《动物营养学报》英文论文格式模板
表1《动物营养学报》2001-2011年发表论文被引次数排名表
( 相同被引次数以论 文题 目汉语 拼音字母 为序 ) 排名 被引 该 排名 占总 次数 篇数 篇数/ % l 2 3 4 5 5 6 4 3 3 9 3 8 3 6 3 l 3 1 2 8 l 1 1 l 2 0
续表 1
排名 被 引 该排名 占总 次数 篇数 篇数/ % 1 4
1 4 1 4 1 5 1 5 1 6 1 6 1 6
论文题 目
作者
年( 期)
2 0
2 0 2 0 1 9 1 9 1 8 1 8 l 8 4 2 0 . 1 6
2
0 . 1 6 镉毒性研究进展 任继平 , 李德发 , 张丽英 2 0 0 3 ( 1 ) 壳寡糖对 肉仔鸡 肠道 主要 菌群 、 小肠微 绒毛 王秀 武 , 杜昱 光 , 白雪芳 , 2 0 0 3 ( 4 ) 密度 、 免疫功能及生产性能的影响 等 O 活性酵母 对早 期 断奶 仔 猪生 产性 能 和 免疫 胡友 军 , 林 映才 , 郑 黎, 1 6 机能 的影响 等 2 0 0 3 ( 4 )
1 3
1 3 1 4
2 1
2 l 2 0 8 0
.
肉鸡对三碱基氯化铜 、 铜氨基 酸螯 合物 、 铜蛋 郭荣富 白盐生 物利用率研究 陈克嶙 , 张
,
曦
2 0 0 1 ( 1 ) 2 0 0 3 ( 3 )
2 0 0 8 ( 1 )
硒 的生物学功能及其机理研究
.
论文题 目
作者
年( 功能和 内分泌的
高
峰, 周光宏 , 韩正康
2 0 0 1 ( 2 )
2 0 0 3 ( 2 )
动物营养评价报告模板
动物营养评价报告模板1. 引言动物营养评价是研究动物的饲养管理以及营养需求的重要工具。
通过定量评估动物饲料的营养成分以及其对动物生产性能的影响,可以为合理制定饲养策略提供科学依据。
本报告旨在对所评价饲料的营养成分进行分析,并得出对该饲料的营养评价结论。
2. 饲料样品描述- 样品名称:- 来源地:- 批次号:- 采购日期:- 分析日期:3. 分析方法为保证准确性和可比性,使用以下标准方法进行分析:1. 饲料成分测定:采用国家标准(GB/T XXXX-XXXX)的方法测定样品中的水分、粗蛋白、粗脂肪、粗纤维、粗灰分等指标。
2. 氨基酸分析:采用高效液相色谱-质谱联用技术(HPLC-MS)测定饲料中的氨基酸含量。
3. 能量测定:采用热量计进行热值测定,计算出饲料的代谢能(ME)和净能(NE)含量。
4. 矿物质含量测定:采用原子吸收光谱法或电感耗尽法测定饲料中的矿物质含量。
4. 分析结果与讨论4.1. 饲料成分分析结果样品中的主要成分和营养指标如下表所示:成分/指标含量(%)水分x粗蛋白x粗脂肪x粗纤维x粗灰分x4.2. 氨基酸分析结果样品中氨基酸的含量如下表所示:氨基酸含量(g/kg)氨基酸比例-赖氨酸x x色氨酸x x精氨酸x x苏氨酸x x缬氨酸x x番茄酸x x4.3. 能量测定结果样品的能量含量如下表所示:能量含量(MJ/kg)-代谢能x净能(NE)x4.4. 矿物质测定结果样品中矿物质的含量如下表所示:矿物质含量(g/kg)钙x磷x钠x钾x镁x锌x5. 结论与建议根据对样品的分析结果,可以得出以下结论和建议:- 样品的水分、粗蛋白、粗脂肪、粗纤维和粗灰分含量符合预期范围。
- 样品中的氨基酸含量较为均衡,满足动物的营养需求。
- 样品的能量含量较高,可以提供足够的能量供给动物生长和生产。
- 样品中的矿物质含量较丰富,可以满足动物的矿物质需求。
基于以上分析结果,建议合理使用该饲料,并结合动物的实际需求进行饲养管理,以达到最佳的生产性能和健康状况。
青岛农业大学动物营养与饲料科学学科硕士研究生论文格式.doc
青岛农业大学动物营养与饲料科学学科硕士研究生毕业论文写作的补充规定学位论文是研究生培养质量和学术水平的集中体现。
高水平的论文不仅研究内容上要有系统性、科学性和创新性,而且语言组织和表达方式应规范和严谨。
为了规范本学科研究生毕业管理,提高毕业论文质量,结合本学科特点,在《青岛农业大学研究生毕业论文写作和排版要求》的基础上,提出以下补充规定:1.题名:题名是以最恰当、简明的词语反映论文中最重要的特定内容的逻辑组合,应包括主要关键词。
题名必须简明确切,一般不超过25个汉字。
避免使用非公知的缩略语、字符、代号, 尽量不出现结构式、数学式和标点符号。
英文题目内容必须与中文题名相符。
2.摘要:摘要是论文内容不加注释和评论的简短陈述。
摘要应具有独立性和自含性,即不阅读论文的全文,就能获得论文的主要信息。
摘要应完整准确地概括论文的实质性内容,应重点包括研究目的、方法、结果和结论4个要素,应突出本论文的创造性成果或新见解。
摘要写作不用图表、公式和参考文献序号。
字数一般控制在1500字以内。
英文摘要内容应与中文摘要一致。
要求语法正确,无拼写错误,符合英语表达习惯,按Objective,Method,Result和Conclusion依次编写。
3.关键词:应选用在题名和摘要中出现的能反映论文特征性内容、通用性较强的规范词语,数量一般以3~8个为宜。
4.引言或前言:主要阐述研究的重要意义、前人研究进展、研究的切入点、拟解决的关键问题等。
除研究报告前的引言或前言外,为了反映作者确已掌握了坚实的基础理论和系统的专门知1识,具有开阔的科学视野,对研究方案作了充分论证,有关历史回顾和前人工作的综合评述以及理论分析等,可以文献综述的形式单独成章,用足够的文字叙述。
但文献综述必须注意:①主题鲜明,与本人研究主题密切相关;②语言流畅,层次分明,逻辑性强,注意句子、段落之间的衔接和过渡。
外文文献要在充分理解的基础上,用专业化语言进行描述,切忌用生硬的翻译语言;③不要将前人的研究成果简单地罗列或堆集,应对前人研究成果进行归纳总结,提出自己的观点和看法;④引用信息必须准确完整,不能断章取义。
动物营养及研究方法
统计推断 结论
2019年3月23日1时26分 9
试验设计的基本要素
1) 试验因素 2) 受试对象 3) 处理效应
观测指标
指标的关联性、客观性 灵敏性、精确性
2019年3月23日1时26分
ห้องสมุดไป่ตู้
10
动物营养实验设计的基本原则
1) 重复的原则 2) 随机化原则 3) 局部控制的原则(减少误差)
2019年3月23日1时26分
2019年3月23日1时26分
7
影响营养试验结果的某些因素
动物因素 种类、品种 遗传 年龄 环境因素 房屋 栏舍 季节
体重
性别
温度
光照
生理状态 生产阶段
生产水平 动物个体
2019年3月23日1时26分
日粮 管理
试验前的处理
8
一个试验应该包括3个阶段
1) 2) 3) 周密细致的试验设计 试验的实施阶段 对试验结果进行恰当的统计分析
2019年3月23日1时26分
32
稻谷和糙米猪消化率测定
采用套算法 共选9头杂交公猪(平均体重为68.2±1.7 kg),其中3头 喂 基础日 粮 ( B ) , 3 头 喂试 验日粮 S1 ( 70% 基 础日粮 +30%稻谷),3头喂试验日粮S2(70%基础日粮+30%糙米 )。基础日粮组成如下(%):玉米 50.7,麦麸 15.0,次 粉15.0,豆饼16.0,食盐0.3,预混料3.0。预试期6d,收粪 期5d,每天取粪样的10%,加10%硫酸(每100g粪加10mL) 和甲苯数滴后于65℃烘箱中烘干。待全部粪样收齐后制样 分析。 计算公式 某养分消化率= 100(B-T)/f +B 其中:T为试验日粮的养分消化率,B为基础日粮的养分消 化率,f为稻谷或糙米某养分占试验日粮养分的比例。
动物营养学报综述格式 -回复
动物营养学报综述格式-回复【动物营养学报综述格式】一、综述标题及目录综述标题:动物营养学报综述:[主题]目录:1. 引言2. 动物营养基础知识3. 研究方法与技术4. 进展与应用5. 结论6. 参考文献二、引言引言部分主要介绍动物营养的重要性以及该综述的主题,概述动物营养学的研究意义和现实应用。
三、动物营养基础知识该部分着重讲解动物营养学的基本概念和理论基础,包括动物营养需求、消化吸收、代谢过程、营养元素等相关知识。
1. 动物营养需求:详细介绍不同动物在生长发育、育种和生产方面的营养需求。
2. 消化吸收:探究动物消化系统的解剖结构和消化过程,包括饲料的加工与利用等。
3. 代谢过程:介绍动物体内营养物质的代谢途径以及相关的调控机制。
4. 营养元素:介绍动物所需的营养元素(碳水化合物、脂肪、蛋白质、维生素、矿物质等)的作用、来源和摄入量。
四、研究方法与技术该部分详细论述动物营养学领域的研究方法和技术,包括动物实验设计、样品采集与处理、营养指标测定、数据分析等。
1. 动物实验设计:介绍动物营养学中常见的实验设计方法,包括随机分组实验、配对设计实验等。
2. 样品采集与处理:详细介绍各类样品的采集方法和处理过程,包括饲料样品、动物组织和血液样品等。
3. 营养指标测定:阐述常用的动物营养指标测定方法,如体重测定、饲料消耗测定、生长速度测定等。
4. 数据分析:介绍常用的统计分析方法,包括方差分析、回归分析等,用以解释实验结果和验证研究假设。
五、进展与应用该部分总结动物营养学领域的最新研究进展和应用成果。
1. 营养需求研究:综述过去几年来致力于动物营养需求研究的新发现和理论进展。
2. 营养改良与强化:介绍不同饲料配方和添加剂对动物产量和品质的影响,如饲料改良、草料改良和饲养管理的创新。
3. 营养与健康:概述营养与动物健康之间的关系,包括动物饲养环境和饲养方式对动物健康的影响等。
4. 营养与环境:介绍动物饲养对环境的影响,包括排泄物处理和废物利用等。
动物营养学报格式
论文格式示范一水肌酸对肥育猪胴体组成及肌肉系水力的影响某某某1某某某1*某某某1某某2(1. 某某大学饲料科学研究所动物分子营养学教育部重点实验室,杭州310029;2. 浙江宁波某某有限公司,宁波315124)摘要:(目的)本研究旨在观察一水肌酸(creatine monohydration, CMH)对肥育猪生长性能、胴体组成和系水力的影响及其机理探讨。
(方法)选用体重70 kg左右的杜长大三元杂交猪48头,按试验要求随机分为2组,每组设3个重复,每个重复8头猪,分别饲喂含CMH为0或0.25%的日粮,饲养试验时间为30 d。
(结果)结果表明,CMH对猪日增重无显著影响(P>0.05);CMH显著提高了肥育猪的眼肌面积(P<0.05),而对屠宰率、瘦肉率、胴体直长、胴体斜长、腹脂重、脂肪率、背膘厚、皮肤比率、骨骼比率等无显著影响(P>0.05);CMH还使试验组猪的背最长肌率显著提高(P<0.05),股二头肌率有提高趋势但差异不显著,而对其它骨骼肌重率无明显影响(P>0.05);CMH使肥育猪宰后24 h背最长肌和半膜肌的滴水损失明显降低(P<0.05)、pH显著提高(P<0.05),而肌肉中乳酸含量显著降低(P<0.05)。
(结论)结果提示,饲料中添加一水肌酸可通过降低肌肉中乳酸的积累,提高肌肉的pH,从而降低宰后肌肉的滴水损失,改善肉质。
(用几句精炼简短的话表达结论)关键词:一水肌酸;胴体组成;肌肉系水力;肌肉pH;乳酸;肥育猪(研究的重要意义)近年来,在猪饲料中添加肌酸对仔猪、生长肥育猪生产性能和胴体品质等影响收稿日期:2007–01–07(脚注标识项目置于首页下部,连接线用半字—线。
)基金项目:某某自然科学基金资助项目(981087)及某某归国留学基金资助项目(99044)作者简介:某某某(1971—),女,××省××人(如四川成都人),博士,主要从事营养与肉质调控的研究。
Elsevier期刊投稿英文模板(Animal Feed Science and Technology)
123456Rumen lysine escape, rumen fermentation and productivity of7early lactation dairy cows fed free lysine891011121314151617P.H. Robinson a,*, E.J. DePeters a, I. Shinzato b, H. Sato b1819202122a Department of Animal Science, University of California, Davis, CA, 95616, USA, and23Atlantic Dairy & Forage Institute, Fredericton Junction, NB, E0G 1T0, Canada2425b Ajinomoto Co., Inc., 5-8 Kyobashi I-Chome, Chuo-Ku, Tokyo 104, Japan2627282930313233*Correspondingauthor.Tel:530-754-7565;Fax:530-752-0175;EM:**********************3435Submitted to Animal Feed Science and Technology in June 200536Revised and re-submitted in August 2005.37Revised and re-submitted in September 2005.3839Abstract40The primary objective was to quantitate forestomach escape of lysine fed to cows in a free 41form. However since it was expected that a large proportion of the lysine would be degraded in 42the rumen, other objectives were to determine if lysine impacted ruminal fermentation as well as 43determine effects on performance of the cows. Four multiparous Holstein cows, fitted with 44large diameter rumen cannulae between 6 and 8 weeks prior to their projected calving date, were 45assigned in a 4 x 4 Latin square design experiment between 2 and 4 weeks post-partum. All 46cows were fed the same total mixed ration (TMR) and treatment differences were achieved by 47manually incorporating L-lysine HCl into each cow’s individually weighed allocation of TMR at 48the time of feeding to deliver 0, 1, 2 or 3 g