14.5C .众数是15D .众数是55.(3分)下列计算正确的是( )A +=B .=C =D 13= 6.(3分)已知一个直角三角形的两边长分别为3和5,则第三边长为( )A .4B .4或34C .16或34D .47.(3分)学校准备从甲、乙、丙、丁四名同学中选择一名同学参加市里举办的“汉字听写大赛”,下表是四位同学几次测试成绩的平均分和方差的统计结果,如果要选出一个成绩好且状态稳定的同学参赛,那么应该选择的同学是( ) A .甲B .乙C .丙D .丁8.(3分)已知一次函数y kx b =+的图象与x 轴交于点(2,0),且y 随自变量x 的增大而减小,则关于x 的不等式0kx b +…的解集是( ) A .2x …B .2x …C .2x >D .2x <9.(3分)如图,在平面直角坐标系xOy 中,一次函数142y x =-+的图象与x 轴、y 轴分别相交于点A ,B ,点P 的坐标为(1,1)m m +-,且点P 在ABO ∆的内部,则m 的取值范围是( )A .13m <<B .15m <<C .15m 剟D .1m >或3m <10.(3分)如图,90MON ∠=︒,矩形ABCD 在MON ∠的内部,顶点A ,B 分别在射线OM ,ON 上,4AB =,2BC =,则点D 到点O 的最大距离是( )A .2-B .2+C .2D 2+二、填空题(本题共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卷指定位置.11.(3=.12.(3分)直线31=-+与x轴的交点坐标为.y x13.(3分)函数y kx=-的图象如图所示,则k=.y x=与614.(3分)某公司招聘一名公关人员甲,对甲进行了笔试和面试,其面试和笔试的成绩分别为86分和90分,面试成绩和笔试成绩的权分别是6和4,则甲的平均成绩为分.15.(3分)将菱形ABCD以点E为中心,按顺时针方向分别旋转90︒,180︒,270︒后形成如图所示的图形,若120AB=,则图中阴影部分的面积为.BCD∠=︒,216.(3分)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,AB OB=,点E,F分别是OA,OD的中点,连接EF,EM BC∠=︒,CEF⊥于点M,EM交BD于点N,若45 FN=,则线段BC的长为.5三、解答题(共8个小题,共72分)下列各题需要在答题卷指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(8分)计算:(1-;(2)5)-+.18.(8分)如图,在ABCD 中,点E ,F 分别在AB ,CD 上,且AE CF =,求证:四边形AECF 是平行四边形.19.(8分)国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,某市就“每天在校体育活动时间”的问题随机抽样调查了321名初中学生.根据调查结果将学生每天在校体育活动时间t (小时)分成A ,B ,C ,D 四组,并绘制了统计图(部分).A 组:0.5tB <组:0.51tC <…组:1 1.5tD <…组: 1.5t …请根据上述信息解答下列问题: (1)C 组的人数是 ;(2)本次调查数据的中位数落在 组内;(3)若该市约有12840名初中学生,请你估算其中达到国家规定体育活动时间的人数大约有多少.20.(8分)如图,在四边形ABCD 中,90B C ∠=∠=︒,点E 在BC 上,1AB BE ==,ED =,AD =.(1)求BED ∠的度数;(2)直接写出四边形ABCD 的面积为 .21.(8分)如图,直线12y x b=-+与x轴,y轴分别交于点A,点B,与函数y kx=的图象交于点(1,2)M.(1)直接写出k,b的值和不等式12x b kx-+剟的解集;(2)在x轴上有一点P,过点P作x轴的垂线,分别交函数12y x b=-+和y kx=的图象于点C,点D.若2CD OB=,求点P的坐标.22.(10分)某服装店准备购进甲、乙两种服装出售,甲种每件售价120元,乙种每件售价90元.每件甲服装的进价比乙服装的进价贵20元,购进3件甲服装的费用和购进4件乙服装的费用相等,现计划购进两种服装共100件,其中甲种服装不少于65件.(1)甲种服装进价为元/件,乙种服装进价为元/件;(2)若购进这100件服装的费用不得超过7500元.①求甲种服装最多购进多少件?②该服装店对甲种服装每件降价(020)a a<<元,乙种服装价格不变,如果这100件服装都可售完,那么该服装店如何进货才能获得最大利润?23.(10分)在矩形ABCD中,6AB=,8AD=,E是边BC上一点,以点E为直角顶点,在AE的右侧作等腰直角AEF∆.(1)如图1,当点F在CD边上时,求BE的长;(2)如图2,若EF DF⊥,求BE的长;(3)如图3,若动点E从点B出发,沿边BC向右运动,运动到点C停止,直接写出线段AF 的中点Q的运动路径长.24.(12分)如图,在平面直角坐标系xoy中,直线24=-+交y轴于点A,交x轴于点B.点y x=和直线BC相交于点D.C在y轴的负半轴上,且ABC∆的面积为8,直线y x(1)求直线BC的解析式;(2)在线段OA上找一点F,使得AFD ABO∠=∠,线段DF与AB相交于点E.①求点E的坐标;②点P在y轴上,且45PDF∠=︒,直接写出OP的长为.湖北省武汉市武昌区2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卷上将正确答案的代号涂黑.1.(3x 的取值范围( )A .2x …B .2x …C .2x >D .2x <【考点】72:二次根式有意义的条件【分析】二次根式有意义,被开方数为非负数,即20x -…,解不等式求x 的取值范围.【解答】解:20x ∴-…,解得2x ….故选:A .【点评】本题考查了二次根式有意义的条件.关键是明确二次根式有意义时,被开方数为非负数.2.(3分)下列二次根式是最简二次根式的是( )A B C D 【考点】74:最简二次根式【分析】根据最简二次根式的概念判断即可.=不是最简二次根式;==不是最简二次根式;故选:C .【点评】本题考查的是最简二次根式的概念,(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,满足上述两个条件的二次根式,叫做最简二次根式. 3.(3分)点(1,3)A 在一次函数2y x m =+的图象上,则m 等于( ) A .5-B .5C .1-D .1【考点】8F :一次函数图象上点的坐标特征【分析】根据待定系数法求得一次函数的解析式,解答即可.【解答】解:一次函数2y x m=+的图象经过点(1,3)A32m∴=+,解得:1m=,故选:D.【点评】此题主要考查了一次函数图象上点的坐标特征,关键是根据待定系数法求得一次函数的解析式.4.(3分)下表是校女子排球队12名队员的年龄分布:则关于这12名队员的年龄的说法正确的是()A.中位数是14B.中位数是14.5C.众数是15D.众数是5【考点】4W:中位数;5W:众数【分析】根据中位数和众数的定义求解.【解答】解:观察图表可知:人数最多的是5人,年龄是15岁,故众数是15.共12人,中位数是第6,7个人平均年龄,因而中位数是15.故选:C.【点评】本题考查了众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据中出现最多的一个数.5.(3分)下列计算正确的是()A+=B.=C=D13 =【考点】79:二次根式的混合运算【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、原式3=+,所以A选项错误;B、原式=,所以B选项正确;C、原式=,所以C选项错误;D、原式1=,所以D选项错误.故选:B.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6.(3分)已知一个直角三角形的两边长分别为3和5,则第三边长为()A.4B.4或34C.16或34D.4【考点】KQ:勾股定理【分析】由于此题中直角三角形的斜边不能确定,故应分5是直角三角形的斜边和直角边两种情况讨论.【解答】解:个直角三角形的两边长分别为3和5,x==;∴①当5是此直角三角形的斜边时,设另一直角边为x,则由勾股定理得到:4②当5是此直角三角形的直角边时,设另一直角边为x,则由勾股定理得到:x==.故选:D.【点评】本题考查的是勾股定理,解答此题时要注意要分类讨论,不要漏解.7.(3分)学校准备从甲、乙、丙、丁四名同学中选择一名同学参加市里举办的“汉字听写大赛”,下表是四位同学几次测试成绩的平均分和方差的统计结果,如果要选出一个成绩好且状态稳定的同学参赛,那么应该选择的同学是()A.甲B.乙C.丙D.丁【考点】1W:方差W:算术平均数;7【分析】先比较平均数得到乙同学和丙同学成绩较好,然后比较方差得到丙同学的状态稳定,于是可决定选丙同学去参赛.【解答】解:乙、丙同学的平均数比甲、丁同学的平均数大,∴应从乙和丙同学中选,丙同学的方差比乙同学的小,∴丙同学的成绩较好且状态稳定,应选的是丙同学;故选:C.【点评】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.8.(3分)已知一次函数y kx b=+的图象与x轴交于点(2,0),且y随自变量x的增大新人教版八年级(下)期末模拟数学试卷(答案)一.选择题:(本大共12小题,每小题3分,共36分)1有意义,则x的取值范围是()A.x≥0B.x≤0C.x>0D.x<0答案:A2.下列各组数据中能作为直角三角形的三边长的是()A.1,2,2 B.1,1C.13,14,15 D.6,8,10答案:D3.下列函数中,y随x的增大而减小的函数是()A.y=3x B.y=4x﹣1C.y=﹣x﹣2D.y=3x﹣1答案:C4.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BE∥DF的是()A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD 答案:B5.如图,在△ABC中,∠ACB=90°,AB=15,分别以AC,BC为边向△ABC外作正方形,两个正方形的面积分别记为S1,S2,则S1+S2等于()A.30B.150C.200D.225答案:D6.已知y是x的正比例函数,且函数图象经过点(4,﹣6),则在此正比例函数图象上的点是()A.(2,3)B.(﹣6,4)C.(3,﹣2)D.(﹣4,6)答案:D7.某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为x甲=82分,x乙=82分,S甲2=245,S乙2=190,那么成绩较为整齐的是()A.甲班B.乙班C.两班一样整齐D.无法确定答案:B8.对于一次函数y=﹣2x+4,下列结论错误的是()A.函数的图象与x轴的交点坐标是(0,4)B.函数值随自变量的增大而减小C.函数的图象不经过第三象限D.函数的图象向下平移4个单位长度得y=﹣2x 的图象答案:A9.如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是()A.20B.24C.40D.48答案:A10.如图,在矩形ABCD中,有以下结论:①△AOB是等腰三角形;②S△ABO=S△ADO;③AC=BD;④AC⊥BD;⑤当∠ABD=45°时,矩形ABCD会变成正方形.正确结论的个数是()A .2B .3C .4D .5答案:C11.小明家、公交车站、学校在一条笔直的公路旁(小明家、学校到这条公路的距离忽略不计),一天,小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小明下车时发现还有4分钟上课,于是他沿这条公路跑步赶到学校(上、下车时间忽略不计),小明与家的距离s (单位:米)与他所用时间t (单位:分钟)之间的函数关系如图所示,已知小明从家出发7分钟时与家的距离为1200米,从上公交车到他到达学校共用10分钟,下列说法:①小明从家出发5分钟时乘上公交车 ②公交车的速度为400米/分钟 ③小明下公交车后跑向学校的速度为100米/分钟 ④小明上课没有迟到其中正确的个数是( )A .1个B .2个C .3个D .4个答案:D 12.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP +PN 的最小值是( )A .12B .1CD .2 答案:B二.填空题:(本大题共12小题,每小题3分,共18分)13)的结果等于 .答案:314.某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如表:则这10名学生周末利用网络进行学习的平均时间是小时.答案:2.515.某校五个绿化小组一天植树的棵树如下:10、10、12、x、8.已知这组数据的众数与平均数相等,那么这组数据的中位数是.答案:1016.在直角三角形中,若勾为1,股为2.则弦为.答案17.如图,在平面直角坐标系中,直线y=﹣x+3与x轴,y轴交于A,B两点,分别以点A,B为圆心,大于12AB长为半径作圆弧,两弧在第一象限交于点C,若点C的坐标为(m+1,7﹣m),则m的值是.答案:318.如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE 与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.答案三、解答题19.(6分)计算(1(2)(-)+解:(1)原式=(2)原式=-20.(6分)如图,在四边形ABCD中,AB∥CD,∠BAD=90°,AB=5,BC=12,AC=13.求证:四边形ABCD是矩形.证明:四边形ABCD中,AB∥CD,∠BAD=90°,所以,∠ADC=90°,又AB=5,BC=12,AC=13,所以,AC2=AB2+BC2,所以,∠B=90°,所以,四边形ABCD是矩形.21.(6分)如图,函数y=﹣2x+3与y=﹣12x+m的图象交于P(n,﹣2)(Ⅰ)m,n的值;(Ⅱ)直接写出不等式-12x+m>﹣2x+3的解集;(Ⅲ)求出△ABP的面积.解析:(I)依题意,有:223122nn m-=-+⎧⎪⎨-=-+⎪⎩,解得:52n=,34m=-(II)52n=,则图可知,在P点右侧有-12x+m>﹣2x+3,所以,x>5 2(III)y=﹣2x+3中,令x=0,得y=3,即A(0,3),y=﹣12x34-中,令x=0,得y=34-,即B(0,34-),所以,△ABP的面积为S=13575 (3)24216 +⨯=22.(8分)某养鸡场有2500只鸡准备对外出售,从中随机抽取了一部分鸡,根据它们的质量(单位:kg),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(I)图①中m的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?解析:(I)总体:5 10%。
北京课改版八年级数学下册初二数学期末试题答案
北京市石景山区2013—2014学年度第二学期期末考试初二数学答案及评分参考一、选择题(本题共8道小题,每小题3分,共24分) 题 号1 2 3 4 5 6 7 8 答 案B A D D AC B A二、填空题(本题共21分,每空3分)9. 120,2x x ==(漏解扣1分,出现错解0分) 10.3x ≥; 11.20,24. 12.61° 13.33y x =+ 14.22b -<<或3b =(对一种得2分);三、解答题(本题共3个小题,每小题5分,共15分)15.解:原方程化为:2210x x --= ………………………………………………1分 22111x x -+=+ ………………………………………………2分 ()212x -= ………………………………………………3分 ∴1212,12x x =+=- ………………………………………………5分16.解:(1)由题意:0∆≥ ………………………………………………1分 即:()4430m --≥解得 2m ≥ ………………………………………………3分(2)当2m =时,原方程化为2210x x -+= 解得121x x == ………………………………………………5分(阅卷说明:若考生答案为1x =,扣1分)17. 解:(1)x > 1;………………………………………………1分(2)把1=x 代入x y 2=,得2=y .∴点P (1,2). ……………………………………………………………2分∵点P 在直线3+=kx y 上,∴32+=k . 解得 1-=k .∴3+-=x y . ………………………………………………………………3分当0=y 时,由30+-=x 得3=x .∴点A (3,0). ……………………4分∴32321=⨯⨯=∆OAP S ………………………………………………5分 四、解答题(本题共15分,每小题5分)18. (1)平行四边形; ……………………………………… 1分(2)证明:连结AC ……………………………………… 2分∵E 是AB 的中点,F 是BC 中点, ∴EF ∥AC ,EF =12AC . 同理HG ∥AC ,HG =12AC . …… ……… 4分 ∴EF ∥HG ,EF =HG ,∴四边形EFGH 是平行四边形. ……………………………………… 5分19.解法一:由题意,△ABF ≌△AEF得AE =AB =5,AD =BC =4,EF =BF. …………………………… 1分在Rt △ADE 中,由勾股定理,得DE =3. …………………………………… 2分在矩形ABCD 中,DC =AB =5.∴CE =DC -DE =2. …………………………………………………………… 3分设FC =x ,则EF =4-x .ED A H GF E A B C D在Rt △CEF 中,()22242x x -=+. .……… ……… 4分 解得23=x . ………………………………… …… 5分 即FC =23. 解法二:由题意,△ABF ≌△AEF得AE =AB =5,AD =BC =4,EF =BF. …………………………… 1分在Rt △ADE 中,由勾股定理,得DE =3. …………………………………… 2分在矩形ABCD 中,DC =AB =5.∴CE =DC -DE =2. ………………………………… 3分由题意∠AED +∠FEC =90°在Rt △CEF 中,∠EFC +∠FEC =90°∴∠EFC =∠AED .又∵∠D =∠C =90°,∴Rt △AED ∽Rt △EFC ∴CF CE DE DA= .……… ………4分 ∴FC =23.………………………………… …… 5分 20. 解:(1)∵点C (m ,4)在直线43y x =上, ∴443m =,解得3m =. ……………………………………………… 1分 ∵点A (3-,0)与C (3,4)在直线(0)y kx b k =+≠上, E F D C A B∴03,43.k b k b =-+⎧⎨=+⎩ 解得2,32.k b ⎧=⎪⎨⎪=⎩ ……………………………………………… 2分 ∴一次函数的解析式为223y x =+. ………………………………………………3分 (2) 点D 的坐标为(3-,2-)或(3,6)(3,2)…………………………………………… 5分(阅卷说明:出现正确解得1分,三个点计算都正确得2分)五、列方程解应用题(本题5分)21.解:设市场某天销售这种水果盈利了6 000元,同时顾客又得到了实惠时,每千克这种水果涨了x 元 …………………………………………… 1分 由题意得 (10)(50020)6000x x +-=……………………………………………3分 整理,得 215500x x -+=.解得 15x =,210x =. ……………………………………………4分 因为顾客得到了实惠,应取 5x =答:销售这种水果盈利6 000元,同时顾客又得到了实惠时,每千克这种水果涨5元. .…………………………………………… 5分六、解答题(本题10分,每题5分)22.解:⑴ 补全统计图如右图,所补数据为98+36+78.5+8+2.8=223.3. ………2分⑵ 2010年北京市总能耗量约是223.3÷3.2%≈7000(万吨标煤).………3分。
京改版八年级下册数学期末测试卷及含答案
京改版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、平行四边形一边长为10,一条对角线长为6,则它的另一条对角线长a的取值范围为()A.4<a<16B.14<a<26C.12<a<20D.8<a<322、已知是一元二次方程较大的根,则下列对值估计正确的是( )A. B. C. D.3、若方程x2﹣8x+m=0可通过配方写成(x﹣n)2=6的形式,则x2+8x+m=5可配方成()A.(x﹣n+5)2=1B.(x+ n)2=1C.(x﹣n+5)2=11 D.(x+ n)2=114、方程(x+1)(x﹣3)=﹣4的解是()A.x1=﹣1,x2=3 B.x1=x2=1 C.x1=1,x2=﹣1 D.x1=1,x2=05、初三体育素质测试,某小组5名同学成绩如下表所示,有两个数据被遮盖,如下表:那么被遮盖的两个数据依次是()编号 1 2 3 4 5 方差平均成绩得分38 34 ■37 40 ■376、设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是()A.a>bB.a=bC.a<bD.b=a+180°7、如图,将平行四边形ABCD沿翻折,使点恰好落在上的点处,则下列结论不一定成立的是()A. B. C. D.8、如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC 于点E、F,连接CE,则CE的长()A. B. C. D.9、平行四边形、矩形、菱形、正方形共有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角形互相垂直平分10、如图,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则菱形ABCD面积为()A.8B.16C.24D.3211、如图,在边长为1的菱形ABCD中,∠ABC=120°,P是边AB上的动点,过点P作PQ⊥AB交射线AD于点Q,连接CP,CQ,则△CPQ面积的最大值是()A. B. C. D.12、下列关于的方程中,一定有两个不相等实数根的是()A. B. C.D.13、一元二次方程x2+x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根 D.无法确定14、P1(x1, y1),P2(x2, y2)是正比例函数y=﹣x图象上的两点,则下列判断正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1>y2D.当x1<x2时,y1<y215、如图,正方形ABCD的边长为2,O为对角线的交点,点E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧,再分别以E、F为圆心,1为半径作圆弧、,则图中阴影部分的面积为()A.π﹣1B.π﹣2C.π﹣3D.4﹣π二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中,将绕点顺指针旋转到的位置,点、分别落在点、处,点在轴上,再将绕点顺时针旋转到的位置,点在轴上,将绕点顺时针旋转到的位置,点在轴上,依次进行下午……,若点,,则点的横坐标为________.17、方程有且只有两个不相等的实数根,则a的取值范围________18、在平面直角坐标系中,点B在x轴的正半轴上,点A在第一象限,且AO=AB=2,点E在线段OB上运动,当△AOE和△ABE都为等腰三角形时,点E的坐标为________.19、在平面直角坐标系中,任意两点A(a,b),B(m,n),规定运算:= ,若A(9,-1),且=(-6,3),则点B的坐标是________.20、若一元二次方程x2﹣(a+1)x+a=0的两个实数根分别是2、b,则a﹣b=________ .21、如图,在菱形ABCD中,E是对角线AC上一点,若AE=BE=2,AD=3,则CE=________.22、如图,平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,若AE=6,AF=4,cos∠EAF= ,则CF=________.23、小明的座位是第5列第3个,表示为M(5,3),他前面一个同学的座位可表示________ .24、要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排15场比赛.设共有x个队参加比赛,则依题意可列方程为________ .25、如图,在矩形ABCD中,A(-4,1),B(0,1),C(0,3),则D点坐标为________,矩形ABCD的面积为________.</p>三、解答题(共5题,共计25分)26、用适当的方法解方程:(x+1)2﹣3(x+1)=0.27、如图,四边形ABCD是平行四边形,E,F是对角线BD上的两点,且BF=ED,求证:AE∥CF.28、判断括号内未知数的值是不是方程的根:(1)x2﹣3x﹣4=0(x1=﹣1,x2=1);(2)(2a+1)2=a2+1(a1=﹣2,a2=﹣).29、解方程:x2+4x﹣5=0.30、小明想用一块面积为400平方厘米的正方形纸片,沿着边的方向,裁出一块面积为360平方厘米的长方形纸片,使它的长与宽之比为4:3,小明不知道能否裁得出米,聪明的你帮他想想,他能裁得出来吗(通过计算说明)?参考答案一、单选题(共15题,共计45分)2、B3、D4、B5、B6、B7、C8、D9、C10、B11、D12、B13、C14、C15、B二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。
北师大版八年级下册数学期末考试试题含答案
北师大版八年级下册数学期末考试试卷一、选择题,每小题2分,共24分.1.(2分)下列各式由左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1B.x2+2x+1=x(x+2)+1C.a2﹣4b2=(a+2b)(a﹣2b)D.a(x﹣y)=ax﹣ay2.(2分)如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD3.(2分)当x=2时,下列各式的值为0的是()A.B.C.D.4.(2分)下列图形是中心对称图形的是()A.B.C.D.5.(2分)不等式组的解表示在数轴上,正确的是()A.B.C.D.6.(2分)若将中的字母x、y的值分别扩大为原来的4倍,则分式的值()A.扩大为原来的4倍B.缩小为原来的C.缩小为原来的D.不变7.(2分)如图,平行四边形ABCD中,∠A的平分线AE交CD于E,AB=6,BC=4,则EC的长()A.1B.1.5C.2D.38.(2分)解关于x的方程:=+3会产生增根,则常数m的值等于()A.5B.﹣1C.1D.69.(2分)如图,已知直线y1=ax+b与y2=mx+n相交于点A(2,﹣1),若y1>y2,则x的取值范围是()A.x<2B.x>2C.x<﹣1D.x>﹣110.(2分)如图△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度是()A.3B.C.D.411.(2分)如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,有下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④AD平分∠CDE;其中正确的是()个.A.1B.2C.3D.412.(2分)已知关于x的不等式组的整数解共有6个,则a的取值范围是()A.﹣6<a<﹣5B.﹣6≤a<﹣5C.﹣6<a≤﹣5D.﹣6≤a≤﹣5二、填空题(共5小题,每小题3分,满分15分)13.(3分)因式分解:a3﹣a=.14.(3分)计算:(ab﹣b2)÷=.15.(3分)已知x2﹣(m﹣2)x+49是完全平方式,则m=.16.(3分)如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=.17.(3分)有一张一个角为30°,最小变长为4的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是.三、解答题18.(10分)(1)解不等式3(x﹣1)<5x+2,并在数轴上表示解集.(2)解方程:=﹣.19.(6分)先化简再求值:,其中.20.(6分)在如图所示的方格纸中,△ABC,△A1B1C1,△A2B2C2的顶点及O、P、Q都在格点上(每个小方格的顶点叫格点)(1)△ABC经过一种变换可以得到△A1B1C1;(填“平移”或“旋转”或“轴对称”)(2)△A2B2C2可由△A1B1C1经过一次旋转变换得到的,其旋转中心是(填:“O”或“P”或“Q”)旋转角是度;(3)画出△ABC绕点O逆时针旋转90°后的△A3B3C3.21.(6分)如图,已知四边形ABCD是平行四边形,AE⊥BD于点E,CF⊥BD于点F,连接AF、CE,试判断四边形AECF是什么样的四边形?写出你的结论并予以证明.22.(8分)阅读理解:把多项式am+an+bm+bn分解因式.解法一:am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b)解法二:am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(m+n)(a+b)观察上述因式分解的过程,回答下列问题:(1)分解因式:m2x﹣3m+mnx﹣3n;(2)已知:a,b,c为△ABC的三边,且a3﹣a2b+5ac﹣5bc=0,试判断△ABC的形状.23.(7分)如图,在△ABC中,∠BAC的平分线是AP,PQ是线段BC的垂直平分线,PN⊥AB于N,PM⊥AC于M.求证:BN=CM.24.(8分)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?25.(10分)已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形过点F作BC的平行线交射线AC于点E,连接BF (1)如图1,若△ABC的边长是2,求△ADF的最小面积;(2)如图1,求证:△AFB≌△ADC';(3)如图2,若D点在BC边的延长线上,其它条件不变,请判断四边形BCEF的形状,并说明理由.参考答案与试题解析一、选择题,每小题2分,共24分.1.(2分)(2016春•市北区期末)下列各式由左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1B.x2+2x+1=x(x+2)+1C.a2﹣4b2=(a+2b)(a﹣2b)D.a(x﹣y)=ax﹣ay【分析】依据因式分解的定义判断即可.【解答】解:A、(x+1)(x﹣1)=x2﹣1,从左边到右边的变形属于整式的乘法,故A错误;B、x2+2x+1=x(x+2)+1,右边不是几个因式的积的形式,故B错误;C、a2﹣4b2=(a+2b)(a﹣2b)是因式分解,故C正确;D、(x﹣y)=ax﹣ay,从左边到右边的变形属于整式的乘法,故D错误.故选:C.【点评】本题主要考查的是因式分解的意义,掌握因式分解的定义是解题的关键.2.(2分)(2013•益阳)如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD【分析】根据平行四边形的性质,平行四边形对边平行以及对边相等和对角相等分别判断得出即可.【解答】解:∵在平行四边形ABCD中,∴AB∥CD,∴∠1=∠2,(故A选项正确,不合题意);∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,(故B选项正确,不合题意);AB=CD,(故C选项正确,不合题意);无法得出AC⊥BD,(故D选项错误,符合题意).故选:D.【点评】此题主要考查了平行四边形的性质,熟练掌握相关的性质是解题关键.3.(2分)(2010•开县校级模拟)当x=2时,下列各式的值为0的是()A.B.C.D.【分析】根据分式的值为零的条件进行判断.【解答】解:A、当x=2时,x2﹣3x+2=0,由于分式的分母不能为0,故A错误;B、当x=2时,x﹣2=0,分式的分母为0,故B错误;C、当x=2时,2x﹣4=0,且x﹣9≠0;故C正确;D、当x=2时,原式=4≠0,故D错误;故选C.【点评】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.(2分)(2016春•雅安期末)下列图形是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是中心对称图形;B、是中心对称图形;C、不是中心对称图形;D、不是中心对称图形.故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(2分)(2016春•雅安期末)不等式组的解表示在数轴上,正确的是()A.B.C.D.【分析】先解不等式组求得解集,再在数轴上表示出来.【解答】解:解不等式组得﹣1<x≤2,所以在数轴上表示为故选D.【点评】不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.(2分)(2016春•雅安期末)若将中的字母x、y的值分别扩大为原来的4倍,则分式的值()A.扩大为原来的4倍B.缩小为原来的C.缩小为原来的D.不变【分析】根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.【解答】解:将中的字母x、y的值分别扩大为原来的4倍,则分式的值缩小为原来的,故选:C.【点评】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式,分式的值不变.7.(2分)(2016春•雅安期末)如图,平行四边形ABCD中,∠A的平分线AE交CD于E,AB=6,BC=4,则EC的长()A.1B.1.5C.2D.3【分析】根据平行四边形的性质及AE为角平分线可知:BC=AD=DE=4,又有CD=AB=6,可求EC的长.【解答】解:根据平行四边形的对边相等,得:CD=AB=6,AD=BC=4.根据平行四边形的对边平行,得:CD∥AB,∴∠AED=∠BAE,又∠DAE=∠BAE,∴∠DAE=∠AED.∴ED=AD=4,∴EC=CD﹣ED=6﹣4=2.故选C.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.8.(2分)(2016春•雅安期末)解关于x的方程:=+3会产生增根,则常数m的值等于()A.5B.﹣1C.1D.6【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣1=0,求出x的值,代入整式方程求出m的值即可.【解答】解:去分母得:x+5=m+3x﹣3,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入整式方程得:6=m+3﹣3,解得:m=6,故选D【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.9.(2分)(2016春•雅安期末)如图,已知直线y1=ax+b与y2=mx+n相交于点A(2,﹣1),若y1>y2,则x的取值范围是()A.x<2B.x>2C.x<﹣1D.x>﹣1【分析】观察函数图象得到当x>2时,直线y1=ax+b都在直线y2=mx+n的上方,即有y1>y2.