of L-lysine from L-lysine HCl/kg of dry matter (DM) 49intake, although actually delivered lysine values were about 16% higher. As expected, average 50rumen free lysine concentrations increased linearly (P = 0.05) due to increased feeding levels of 51lysine. Rumen pH, N and volatile fatty acid concentrations, as well as other organic 52components of rumen ingesta, including those of isolated rumen bacteria, were unaffected by 53lysine feeding. Intake of DM, neutral detergent fibre and crude protein were not influenced by 54increased feeding of L-lysine, as were production of milk and its components. Feeding 55increasing levels of free lysine to lactating dairy cows, in three levels up to 71 g/d, resulted in an 56estimated forestomach escape of lysine of 35 g/kg of lysine fed, a level that is only about 1/6 of 57those reported in previous studies based upon short term pulse dosing and/or feeding studies.58Keywords: lysine, forestomach, escape, rumen59Abbreviations: AA, amino acids; ADF, acid detergent fibre; BCS, body condition score; BW, 60body weight; DM, dry matter; RP, ruminally protected, TMR, totally mixed ration; NDF, neutral 61detergent fibre621. Introduction63It is widely accepted that dairy cows have requirements for amino acids (AA) that must be 64provided in the diet as a supplement to the AA in microbial protein that passes from the rumen.65However due to the lack of commercial availability of ruminally protected (RP) lysine that 66escapes the forestomach undigested, thereby making it available for absorption in the small 67intestine, there is little experimental data to support productive benefits to supplementation of 68dairy rations with lysine.69Previous researchers (Velle et al., 1997, 1998; Volden et al., 1998) have reported ruminal 70escape of lysine that varied from about 100 to 291 g/kg of the lysine dosed, dependent upon the 71level of lysine dosed to the rumen. Such levels, particularly the higher ones, make the use of 72free lysine a potentially economical source of intestinally available lysine. However, the 73method of administration of lysine in all three of these studies, as a pulse dose, may have resulted 74in a relatively high estimate of ruminal lysine escape due to transitorily high concentrations of 75lysine in rumen fluid, which then washed out of the rumen at high levels due to the high passage 76rates of rumen liquids.77The objective of this study was to feed cows unprotected L-lysine HCl, at levels similar to 78Volden et al. (1998), but mixed into the diet, in order to estimate ruminal lysine escape under 79conditions similar to those used in commercial situations. However other objectives were to 80determine if feeding free lysine impacted rumen fermentation and function, forestomach NDF 81digestion, forestomach escape of microbial biomass, and productivity of the cows. This study 82differed from Robinson et al. (2005) only in that the cows were not the same and the corn grain 83fed was fine ground as opposed to coarse cracked. However a second study was deemed to be 84worthwhile in order to increase confidence in all the results obtained.852. Materials and methods86The study was completed simultaneous with Robinson et al. (2005) and so only a brief 87summary of the materials and methods are presented here.882.1. Cows and Design89Five multiparous Holstein cows, due to calve within a 4 week period, were fitted with large 90diameter rumen cannulae (Bar Diamond, Parma, ID, USA) between 6 and 8 weeks prior to their 91projected calving date. During the balance of their dry periods, the cows were fed a herd base 92dry cow ration. At calving, all cows were changed to the postpartum herd base total mixed 93ration (TMR) until their assignment to treatment. As there were no health or calving problems 94with any cow, the cow with the lowest milk yield was dropped. Cows were housed in tiestalls, 95bedded with softwood shavings on rubber mats and provided free access to water.96Cows were assigned to a 4 x 4 Latin square design between 2 and 4 weeks post-partum.97All cows were fed the same TMR (Table 2), and treatment differences were achieved by 98manually incorporating L-lysine HCl into each cow’s individually weighed allocation of TMR at 99feeding. The TMR was fed at 07:00 h (333 g/kg of daily allocation) and 14:00 h (667 g/kg of 100daily allocation) and the L-lysine HCl was allocated in the same proportions to the individual 101feedings. Treatments were designed to deliver 0, 1, 2 or 3 g of L-lysine from L-lysine HCl 102(Ajinomoto Inc., Tokyo, Japan) per kg of DM intake but, due to the method of estimating 103expected future DM intake, actual values were about 16% higher. Actual lysine delivery levels 104are in Table 3.1052.2. Measurements and analytical methods106Silages and TMR were procured, sampled and assayed as previously described (Robinson et 107al., 2005). Orts were sampled on days 15, 17 and 20 of each period and composited within cow 108and period relative to the weights sampled.109Cows were milked, and milk sampled and assayed, as previously described (Robinson et al., 1102005), as were body weights (BW) and body condition scores (BCS), which were collected at the 111beginning of each experimental period and at the end of the experiment.112A pulse dose of 35 g of Co EDTA, prepared as described by Udén et al. (1980), was 113dissolved in 200 ml of water and manually infused to the rumen through the rumen cannula at 11406:55 h (i.e., immediately before feeding) on day 19 of each experimental period. Rumen fluid 115was sampled at 06:50 h (i.e., immediately prior to Co EDTA infusion), 07:00, 07:30, 08:30, 11609:30, 11:00, 12:30 and 14:00 h on day 19 of each period. Sampling, sample preservation and 117analytical procedures for lysine, Co ammonia N, total N and VFA were as described by Robinson 118et al. (2005).119Samples of rumen fluid were also collected at 09:00 and 13:00 h on day 20 of each period 120and ruminal bacteria were isolated, preserved and assayed as described by Robinson et al. (2005). 121Samples of whole rumen ingesta were collected at 09:00 and 13:00 h on day 21 of each period. 122Samples were collected, preserved and assayed as previously described (Robinson et al., 2005). 1232.3. Calculations124Rumen liquid turnover rate was calculated as the decline of the natural logarithm of the Co 125concentration during the AM feeding period, and the rumen liquid volume was estimated as the 126Co dose infused at 06:55 h divided by the extrapolated Co concentration at t = 0.127Estimated ruminal non-digestion of NDF was determined as the lignin/NDF ratio of the 128rumen ingesta divided by the lignin/NDF ratio of the TMR fed, but assuming 50 g/kg digestion 129(i.e., disappearance) of lignin in the rumen (mean forestomach disappearance of lignin measured 130by Robinson and Sniffen (1985) and Stensig and Robinson (1997)). The size of the rumen 131bacterial N pool was estimated as the N/RNA ratio of isolated ruminal bacteria multiplied by the 132RNA concentration of ruminal ingesta.133An approximate method for calculating ruminal escape of lysine, in the fluid phase, was used 134to estimate (within cow) as the Co estimated rumen volume multiplied by the ruminal Co 135turnover rate multiplied by the mean ruminal lysine concentration during the AM feeding period 136multiplied by 7 (i.e., the number of hours in the AM feeding cycle) multiplied by the µmolar 137weight of lysine (all indicated as treatment mean values in Table 7) as:138139Ruminal lysine escape (g/AM feeding) = ((rumen volume (L) * Co turnover rate (/h) * mean 140lysine concentration (µmol/L) * 7 (h in feeding cycle)) * 0.000146 (lysine µmolar 141weight)142143Proportional lysine escape was estimated by linear regression (see section 2.4), although 144proportional ruminal lysine escape for any treatment can be estimated as:145146Ruminal lysine escape = ruminal lysine escape (g/AM feeding) / lysine fed (g/AM feeding) 147148if rumen escape of free lysine in the control treatment is ignored (or accounted for).1492.4. Statistical Analysis150Data were analyzed as a 4 x 4 Latin square with diet, period and cow as factors using the 151general linear models procedure of SAS (1985). The model used was:152Yijkl = µ +Ti +Pj + Ck + εijkl153where: Yijkl = observation, µ = population mean, Ti = diet effect (I = 1 to 4), Pj = period effect (j 154= 1 to 4), Ck = cow effect (k = 1 to 4) and εijkl = residual error. Linear and quadratic effects 155due to lysine feeding were determined. Significant differences were accepted if P 0.05.1563. Results1573.1 Dietary ingredients, mixed concentrates, and mixed rations158The silages were judged to be of moderate nutritional quality based on relatively high fibre 159concentrations and moderate acid detergent insoluble CP concentrations. All silages were well 160ensiled, as judged by a lack of visible mold or spoilage. Chemical composition of grains and 161beet pulp (Tables 1) are typical (NRC, 2001), with the exception of barley grain, which had a 162relatively low CP and high NDF content, although this was known prior to ration formulation. 163In general, the chemical composition of the TMR (Table 2) was similar to that expected 164based on their ingredient composition and the chemical composition of the ingredients. The SE 165of the nutrient levels, as assessed by individual analysis of the four period samples, was low.1663.2. Feed intake, productivity and body parameters167Intake of DM and its components (Table 3) were not influenced by increased feeding of L-168lysine. Production of milk, and its components (Table 4), was also unaffected by lysine feeding 169as was mean BW and BW change. Mean BCS declined linearly (P < 0.05) with increased 170feeding of L-lysine, although this appears more related to the low SEM than a real treatment 171affect, and change in BCS was unaffected by L-lysine feeding.1723.3. Rumen Function173Rumen pH and VFA concentrations were not influenced by lysine feeding (Table 5), and 174apparent linear increases in both rumen total and ammonia N concentrations in rumen fluid were 175not statistically significant. Organic components of rumen ingesta, as well as isolated rumen 176bacteria (Table 6), were unaffected by lysine feeding.177Rumen volume, and liquid turnover rate, were unaffected by lysine feeding (Table 7). As 178expected, average rumen concentrations of free lysine during the AM feeding cycle (i.e., 07:00 to 17914:00 h) increased linearly (P = 0.05), due to increased feeding of lysine. Treatment differences 180between levels of lysine feeding in the current study largely occurred in the first 3 h after feeding 181(Figure 1), with no differences after this time. Calculated rumen escape of soluble lysine, from 182any source, only increased numerically (P = 0.15) with increased lysine feeding (Table 7).1831844. Discussion185The primary objective of this study was to quantitate forestomach escape of lysine fed in a 186free form in the TMR. However, since it was expected that a substantial proportion of the 187lysine fed would be degraded in the rumen, a second objective was to determine if this lysine 188impacted ruminal fermentation and determine possible impacts on performance of the cows.1894.1. Forestomach lysine escape190While the ANOVA analysis of the estimated forestomach escape of lysine only suggests a 191trend (P = 0.15) to increased escape of free lysine in response to higher feeding levels, regression 192analysis of all sixteen individual period by cow observations (Figure 2) shows that an average of 19335 g/kg of fed lysine escaped rumen fermentation. Clearly this value is much lower than rumen 194lysine escape proportions of 100 to 291 g/kg estimated from short term pulse dosing feeding 195studies of Velle et al. (1997, 1998) and Volden et al. (1998), as well as being somewhat less than 196our previous study (i.e., 74 g/g) that used similar methodology (this may at least partly be 197because the absolute ruminal lysine concentrations achieved at the highest feeding levels, 300 to 198500 μmol/L, are only about 40% of those reported by Volden et al. (1998) and Robinson et al. 199(2005) of 1000 to 1100 μmol/L). Nevertheless the average of 35 g/kg of fed lysine escaping 200rumen fermentation, measured in this study, could still be an overestimate of what might occur 201under practical feeding conditions where lysine would be added to a TMR prior to mixing and so 202could be susceptible to some degradation prior to ingestion by the cow.2034.2. Ruminal fermentation204Levels of free lysine in rumen fluid were sharply increased by feeding increasing levels of 205free lysine. However, the similarity in the composition of the rumen ingesta and rumen 206bacteria, as well as the level of VFA in the fluid phase and the estimated ruminal digestion of 207NDF, in the current study suggests that this lysine did