【解答】解:根据题意当x>2时,若y1>y2.故选B.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.10.(2分)(2016春•龙岗区期末)如图△ABC是等腰直角三角形,BC是斜边,将△ABP 绕点A逆时针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度是()A.3B.C.D.4【分析】根据旋转前后的图形全等,即可得出△APP'等腰直角三角形,再根据等腰直角三角形的性质,进行计算即可.【解答】解:∵△ACP′是由△ABP绕点A逆时针旋转后得到的,∴△ACP′≌△ABP,∴AP=AP′,∠BAP=∠CAP′.∵∠BAC=90°,∴∠PAP′=90°,故可得出△APP'是等腰直角三角形,又∵AP=3,∴PP′=3.故选B.【点评】此题考查了旋转的性质,解答本题的关键是掌握旋转前后对应边相等、对应角相等,另外要掌握等腰三角形的性质,难度一般.11.(2分)(2016春•雅安期末)如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB 于E,有下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④AD平分∠CDE;其中正确的是()个.A.1B.2C.3D.4【分析】根据角平分线上的点到角的两边距离相等可得CD=DE,再利用“HL”证明Rt△ACD 和Rt△AED全等,根据全等三角形对应边相等可得AC=AE,∠ADC=∠ADE,然后对各小题分析判断即可得解.【解答】解:∵∠C=90°,AD平分∠BAC,DE⊥AB,∴CD=DE,故①正确;在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∠ADC=∠ADE,∴AC+BE=AE+BE=AB,故②正确;AD平分∠CDE,故④正确;∵∠B+∠BAC=90°,∠B+∠BDE=90°,∴∠BDE=∠BAC,故③正确;综上所述,结论正确的是①②③④共4个.故选D.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记性质并确定出全等三角形是解题的关键.12.(2分)(2016春•雅安期末)已知关于x的不等式组的整数解共有6个,则a的取值范围是()A.﹣6<a<﹣5B.﹣6≤a<﹣5C.﹣6<a≤﹣5D.﹣6≤a≤﹣5【分析】先解不等式组,然后根据有6个整数解,求出a的取值范围.【解答】解:解不等式x﹣a>0得:x>a,解不等式2﹣2x>0得,x<1,则不等式组的解集为a<x<1,∵不等式组有6个整数解,∴﹣6≤a<5.故选B.【点评】此题考查的是一元一次不等式的解法,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二、填空题(共5小题,每小题3分,满分15分)13.(3分)(2016•安徽)因式分解:a3﹣a=a(a+1)(a﹣1).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣1)=a(a+1)(a﹣1),故答案为:a(a+1)(a﹣1)【点评】此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.(3分)(2016春•雅安期末)计算:(ab﹣b2)÷=ab2.【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式=b(a﹣b)•=ab2.故答案为:ab2.【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.15.(3分)(2016春•雅安期末)已知x2﹣(m﹣2)x+49是完全平方式,则m=16或﹣12.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值.【解答】解:∵x2﹣(m﹣2)x+49=x2﹣(m﹣2)x+72,∴﹣(m﹣2)x=±2x•7,解得m=16或m=﹣12.故答案为:16或﹣12.【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.16.(3分)(2015•澄海区一模)如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=5.【分析】过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD﹣MD即可求出OM的长.【解答】解:过P作PD⊥OB,交OB于点D,在Rt△OPD中,cos60°==,OP=12,∴OD=6,∵PM=PN,PD⊥MN,MN=2,∴MD=ND=MN=1,∴OM=OD﹣MD=6﹣1=5.故答案为:5.【点评】此题考查的是勾股定理,含30度直角三角形的性质,等腰三角形的性质等知识,熟练掌握直角三角形的性质是解本题的关键.17.(3分)(2016春•雅安期末)有一张一个角为30°,最小变长为4的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是8+4或16.【分析】根据三角函数可以计算出BC=8,AC=4,再根据中位线的性质可得CD=AD=,CF=BF=4,DF=2,然后拼图,出现两种情况,一种是拼成一个矩形,另一种拼成一个平行四边形,进而算出周长即可.【解答】解:由题意可得:AB=4,∵∠C=30°,∴BC=8,AC=4,∵图中所示的中位线剪开,∴CD=AD=2,CF=BF=4,DF=2,如图1所示:拼成一个矩形,矩形周长为:2+2+4+2+2=8+4;如图2所示,可以拼成一个平行四边形,周长为:4+4+4+4=16,故答案为:8+4或16.【点评】此题主要考查了图形的剪拼,关键是根据画出图形,要考虑全面,不要漏解.三、解答题18.(10分)(2016春•雅安期末)(1)解不等式3(x﹣1)<5x+2,并在数轴上表示解集.(2)解方程:=﹣.【分析】(1)不等式去括号,移项合并,把x系数化为1,求出解集,表示在数轴上即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去括号得:3x﹣3<5x+2,移项合并得:2x>﹣5,解得:x>﹣2.5,;(2)去分母得:15x﹣12=4x+10﹣3x+6,移项合并得:14x=28,解得:x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.19.(6分)(2016春•雅安期末)先化简再求值:,其中.【分析】先把分子分母因式分解,再约分得到原式=x﹣1,然后把x的值代入计算即可.【解答】解:原式=•﹣1=x﹣1,当x=+1时,原式=+1﹣1=.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.20.(6分)(2016春•雅安期末)在如图所示的方格纸中,△ABC,△A1B1C1,△A2B2C2的顶点及O、P、Q都在格点上(每个小方格的顶点叫格点)(1)△ABC经过一种平移变换可以得到△A1B1C1;(填“平移”或“旋转”或“轴对称”)(2)△A2B2C2可由△A1B1C1经过一次旋转变换得到的,其旋转中心是O(填:“O”或“P”或“Q”)旋转角是90度;(3)画出△ABC绕点O逆时针旋转90°后的△A3B3C3.【分析】(1)根据图形结合平移变换的性质解答;(2)根据旋转的性质,对应点的连线的垂直平分线的交点即为旋转中心;(3)根据网格结构找出点A、B、C绕点O逆时针旋转90°后的对应点A3、B3、C3的位置,然后顺次连接即可.【解答】解:(1)△ABC经过一种平移变换可以得到△A1B1C1;(2)△A2B2C2可由△A1B1C1经过一次旋转变换得到的,其旋转中心是O,旋转角是90度;(3)如图所示△A3B3C3.故答案为:(1)平移;(2)O,90.【点评】本题考查了利用旋转变换作图,平移变换的性质,以及旋转变换的性质熟练掌握各性质是解题的关键.21.(6分)(2016春•雅安期末)如图,已知四边形ABCD是平行四边形,AE⊥BD于点E,CF⊥BD于点F,连接AF、CE,试判断四边形AECF是什么样的四边形?写出你的结论并予以证明.【分析】根据垂直的定义得出∠AEF=∠CFE=90°,利用内错角相等两直线平行可得AE∥CF,再根据平行四边形的性质证明△ABE≌△CDF,根据全等三角形对应边相等可得AE=CF,然后根据有一组对边平行且相等的四边形是平行四边形即可证明.【解答】解:四边形AECF是平行四边形.理由如下:∵AE⊥BD于点E,CF⊥BD于点F,∴∠AEF=∠CFE=90°,∴AE∥CF(内错角相等,两直线平行),在平行四边形ABCD中,AB=CD,AB∥CD,∴∠ABE=∠CDF,在△ABE与△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF,∴四边形AECF是平行四边形(有一组对边平行且相等的四边形是平行四边形).【点评】本题考查了平行四边形的性质与判定,全等三角形的判定与性质,利用三角形全等证明得到AE=CF是解题的关键.22.(8分)(2016春•雅安期末)阅读理解:把多项式am+an+bm+bn分解因式.解法一:am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b)解法二:am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(m+n)(a+b)观察上述因式分解的过程,回答下列问题:(1)分解因式:m2x﹣3m+mnx﹣3n;(2)已知:a,b,c为△ABC的三边,且a3﹣a2b+5ac﹣5bc=0,试判断△ABC的形状.【分析】(1)首先将原式前两项和后两项分组,进而提取公因式分解因式即可得出答案;(2)首先将原式前两项和后两项分组,进而提取公因式分解因式即可得出a,b关系,进而得出△ABC的形状.【解答】解:(1)m2x﹣3m+mnx﹣3n=m(mx﹣3)+n(mx﹣3)=(mx﹣3)(m+n);(2)∵a3﹣a2b+5ac﹣5bc=0,∴a2(a﹣b)+5c(a﹣b)=0,∴(a﹣b)(a2+5c)=0,∵a,b,c为△ABC的三边,∴a2+5c≠0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形.【点评】此题主要考查了分组分解法的应用,正确将原式分组是解题关键.23.(7分)(2016春•雅安期末)如图,在△ABC中,∠BAC的平分线是AP,PQ是线段BC的垂直平分线,PN⊥AB于N,PM⊥AC于M.求证:BN=CM.【分析】连接PB、PC,根据角平分线上的点到角的两边距离相等可得PM=PN,再根据线段垂直平分线上的点到线段两端点的距离相等可得PB=PC,然后利用“HL”证明Rt△PMC和Rt△PNB全等,最后根据全等三角形对应边相等证明即可.【解答】证明:如图,连接PB、PC,∵AP是∠BAC的平分线,PN⊥AB于N,PM⊥AC于M,∴PM=PN,∠PMC=∠PNB=90°,∵PQ是线段BC的垂直平分线,∴PB=PC,在Rt△PMC和Rt△PNB中,,∴Rt△PMC≌Rt△PNB(HL),∴BN=CM.【点评】本题考查了全等三角形的判定与性质,角平分线上的点到角的两边距离相等的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,熟记各性质并作辅助线构造出全等三角形是解题的关键.24.(8分)(2012•淮安模拟)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?【分析】(1)先设今年甲型号手机每台售价为x元,根据题意列出方程,解出x的值,再进行检验,即可得出答案;(2)先设购进甲型号手机m台,根据题意列出不等式组,求出m的取值范围,即可得出进货方案.【解答】解:(1)设今年甲型号手机每台售价为x元,由题意得,=,解得x=1500,经检验x=1500是方程的解,答:今年甲型号手机每台售价为1500元.(2)设购进甲型号手机m台,则乙型号手机(20﹣m)台,由题意得,,解得:8≤m≤12,因为m只能取整数,所以m取8、9、10、11、12,共有5种进货方案,方案1:购进甲型号手机8台,乙型号手机12台;方案2:购进甲型号手机9台,乙型号手机11台;方案3:购进甲型号手机10台,乙型号手机10台;方案4:购进甲型号手机11台,乙型号手机9台;方案5:购进甲型号手机12台,乙型号手机8台.【点评】此题考查了一元一次不等式组的应用,要能根据题意列出不等式组,关键是根据不等式组的解集求出所有的进货方案,注意解分式方程要检验,是一道实际问题.25.(10分)(2016春•雅安期末)已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形过点F作BC的平行线交射线AC于点E,连接BF(1)如图1,若△ABC的边长是2,求△ADF的最小面积;(2)如图1,求证:△AFB≌△ADC';(3)如图2,若D点在BC边的延长线上,其它条件不变,请判断四边形BCEF的形状,并说明理由.【分析】(1)根据题意得到当AD⊥BC时,△ADF的面积最小,根据等边三角形的性质得到AD=,然后根据三角形的面积公式即可得到结论;(2)利用有两条边对应相等并且夹角相等的两个三角形全等即可证明△AFB≌△ADC;(3)根据等边三角形的性质得到AF=AD,AB=AC,∠FAD=∠BAC=60°,可得∠FAB=∠DAC,根据全等三角形的性质得到∠ABF=∠ADC,进而求得∠AFB=∠EAF,求得BF∥AE,又BC∥EF,从而证得四边形BCEF是平行四边形.【解答】解:(1)由题意得当AD⊥BC时,AD最小,即△ADF的面积最小,∵△ABC是等边三角形,∴BC=2,BD=CD=1,∴AD=,∵△ADF是等边三角形,∴△ADF的最小面积=;(2)∵△ABC和△ADF都是等边三角形,∴AF=AD,AB=AC,∠FAD=∠BAC=60°,又∵∠FAB=∠FAD﹣∠BAD,∠DAC=∠BAC﹣∠BAD,∴∠FAB=∠DAC,在△AFB和△ADC中,,∴△AFB≌△ADC(SAS);(3)∵△ABC和△ADE都是等边三角形,∴AF=AD,AB=AC,∠FAD=∠BAC=60°,又∵∠FAB=∠FAD﹣∠BAD,∠DAC=∠BAC﹣∠BAD,∴∠FAB=∠DAC,在△AFB和△ADC中,,∴△AFB≌△ADC(SAS);∴∠AFB=∠ADC.又∵∠ADC+∠DAC=60°,∠EAF+∠DAC=60°,∴∠ADC=∠EAF,∴∠AFB=∠EAF,∴BF∥AE,又∵BC∥EF,∴四边形BCEF是平行四边形.【点评】本题考查了等边三角形的性质、全等三角形的判定和性质以及平行四边形的判定,熟练掌握性质、定理是解题的关键.。
八年级下学期期末考试数学试卷含答案(共3套,北师大版,word版)
八年级第二学期期末考试数学试卷一、选择题(每小题3分,共30分请把正确选项填在相应题号下的空格里。
) 1. .因式分解x 2-9y 2的正确结果是( )A . (x +9y )(x -9y )B .(x +3y )(x -3y )C . (x -3y )2D .(x -9y )2 2.下列变形不正确的是( )A .)0(≠••=m ma mb a b B .y x y x -=- C .y x y x =-- D .1122+=-+x x x x x 3不等式 121〉-x 的解集是 A 21-〉x B 2-〉x C x <-2 D x <-21 4如图,不等式组⎩⎨⎧≤-〉+0101x x 的解集在数轴上表示正确的是( ).5. 化简abb a 1)11(÷+的结果是( )A 1B ab Cba +1D a+b 6、下列图形既是轴对称图形,又是中心对称图形的是 ( ).A B C D7.在平行四边形ABCD 中,∠BAD=1100,∠ABD=300 , 则∠CBD 度数为( ),A 。
300B . 400C . 700D .5008.一个多边形的内角和与外角和相等,则这个多边形的边数为( ) A 6 B 5 C 4 D 89.如图,在三角形ABC 中,∠C=900,AD 平分∠BAC 交BC 于点D ,且BD=2CD ,BC=7.8cm 则点D 到AB 的距离为( )A 5.2 cmB 3.9 cmC 2.6 cmD 4.8cm10已知∆ABC(1)如图l ,若P 点是∠ABC 和∠ACB 的角平分线的交点,则∠P=1902A ︒+∠;(2)如图2,若P 点是∠ABC 和外角∠ACE 的角平分线的交点,则∠P=90A ︒-∠; (3)如图3,若P 点是外角∠CBF 和∠BCE的角平分线的交点,则∠P=1902A ︒-∠上述说法正确的个数是( ) (A)0个 (B)1个 (C)2个 (D)3个 二.填空题(每小题4分,共16分) 11.因式分解:x 3-x= .12.不等式组⎩⎨⎧≤-〉+13202x x 的解集是:13.化简22)2(4+-x x = 14.如图,∆ABC 中,∠BAC=1200,AB=AC,AD ⊥BC, 垂足为D ,则∠BAD 的度数是 15.如图,∆ABC 中,∠C=900,∠B=300,AD 是∠BAC 的平分线,DE ⊥AB ,垂足为E ,则∠ADE 的度数是16.如图所示,已知点D 为等腰直角三角形ABC 内一点,∠CAD=∠CBD=150,E 为AD 延长线上的一点,且CE=CA ,则∠DCE 的度数是图3图2图1E FEPCBAABCACPPDBA C第9题AB DC第14题BAEDC第15题DBCE第16A三.解答题(每小题6分,共18分) 17.分解因式:a 3—4a 2+4a18.解不等式组⎪⎩⎪⎨⎧+≤-〈-132)1(3121x x x ,并把它的解集在数轴上表示出来。
(完整版)京改版八年级下册数学期末测试卷及含答案