not impact ruminal fermentation. These 208findings of a negligible impact of increased feeding levels of free lysine on rumen fermentation 209are consistent with Bernard et al. (2004), in a study published after the completion of the current 210study, where feeding of 10 g/d of free lysine to Jersey cows had no impact on rumen 211fermentation, as well as our prior study (Robinson et al., 2005).2124.3. Performance of the cows213The lack of difference in performance of the cows with increasing levels of lysine in the diet 214is consistent with the lack of change in ruminal fermentation, as well as estimates of ruminal 215digestion of NDF. In the absence of an increase in ruminal digestion, improved animal 216performance is unlikely unless there is a limitation in post-ruminal supplies of protein and/or 217AA. Thus there could be little expectation that the increased post-ruminal delivery of lysine, at 21834 g/kg of lysine fed (i.e., a maximum of 2.5 g/d), would result in increased milk production 219and/or milk components.2202215. Conclusions222Feeding increasing levels of free lysine to lactating dairy cows, in three levels up to 71 g/d, 223resulted in an estimated ruminal escape of lysine of 34 g/kg of lysine fed, a level that is only 224about 1/6 that of previously published studies based upon short term pulse dosing and/or feeding 225studies and 1/2 of what we reported in an earlier study using similar methodology. In spite of 226the proportionally large (i.e., 966 g/kg) ruminal degradation of free lysine, parameters of rumen 227fermentation, and the composition of rumen ingesta, were unaffected by increased feeding levels 228of lysine, with the exception of rumen lysine. Feed intake and milk production performance of 229the cows was unaffected by feeding free lysine.230231Acknowledgments232This study was completed at the Atlantic Dairy and Forage Institute (Fredericton Junction, 233New Brunswick,Canada). The authors thank Nancy Clark, Graham Allen and the dairy unit 234crew for their input to this study. This study was made possible by a grant from the Ajinomoto 235Co., Inc., Tokyo (Japan).236237References238Bernard, J.K., Chandler, P.T., West, J.W., Parks, A.H., Amos, H.A., Froetschel, M.A., Trammel, 239D.S., 2004. Effect of supplemental l-lysine-HCl and corn source on rumen fermentation and 240amino acid flow to the small intestine. J. Dairy Sci. 87, 399-405.241Edmonson, A.J., Lean, I.L., Weaver, L.D., Farver, T., Webster, G., 1989. A body condition 242scoring chart for Holstein dairy cows. J. Dairy Sci. 72, 68-78.243National Research Council, 2001. Nutrient Requirements of Dairy Cattle, 7th revised ed. 244National Academic Science,, Washington, DC, USA.245Robinson, P.H., DePeters, E.J., Shinzato, I., Sato, H., 2005. Influence of feeding free lysine to 246early lactation dairy cows on ruminal lysine escape, rumen fermentation and productivity. 247Anim. Feed Sci. Technol. 118, 201-214.248Robinson, P.H., Sniffen, C.J., 1985. Forestomach and whole tract digestibility for lactating 249dairy cows as influenced by feeding frequency. J. Dairy Sci. 68, 857-867.250SAS Inc., 1985. SAS User’s Guide: Statistics, Version 4.18 Edition. SAS Inc., Cary, NC, 251USA.252Stensig, T., Robinson, P.H., 1997. Digestion and passage kinetics of forage fiber in dairy cows 253as affected by fiber-free concentrate in the diet. J. Dairy Sci. 80, 1139-1352.254Udén, P., Colucci, P.E., Van Soest, P.J., 1980. Investigation of chromium, cerium and cobalt as 255markers in digestion rate of passage studies. J. Sci. Food Agric. 31, 625-632.256Velle, W., Kanui, T.I., Aulie, A., Sjaastad, O.V., 1998. Ruminal escape and apparent 257degradation of amino acids administered intraruminally in mixtures to dairy cows. J. Dairy 258Sci. 81, 3231-3238.259Velle, W., Sjaastad, O.V., Aulie, A., Gronset, D., Feigenwinter, K., Framstad, T., 1997. Rumen 260escape and apparent degradation of amino acids after individual intraruminal adminstration to 261cows. J. Dairy Sci. 80, 3325-3332.262Volden, H., Velle, W., Harstad, O.M., Aulie, A., Sjaastad, O.V., 1998. Apparent ruminal 263degradation and rumen escape of lysine, methionine, and threonine administered intraruminally 264in mixtures to high-yielding cows. J. Anim. Sci. 76, 1232-1240.265Chemical composition of the forages, grains and beet pulp 267268Timothy silage a Alf/timothysilage bBarleygrainCorngrainBeetpulpDry matter (g/kg) 303 347 864 872 890105o C DM (g/kg)Organic matter 933 921 973 983 917Neutral detergent fibre 633 538 225 121 418Acid detergent fibre 355 372 nd c nd ndLignin d24 59 nd nd ndCrude protein 123 153 114 102 101Calcium 3.1 10.7 1.4 0.7 8.3Phosphorus 3.0 3.1 3.8 3.0 0.8Potassium 22.4 18.8 5.7 3.9 5.8Magnesium 1.7 2.0 1.3 1.3 2.5Sodium 0.2 0.2 0.1 0.1 0.2 105o C DM (g/kg)Zinc 44 41 31 31 24Iron 194 241 45 38 587Manganese 77 53 27 15 39Copper 5 6 5 7 5269a Estimated from botanical composition to be 970 g/kg timothy and 30 g/kg other grasses.270b Estimated from botanical composition to be 450 g/kg (as is basis) timothy, 450 g/kg alfalfa, and 271100 g/kg other grasses.272c Not determined.273d Sulphuric acid procedure.274275277Ingredient and chemical composition of the mixed ration fed278Total Mixed Ration S.E.Ingredient Composition105o C DM (g/kg)Timothy silage 322Alfalfa/timothy silage 67Beet pulp, pellets a84Barley grain, rolled 95Corn grain, fine ground 250Megalac b21Canola meal, solvent 26.7Corn gluten meal 20.7Soybean meal, solvent 74Soypass c13.8Yeast culture d 2.0Dicalcium phosphate 2.4Limestone 11.3Magnesium oxide 1.0Se-Mar 200e 1.2Dynamate f0.8Sodium bicarbonate 3.9Trace mineralised salt g 2.8Vitamin premix h0.35Dry matter 468 16.4Chemical Composition105o C DM (g/kg)Organic matter 929 0.9Neutral detergent fibre 404 14.8Acid detergent fibre 230 6.0Lignin i17 0.9Crude protein 150 6.6Calcium 8.5 0.51Phosphorus 3.9 0.04Potassium 15.2 0.61Magnesium 2.5 0.10Sodium 1.9 0.18105o C DM (mg/kg)Zinc 49 1.4Iron 202 5.3Manganese 57 4.7Copper 8 0.3279a Beet pulp pellets were soaked with an equal volume of water for 3 - 4 h prior to preparation of the TMR. 280b Church and Dwight Company, Princeton, NJ, USA.281c Lignotech USA, Overland Park, KS, USA.282d Diamond V Mills Inc., Cedar Rapids, IA, USA.283e Se-Mar 200 contains 200 mg/kg of Se (Central Soya Ltd, Woodstock, Ontario, Canada).284f Dynamate contains 220 g/kg S, 180 g/kg K and 110 g/kg Mg (Pitman Moore Inc., Oakville, Ontario, 285286Canada).g Guaranteed analysis: 