京改版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、若一个菱形的边长为2,则这个菱形两条对角线长的平方和为()A.16B.8C.4D.12、若数据,,…,的众数为,方差为,则数据,,…,的众数、方差分别是()A. ,B. ,C. ,D. ,3、如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是()A. B. C. D.4、关于x的一元二次方程有实数根,则的取值范围是()A. B. 且 C. D. 且5、方程:①,②,③,④中,一元二次方程是().A.①和②B.②和③C.③和④D.①和③6、如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.25B.C.D.7、将一张正方形纸片ABCD按如图所示的方式折叠,AE、AF为折痕,点B、D 折叠后的对应点分别为B′、D′,若∠B′A D′=16°,则∠EAF的度数为().A.40°B.45°C.56°D.37°8、过多边形的一个顶点可以作7条对角线,则此多边形的内角和是外角和的()A.4倍B.5倍C.6倍D.3倍9、关于x的一元二次方程x2+mx﹣2=0的一个根为x=1,则m的值为()A.1B.2C.﹣1D.﹣210、如图,正方形ABCD的四个顶点在坐标轴上,A点坐标为(3,0),假设有甲、乙两个物体分别由点A同时出发,沿正方形ABCD的边作环绕运动,物体甲按逆时针方向匀速运动,物体乙按顺时针方向匀速运动,如果甲物体12秒钟可环绕一周回到A点,乙物体24秒钟可环绕一周回到A点,则两个物体运动后的第2017次相遇地点的坐标是()A.(3,0)B.(﹣1,2)C.(﹣3,0)D.(﹣1,﹣2)11、在平面直角坐标系内有一点P,已知点P到x轴的距离为2,到y轴的距离为4,则点P的坐标不可能是( )A.(-2,-4)B.(4,2)C.(-4,2)D.(4,-2)12、下列判断正确的是( )A.一组对边平行且另一组对边相等的四边形是平行四边形B.对角线相等的四边形是矩形C.一组对边平行且有一组对角相等的四边形是平行四边形D.对角线互相垂直且相等的四边形是正方形13、张老师出示方程x2-4=0,四位同学给出了以下答案:小丽:x=2 ;子航:x=﹣2;一帆:x1=2,x2=﹣2 ;萱萱:x =±4.你认为谁的答案符合题意?你的选择是()A.小丽B.子航C.一帆D.萱萱14、如图,已知矩形ABCD的四个顶点都在双曲线y=(k>0)上,BC=2AB,且矩形ABCD的面积是32,则k的值是()A.6B.8C.10D.1215、如图所示,已知等腰梯形ABCD,AD∥BC,若动直线l垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是()A. B. C.D.二、填空题(共10题,共计30分)16、如图,在中,,,,的中垂线与的角平分线交于点,则四边形的面积为________.17、如图,平面直角坐标系的原点O是正方形ABCD的中心,顶点A,B的坐标分别为(1,1),(﹣1,1),把正方形ABCD绕原点O逆时针旋转45°得正方形A′B′C′D′,则正方形ABCD与正方形A′B′C′D′重叠部分所形成的正八边形的边长为________ .18、若一元二次方程ax2﹣bx﹣2015=0有一根为x=﹣1,则a+b=________.19、一个正方形的边长增加了2cm,它的面积就增加44cm2,这个正方形的边长是:________.20、如果样本方差,那么这个样本的平均数是________,样本容量是________.21、如图,在长方形ABCD中,AB=4cm,BC=8cm.E、F分别是AB、BC的中点.则E到DF的距离是________cm.22、学校位于小亮家北偏东35方向,距离为300m,学校位于大刚家南偏东85°方向,距离也为300m,则大刚家相对于小亮家的位置是________.23、一个样本的50个数据分别落在5个组内,第1、2、3、5组数据的频数分别为2、8、10、5,则第4组数据的频数为________24、阅读下面材料已知:如图,四边形ABCD是平行四边形;求作:菱形AECF,使点E,F分别在BC,AD上.小凯的作法如下:⑴连接AC;⑵作AC的垂直平分线EF分别交BC,AD于E,F.⑶连接AE,CF所以四边形AECF是菱形.老师说:“小凯的作法符合题意”.回答问题:已知:在平行四边形ABCD中,点E、F分别在边BC、AD上________.(补全已知条件)25、有一组数据:3,a,4,6,7,它们的平均数是5,则a=________,这组数据的方差是________.三、解答题(共5题,共计25分)26、解方程:x2+3x+2=0.27、如图,已知平行四边形ABCD,E为BC的中点,DE⊥AE.求证:AB=AD.28、如图,在矩形ABCD中,AC、BD相交于O,AE平分∠BAD,交BC于E,若∠CAE=15°,求∠OBE的度数.29、关于x的方程x2﹣ax+a=0有两个相等的实数根,求代数式•的值.30、已知,与成反比例,与成正比例,并且当时,;当时,.求:y关于x的函数解析式.参考答案一、单选题(共15题,共计45分)1、A2、C3、C4、D6、D7、D8、A9、A10、D11、A12、C13、C14、A15、A二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。
北师大版数学八年级下册期末考试试卷附答案
北师大版数学八年级下册期末考试试题一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.0x = B.3x = C.0x ≠ D.3x ≠4.平移后的图形与原来的图形的对应点连线()A.相交B.平行C.平行或在同一条直线上且相等D.相等5.已知,a b 都是实数,且a b <,则下列不等式的变形正确的是()A.33a b< B.11a b -+<-+ C.a x b x+>+ D.22a b >6.下列变形是因式分解的是()A.()x a b ax bx -=-B.21(1)(1)x x x -=+-C.2(2)(1)32x x x x ++=++ D.296(3)(3)6x x x x x--=+--7.在□ABCD 中,∠B +∠D =260°,那么∠A 的度数是()A.130°B.100°C.80°D.50°8.若分式方程1x aa x -=+无解,则a 的值为()A.0B.-1C.1或-1D.0或-19.如图,在□ABCD 中,对角线AC 的垂直平分线分别交AD ,BC 于点E ,F ,连接AF ,若△ABF 的周长为6,则□ABCD 的周长为()A.6 B.12C.18D.2410.如图,O 是等边△ABC 内一点,OA =3,OB =4,OC =5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段B O ',下列结论:①△B O 'A 可以由△BOC 绕点B 逆时针旋转60°得到;②点O 与O '的距离为4;③∠AOB =150°;④633AOBO S '=+四边形;其中正确的结论是()A.①②③B.①③④C.②③④D.①②二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填在该题的横线上.11.计算:222aa a ---的结果是.12.将点A (-2,3)沿x 轴向右平移2个单位,再沿y 轴向下平移2个单位,得到点B 的坐标为.13.Rt △ABC 中,∠C =90°,∠B =2∠A ,BC =3cm ,AB =cm .14.若多项式2x ax b ++分解因式的结果为(1)(2)x x +-,则a b +的值为.15.如图,已知函数y x b =+和3y ax =+的图象交点为P ,则不等式3x b ax +<+的解集为.16.如图,小华从A 点出发,沿直线前进12米后向左转24°,再沿直线前进12米,又向左转24°,…,照这样走下去,他第一次回到出发地A 点时,一共走的路程是米.第16题图第15题图第10题图第9题图三、解答题(一)(本大题3小题,每小题6分,共18分)17.因式分解:231212x x -+.18.解不等式组:523(2)532x x x x -<+⎧⎪⎨+≤⎪⎩,并把它的解集表示在数轴上.四、解答题(二)(本大题3小题,每小题7分,共21分)20.如图,已知△ABC中,D 为AB 的中点.(1)请用尺规作图法作边AC 的中点E ,并连接DE (保留作图痕迹,不要求写作法);(2)在(1)的条件下,若DE =4,求BC 的长.21.如图,在平面直角坐标系xOy中,点A的坐标为(-2,0),等边△AOC经过平移或轴对称或旋转都可以得到△OBD.(1)△AOC沿x轴向右平移得到△OBD,则平移的距离为个单位长度;点A的对应点为点;(2)△AOC与△BOD关于直线对称,则对称轴是轴;点A的对应点为点;(3)△AOC绕原点O顺时针旋转可以得到△DOB,则旋转角度是度,点A与其对应点之间的距离为个单位长度.22.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,点F在AC上,且BD=DF.(1)求证:CF=EB;(2)请你判断AB、AF与BE之间的数量关系,并说明理由.五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,E、F是□ABCD对角线AC上两点,且AE=CF.(1)求证:四边形BFDE是平行四边形;(2)如果把条件AE=CF改为BE⊥AC,DF⊥AC,试问四边形BFDE是平行四边形吗?为什么?(3)如果把条件AE=CF改为BE=DF,试问四边形BFDE还是平行四边形吗?为什么?24.已知某项工程,乙工程队单独完成所需天数是甲工程队单独完成所需天数的两倍,若甲工程队单独做10天后,再由乙工程队单独做15天,恰好完成该工程的710,共需施工费用85万元,甲工程队每天的施工费用比乙工程队每天的施工费用多1万元.(1)单独完成此项工程,甲、乙两工程队各需要多少天?(2)甲、乙两工程队每天的施工费各为多少万元?(3)若要完成全部工程的施工费用不超过116万元,且乙工程队的施工天数大于10天,求甲工程队施工天数的取值范围?25.已知△ABC是等边三角形,D,E分别是直线AC,BC上一点.(1)如图,若D在线段AC上,E在BC的延长线上,且DE=DB.①当D是线段AC的中点时(如图1),求证:CE=AD;②当D不是线段AC的中点时(如图2),过点D作DF∥AB交BC于点F,试确定线段CE与AD的大小关系,并证明你的结论.(2)若D是线段AC的延长线上一点,且CD=CA,当△DBE是等腰三角形时,求∠DEB的度数.F参考答案一、选择题1.C 2.D 3.D 4.C5.A6.B7.D8.C9.B10.A二、填空题11.-112.(0,1)13.614.-315.1x <16.180三、解答题(一)17.原式=23(44)x x -+……………………………………………3分=23(2)x -……………………………………………6分18.解不等式523(2)x x -<+得:x <4,解不等式532x x +≤得:x ≥1,……………………………………………4分∴不等式组的解集为1≤x <4,∴这个不等式组的解集在数轴上表示如图.…………………………………………6分19.原式=2(1)(1)(2)1(1)2x x x x x x x+--+⨯--……………………………………………4分=111x x ++-=21x x -……………………………………………5分当12x =时,原式=-2.……………………………………………6分四、解答题(二)20.(1)作线段AC 的垂直平分线MN 交AC 于E ,点E 就是所求的点.…………3分(2)∵AD=DB ,AE=EC ,∴DE ∥BC ,DE =12B C ,…………………………5分∵DE =4,∴BC =8.……………………………………………7分∙21.(1)2,O;……………………………………………2分(2)y,B;……………………………………………4分(3)120(1分),2分)……………………………………………7分22.证明:(1)∵AD平分∠BAC,DE⊥AB,∠C=90°,∴DC=DE,……………………1分在Rt△DCF和Rt△DEB中,DC=DE DF=DB,∴Rt△DCF≌Rt△DEB,∴CF=EB;……………………………………………4分(2)AB=AE+2BE.……………………………………………5分∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DC=DE,∠ACD=∠AED=90°又∵AD=AD∴△ADC≌△ADE,∴AC=AE,……………………6分∴AB=AE+EB=AC+BE=AF+CF+BE=AF+2BE即AB=AE+2BE.……………………7分五、解答题(三)23.(1)∵ABCD是平行四边形∴AB=CD且AB∥CD∴∠BAE=∠DCF……………………………………………1分又∵AE=CF∴△BAE≌△DCF∴BE=DF,∠AEB=∠CFD∴∠BEF=180°-∠AEB∠DFE=180°-∠CFD即:∠BEF=∠DFE……………………………………………2分∴BE∥DF,而BE=DF∴四边形BFDE是平行四边形……………………………………………3分(2)四边形BFDE是平行四边形.……………………………………………4分∵ABCD是平行四边形∴AB=CD且AB∥CD∴∠BAE=∠DCF……………………………………………5分∵BE⊥AC,DF⊥AC∴∠BEA=∠DFC=90°,BE∥DF∴△BAE≌△DCF∴BE=DF∴四边形BFDE是平行四边形.……………………………………………7分(3)四边形BFDE不一定是平行四边形.……………………………………………8分因为把条件AE=CF改为BE=DF后,不一定能证明△BAE与△DCF全等.…………9分24.(1)设甲工程队单独施工完成此项工程的天数为x 天,乙工程队单独施工完成此项工程的天数为2x 天,根据题意得:10157210x x +=,解得:x =25,…………2分经检验:x =25是原方程的根,则2x =25×2=50(天),答:甲、乙两工程队各需要25天和50天.……………………………………………3分(2)设甲工程队每天的施工费为a 万元,则乙工程队每天的施工费为(a -1)万元,根据题意得:10a +15(a -1)=85……………………………………………5分解得:a =4,则a -1=3(万元),答:甲工程队每天的施工费为4万元,乙工程队每天的施工费为3万元;……………6分(3)设全部完成此项工程中,甲队施工了m 天,则甲完成了此项工程的25m,乙队完成了此项工程的(1−25m ),故乙队在全部完成此项工程中,施工时间为:125150m -=50-2m (天)……………………………………………7分根据题意得:43(502)11650210m m m +-≤⎧⎨->⎩,解得:17≤m <20.答:甲工程队施工天数m 的取值范围是:17≤m <20.…………………………………9分25.(1)①∵△ABC 是等边三角形,点D 为线段AC 的中点,∴BD 平分∠ABC ,∴∠DBE =30°∵BD=DE ,∴∠E =∠DBE =30°,……………………………………………1分∵∠DCE =180°-∠ACB =120°,∴∠CDE =180°-120°-30°=30°,∴CD=CE ,∴AD=CE ;……………………………………………2分②AD=CE .……………………………………………3分证明:∵DF ∥AB ∴△CDF 是等边三角形,又∵△ABC 是等边三角形∴BC-CF =BF=AD=AC-CD ,…………………………4分∵DF ∥AB ,∴∠DFC =60°,∴∠BFD =120°,∵BD=DE ,∴∠E =∠DBE ,在△BDF 和△EDC 中,∠BFD =∠DCE ∠E =∠DBE BD =DE ,∴△BDF ≌△EDC ,∴BF=CE ,∴AD=CE ;……………………………………………5分(2)如图,∵CD=CA ,CB=CA ,∴CB=CD ,∴∠CBD =30°,当BD =BE ''时,有∠BE D ''=∠BDE ''∴∠CBD =∠BE D ''+∠BDE ''=30°∴∠DE B ''=15°,当BD=BE 时,有∠BDE =∠BED∴∠DEB =18030752︒-︒=︒,当BD =DE '时,有∠DE B '=∠CBD =30°,当点E 与点C 重合时,有EB=ED ,∴∠DEB =120°,∴当△DBE 是等腰三角形时,∠DEB 的度数为15°或75°或30°或120°.………………9分。
【新】北师大版八年级数学下册期末测试题及答案(2套)
第5题图 202X ~202X 度第二学期期末测试题八年级数学本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为36分;第Ⅱ卷共6页,满分为84分.本试题共8页,满分为120分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共36分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列从左到右的变形是因式分解的是( )A.(a +3)(a —3)=a 2-9B.()2241026x x x ++=++ C.()22693x x x -+=- D.()()243223x x x x x -+=-++ 2. 分式293x x --的值为零,则x 的取值( ).A .3B .3-C .3±D .03. 下列变形正确的是( ).A .11a ab b+=+ B .11a ab b--=-- C .221a b a b a b -=--D .22()1()a b a b --=-+ 4. 有一个三角形两边长为3和4,要使三角形为直角三角形,则第三边长为( ) A .5 BC .5D .不确定5. 如图所示,同时自由转动两个转盘,指针落在每一个数上的机会均等,转盘停止后,两个指针同时落在奇数上的概率是( )A .425B .525C .625D .9256. 下列命题中正确的是 ( )A .有两条边相等的两个等腰三角形全等B .两腰对应相等的两个等腰三角形全等C .两角对应相等的两个等腰三角形全等D .一边对应相等的两个等边三角形全等 7. 如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为( )A . 100×80﹣100x ﹣80x =7644B . (100﹣x )(80﹣x )+x 2=7644C . (100﹣x )(80﹣x )=7644D . 100x +80x =3568. 下列说法中,正确的是( ) A . 同位角相等B . 对角线相等的四边形是平行四边形C . 四条边相等的四边形是菱形D . 矩形的对角线一定互相垂直9. 已知:在△ABC 中,AB ≠AC ,求证:∠B ≠∠C .若用反证法来证明这个结论,可以假设 ( )A .∠A =∠B B .AB =BC C .∠B =∠CD .∠A =∠C10.如图,在△ABC 中,∠CAB=75°,在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′=( )A . 30°B . 35°C . 40°D . 50°11. 随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘乘轿车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为( ) A .x x 5.28158=+ B .155.288+=x xC .x x 5.28418=+D .415.288+=x x12 . 如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .19第Ⅱ卷(非选择题 共84分)注意事项:1.第Ⅱ卷为非选择题,请考生用蓝、黑色钢笔(签字笔)或圆珠笔直接在试卷上作答. 2.答卷前,请考生先将考点、姓名、准考证号、座号填写在试卷规定的位置.二、填空题(本大题共6个小题.每小题3分,共18分.把答案填在题中横线上.)13. 当x 时,分式x-31有意义 14. 在△ABC 中,∠A:∠B:∠C =1:2:3,AB =6cm ,则BC = cm . 15. 分解因式:3223x y 2x y +xy =- 16. 若关于x 的方程2222x m x x++=--有增根,则m 的值是______ 17..两个连续整数的积为42,这两个数分别为18. 如图4,正方形ABCD 中,点E 在BC 的延长线上,AC=CE,则下列结论: (1)∠ACE=1350.(2)∠E=22.50,(3)∠2=112.50.(4)AF 平分∠DAC. (5)DF=FC. 其中正确的有三、解答题(本大题共9个小题,共66分.解答应写出文字说明,证明过程或演算步骤.)得分 评卷人(1)因式分解 m 3n -9mn . (2)计算2111a a a a -++-20. (本小题满分8分)(1)解方程)12(3)12(4+=+x x x ;(2)解分式方程22121--=--xx x21. (本小题满分8分)某市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色.此时小刚得1分,否则小明得1分.这个游戏对双方公平吗?请说明理由.若你认为不公平,如何修改规则才能使游戏对双方公平?23(本小题满分8分)如图,在平行四边形ABCD 中,对角线AC ,BD 交于点O ,经过点O 的直线交AB 于E ,交CD 于F . 求证:OE =OF .B小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?25. (本小题满分9分)如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形.(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.26. (本小题满分10分)如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE.(1)证明DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.得分评卷人得分评卷人答案一.选择CBBCD D C C CA DB二.填空13.≠3, 14. 3 15.a+b 16.0 17 6\7 或-6\-7 18. (1)(2)(3)(4)(5)19.20. -1\2 3\423. 解析:证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD ……………2′∴∠OAE=∠OCF ……………4′∵∠AOE=∠COF ……………6′∴△OAE≌△OCF(ASA)∴OE=OF ……………8′24.解答:解:设购买了x件这种服装,根据题意得出:[80﹣2(x﹣10)]x=1200,解得:x1=20,x2=30,当x=30时,80﹣2(30﹣10)=40(元)<50不合题意舍去;答:她购买了30件这种服装.25解答:解:(1)ab﹣4x2;(2分)(2)依题意有:ab﹣4x2=4x2,(4分)将a=6,b=4,代入上式,得x2=3,(6分)解得x1=,x2=﹣(舍去).(7分)即正方形的边长为26解答:(1)证明:连结CE.∵点E为Rt△ACB的斜边AB的中点,∴CE=AB=AE.∵△ACD是等边三角形,∴AD=CD.在△ADE与△CDE中,,∴△ADE≌△CDE(SSS),∴∠ADE=∠CDE=30°.∵∠DCB=150°,∴∠EDC+∠DCB=180°.∴DE∥CB.(2)解:∵∠DCB=150°,若四边形DCBE是平行四边形,则DC∥BE,∠DCB+∠B=180°.∴∠B=30°.在Rt△ACB中,sinB=,sin30°=,AC=或AB=2AC.∴当AC=或AB=2AC时,四边形DCBE是平行四边形.A B CD 202X ~202X 度第二学期期末测试题八年级数学本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为36分;第Ⅱ卷共6页,满分为84分.本试题共8页,满分为120分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共36分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 下列因式分解正确的是( ). A .)(2y x x x xy x -=+- B .2223)(2b a a ab b a a -=+- C .3)1(4222+-=+-x x xD .)3)(3(92-+=-x x a ax2.如图,所给图形中是中心对称图形但不是轴对称图形的是3.下列一元二次方程有两个相等实数根的是( )A .x 2+3=0B .x 2+2x =0C .(x +1)2=0D .(x +3)(x -1)=04.已知等腰三角形两边的长分别为4,9,则这个等腰三角形的周长为( )A. 13B. 17C. 22D. 17或22 5.若代数式x 2+kxy+9 y 2是完全平方式,则k 的值是( )A 、3 ;B 、±3;C 、 6 ;D 、±66.如图,刘伯伯家有一块等边三角形的空地ABC ,已知点E 、F 分别是边AB 、AC 的中点,量得EF =5米,他想把四边形BCFE 用篱笆围成一圈放养小鸡,则需用篱笆的长是( )第6题图FECBAA CEBF A. 15米 B.20米 C.25米 D.30米7.一个多边形的每个内角均为108°,则这个多边形是( ).A .七边形B . 六边形C .五边形D .四边形8.计算22a b a b a b---的结果为( ) A .a b + B .a b - C . 22a b a b -- D . 22a b -9.四边形ABCD 中,对角线AC ,BD 相交于点O ,给出下列四个条件:①AD ∥BC ;②AD =BC ;③OA =OC ;④OB =OD . 从中任选两个条件,能使四边形ABCD 为平行四边形的选法有( )A .3种B .4种C .5种D .6种10. 如图,△ABC 中,AB=AC ,AD 是角平分线,DE ⊥AB ,DF ⊥AC ,E 、F 为垂足,对于结论:①DE=DF ;②BD=CD ;③AD 上任一点到AB 、AC 的距离相等;④AD 上任一点到B 、C 的距离相等.其中正确的是( ).A 、仅①②B 、仅③④C 、仅①②③D 、①②③④11.如图,△ABC 中,∠ABC =90°,AB =8,BC =6,点F ,D 是直线AC 上的两个动点,且FD =AC .点B 和点E 分别在直线AD 的两侧,AB =DE ,AB //DE ,当四边形BCEF 是菱形时AF 等于( )A. 75B. 145C. 5D. 4A C DFB12题图A B C D E 16题图12.如图,将一张边长为4的正三角形纸片剪成四个全等的小正三角形,得到4个小正三角形,然后将其中的一个三角形再剪成四个全等的小正三角形,得到7个小正三角形.根据以上操作,若得到202X 个小正三角形时,则最小正三角形的面积等于( ) A. 3 B.67114 C.671134⎛⎫⋅ ⎪⎝⎭D.23第Ⅱ卷(非选择题 共84分)注意事项:1.第Ⅱ卷为非选择题,请考生用蓝、黑色钢笔(签字笔)或圆珠笔直接在试卷上作答. 2.答卷前,请考生先将考点、姓名、准考证号、座号填写在试卷规定的位置.二、填空题(本大题共6个小题.每小题3分,共18分.把答案填在题中横线上.)13.分解因式:a 3-2a 2+a =_______________.14.据调查,2011年5月兰州市的房价均价为7600/m 2,2013年同期将达到8200/m 2,假设这两年兰州市房价的平均增长率为x ,根据题意,所列方程为 15.等边△ABC 的周长为12cm ,则它的面积为 .16. 如图,在□ABCD 中,∠B =80°,∠ADC 的角平分线DE 与BC 交于点E .若BE =CE , 则∠DAE = 度.17. 在△ABC 中,AB=AC=14cm ,D 为BA 的中点,DE ⊥AB 交BC 于E .若△EBC•的周长为25cm ,则BC 长为_______cm .得分 评卷人17题18题E BCFA18. 如图,在□ABCD 中,已知∠ODA =90°,AC =10cm ,BD =6cm ,则AD 的长为三、解答题(本大题共9个小题,共66分.解答应写出文字说明,证明过程或演算步骤.)19. (本小题满分6分)(1)解方程:2430x x -+=. (2)计算:222111a a aa a -+--+.20. (本小题满分6分)解方程:(1) (2)22121--=--xx x21. (本小题满分6分)(1)如图,四边形ABCD 是平行四边形,点E 、A 、C 、F 在同一直线上,且AE =CF .求证:BE =DF . 得分 评卷人 得分 评卷人得分评卷人(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC 的长.得分评卷人22. (本小题满分7分)先简化,再求值:,其中x=.得分评卷人23. (本小题满分7分)某校为了创建书香校园,购进了一批科普书和文学书.其中科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等,则文学书有多少本?24. (本小题满分8分)把一副扑克牌中的3张黑桃牌(它们的正面牌面数字分别是3、4、5)洗匀后正面朝下放在桌面上.(1)如果从中随机抽取一张牌,那么牌面数字是4的概率是多少?(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽出一张牌,记下牌面数字.当2张牌面数字相同时,小王赢;当2张牌面数字不相同时,小李赢.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.25. (本小题满分8分)如图,已知△ABC的三个顶点的坐标分别为A(-2.3)、B(-6,0)、C(-1,0)(1)请直接写出点A关于y轴对称点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°.画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.26. (本小题满分9分)如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.得分评卷人得分评卷人27. (本小题满分9分)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE.(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,∠EFD=∠BCD,并说明理由.八年级数学试题参考答案与评分标准题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 BCCCDCCABDBA二、填空题 13.2)1(-a a14. 8200)1(76002=+x 15. 234cm 16. 50 17. 11 18. 4cm三、解答题19. (1)1,321==x x (2)11+-a 20. (1) x =3 (2)x=2 是方程的增根21、解(1)略(2)AC=8 22、22 23. 100024. (1)31(2)不公平25、解:(1)点A 关于y 轴对称的点的坐标是(2,3);(2)图形如右,点B 的对应点的坐标是(0,-6);(3)以A、B、C为顶点的平行四边形的第四个顶点D的坐标为(-7,3)或(-5,-3)或(3,3).26、27、。
京改版八年级下册数学期末测试卷及含答案
京改版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如果正多边形的一个内角是,则这个多边形是()A.正十边形B.正九边形C.正八边形D.正七边形2、若关于的方程有一个根为 -1,则的值为( )A. B. C. D.3、如图,在平行四边形ABCD中,E为CD上一点,DE:CE=2:3,连结AE,BD,且AE、BD交于点F,则S△DEF:S△ADF:S△BAF等于()A.4:10:25B.4:9:25C.2:3:5D.2:5:254、如图,四边形ABCD,AEFG都是正方形,点E,G分别在AB,AD上,连接FC,过点E作EH∥FC交BC于点H.若AB=4,AE=1,则BH的长为()A.1B.2C.3D.5、下列说法错误的是()A.一组对边平行且相等的四边形是平行四边形B.两条对角线互相垂直的四边形是菱形C.三角形的中位线平行于三角形的第三边,并且等于第三边的一半D.直角三角形斜边上的中线等于斜边的一半6、如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为()A.1B.1.2C.1.4D.1.67、如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/小时)情况,则下列关于车速描述错误的是()A.平均数是23B.中位数是25C.众数是30D.方差是1298、下列方程中,有实数根的是()A. =-1B. =-xC. +3=0D. +4=09、下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形不一定是平行四边形D.对角线互相垂直平分且相等的四边形一定是正方形10、在直角坐标系中,A,B,C,D四个点的坐标依次为(﹣1,0),(x,y),(﹣1,5),(﹣5,z),若这四个点构成的四边形是菱形,则满足条件的z的值有()A.1个B.3个C.4个D.5个11、在正方形ABCD中,点E为AD中点,DF= CD,则下列说法:(1)BE⊥EF;(2)图中有3对相似三角形;(3)E到BF的距离为AB;(4)= .其中正确的有()A.4个B.3个C.2个D.1个12、函数y= 中自变量x的取值范围是()A.x>﹣1B.x≥﹣1C.x<﹣1D.x≤﹣113、正六边形的一个内角的度数是()A.90°B.120°C.135°D.150°14、如图,在菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为()A.1B.C.2D.15、如图,在边长为的正方形ABCD中,点E,F是对角线AC的三等分点,点P在正方形的边上,则满足PE+PF= 的点P的个数是()A.0B.4C.8D.16二、填空题(共10题,共计30分)16、如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有________(写出所有正确结论的序号)①△CMP∽△BPA;②四边形AMCB的面积最大值为10;③当P为BC中点时,AE为线段NP的中垂线;④线段AM的最小值为;⑤当△ABP≌△ADN时,BP= .17、将矩形纸片ABCD按如图所示的方式折叠,恰好得到菱形AECF.若AB=3,则菱形AECF的面积为________.18、一次函数y=(m﹣3)x﹣2的图象经过二、三、四象限,则m的取值范围是________.19、在古埃及,人们把三边之比为3:4:5的三角形称为“埃及三角形”,古埃及人用一张正方形纸片,将一边中点和对边的两个端点连结,就能得到“埃及三角形”,如图所示,在正方形ABCD中,点E、F、G分别是AB、BC、CD的中点,则图中为“埃及三角形”的是________(至少写出两个).20、一个凸多边形的内角和与外角和相等,它是________边形.21、在平面直角坐标系中,点到轴的距离为________.22、如图,正方形ABCD的对角线BD是菱形BEFD的一边,菱形BEFD的对角线BF交正方形ABCD的一边CD于点M,则∠FMC=________.23、如图,把矩形纸片沿着过点的直线折叠,使得点落在边上的点处,若,则∠DAE=________24、如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l 2,过点(1,0)作x轴的垂线交l2于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l2于点A3,过点A3作y轴的垂线交l2于点A 4,…依次进行下去,则点A2017的坐标为________.25、某商品经过两次连续的降价,由原来的每件25元降为每件16元,则该商品平均每次降价的百分率为________.三、解答题(共5题,共计25分)26、若关于x的一元二次方程有实数根,求m的取值范围.27、已知关于x的一元二次方程x2+(k﹣2)x+1﹣k=0.试说明无论k为何值,方程总有两个实数根.28、如图,在矩形ABCD中.点O在边AB上,∠AOC=∠BOD.求证:AO=OB.29、如图,阅读对话,解答问题.(1)试用树形图或列表法写出满足关于x的方程x2+px+q=0的所有等可能结果;(2)求(1)中方程有实数根的概率.30、如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD是菱形.参考答案一、单选题(共15题,共计45分)1、A2、C3、B4、C5、B7、D8、C9、D10、D11、B12、B13、B14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