360 g/kg Na, 600 g/kg Cl, 1600 mg/kg Fe, 5000 mg/kg Mn, 7500 mg/kg Zn, 2500 287288mg/kg Cu, 70 mg/kg I and 40 mg/kg Co (Shur-Gain Feeds Inc., Moncton, New Brunswick, Canada).h Guaranteed analysis: 10,000,000 IU/kg Vitamin A, 1,500,000 IU/kg Vitamin D and 15,000 IU/kg 289290Vitamin E (Shur-Gain Feeds Inc., Moncton, New Brunswick, Canada).i Sulphuric acid procedure.291292Impact of increasing levels of lysine supplementation on feed intake and l-lysine intake 294295296Treatment aP0 1 2 3 SEM linearquadDry matter (kg/day) 20.94 21.90 20.93 21.11 0.236 0.79 0.35 Dry matter (g/kg BW) 36.1 37.4 36.0 36.3 <0.01 0.73 0.38 Organic matter (kg/d) 19.45 20.35 19.45 19.62 0.221 0.80 0.36 Neutral detergent fibre (kg/day) 8.46 8.81 8.48 8.50 0.127 0.84 0.45 Neutral detergent fibre (g/kgBW)14.5 15.1 14.7 14.6 <0.01 0.79 0.23Crude protein (kg/day) 3.15 3.24 3.11 3.11 0.036 0.34 0.45 L-lysine b (g/day) 0 24.3 48.4 71.0 1.78 <0.01 0.78 L-lysine b (g/kg DM intake) 0 1.20 2.32 3.42 0.055 <0.01 0.63 297a Target grams of L-lysine, as L-lysine HCl, added per kg of DM intake. See lower line of this Table for 298exact levels delivered.299b Added L-lysine only.300301Impact of increasing levels of lysine supplementation on productivity and body parameters303304305Treatment aP3 SEM linear quad1 2Production (kg/day)Milk 40.07 40.70 40.58 40.09 0.804 0.99 0.69 Protein 1.16 1.17 1.17 1.16 0.024 0.85 0.83 Fat 1.35 1.27 1.41 1.38 0.035 0.38 0.75 Lactose 1.82 1.85 1.86 1.84 0.040 0.88 0.75Milk composition (g/kg)Protein 28.8 28.6 28.9 28.9 0.16 0.62 0.74 Fat 33.4 31.4 34.7 34.4 0.66 0.23 0.48 Lactose 45.5 45.4 45.8 45.8 0.13 0.29 0.79 Urea N 0.142 0.157 0.138 0.142 0.0031 0.40 0.36 Gross N efficiency b0.359 0.357 0.369 0.371 0.0046 0.17 0.78 Body weightMean (kg) 582 594 592 586 9.1 0.89 0.55 Change (kg/d) -0.6 0.1 -0.9 -1.3 0.47 0.38 0.53 Body condition scoreMean (units) 2.92 2.86 2.88 2.85 0.005 <0.01 0.11 Change (units/week) 0.11 0.10 -0.04 0.08 0.050 0.51 0.44306a Target grams of L-lysine, as L-lysine HCl, added per kg of DM intake. See Table 3 for exact levels 307308delivered.b Grams of N in milk per kg N consumed.309310Impact of increasing levels of lysine supplementation on rumen metabolite concentrations312313314Treatment1P3 SEM linear quad1 2pH 6.60 6.63 6.68 6.60 0.014 0.50 0.07 Nitrogen (mg/l)Ammonia 63.5 68.7 72.1 73.8 4.76 0.34 0.83 Total 279.5 285.7 280.8 307.3 10.62 0.33 0.58 Volatile fatty acids (meq/l)Acetate 47.8 50.1 48.7 55.1 1.43 0.09 0.42 Propionate 20.7 19.9 19.1 23.4 0.68 0.17 0.07 Isobutyrate 0.7 1.0 0.9 0.8 0.05 0.50 0.09 Butyrate 9.5 9.9 9.3 10.8 0.51 0.39 0.60 Isovalerate 1.0 1.2 1.1 1.2 0.05 0.28 0.50 Valerate 1.1 1.1 1.1 1.3 0.05 0.12 0.28 Total 80.8 83.1 80.2 92.6 2.55 0.12 0.28 3151Target grams of L-lysine, as L-lysine HCl, added per kg of DM intake. See Table 3 for exact levels 316delivered.317318Impact of increasing levels of lysine supplementation on rumen ingesta and bacterial composition 320321322Treatment aP1 2 3SEMlinear quadRumen ingesta compositionDry matter (g/kg) 184 177 179 195 4.4 0.31 0.18Neutral detergent fibre (g/kgDM)626 619 642 642 8.7 0.27 0.80Lignin (g/kg DM) 61 59 61 62 0.9 0.45 0.45Lignin/neutral detergent fibre 0.097 0.095 0.094 0.096 0.0013 0.80 0.44Crude protein (g/kg DM) 149 149 152 149 3.3 0.95 0.76RNA (mg/g OM) 19.6 12.3 14.6 14.7 2.80 0.54 0.45Rumen bacteria compositionN (g/kg OM) 92.1 91.5 93.3 95.4 1.43 0.29 0.59 RNA (mg/g OM) 137.0 133.5 128.3 135.5 9.13 0.88 0.73 N/RNA (g/mg) 0.68 0.75 0.77 0.74 0.060 0.63 0.64323a Target grams of L-lysine, as L-lysine HCl, added per kg of DM intake. See Table 3 for exact levels 324delivered.325326Impact of increasing levels of lysine supplementation on calculated rumen liquid volume and 328turnover, forestomach neutral detergent fibre digestion, rumen bacterial N pool, and rumen lysine 329escape330331332Treatment aP3 SEM linear quad0 1 2Rumen liquid pool bVolume (l) 87.5 98.0 94.7 90.1 4.55 0.89 0.36Turnover (proportion/h) 0.194 0.230 0.202 0.184 0.0084 0.35 0.10NDF digestion and bacterial N poolNDF digestion (g/kg NDF intake) 0.543 0.533 0.540 0.537 0.0052 0.75 0.71Bacterial N pool (g/kg ingesta N) 0.534 0.279 0.434 0.407 0.0589 0.60 0.28 Rumen lysine cConcentration (μmol/l)50.7 80.1 59.9 109.4 8.94 0.05 0.520.9 1.9 1.2 1.8 0.17 0.15 0.61Forestomach escape (g/AMfeeding)333a Target grams of L-lysine, as L-lysine HCl, added per kg of DM intake. See Table 3 for exact levels 334delivered.335b Calculated from Co EDTA dilution.336c Total lysine. These values represent the AM feeding cycle (i.e., 07:00 h to 14:00 h) only.337338339Fig 1. Rumen lysine concentrations during the AM feeding cycle as influenced by level of 340feeding (g/kg DM intake/day) of free L-lysine. [SEM ranged from 1.2 to 54.2; linear and 341quadratic effects were not significant (i.e., P > 0.05) at all times]342343344345346347348349350。
动物营养学报综述格式
动物营养学报综述格式摘要:一、引言1.动物营养学的重要性2.综述的目的和意义二、动物营养学的基本概念1.营养需求与营养供给2.能量与营养物质代谢三、动物营养学的研究方法1.试验设计与试验方法2.营养评估与监测技术四、动物营养学的应用1.畜牧业生产与管理2.饲料工业与饲料添加剂研发五、动物营养学的发展趋势1.精准营养与个性化喂养2.绿色养殖与可持续发展六、我国动物营养学的研究现状与展望1.研究成果与技术水平2.产业发展的挑战与机遇七、结论1.动物营养学的重要贡献2.未来研究与发展方向正文:一、引言随着科技进步和畜牧业的快速发展,动物营养学在我国农业领域的重要性日益凸显。
动物营养学关注动物的营养需求、饲料资源利用和营养物质代谢等方面,旨在为养殖业提供科学依据。
本文综述了动物营养学的基本概念、研究方法、应用领域,以及我国动物营养学的研究现状与展望,以期为相关领域的研究者和从业者提供参考。
二、动物营养学的基本概念1.营养需求与营养供给动物营养学关注动物在不同生长阶段、不同生理状态下的营养需求,以及饲料中的营养物质供给。
营养需求包括能量、蛋白质、脂肪、矿物质、维生素等,营养供给需满足动物的生长、繁殖、抗病等生理功能。
2.能量与营养物质代谢能量代谢是动物生命活动的基础,营养物质在动物体内的代谢途径和调控机制是动物营养学的研究重点。
能量代谢与动物的生长、繁殖、肉质等密切相关,营养物质代谢包括消化、吸收、转运、利用等过程。
三、动物营养学的研究方法1.试验设计与试验方法动物营养学的研究离不开科学严谨的试验设计和方法。
试验设计包括随机分组、对照组设置、处理因素等,试验方法包括饲养试验、代谢试验、营养评估等。
2.营养评估与监测技术营养评估是根据动物的生长、生理指标、肉质等评价饲料和饲养效果。
监测技术包括动物生产性能监测、饲料营养价值评价、营养物质代谢监测等。
四、动物营养学的应用1.畜牧业生产与管理动物营养学为畜牧业生产提供了理论依据,指导养殖者合理搭配饲料、调整饲养管理措施,提高生产效益。
动物营养学报学术期刊写作中常见问题-文档资料
结束体重 (kg)
1.6~2.4
最短试验期
最少试验重复和 动物数量
35天 112天* 168天
肉鸭 产蛋鸭
育肥用火 鸡
出壳 25周龄
35天 168天
84天
出壳 开始产蛋(30 周龄) 出壳
每个处理 6 个有 效重复,每个重 复 15 只 , 性 别 比例相同
种用火鸡 后备 种用火鸡
6个月 全程**
* 仅当肉仔鸡的有效性评价试验数据无法提供时进行 ** 仅当育肥用火鸡的有效性评价试验数据无法提供时进行
能及组织黑色素含量的影响。 (方法)选用29日龄泰和乌骨鸡270只, 随机分成6组,每组3个重复,每个重复15只鸡。试验鸡分别饲喂在基础 饲粮(铜含量为4.77 mg/kg)中添加0、5、15、30、60、125 mg/kg铜的 饲粮,饲养至56日龄。 (结果)结果表明:饲粮添加适量铜可显著影响
5~8周龄泰和乌骨鸡平均日增重、平均日采食量和料重比(P<0.05),且在
最少试验重复 和个有 效重复,每个 受 精 至 断 奶 , 重复4只,性别 至少为两个繁 比例相同 殖周期* 分娩前 2 周至断 奶
泌乳母兔
第一次受精
* 仅当需要测定繁殖指标时进行
选取1日龄爱拔益加(AA)肉仔鸡2 400只,随机分为4 组,每组6个重复,每个重复100只,公母各占1/2,各重复 之间体重差异不显著(P<0.05)。对照组饲喂不添加……的基 础饲粮,其为参照美国NRC(1994 )营养需要配制的粉状配 合饲料,基础饲粮组成及营养水平见表1。试验组饲喂在基础
(前人研究进展)Kleinjans等[7] ………益生菌
可改善××生产性能.............,但…………...