八年级数学下学期期末考试试题 京改版
北京市大兴区-八年级数学下学期期末考试试题考生须知1.本试卷共4页,共三道大题,29道小题,满分100分.考试时间120分钟. 2.在试卷和答题卡上准确填写班级、姓名和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共10道小题,每题3分,共30分) 在每道小题给出的四个备选答案中,只有一个是符合题目要求的,请将所选答案前的字母按规定要求涂在答题纸第1-10题的相应位置上.1.在平面直角坐标系中,点M (-4,3)所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限 2.我国一些银行的行标设计都融入了中国古代钱币的图案.下图所示是我国四大银行的行标图案,其中是轴对称图形而不是中心对称图形的是A. B. C. D.3.下列各曲线表示的与的关系中,不是的函数的是4.若一个多边形的内角和为540°,则这个多边形的边数为A .4 B. 5 C. 6 D.7 5.在下列图形性质中,平行四边形不一定具备的是A .两组对边分别相等 B.两组对边分别平行 C.对角线相等 D.对角线互相平分 6.下列关于正比例函数y = 3x 的说法中,正确的是A .当x =3时,y =1 B.它的图象是一条过原点的直线 C. y 随x 的增大而减小 D.它的图象经过第二、四象限7.为了备战2016年里约奥运会,中国射击队正在积极训练.甲、乙两名运动员在相同的条件下,各射击10次.经过计算,甲、乙两人成绩的平均数均是9.5环,甲的成绩方差是0.125,乙的成绩的方差是0.85,那么这10次射击中,甲、乙成绩的稳定情况是A .甲较为稳定B .乙较为稳定C .两个人成绩一样稳定D .不能确定8.用两个全等的直角三角形纸板拼图,不一定能拼出的图形是A .菱形 B. 平行四边形 C. 等腰三角形 D.矩形9.已知,在平面直角坐标系xOy 中,点A ( -4,0 ),点B 在直线y = x +2上.当A ,B 两点间的距离最小时,点B 的坐标是A .( , ) B.(,) C.( -3,-1 ) D.(-3, )y x y x 2-2-2-2-2-2-210. 设max {m ,n }表示m ,n (m ≠ n )两个数中的最大值.例如max {-1,2}=2,max {12,8}=12,则max {2x ,x 2+2}的结果为A .B .C .D .二、填空题(本题共8道小题,每题2分,共16分) 11.点P (-3,1)到y 轴的距离是______. 12.函数中,自变量的取值范围是______.13.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S (单位:平方米)与工作时间t (单位:小时)的函数关系的图象如图所示,则休息后园林队每小时的绿化面积为______平方米.14.点,点是一次函数y = 4x +2图象上的两个点. 若,则______(填“>”或“<”)15.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,E 是AB 的中点,连结EO .若EO =2,则CD 的长为______ .16.若m 是方程的根,则代数式的值是______ .17.写出一个同时满足下列两个条件的一元二次方程______ . (1)二次项系数是1 (2)方程的两个实数根异号18.印度数学家什迦罗(1141年-1225年)曾提出过“荷花问题”:平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边; 渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅? 如图所示:荷花茎与湖面的交点为O ,点O 距荷花的底端A 的距离为0.5尺; 被强风吹一边后,荷花底端与湖面交于点B ,点B 到点O 的距离为2尺,则湖水深度OC 的长是 尺.三、解答题(本题共11道小题,第19小题4分,其余各题每小题5分,共54分)19. 已知一次函数的图象与直线y =-3x +1平行,且经过点A (1,2),求这个一次函数的表达式.20.解方程:.222x x --222x x ++2x 22x +11y x =-x 111()P x y ,222()P x y ,12x x <1y 2y 240x x +-=3255m m +-2410x x +-=21.某年级进行“成语大会”模拟测试,并对测试成绩(x分)进行了分组整理,各分数段成分数段x≥9080≤x<9070≤x<8060≤x<70x<60人数2464494518填空:(1)这个年级共有名学生;(2)成绩在分数段的人数最多,占全年级总人数的比值是;(3)成绩在60分以上(含60分)为及格,这次测试全年级的及格率是.22.已知关于的一元二次方程mx2-(2m+1)x+(m+2)=0有两个不相等的实数根,求m的取值范围.23.已知一次函数的图象经过点(-1,-5),且与正比例函数y= 12x的图象相交于点(2,a).求这个一次函数的图象与y轴的交点坐标.24.已知:如图,在□ABCD中,点E,F分别在BC,AD上,且BE=FD,求证:AE=CF.25.已知:如图,在菱形ABCD中,∠BCD=2∠ABC,AC=4,求菱形ABCD的周长.26.已知:如图,矩形ABCD,E是AB上一点,连接DE,使DE=AB,过C作CF⊥DE于点xF .求证:CF =CB.27.已知:如图,在正方形ABCD 中,M ,N 分别是边AD ,CD 上的点,且∠MBN =45。
北师大版八年级下册数学期末考试试卷含答案
北师大版八年级下册数学期末考试试题一、单选题1.下列垃圾分类标识中,是中心对称图形的是()A .B .C .D .2.如果x y <,那么下列不等式正确的是()A .22x y<B .22x y-<-C .11x y ->-D .11x y +>+3.若分式242x x -+的值为0,则x 的值为()A .-2B .0C .2D .±24.如图,在平行四边形ABCD 中,∠A =40°,则∠C 大小为()A .40°B .80°C .140°D .180°5.下列各式从左到右的变形一定正确的是()A .n m=11n m ++B .22x y x y--=x ﹣yC .b a =22b aD .b a=2a b a 6.下列多项式能直接用完全平方公式进行因式分解的是()A .x 2+2x ﹣1B .x 2﹣x +14C .x 2+xy +y 2D .9+x 2﹣3x7.下列命题不正确的是()A .等腰三角形的两底角相等B .平行四边形的对角线互相平分C .角平分线上的点到角两边的距离相等D .三个角分别对应相等的两个三角形全等8.下列条件不能判定四边形ABCD 是平行四边形的是()A .,AD BC AB CD ==B .,AC BD ∠=∠∠=∠C .//,AB CD BC AD=D .//,AD BC B D∠=∠9.如图,一次函数1y kx b =+的图象与直线2y m =相交于点P (-1,3),则关于x 的不等式0kx b m +->的解集为()A .3x >B .1x <-C .1x >-D .3x <10.如图,已知∠ABC ,小彬借助一把没有刻度且等宽的直尺,按如图的方法画出了∠ABC 的平分线BP .他这样做的依据是()A .在一个角的内部,且到角两边的距离相等的点在这个角的平分线上B .角平分线上的点到这个角两边的距离相等C .三角形三条角平分线的交点到三条边的距离相等D .测量垂直平分线上的点到这条线段的距离相等二、填空题11.若一个多边形的每一个外角都等于30°,则这个多边形的边数为_________.12.如图,在△ABC 中,BC =8cm ,D 是BC 的中点,将△ABC 沿BC 向右平移得△A′DC′,则点A 平移的距离AA′=___cm .13.计算:223211a a a +-=--______________.14.实验初中初二(1)班同学参加社会实践活动,几名同学打算包租一辆车前往,该车的租价为180元,出发时,又增加了两名同学,结果每名同学比原来少分摊了3元车费.设参加实践活动的学生原有x 人,则可列方程为_______.15.如图,四边形ABCD 中,∠B +∠D =180°,AC 平分∠DAB ,CM ⊥AB 于点M ,若AM =4cm ,BC =2.5cm ,则四边形ABCD 的周长为_____cm.16.如图,▱ABCD 中,∠ABC =45°,EF 是BC 的垂直平分线,EB =AB ,若BD =6,则AB =_______.三、解答题17.分解因式:(1)2242x x -+(2)22()9()a x yb y x -+-18.利用数轴求出不等式组的解集.3212125x x x x <+⎧⎪++⎨>⎪⎩.19.先化简:(7211a a a +--+)÷2231a aa +-,再从﹣3、﹣2、﹣1、0、1中选一个合适的数作为a 的值代入求值.20.解分式方程:21133x xx x -=++21.如图所示,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (﹣3,5),B (﹣2,1),C (﹣1,3).(1)若△ABC 经过平移后得到△A 1B 1C 1,已知点C 1的坐标为(4,0),画出△A 1B 1C 1;(2)将△ABC 绕着点O 按顺时针方向旋转90°得到△A 2B 2C 2,则点A 2的坐标为,点C 2的坐标为.(3)点D是平面直角坐标系内一点,若以A、B、C、D为顶点的四边形为平行四边形,直接写出满足条件的D点坐标.22.如图,在▱ABCD中,对角线AC、BD相交于点O,E、F为直线BD上的两个动点(点E、F始终在▱ABCD的外面),且DE=12OD,BF=12OB,连接AE、CE、CF、AF.(1)求证:四边形AFCE为平行四边形.(2)若AC=6,EF=10,AF=4,则平行四边形AFCE的周长为.23.某网店预测一种时尚T恤衫能畅销,用4800元购进这种T恤衫,很快售完,接着又用6600元购进第二批这种T恤衫,第二批T恤衫数量是第一批T恤衫数量的1.5倍,且每件T恤衫的进价第二批比第一批的少5元.(1)求第一批T恤衫每件的进价是多少元?(2)若第一批T恤衫的售价是80元/件,老板想让这两批T恤衫售完后的总利润不低于4060元,则第二批T恤衫每件至少要售多少元?(T恤衫的售价为整数元)24.如图,在四边形ABCD中,∠B=60°,AB=DC=4,AD=BC=8,延长BC到E,使CE =4,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC ﹣CD ﹣DA 向终点A 运动,设点P 运动的时间为t 秒(t >0).(1)当t =3时,BP =;(2)当t =时,点P 运动到∠B 的角平分线上;(3)当0<t <6时,请用含t 的代数式表示△ABP 的面积S ;(4)当0<t <6时,直接写出点P 到四边形ABED 相邻两边距离相等时t 的值.25.如图,四边形ABCD 中,45ABC ADC ∠=∠=︒,将BCD ∆绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到ACE ∆.(1)请求出旋转角的度数;(2)请判断AE 与BD 的位置关系,并说明理由;(3)若2AD =,3CD =,试求出四边形ABCD 的对角线BD 的长.26.思维启迪(1)如图,△ABC 中,AB =4,AC =2,点在AB 上,AD =AC ,AE ⊥CD 垂足为E ,点F 是BC 中点,则EF 的长度为.思维探索(2)如图2,等边三角形ABC 的边长为4,AD ⊥BC 垂足为D ,点E 是AC 的中点,点M 是AD 的中点,点N 是BE 的中点,求MN 的长.(3)将(2)中的△CDE 绕C 点旋转,其他条件不变,当点D 落在直线AC 上时,画出图形,并直接写出MN长.参考答案1.B【分析】利用中心对称图形的定义进行解答即可.【详解】解:A.不是中心对称图形,故此选项不合题意;B.是中心对称图形,故此选项符合题意;C.不是中心对称图形,故此选项不合题意;D.不是中心对称图形,故此选项不合题意;故选:B.【点睛】此题主要考查了中心对称图形,关键是掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.2.A【解析】【分析】根据不等式的性质对各选项分析判断后利用排除法求解.【详解】解:A 、由x <y 可得:22x y <,故选项成立;B 、由x <y 可得:22x y ->-,故选项不成立;C 、由x <y 可得:11x y -<-,故选项不成立;D 、由x <y 可得:11x y +<+,故选项不成立;故选A.【点睛】本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.3.C 【解析】【详解】由题意可知:24020x x =⎧-⎨+≠⎩,解得:x=2,故选C.4.A 【解析】【分析】由平行四边形的性质:对角相等,得出∠C=∠A .【详解】解:∵四边形ABCD 是平行四边形,∴∠C=∠A=40°,故选A .【点睛】本题考查了平行四边形的性质,解答本题的关键是掌握平行四边形的对角相等.5.D 【解析】【分析】根据分式的基本性质(分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变)逐个判断即可.【详解】解:A.11n m m n ++≠,故本选项不符合题意;B.22x y x y--=()()x y x y x y +--=x +y ,故本选项不符合题意;C.当b =﹣2,a =1时,22bb a a ≠,故本选项不符合题意;D.2b ab a a =,故本选项符合题意;故选:D .【点睛】本题考查了分式的基本性质,解题的关键是正确理解并运用分式的基本性质.6.B 【解析】【分析】根据能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍进行分析即可.【详解】解:A 、x 2+2x ﹣1不能直接用完全平方公式进行因式分解,故此选项不合题意;B 、x 2﹣x +14=(x ﹣12)2,能直接用完全平方公式进行因式分解,故此选项符合题意;C 、x 2+xy +y 2不能直接用完全平方公式进行因式分解,故此选项不合题意;D 、9+x 2﹣3x 不能直接用完全平方公式进行因式分解,故此选项不合题意;故选:B .【点睛】本题考查了公式法分解因式,解题的关键是掌握完全平方公式:()2222a ab b a b ±+=±.7.D 【解析】【分析】利用等腰三角形的性、平行四边形的性质、角平分线的性质及全等三角形的判定分别判断后即可确定正确的选项.【详解】解:A、等腰三角形的两底角相等,正确,不符合题意;B、平行四边形的对角线互相平分,正确,不符合题意;C、角平分线上的点到角两边的距离相等,正确,不符合题意;D、三个角分别对应相等的两个三角形不一定全等,故错误,符合题意,故选:D.【点睛】本题考查了判断命题的正误,等腰三角形的性、平行四边形的性质、角平分线的性质及全等三角形的判定,掌握相关的性质定理是解题的关键.8.C【解析】【分析】根据平行四边形的判定逐一判断即可.【详解】解:A.由AD=BC,AB=CD可根据两组对边分别相等的四边形是平行四边形知四边形ABCD 是平行四边形,此选项不符合题意;B.由∠A=∠C,∠B=∠D可根据两组对角分别相等的四边形是平行四边形知四边形ABCD 是平行四边形,此选项不符合题意;C.由AB∥CD,BC=AD不能判定四边形ABCD是平行四边形,此选项符合题意;D.由AD∥BC知∠A+∠B=180°,结合∠B=∠D知∠A+∠D=180°,所以AB∥CD,此时可根据两组对边分别平行的四边形是平行四边形知四边形ABCD是平行四边形,此选项不符合题意;故选:C.【点睛】本题主要考查平行四边形的判定,解题的关键是掌握两组对边分别平行的四边形是平行四边形、两组对边分别相等的四边形是平行四边形、一组对边平行且相等的四边形是平行四边形.9.B【解析】【分析】把点P (-1,3)与点(0,1)求出一次函数1y kx b =+与2y m =的解析式,然后利用解不等式的方法求解即可;也可以通过观察图象,比较函数值大小来确定x 的的取值范围.【详解】解法一:依据题意有点P (-1,3)与点(0,1)在一次函数1y kx b =+的图象上,∴13b x b=⎧⎨=-+⎩,解得12b k =⎧⎨=-⎩,点P (-1,3)在直线2y m =的图象上,∴m=3,∴0kx b m +->即为220x -->,解得1x <-.