journal of animal science and biotechnology 参考文献格式
《Journal of Animal Science and Biotechnology》是一本动物科学与生物技术领域的国际期刊,发表有关动物生物学、生物化学、分子生物学、遗传学、营养学、生理学、生殖生物学、生态学以及与之相关的生物技术和应用的研究文章。
该期刊通常遵循国际学术出版的标准参考文献格式,例如APA、MLA或Chicago等。
这里提供一种通用的参考文献格式,但请注意,具体格式可能会根据期刊的作者指南有所不同:
作者姓氏,初始缩写. (发布年份). 文章标题. 期刊名称,卷号(期号),页码范围. DOI 或URL(如果有)。
例如:
Smith, J. A. (2023). The impact of genetic modification on animal productivity. Journal of Animal Science and Biotechnology, 14(2), 123-132. DOI: 10.1186/s40104-023-00435-z 或者
Smith, J. A., & Johnson, L. C. (2023). Advances in animal nutrition research. Journal of Animal Science and Biotechnology, 15(3), 234-245. URL:
以上信息是虚构的,仅用于说明目的。
在准备参考文献时,应始终查阅并遵循目标期刊的具体指南和要求。
这些指南通常可以在期刊的官方网站上找到,或者在发表文章之前与编辑联系以获取详细信息。
此外,引用文献时还应考虑语言版本、出版地区以及特殊领域的格式要求。
动物营养学报退稿
动物营养学报退稿
《动物营养学报》接收所有与动物营养与饲料科学技术相关的论文,涵盖猪营养、禽营养、反刍动物营养、草食动物营养、水产动物营养、特种经济动物营养、实验动物营养、宠物营养、细胞营养、分子营养、实验方法、动物营养与免疫、动物营养与疾病、动物营养与应激、动物营养与环境、动物营养与福利、动物营养与消化道微生物、动物营养与健康养殖、动物营养与畜禽产品安全、动物营养与畜禽产品质量、动物营养与表观遗传学、动物营养与代谢组学、动物营养与繁殖学、动物营养与生物化学、动物营养与生理学、饲料营养价值评定、蛋白质营养、氨基酸营养、碳水化合物营养、维生素营养、微量元素营养、饲料添加剂开发与应用技术、饲料资源开发、饲料原料调查与分析、生物饲料、发酵饲料、水产饲料、饲料生物技术、饲用酶制剂与微生物制剂、饲用微生物菌种选育与优化、饲料安全、饲料毒素与脱毒技术、饲料抗营养因子与降解技术、饲料加工工艺与技术及饲料检测方法等与动物营养与饲料科学技术相关的各个领域。
1.选题要紧紧扣住学科发展的新进展和新成果,提炼出当前课题、问题或研究专题的最新进展、学术见解或建议,对学科发展有指导意义。
2.应评述结合,归纳重点,做出综合性介绍,不要对他人研究工作进行机械罗列。
3.应结合相关研究结果,找出该研究领域的不足之处以及存在的问题,提出自己的观点和解决途径,并对未来研究的热点进行展望。
4.应多引用试验性文章,参考文献中试验性文章要占2/3及以上,并做到准确引用原文,避免二次引用。
畜牧兽医学报参考文献格式
畜牧兽医学报参考文献格式
参考文献的格式视具体的引用风格和要求而定。
以下是一种常用的参考文献格式示例,可供参考:
1. 期刊文章:
作者姓,作者名. 文章标题. 期刊名,发表年份,卷号(期号):
起止页码.
示例:Smith, J. K., & Johnson, L. M. (2020). The role of veterinary medicine in animal agriculture. Journal of Animal Science, 98(6), 2345-2367.
2. 专著:
作者姓,作者名. (出版年). 书名. 出版地:出版社.
示例:Johnson, L. M. (2018). Veterinary medicine in animal agriculture. New York, NY: Academic Press.
3. 会议论文:
作者姓,作者名. (发表年份). 论文标题. 会议名称,会议地点,起止页码. 出版地:出版社.
示例:Brown, A. B., & Lee, C. D. (2019). Emerging diseases in livestock: A global perspective. Proceedings of the International Livestock Veterinary Conference, Kuala Lumpur, Malaysia, 45-52. Kuala Lumpur: Springer.
请注意,以上仅为一种常见的参考文献格式示例,具体应根据期刊或学术机构的要求调整格式。
《动物营养学报》综述论文模板2012410(DOC)
亲爱的综述论文投稿作者:您好!以下是供投稿本刊作者用的综述论文编写模板。
本模板以本刊发表的某优秀综述为参考编制,不代表该综述原文。
模板涵盖了综述论文须要遵循的各项标准和规则,如格式、单位、数字、图、标点符号、正斜体、名词术语以及参考文献著录规则等。
请仔细阅读本模板,如认真模仿本模板编写论文,不但将提高您论文在本刊的录用率,而且录用后也将大大缩短论文在本刊网刊和纸刊上的发表时间。
谢谢您的合作!《动物营养学报》编辑部2012年3月通则:1.字体字号:为了便于编辑和专家审读,请全文用word的五号字、Times New Roman字体、不加粗编写,加行号,全文通栏和自动换行。
2.标点符号:建议中文段落用中文标点符号及其规则著录,英文摘要和中英文混排文字(参考文献、表注)用英文标点符号及其规则著录。
参考文献和表注中所有标点符号后都不空格。
3.中文摘要:应简要介绍所综述对象,并简述本文的主要内容。
4.关键词:要选准,选准才能有利于同行在数据库中检索到您的论文和提高您论文的被引率。
5.英文摘要:要请英文水平高的老师帮助你把关和修改后再将稿件传来。
6.名词术语:全文中多次出现的名词术语,首次出现时,在少见少用的中文名词术语后标注(英文全称+缩写),例:一水肌酸(creatine monohydration,CMH);而在常见常用的中文名词术语后仅标注英文缩写,例:平均日增重(ADG);后文都直接用英文缩写,以节省篇幅。
但全文中仅出现1次的中文名词术语,一般不标注英文全称及其缩写(英文名比中文名更通用或者没有标准的中文名时除外)。
7.字词:全文统一。
如“养分”或“营养物质”,二者选一,全文统一。
又如“N端和C端”或“3'端和5'端”,二者选一,全文统一。
8.斜体:正文和参考文献中in vitro, in vivo, 化合物构型D-、L-、DL-等,植物微生物拉丁文种名和属名,基因符号均斜体(但与基因相连的数字不斜体)。
动物营养学报最终格式要求
亲爱的作者:您好!12祝贺您的论文终审通过被本刊录用,请抓紧时间按终审专家意见并对照以下论文模板3(修订版)认真修改论文。
4论文模板涵盖了本刊研究性论文须要遵循的各项标准和规则,如格式、单位、数字、统5计、图、表、标点符号、正斜体、名词术语以及参考文献的著录规则等。
如您认真对照本模6板修改论文,不但将提高论文的质量和被引率,而且将大大缩短论文在本刊网刊和纸刊上的发表时间。
78您的论文可能还要进行多次修改,请大力支持和配合本刊编辑的工作。
9谢谢!《动物营养学报》编辑部1011通则:121.字体字号:为了便于编辑和专家审读你的稿件,请全文用word的五号字(除表格中内1314容外)、Times New Roman字体、不加粗编写,加行号,全文通栏和自动换行。
表格中15内容用小五号字。
162.标点符号:建议中文段落用中文标点符号及其规则著录,英文摘要和中英文混排文字(参17考文献、表注)用英文标点符号及其规则著录。
参考文献、表注及名词术语后附英文与18缩写中所有标点符号后均不空格。
3.中文摘要:要求1)简洁:排除常识内容;2)独立:不得引用文中参考文献号、图号和1920公式;3)具体:尽量用具体数字说明研究取得的进展;4)便文献于收录:尽量避免包21含公式、上下标等(研究模型等特殊情况除外),以便国内外数据库收录文本数据。
关键词要选准,选准才能有利于同行在数据库中检索到您的论文和提高您论文的被引率。
22234.结果:尽量用表格将试验数据列出,尽量不用柱形图或折线图,因为表格数据最能准确反映试验的可信度和测量数据的精度。
24255.英文摘要:要请英文水平高的老师帮助你把关和修改。
266.名词术语:全文中多次出现的名词术语,后括弧标注英文名(全部小写)及其缩写,后文直接用英文缩写以节省篇幅,如平均日增重(average daily gain,ADG)。
但全文中仅出2728现1次的中文名词术语,一般不标注英文名及其缩写。
《动物营养学报》征稿简约
《动物营养学报》征稿简约
佚名
【期刊名称】《动物营养学报》
【年(卷),期】1994(000)002
【摘要】《动物营养学报》是在中国畜牧兽医学会动物营养学分会主办的《中国动物营养学报》的基础上于1994年6月经国家科委及新闻出版署正式批准的专业性刊物(CN15-1176/S,ISSN 1006-267X)。
本刊以加强国内外学术交流、发展我国动物营养科学、繁荣我国畜牧生产和饲料工业为宗旨,重点刊载以下几个方面的科学研究论文和专题综述:1.有关家畜、家禽、特产动物、宠物、水生动物等的营养需要及生理、生化方面的最新科学研究报告;2.与动物营养学有关的饲养技术、环境卫生及动物行为学方面的最新科学研究报告;3.与动物营养有关的饲料营养价值评定、饲料原料、添加剂、加工、信息等方面的最新研究报告;4.与动物营养学有关的方法学、软科学及计算机技术等方面的专题研究报告;5.有关当代国内外动物营养科学研究前沿领域的文献综述或评论:6.国内外有关动物营养学方面学术活动的报道。
【总页数】4页(P59-62)
【正文语种】中文
【中图分类】S8
【相关文献】
1.《机械制造》征稿简约 [J],
2.《机械制造》征稿简约 [J],
3.《动物营养学报》英文研究论文征稿启事 [J],
4.《动物营养学报》英文研究论文征稿启事 [J],
5.《上海汽车配件科技情报》征稿简约 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
宠物英语作文格式模板
宠物英语作文格式模板英文回答:Pet Essay Format Template。
Introduction。
Start with a hook to grab the reader's attention.State the main idea or thesis statement of the essay.Briefly introduce the pet and its significance to you.Body Paragraph 1。
Describe the pet's physical characteristics, such as breed, size, color, and unique features.Include any relevant information about the pet's health or personality.Use vivid language and specific examples to create a sensory experience for the reader.Body Paragraph 2。
Discuss the pet's daily routine and habits.Share anecdotes about its playful nature, affectionate behavior, or amusing quirks.Explain how the pet interacts with you and other family members.Body Paragraph 3。
Explore the emotional bond between you and the pet.Describe how the pet brings joy, companionship, and unconditional love into your life.Share specific memories or experiences that highlightthe pet's positive impact on you.Body Paragraph 4 (Optional)。
著名的兽医英语作文模板
著名的兽医英语作文模板Title: A Famous Veterinarian。
Introduction。
A famous veterinarian is someone who has made significant contributions to the field of animal health and welfare. These individuals are often recognized for their expertise, compassion, and dedication to improving the lives of animals. In this essay, we will explore the life and work of a renowned veterinarian and the impact they have had on the veterinary profession.Early Life and Education。
A famous veterinarian typically begins their journey with a deep love and respect for animals. From a young age, they may have shown a keen interest in caring for pets or wildlife, and this passion often leads them to pursue a career in veterinary medicine. Many famous veterinarians have excelled in their academic studies, earning advanced degrees and specialized training in animal health and medicine.Professional Achievements。