解法二:∵0kx b m +->,∴kx b m +>,∵1y kx b =+,2y m =,∴12y y >,即一次函数1y kx b =+的图象在直线2y m =的上面部分,观察图象,这部分图象对应的x 的取值范围是:1x <-.故选:B .【点睛】本题主要考查了一次函数与一元一次不等式,数形结合是解题关键.10.A 【解析】【分析】根据角平分线判定得出BP 平分∠DPE ,根据平行线的性质推出∠DBP =∠EBP ,即可得出答案.【详解】解:∵∠M =∠N =90°,BM =BN ,∴BP 平分∠DPE ,∴∠DPB =∠EPB ,∵DP∥BC,PE∥BD,∴∠DPB=∠PBE,∠EPB=∠DBP,∴∠DBP=∠EBC,即在一个角的内部,到角的两边距离相等的点在角的平分线上,故选:A.【点睛】本题主要考查了角平分线的判定,平行线的性质的应用,注意:角的内部到角的两边距离相等得点在角的平分线上.11.12【解析】【分析】多边形的外角和为360°,而多边形的每一个外角都等于30°,由此做除法得出多边形的边数.【详解】解:∵360°÷30°=12,∴这个多边形为十二边形,故答案为:12.【点睛】本题考查了多边形的外角,关键是明确多边形的外角和为360°.12.4【解析】【分析】利用平移的性质(平移前后两图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点;连接各组对应点的线段平行且相等)解决问题即可.【详解】解:∵D 是BC 的中点,∴BD =12BC =4(cm),由平移的性质可知,AA′∥BD ,AA′=BD ,∴AA′=4(cm),故答案为:4.【点睛】本题考查了平移的性质,解题的关键是熟练掌握平移的性质.13.11a a -+【解析】【分析】先通分,再进行分式的加减即可得到答案.【详解】解:223211a a a +---=()()()()()22131111a a a a a a ++-+-+-=()()232211a a a a +--+-=()()()2111a a a -+-=11a a -+故答案为:11a a -+.【点睛】此题考查的是分式的加减运算,掌握其运算法则是解决此题关键.14.18018032x x -=+【解析】【分析】设原参加游览的同学共x人,则原有的几名同学每人分担的车费为:180x元,出发时每名同学分担的车费为:180x2+,根据每个同学比原来少摊了3元钱车费即可得到等量关系.【详解】解:设原参加游览的同学共x人,根据题意得:1801803 x x2-=+,故答案为:1801803 x x2-=+.【点睛】本题主要考查了分式方程的应用,解题的关键是首先弄清题意,根据关键描述语,找到合适的等量关系;易错点是得到出发前后的人数.15.13【解析】【分析】过C作CE⊥AD的延长线于点E,由条件可证△AEC≌△AMC,得到AE=AM.证明△ECD≌△MBC,由全等的性质可得DE=MB,BC=CD,则问题可得解.【详解】解:如图,过C作CE⊥AD的延长线于点E,∵AC平分∠BAD,∴∠EAC=∠MAC,∵CE⊥AD,CM⊥AB,∴∠AEC=∠AMC=90°,CE=CM,在Rt△AEC和Rt△AMC中,AC=AC,CE=CM,∴Rt△AEC≌Rt△AMC(HL),∴AE=AM=4cm,∵∠ADC +∠B =180°,∠ADC +∠EDC =180°,∴∠EDC =∠MBC ,在△EDC 和△MBC 中,DEC CMB EDC MBC CE CM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EDC ≌△MBC (AAS ),∴ED =BM ,BC =CD =2.5cm ,∴四边形ABCD 的周长为AB +AD +BC +CD =AM +BM +AE ﹣DE +2BC =2AM +2BC =8+5=13(cm ),故答案为:13.【点睛】本题考查全等三角形的判定与性质,掌握常用的判定方法是解题的关键.16.3【解析】【分析】连接CE ,过C 作CG ⊥DE 于G ,由线段垂直平分线的性质得EB =EC ,则∠EBC =∠ECB ,再证EC =CD ,则∠CED =∠CDE ,设∠EBC =∠ECB =α,则∠CDE =∠CED =∠EBC +∠ECB =2α,然后由三角形内角和定理求出α=15°,则∠CDE =∠CED =30°,设AB =EB =EC =CD =x ,则DE =BD ﹣EB =6﹣x ,最后由含30°角的直角三角形的性质和等腰三角形的性质得EG,EG =12DE =12(6﹣x ),则2x =12(6﹣x ),解方程即可.【详解】解:连接CE ,过C 作CG ⊥DE 于G,如图所示:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠ABC +∠BCD =180°,∴∠BCD =180°﹣45°=135°,∵EF 是BC 的垂直平分线,∴EB =EC ,∴∠EBC =∠ECB ,∵EB =AB ,∴EC =CD ,∴∠CED =∠CDE ,设∠EBC =∠ECB =α,则∠CDE =∠CED =∠EBC +∠ECB =2α,在△BCD 中,∠DBC +∠CDB =180°﹣135°=45°,即α+2α=45°,解得:α=15°,∴∠CDE =∠CED =30°,设AB =EB =EC =CD =x ,则DE =BD ﹣EB =6﹣x ,∵CG ⊥DE ,∴CG =12EC =12x ,EG ,又∵EC =DC ,CG ⊥DE ,∴EG =DG =12DE =12(6﹣x ),=12(6﹣x ),解得:x =3,即AB =3,故答案为: 3.【点睛】此题主要考查了平行四边形、直角三角形以及等腰三角形的有关性质,熟练掌握相关基础知识是解题的关键.17.(1)22(1)x -;(2)()(3)(3)x y a b a b -+-【解析】【分析】(1)先提公因式,再由完全平方公式进行因式分解,即可得到答案;(2)先整理,然后提公因式,再由平方差公式进行分解因式,即可得到答案.解:(1)2242x x -+=22(21)x x -+=22(1)x -;(2)22()9()a x yb y x -+-=22()9()a x yb x y ---=22()(9)x y a b --=()(3)(3)x y a b a b -+-.【点睛】本题考查了因式分解的方法,解题的关键是熟练掌握分解因式的方法进行解题.18.﹣3<x <1【解析】【分析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.【详解】解:3212125x x x x <+⎧⎪⎨++>⎪⎩①②,解不等式①得:x <1,解不等式②得:x >﹣3,在数轴上表示不等式①、②的解集,得:,∴不等式组的解集是:﹣3<x <1.【点睛】本题主要考查了解一元一次不等式组,解题的关键是要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.19.3a a+;12-.【解析】先把括号内的两项通分后利用同分母分式的加减法法则进行计算,同时把除法转化为乘法,最后约分化成最简分式,根据分式有意义的条件选择一个a 值代入求值即可.【详解】解:22723111a a aa a a ++⎛⎫-÷ ⎪-+-⎝⎭=()()()()()()()()712111113a a a a a a a a a ++--+-⋅-++=()2693a a a a +++=()()233a a a ++=3a a+当a=-3、-1、1、0时,原式没有意义,舍去,当a=-2时,原式=23122-+=--.【点睛】本题考查分式的化简求值,熟练掌握分式的基本性质及分式有意义的条件是解题关键.20.32x =-【解析】【分析】先将分式方程化为整式方程,然后解整式方程并验根即可.【详解】解:方程两边都乘以()31x +,得:()3312x x x -+=,解得:32x =-,经检验,32x =-是原方程的解.【点睛】此题考查的是解分式方程,掌握分式方程的解法是解题关键.21.(1)见解析;(2)(5,3),(3,1);(3)(﹣4,3),(﹣2,7),(0,1).【解析】【分析】(1)利用平移变换的性质分别作出A ,B ,C 的对应点A 1,B 1,C 1即可.(2)利用旋转变换的性质分别作出A ,B ,C 的对应点A 2,B 2,C 2即可.(3)根据平行四边形的判定画出图形,可得结论.【详解】解:(1)∵C (﹣1,3),C 1的坐标为(4,0)∴△ABC 向右平移了五个单位,向下平移了三个单位,∴A 1(2,2),B 1(3,-2),C 1(4,0)如图,△A 1B 1C 1即为所求.(2)如图,△A 2B 2C 2即为所求,点A 2的坐标为(5,3),点C 2的坐标为(3,1).故答案为:(5,3),(3,1).(3)分别过、、A B C 作BC AC AB 、、的平行线,分别相交于点D D D '''、、,如上图所示,∵A (﹣3,5),C (﹣1,3)∴点B 向左移动两个单位,向上移动两个单位,可得点D又∵B (﹣2,1),∴D 点坐标为(﹣4,3),同理可以求得1)(0D ',,27)(D ''﹣,满足条件的D 点坐标(﹣4,3),(﹣2,7),(0,1).故答案为:(﹣4,3),(﹣2,7),(0,1).【点睛】此题主要考查了图形的变换,涉及了平移变换、旋转变换以及平行四边形的性质,熟练掌握相关基础知识是解题的关键.22.(1)见解析;(2)8+.【解析】【分析】(1)由平行四边形的性质得OA =OC ,OB =OD .再证OE =OF ,即可得出结论;(2)由勾股定理的逆定理证明△AOF 是直角三角形,∠OAF =90°,再由勾股定理得CF =【详解】(1)证明:∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD .∵DE =12OD ,BF =12OB ,∴DE =BF ,∴OD +DE =OB +BF ,即OE =OF ,∴四边形AFCE 为平行四边形;(2)解:如图所示:由(1)得:OA =OC =12AC =3,OE =OF =12EF =5,∵AF =4,∴OA 2+AF 2=OF 2,∴△AOF是直角三角形,∠OAF=90°,∴CF∵四边形AFCE是平行四边形,∴CE=AF=4,AE=CF=∴平行四边形AFCE的周长=2(AF+CF)=8+故答案为:8+【点睛】本题主要考查了平行四边形的判定和性质、勾股定理和勾股定理逆定理的应用;熟练掌握平行四边形的判定和性质及勾股定理及逆定理是解题的关键.23.(1)60元;(2)76元【解析】【分析】(1)已知金额设出进价,表示出数量,根据数量关系列出方程;(2)在(1)的基础上,根据求出的两次进价求出两次进货数量,列出关于总利润的不等式.【详解】解:(1)设第一批T恤衫每件的进价为x元,根据题意得:480066001.55 x x⨯=-,解得x=60,经检验,x=60是原方程的解,答:第一批T恤衫的进价为60元.(2)设第二批T恤衫的售价为y元,根据题意,得。
2020-2021学年第二学期京改版数学八年级下册期末测试习题(含答案解析)
2020-2021学年度第二学期初二数学京改版八年级下册期末测试一、选择题1.下列命题中,正确的是( )A .邻边相等的四边形是菱形B .有一个角是直角的四边形是矩形C .四个角相等的菱形是正方形D .两条对角线互相垂直且相等的四边形是正方形 2.已知点A (2,-3),直线AB 与x 轴没有交点,则点B 的坐标可能是 ( )A .(-2,3)B .( 2,3)C .(1,-3)D .(-3,-2)3.下列函数的图象不经过第三象限,且y 随x 的增大而减小的是( )A .31y x =-+B .31y x =--C .31y xD .31y x =-4.下列各点,在一次函数y =﹣12x +1的图象上的是( ) A .(0,1) B .(﹣1,12) C .(1,32) D .(3,0)5.下列一元二次方程没有实数根的是( )A .2-20x =B .2-20x x =C .210x x ++=D .()()-1-30x x =6.若1x 、2x 是方程2560x x -+=的两个解,则代数式()()1211x x ++的值为( )A .8B .10C .12D .147.关于x 的方程2253x x -=的二次项系数和一次项系数分别是( )A .3,2-B .3,2C .2,3-D .2,5-8.用配方法解一元二次方程2420x x -+=,下列配方正确的是( )A .()222x +=B .2(2)2x -=-C .2(2)2x -=D .2(26)x -=9.在4(x ﹣1)(x+2)=5,x 2+y 2=1,5x 2﹣10=0,2x 2+8x=0,1x =x 2+3中,是一元二次方程的个数为( ) A .2个 B .3个 C .4个 D .5个10.若一元二次方程x 2﹣2kx +k 2=0的一根为x =﹣1,则k 的值为( )A .﹣1B .0C .1或﹣1D .2或011.方程x 2﹣3x +2=0的解是( )A .x 1=1,x 2=2B .x 1=﹣1,x 2=﹣2C .x 1=1,x 2=﹣2D .x 1=﹣1,x 2=212.某人将一枚质量分布均匀的硬币连续抛50次,落地后正面朝上30次,反面朝上20次,下列说法正确的是( )A .出现正面的频率是30.B .出现正面的频率是20.C .出现正面的频率是0.6.D .出现正面的频率是0.4. 13.在2,5,3,7,2,6,2,1这组数据中插入一个任意数x ,则一定不会改变的是( )A .标准差B .中位数C .平均数D .众数14.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为20.36S =甲,20.60S =乙,20.50S =丙,20.45S =丁,则成绩最稳定的是( ) A .甲 B .乙 C .丙 D .丁15.人数相同的八年级一、二两班同学在同一次数学单元测试,班级平均分和方差如下:1280x x ==,221224,18s s ==,则成绩较为稳定的班级是( )A .一班B .二班C .两班成绩一样稳定D .无法确定二、填空题16.直角坐标平面内,已知点(1,2)A -,点(2,6)B ,那么AB =___________.17.方程2(1)9x -=的根是___________.18.在实数范围内分解因式:251x x -+=___________.19.某厂前年的产值为50万元,今年上升到72万元,这两年的年平均增长率是__.20.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,方差是1,则数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的方差是______.三、解答题21.我县某中学七、八年级各选派10名选手参加学校举办的“爱我太康”知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a ,b .(1)请依据图表中的数据,求a ,b 的值;(2)直接写出表中的m ,n 的值;(3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.22.解方程:()()2-55-2x x x +=23.为了提倡低碳出行,某市引进共享单车,2019年第一季度投放了20万辆,到第三季度结束计划投放24.2万辆,求该市第二、三季度投放共享单车的平均增长率,按照这样的增长速度,预计到2019年底投放共享单车多少辆?24.随着人民生活水平的不断提高,某市家庭轿车的拥有量逐年增加.据统计,某小区2011年底拥有家庭轿车64辆,2013年底家庭轿车的拥有量达到100辆.(1)若该小区2011年底到2013年底家庭轿车拥有量的年平均增长率相同,请求出这个平均增长率. (2)按(1)的平均增长率,到2014年底该小区家庭轿车的拥有量达到多少辆?(3)为了缓解停车矛盾,该小区决定再建造70个停车位.据估算,建造室内停车位的费用为5000元/个,建造露天停车位的费用为1000元/个,考虑到实际因素,计划露天停车位的数量不超过室内停车位的3倍,而且总投资不超过15万元,试求该小区可建造两种停车位各多少个?试写出所有可能的方案.。
北师大版数学八年级下册期末考试试卷含答案