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《动物营养学报》英文论文格式模板1Effects of Dietary Energy Level on Growth Performance and Carcass 2Composition of Wujin Pigs3ZHANG Xi ZHAO Su-mei GE Chang-rong LAI Hua LI Chang-qiang GAO Shi-zheng*45(Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming 650201, China)67Abstract: (Objective)The aim of the present study was to investigate the effects of dietary digestible energy levels on 8growth performance and carcass composition in Wujin pigs, and to investigate the most suitable dietary energy density 9for maximum growth potential and best carcass composition using the fuzzy comprehensive evaluation model. (Method) 10The experimental approach was by single factor random allotment. Ninety pigs were randomly allotted into five groups 11of 18, and fed diets containing 14.22, 13.60, 12.98, 12.36 and 11.74 MJ/kg of digestible energy. (Result)Results showed 12that the daily gain was reduced and the feed gain ratio increased gradually with reduction in dietary energy levels. No significant differences were found in the groups at body weight of 15~30 kg (P>0.05). At the body weight of 60 and 1314100 kg, lean meat weight, lean meat ratio and loin eye area were increased, but fat weight, fat percentage and back fat thickness were decreased with reduction in dietary energy levels. From the fitting curve, the most suitable dietary energy 1516levels for best growth performance at body weights of 15~30 kg, 30~60 kg and 60~100 kg were 14.01, 13.15 and 1712.98 MJ/kg, respectively. Using lean meat ratio, back fat thickness and loin eye area to represent the carcasscomposition, the optimal dietary energy densities were 11.13, 11.36 and 11.71 MJ/kg at 15~30 kg, 30~60 kg and 60~1819100 kg, respectively. (Conclusion)Optimum dietary energy levels were 13.55, 12.81 and 13.20 MJ/kg for a combination 20of growth performance and carcass composition.21Key words: Digestive energy; Growth performance; Carcass composition; Wujin pigs22Wujin pigs is a typical Chinese local breed in Yunnan province and its feeding is based on the availability of natural2324resources in the local area. Wujin pigs grows slowly and its body fat is high, but its meat is very good, especially in itsDate recerved: 2007-12-22Financial support: Key Project of Yunnan Natural Science Foundation (2005C0008Z)Author information:ZHANG Xi, professor, major in animal nutrition and feed science. E-mail: zhangxi_km@* Corresponding author: GAO Shi-zheng, professor, major in animal nutrition. E-mail: gaoszkm@content of intramuscular fat which is higher than that in other breeds of pigs. Traditionally, it is an ideal material for 12producing the high quality Xuanwei ham in China[1-2]. Efforts have been made to hybridize this Chinese local pigs breed 3with foreign breeds to improve growth performance and to obtain the best carcass traits, but there has been limited 4research in the traditional feeding model. To improve the feeding model, therefore, it is necessary to investigate the most 5suitable dietary energy levels for Wujin pigs, based on the Chinese Feeding Standard for Local Pigs[3] and NRC (1998)[4]. 6This study used fitting curves and fuzzy comprehensive evaluation to investigate dietary energy levels for best growth 7performance and carcass composition.81 MATERIALS AND METHODS91.1 Experimental designThe experiment was designed by single factor random allotment. Ninety Wujin pigs with an initial live weight of1011(15± 1.51) kg were divided into 5 dietary treatment groups based on different dietary energy content and crude protein content (18%, 16% and 14%) at three growing finishing stages (15~30 kg, 30~60 kg , and 60~90 kg body weight). 12131.2 Pigs and Housing14All experimental procedures were approved by the Yunnan Agricultural University Committee on Laboratory Animal 15Care. Groups of six pigs were housed in one pen with a half slatted floor in an insulated but unheated shed at the 16research station of Yunnan Agricultural University. The pigs were fed twice daily at 08:00 and 15:30, respectively.171.3 DietsThe five dietary energy densities were derived from recommendations of the Chinese Feeding Standard for Local1819Breed Pigs[3] (group III, DE: 12.98 MJ/kg) and the United States NRC (1998)[4] (group I, DE: 14.22 MJ/kg). The other 20groups completed the series with increments of 0.62 MJ/kg; i.e., the dietary energy levels of group Ⅰto group Ⅴ were2114.22, 13.60, 12.98, 12.36 and 11.74 MJ/kg, respectively. Composition and calculated nutrient contents of the 22experimental diets are presented in Table 1.231.4 Growth performance24The feed intake was recorded daily. The pigs were weighed monthly, and at the beginning and the end of the 25experiment. The average daily gain and the feed gain ratio were calculated.261.5 Carcass composition27Six pigs from each group were slaughtered at 30, 60 and 100 kg body weight. The pigs were fasted for 24 h before being slaughtered and weighed. Different parts of the carcass were separated and measured including loin eye area, back2829fat thickness, lean meat weight, fat weight, bone weight, skin weight so that the slaughter percentage, lean meat 30percentage, fat percentage, the ratio of lean meat to fat were calculated[4].1.6Calculations and statistics121.6.1 Statistical analysis3Significant differences and regression analyses were conducted with SAS and EXCEL software.1.6.2 Model of fuzzy comprehensive evaluation4…………5Table 1 Composition and nutrient levels of diets (DM basis, %)Items15~30 kg 30~60 kg 60~100 kgⅠⅡⅢⅣⅤⅠⅡⅢⅣⅤⅠⅡⅢⅣⅤIngredientsCorn 63.19 62.46 57.32 48.31 39.49 68.67 66.80 62.50 53.79 43.22 73.79 71.84 66.44 59.00 48.40 Wheat bran 7.00 10.00 17.93 27.93 38.35 7.00 12.00 19.00 29.00 42.00 7.00 12.00 20.00 27.62 42.00 Soybean meal 18.61 19.16 17.38 15.90 14.23 14.40 12.98 11.36 9.54 8.48 10.93 9.56 7.80 6.56 4.59 Fish meal 6.00 5.00 5.00 4.80 4.60 5.00 5.00 5.00 5.00 4.00 3.50 3.50 3.50 3.50 2.80 Soybean oil 2.96 0.90 - - - 2.90 1.11 0.03 - 0.08 2.70 1.01 0.16 - - CaHPO40.10 0.20 0.05 0.20 0.15 - - - 0.01 - - - - 0.50 - Limestone 0.85 0.90 1.00 0.90 0.94 0.72 0.81 0.81 0.80 0.89 0.75 0.75 0.75 0.96 0.81 Met - - - - - - - - 0.57 - - - - 0.50 - Lys - 0.08 0.03 0.67 0.94 - - - - 0.04 0.02 0.04 0.05 0.06 0.10 NaCl 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 Premix1) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Nutrient levels2)DM 88.39 88.97 88.86 88.31 88.13 88.47 88.94 88.89 88.47 88.85 88.43 88.88 88.62 88.76 88.77 DE (MJ/kg)3)14.22 13.60 12.98 12.36 11.74 14.22 13.60 12.98 12.36 11.74 14.22 13.60 12.98 12.36 11.74 CP 18.69 18.74 18.73 18.77 18.79 16.48 16.44 16.42 16.44 16.52 14.28 14.25 14.25 14.27 14.32 NDF 9.22 10.32 12.69 15.55 18.56 9.28 10.86 12.97 15.82 19.70 9.38 10.96 13.33 15.46 19.77 ADF 3.54 3.94 4.74 5.73 6.77 3.46 3.98 4.70 5.67 7.03 3.41 3.93 4.74 5.47 6.96 Ca 0.58 0.55 0.55 0.54 0.54 0.45 0.47 0.46 0.45 0.44 0.37 0.36 0.35 0.36 0.37 TP 0.98 0.97 0.96 0.96 0.98 0.77 0.79 0.79 0.78 0.77 0.69 0.68 0.69 0.68 0.69 AP 0.27 0.28 0.29 0.27 0.29 0.20 0.21 0.21 0.20 0.21 0.14 0.13 0.14 0.13 0.13 Lys 0.66 0.64 0.64 0.65 0.65 0.55 0.56 0.54 0.55 0.55 0.46 0.44 0.46 0.45 0.46 1) Premix provided the following per kilogram of diet: VA 8 267 IU; VD 22 480 IU; VE 66 IU; menadionine (as menadionine pyrimidinol bisulfite complex) 6.2 mg; VB1(thiamine) 3.31 mg; VB2 (riboflavin) 10 mg; VB6 (pyridoxine) 3.31 mg; VB12 45 μg; D-calcium pantothenic acid 37 mg; niacin 66 mg; D-biotin 331 μg; folic acid 2.5 mg; VC 83 μg. Zn 127 mg; Fe 127 mg; Mn 20 mg; Cu 12.7 mg; I 0.80 mg; Se 0.3 mg.2)Calculated values.3) The values of digestive energy were obtained and calculated from the digestive energy values of each feed ingredient in The Database of Chinese Feeds (2007).2 RESULTS2.1 Growth performanceThe effects of dietary composition and DE levels on growth performance of Wujin pigs fed from 15 to 100 kg body weights were shown in Table 2. Increasing dietary composition and energy levels significantly reduced feed intake during different growth stages (P<0.01). There were no significant effects of dietary composition and energy levels on daily gain at 15~30 kg (P>0.05). However, there was significant difference in the daily gain among the different groups at