北师大版数学八年级下册期末考试试题一、填空题(本大题共12小题15空,每空2分,共30分)1.因式分解:29x -=__________.分式2xx -有意义的条件是__________.2.化简2224b a a b⋅的结果为__________.如图,ABC △与DEC △关于点C 成中心对称,若2AB =,则DE =___________.3.在平面直角坐标系中,将点()7,0P 先向下平移3个单位长度,再向左平移2个单位长度后,得到点P ',则点P '的坐标为__________.4.若平行四边形的周长为20cm ,一边长为4cm ,则它的邻边长为__________cm .5.“y 的2倍与8的和不大于2与y 的和”用不等式表示为__________.6.如图,在六边形ABCDEF 中,若//AF BC ,则1234∠+∠∠+∠+的度数为_______.7.若不等式组3x x m <⎧⎨<⎩的解集是3x <,则m 的取值范围是__________.8.若关于x 的一次函数10y mx n m =+≠()与2y x a =-+的交点坐标为5,b (),则mx n x a <-++的解集为__________.9.对于两个非零的实数a ,b ,定义运算※如下:11a b b a =-※例如:111344312=-=-※若5x y =※,则2xyx y-的值为__________.10.如图,在ABC △中,100BAC ∠=︒,将ABC △绕点A 逆时针旋转150°,得到ADE △,这时点B ,C ,D 恰好在同一条直线上,则E ∠的度数为__________.11.如图,在四边形ABCD 中,12AD =,对角线AC ,BD 交于点O ,90ADB ∠=︒,5OD OB ==,26AC =,则四边形ABCD 的面积为__________.12.给定一列分式:3x y,52x y -,73x y ,94x y -,…根据你发现的规律,试写出第6个分式为__________.第n (n 为正整数)个分式为__________.二、选择题(每小题只有一个正确选项,每小题3分,共24分)13.如图,在平行四边形ABCD ,60B ∠=︒,则D ∠的度数为()A .30B .60°C .110°D .120°14.下列式子中,属于最简分式的是()A .32a a B .93b aC .242a a ++D .2b a a ab--15.不等式531x -≤的解集是()A .45x ≤B .25x ≤-C .25x ≥-D .45x ≥16.如图所示的是正十二角星体,因为其独特的对称美,所以2019年在英国举办的第60届国际数学奥林匹克的会标就选用了正十二角星体.若将它绕自身中心旋转一定角度之后能与原图重合,则这个角度不可能是()A .60°B .90°C .120°D .180°17.对代数式2441x x -+进行因式分解,正确的是()A .2441411x x x x -+=-+()B .2214412(2x x x -+=-C .244141x x x -+=-2()D .244121x x x -+=-2()18.如图,在ABC △中,D ,E 分别是AB ,AC 边的中点,连接BE ,DE .若2BDE S =△,则BCE S △的值为()A .2B .4C .6D .819.如图,在ABC △中,60B ∠=︒,40A ∠=︒,分别以点B ,C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N ,作直线MN ,交AB 于点P ,连接CP ,则ACP ∠的度数为()A .40°B .30°C .20°D .10°20.在ABC △中,A ∠,B ∠,C ∠的对边分别是a ,b ,c ,以下命题是假命题的是()A .若B C A ∠+∠=∠,则ABC △是直角三角形B .若2())a b c b c =+-(,则ABC △是直角三角形C .若::1:2:3A B C ∠∠∠=,则ABC △是直角三角形D .若23a =,24b =,25c =,则ABC △是直角三角形三、(本大题共3小题,第21题5分,第22题5分,第23题8分,共18分)21.一个n 边形的内角和是它的外角和的3倍,求n 的值.22.如图,P 是MON ∠内—一点,PA OM ⊥于点A ,PB ON ⊥于点B ,连接AB ,PAB PBA ∠=∠.求证:OP 平分MON ∠.23.解不等式组:3(2)84113x x x x --≤⎧⎪+⎨-<⎪⎩并在数轴上表示它的解集.四、(本大题共3小题,第24题9分,第25题8分,第26题9分,共26分)24.先化简,再求值:2221a a b a b--+,其中6a =,02b =.25.如图,在平面直角坐标系中,点A 的坐标为(2,0),等腰Rt ABC △的边AB 在x 轴的正半轴上,90ABC ∠=︒,点B 在点A 的右侧,点C 在第一象限,若将ABC △绕点A 逆时针旋转75°,点C 的对应点E 恰好落在y 轴的正半轴上.(1)求AE 的长.(2)求点C 的坐标.26.如图,在四边形ABCD 中,//AD BC ,AC 与BD 交于点E ,E 是BD 的中点,延长CD 到点F ,使DF CD =,连接AF .(1)求证:AE CE =.(2)求证:四边形ABDF 是平行四边形.五、(本大题共2小题,第27题10分,第28题12分,共22分)27.枇杷肉质厚实,鲜甜微酸,营养价值很高,是初夏里受人们喜爱的水果之一.枇杷一上市,某水果店的老板就用1350元购进一批枇杷,很快售完.老板又用1900元购进第二批枇杷,所购箱数是第一批的43倍,但进价比第一批每箱多了5元.(1)求第一批枇杷的每箱进价.(2)老板以每箱145元的价格销售第二批枇杷,售出80%后,为了尽快售完,决定将剩下的打折促销.要使得第二批枇杷的销售利润不少于855元,剩余的枇杷每箱售价至多打几折?28.已知等边ABC △和等腰CDE △,CD DE =,120CDE ∠=︒.(1)如图,点D 在BC 上,点E 在AB 上,P 是BE 的中点,连接AD ,PD ,请写出线段AD 与PD 之间的数量关系,并说明理由.(2)如图,点D 在ABC △内部,点E 在ABC △外部,P 是BE 的中点,连接AD ,PD ,延长ED 到点F ,使得DF DE =,连接BF ,CF .则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)如图,若点D 在ABC △内部,点E 和点B 重合,点P 在BC 下方,且PB PC +为定值,当PD 取得最大值时,请直接写出BPC ∠的度数.参考答案1.(3)(3)x x +-;2x =2.2a b;23.(5,-3)4.65.282y y+≤+6.180°7.3m ≥8.5x <9.2510.65°11.12012.126x y-;211(1)n n nx y++-⋅13.B14.C15.A16.B17.D18.B19.C20.D21.解:由题意得18023603n ⨯-=⨯(),解得8n =.22.解∵PAB PBA∠=∠,∴PA PB =.∵PA OM ⊥于点A ,PB ON ⊥于点B ,∴OP 平分MON ∠.23.解:(3(2)8,4113x x x x --≤⎧⎪⎨+-<⎪⎩①,②解不等式①,得3x ≤,解不等式②,得4x >-,∴不等式组的解集为43x -<≤.把解集表示在数轴上如下图:24.解:原式2()()()()a a ba b a b a b a b -=-+-+-1()()a b a b a b a b+==+--当6a =,021b ==时,原式11615==-.25.解:(1)∵点A 的坐标为(2,0),∴2OA =.∵45BAC ∠=︒,75CAE ∠=︒,∴180754560EAO ∠=︒-︒-︒=︒,∵90AOE ∠=︒,∴30AEO ∠=︒,∴24AE OA ==.(2)由题意可得AC AE =,∴4AC =.设AB BC x ==.在Rt ABC △中,由勾股定理得222AB BC AC +=,即2224x x +=.∵0x >,∴x =,∴2OB OA AB =+=+BC =.∴点C的坐标为(2+.26.证明:(1)∵E 是BD 的中点,∴BE DE =.∵//AD BC ,∴ADE CBE ∠=∠.在ADE △和CBE △中,ADE CBE DE BEAED CEB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ADE CBE ASA ≌()△△,∴AE CE =.(2)∵AE CE =,BE DE =,∴四边形ABCD 是平行四边形,∴//AB CD ,AB CD =.∵DF CD =,∴DF AB =.∵DF AB =,//DF AB ,∴四边形ABDF 是平行四边形.27.解:(1)设第一批枇杷每箱进价x 元.由题意得13504190035x x ⨯=+,解得90x =.经检验,90x =是原方程的根,且符合题意.答:第一批枇杷每箱进价为90元.(2)第二批购进枇杷的箱数为190020.905=+设剩余的枇杷每箱售价打y 折.由题意可知,2014580%20145180%0.11900855y ⨯⨯⨯⨯-⨯-≥+(),解得7.5y ≥.答:剩余的枇杷每箱售价至多打七五折.28.解:(1)2AD PD =.理由:∵ABC △是等边三角形,∴60B ∠=︒.∵120EDC ∠=︒,∴18012060EDB ∠=︒-︒=︒,∴60B EDB BED ∠=∠=∠=︒,∴BDE △是等边三角形.∵BP PE =,∴DP AB ⊥,∴90APD ∠=︒.∵DE DC =,DE BD =,∴BD CD =.∵AB AC =,60BAC ∠=︒,∴1302PAD BAC ∠=∠=︒,∴2AD PD =.(2)(1)中结论仍然成立.理由:∵DE DC DF ==,18060FDC CDE ∠=︒-∠=︒,∴DCF △是等边三角形.∵60DCF ACB ∠=∠=︒,∴DCF BCD ACB BCD ∠-∠=∠-∠,即BCF ACD ∠=∠.∵AC BC =,CF CD =,∴BCF ACD SAS ≌()△△,∴AD BF =.∵点D ,P 分别是EF ,BE 的中点,∴2BF PD =,∴2AD PD =.(3)60BPC ∠=︒提示:如图,作120PDK BDC ∠=∠=︒,且PD DK =,连接PK ,CK .∵DB DC =,DP DK =,BDC PDK ∠=∠,∴BDP CDK ∠=∠,∴PDB KDC SAS ≌()△△,∴PB CK =.∵PB PC PC CK =+=+定值,∴P ,C ,K 三点共线时,第11页PK 定值最大,此时PD 的值最大,此时,30DPB DKP DPK ∠=∠=∠=︒,60BPC DPB DPK ∠=∠+∠=︒.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市石景山区2013—2014学年度第二学期期末考试
初二数学试题
一、选择题(每小题3分,共24分,每小题只有一个答案符合题意)
1.若一个正多边形的一个外角是40°,则这个正多边形的边数是( ).
A .10
B .9
C .8
D .6
2.若532
q =,则q 的值是( ). A .103 B .215 C .310 D . 152
3.下列四张扑克牌图案中,是中心对称图形的是( ). A B C D
4.执行如图所示程序框图,y 与x 之间函数关系所对应图象为( )
5.初二年级1
x 甲,x 乙,得分的方差依
次为2S 甲,2S 乙,则下列关系中完全正确的是( ).
A .x x =乙甲,22S S >乙甲
B . x x =乙甲,22S S <乙甲
C .x x >乙甲,22S S >乙甲
D . x x <乙甲,22S S <乙甲
6.综合实践课上,小超为了测量某棵树的高度,用长为2m 的竹竿作测量工具,移动竹竿,
使竹竿顶端、树的顶端的影子恰好落在地面的同一点(如图).此时竹竿与这一点相距
6m,与树相距15m ,则树的高度为 ( ) .
A . 4m
B . 5m
C . 7m
D . 9m
7.王老师组织摄影比赛,小语上交的作品如下:七寸照片(长7英寸,宽5英寸);将照
片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片
面积的3倍.设照片四周外露衬纸的宽度为x 英寸(如图),下面所列方程正确是
( )
.
A .(7)(5)375x x ++⨯=⨯
B .(72)(52)375x x ++=⨯⨯
C .(72)(52)375x x ++⨯=⨯
D .(7)(5)375x x ++=⨯⨯
8.如图:已知P 是线段AB 上的动点(P 不与A,B 重合),4AB =,分别以AP ,PB 为边在
线段AB 的同侧作等边△AEP 和等边△PFB ,连结EF ,设EF 的中点为G ;连结PG ,当动
点P 从点A 运动到点B 时,设 PG=m ,则m 的取值范围是( ).
A 2m ≤<
B .2m <<
C . 4m ≤<
D .32m ≤<
二、填空题(本题共21分,每空3分)
9.方程22x x =的解为_________________.
10.函数y =x 的取值范围是___________.
11.在菱形ABCD 中, AC =6,BD =8,则菱形ABCD
的周长为__________,面积为________.
12. 如图,在△ABC 中,∠ACB=58°,D ,E 分别是AB , AC 中点.点F 在线段DE 上,且
AF ⊥CF ,则∠FAE = °.
13.在平面直角坐标系xOy 中,O 是坐标原点,将直线y x =绕原点O 逆时针旋转15°,
再向上平移3个单位得到直线l ,则直线l 的解析式为_______________________.
14.给出定义:若直线与一个图形有且只有两个公共点,则直线与该图形位置关系是相
交.坐标系xOy 中, 以()1,1A --, B (3,0), ()1,1C , D (0,3)为顶点,顺次连结AB 、
BC 、CD 、DA 构成图形M .若直线y x b =-+与M 相交,则b 的取值范围是____________.
三、解答题(本题共15分,每小题5分)
15.用配方法...
解方程:23630x x --= 解:
16.已知:关于x 的一元二次方程2230x x m --+=有实数根.
(1)求m 的取值范围;
(2)若m 为符合条件的最小整数,求此时方程的根.
解:(1)
(2)
17.如图,直线x y l 2:1=与直线3:2+=kx y l 在同一平面直角坐标系内交于点P .
(1)直接写出
....
不等式2x > kx +3的解集
(2)设直线2l 与x 轴交于点A ,求△OAP 的面积.
解:(1)______________________
(2)
四、解答题(本题共15分,每小题5分)
18.我们把依次连接任意一个四边形各边中点得到的四边形叫做中点四边形.如图,在四
边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,依次连接各边中点得到中
点四边形EFGH . (1)这个中点四边形EFGH 的形状是_________________
(2)请证明你的结论.
证明: 19.如图,在矩形ABCD 中,AB =5,BC =4,将矩形ABCD 翻折,使得点B 落在CD 边上的点E
处,折痕AF 交BC 于点F ,求FC 的长.
解:
20.如图,在平面直角坐标系xOy 中,O 是坐标原点,一次函数y 于点A (3-,0),与y 轴交于点B ,且与正比例函数43
y x =
(1) 求一次函数y kx b =+的解析式; (2) D 是平面内一点,以O 、C 、D 、B 四点为顶点的四边形
是平行四边形,直接写出....
点D 的坐标.(不必写出推理过程). (1)解:
(2)点D 的坐标为_____________________________________________________
五、列方程解应用题(本题5分)
21.小明对新发地水果批发市场某种水果销售情况调查发现:如果每千克盈利10元,每
天可售出500千克.对市场进一步调查发现,在进价不变的情况下,若每千克这种水果在原售价的基础上每涨价1元,则日销售量将减少20千克.如果市场每天销售这种水果盈利了6 000元,同时顾客又得到了实惠..........
,那么每千克这种水果涨了多少元? 解:
六、解答题(本题10分,每题5分)
22.小辰根据北京市统计局发布的有关数据制作的统计图表的一部分,请你结合下面图表
中提供的信息解答下列问题.(注:能源消费量的单位是万吨标准煤,简称标煤). 2010年北京市新能源和可再生能源消费量及结构统计表
(1)2010年北京市新能源和可再生能源消费量是____________万吨;并补全条形统计
图并在图中标明相应数据......
; “十一五”期间北京市新能源和可再生能源消费量统计图
(2)2010年北京市能源消费总量约是____________万吨标煤(结果精确到百位)?
(3)据 “十二五”规划,到2015年,本市能源消费总量比2010年增长31%,其中新
能源和可再生能源利用量占全市能源消费总量的6%.小辰调查发现使用新能源每
替代一万吨标煤,可减少二氧化碳排放量约为2万吨,到2015年,由于新能源和
可再生能源的开发利用,北京市可减少二氧化碳排放量约为多少万吨?
解:
23.已知关于x 的方程 03)13(2=+++x m mx .
(1)求证: 不论m 为任何实数, 此方程总有实数根;
(2)若方程()23130mx m x +++=有两个不同的整数根,且m 为正整数,求m 的值. 解:(1)证明:
(2)解:
七、解答题(本题5分)
24. 数学课外选修课上李老师拿来一道问题让同学们思考.原问题:如图1,已知△ABC ,
在直线BC 两侧..,分别画出两个..
等腰三角形△DBC ,△EBC 使其面积与△ABC 面积相等;(要求:所画的两个三角形一个以BC 为底.一个以BC 为腰);
小伟是这样思考的:我们学习过如何构造三角形与已知三角形面积相等.如图2,过点A 作直线l ∥BC ,点D 、E 在直线l 上时,ABC DBC EBC S S S ∆∆∆==,如图3,直线l ∥BC ,直线l 到BC 的距离等于点A 到BC 的距离,点D 、E 、F 在直线l 上,则ABC DBC EBC FBC S S S S ∆∆∆∆===.利用此方法也可以计算相关三角形面积,通过做平行线,将问题转化,从而解决问题.
(1)请你在下图中,解决李老师提出的原问题;
参考小伟同学的想法,解答问题:
(2)如图4,由7个形状,大小完全相同的正六边形组成的网格,
正六边形的顶点称为格点,若每个正六边形的边长为1,
△ABC 的顶点都在格点上,则△ABC 的面积为________.
(3)在平面直角坐标系xOy 中,O 是坐标原点,()()1,0,0,2,A B -D 是直线l :321+=
x y 上一点,使△ABO 与△ABD 面积相等,则D 的坐标为_______________.
八、几何探究(本题5分)
25.已知:在正方形ABCD 中,E 、G 分别是射线CB 、DA 上的两个动点,点F 是CD 边上,
满足EG ⊥BF ,
(1)如图1,当E 、G 在CB 、DA 边上运动时(不与正方形顶点重合),求证:GE =BF .
(2)如图2,在(1)的情况下,连结GF ,求证:FG BE +>.
(3)如图3. 当E 、G 运动到BC 、AD 的反向延长线时,请你直接写出....FG 、BE 、BF 三者的
数量关系(不必写出证明过程).
(1)证明:
(2)证明:
(3)FG、BE、BF三者的数量关系为______________________________________ 初中数学试卷
桑水出品。