body weights 30~60 kg and 60~100 kg (P<0.01 or P<0.05). The feed gain ratio were significantly increased with dietary energy reductions during the whole growth-finishing stages (P<0.01 or P<0.05). With decreasing energy levels, groups I to group V reached 100 kg body weight in 158, 163, 168, 176 and 185 days, respectively.Table 2 Growth performance of Wujin pigs at various dietary digestive energy levelsGrowth stage Groups(kg) (kg) intake (kg/d) days (d)Daily gain (g/d) F/G15~30 kg Ⅰ15.32±1.20 30.23±1.14 1.02±0.05A34 438.73±26.92 2.33±0.16Aa Ⅱ15.20±0.68 30.17±1.11 1.03±0.04A35 427.62±23.68 2.42±0.13ABa Ⅲ15.22±0.77 30.32±1.24 1.04±0.01A36 419.44 ±28.11 2.49±0.17ABCab Ⅳ15.08±0.60 30.23±1.21 1.09±0.02B37 409.46±22.14 2.66±0.15BCbc Ⅴ15.17±0.59 30.12±1.11 1.11±0.02B37 404.05±31.88 2.77±0.24Cc30~60 kg Ⅰ29.33±1.08 60.42±1.32 1.69±0.02A50 621.67±27.78A 2.72±0.12Aa Ⅱ29.77±0.97 60.52±1.99 1.72±0.02A52 591.35±40.63AB 2.92±0.22ABab Ⅲ30.00±0.71 60.22±1.26 1.75±0.06AB52 581.09±34.43AB 3.02±0.17ABbc Ⅳ29.37±2.26 60.50±1.61 1.80±0.06BC56 555.95±45.71BC 3.26±0.32BCc Ⅴ29.60±1.53 60.05±0.93 1.86±0.06C59 516.10±25.47C 3.62±0.21Cd60~100 kg Ⅰ57.97±1.20 101.48±1.59 2.08±0.02Aa74 584.23±19.68Aa 3.56±0.09Aa Ⅱ59.33±1.29 103.76±2.59 2.14±0.02Bb76 573.68±50.91Aa 3.57±0.32Aab Ⅲ58.70±1.87 102.92±2.24 2.16±0.05Bbc80 543.75±8.97ABa 3.97±0.07Ab Ⅳ59.83±2.51 100.96±2.17 2.20±0.05Bc83 493.15±57.27Bb 4.51±0.51Bc Ⅴ58.33±1.78 102.68±1.06 2.26±0.04Cd89 493.63±33.42Bb 4.60±0.35Bc15~100 kgⅠ15.00±1.02 101.48±1.59 1.73±0.03Aa158 545.57±9.10A 3.16±0.08AaⅡ15.08±1.24 103.76±2.59 1.77±0.02Bb163 538.96±9.56A 3.28±0.05AbⅣ14.90±1.51 100.96±2.17 1.84±0.02Cd176 487.31±5.75C 3.77±0.09CdⅤ15.85±1.51 102.68±1.06 1.90±0.01De185 467.12±9.71D 4.08±0.10De Different capital superscripts in the same line of the same stage mean significant difference (P<0.01), different superscripts in the same line of the same stage mean significant difference (P<0.05). The same as below.2.2 Carcass compositionThe effects of dietary energy levels on carcass composition at 30, 60 and 100 kg body weights were shown in Tables 3, 4 and 5.……2.3 Optimal dietary energy levels for best growth performanceThe fitting curves of daily gain and energy level were calculated (Fig.1). ……Fig. 1 Fitting curves of daily body gain with energy levels at different growth stages2.4 Optimal dietary energy levels for the best carcass composition2.4.1 Optimal dietary energy levels for the maximum lean meat percentageThe fitting curves of lean meat percentage and energy level were calculated at 30, 60 and 100 kg according to the equation: y=a+b x+c x2+d x3 (Fig.2). Optimal dietary energy levels to reach the maximum lean meat percentage were 11.13, 11.91 and 11.71 MJ/kg, respectively.……2.5 The optimal dietary energy level for the best growth performance and carcass compositionThe fitting curves were attained using daily gain and lean meat percentage, back fat thickness and loin eye area (Fig.5, Fig.6 and Fig.7), and fuzzy comprehensive evaluation values were calculated (Table 7). ……3 DISCUSSIONSThe aim of the NRC (1998) recommended nutritional requirement, based on corn and soybean meal, is toobtain the best growth performance of American swine. It does not, however, provide the best nutritional requirements for different countries and regions [8-9]. Chinese local breeds of swine have some disadvantages, such as slower growth rate and higher fat deposition compared with foreign breeds [10-13]and the nutritional recommendations of NRC (1998) are not fitted to Chinese local swine. Therefore, Chinese feeding standards of fatty pigs during the growth-finishing stages are being developed according to the characteristics and nutritional requirement of local breeds. Wujin pigs, as one of the Chinese local breeds of swine, has excellent meat quality, but there is little information about the effects of dietary energy on its growth performance and carcass composition.Energy is necessary for fat and protein deposition. Suboptimal energy levels reduce growth performance and carcass protein deposition. Previous studies showed that there was a linear relationship between daily gain and dietary energy levels for Landrace, Duroc and Pietrain pigs [16-18]. Our results showed that reducing dietary energy levels reduced the average daily gain (ADG) although feed efficiency increased. Days taken for pigs to reach 100 kg body weight were 158, 163, 168, 176 and 185 with reductions in dietary energy levels (14.22, 13.60, 12.98, 12.36 and 11.74 MJ/kg, respectively). Moreover, our results showed that there were significant differences in ADG and feed efficiency between the NRC (1998) recommendations and the Chinese feeding standard. This result indicated that dietary composition and energy levels significantly affected growth performance. The fitting curves of daily gain and dietary energy level showed that the relationship between daily gain and energy level was linear and that the optimal dietary energy level to attain the maximum potential growth was 14.01, 13.15 and 12.98 MJ/kg at body weights 15~30 kg, 30~60 kg and 60~100 kg, respectively. These data indicated that the optimal dietary energy level of Wujin pigs was higher than that of the Chinese standard of local breeds at 15~60 kg body weight, and nearly equaled the Chinese standard at 60~100 kg body weight.Increasing dietary energy levels can enhance carcass fat deposition and back fat thickness and reduce loin eye area and lean meat percentage [19-26]. Our results showed that dietary energy levels could significantly affect carcass composition. However, various energy levels could affect carcass composition differently during different growth stages. At 30 kg body weight, dietary energy levels significantly affected lean meat percentage, fat weight and loin eye area. At 60 and 100 kg body weight, lean meat weight, lean meat percentage and loin eye area increased and fat weight, fat percentage and back fat thickness decreased with reduction in dietary energy level. The fitting curves showed that lean meat percentage and loin eye area decreased linearly with increasing dietary energy level during different stages. Back fat thickness increased linearly with increasing dietary energy levels at 60 and 100 kg body weight. Dietary energy level did not significantly affect back fat thickness at 30 kg bodyweight, possibly due to a limited capacity to deposit fat at that body weight. Considering the effect of dietary energy level on lean meat percentage, back fat thickness and loin eye area, the optimal dietary energy levels attained by the fuzzy comprehensive evaluation model were 11.13, 11.36 and 11.71 MJ/kg at 15~30 kg, 30~60 kg and 60~100 kg body weight, respectively, and were lower compared with the Chinese feeding standard of local breeds. This suggested that the optimal dietary energy level to attain the best carcass composition was lower than the Chinese feeding standard of local breeds, irrespective of growth performance.Because of the slower growth, higher fat deposition and poorer carcass composition, it is necessary to consider fully the growth performance and carcass composition in order to reach the greatest potential of Wujin pigs during feeding. The present study showed by fuzzy comprehensive evaluation of daily gain and carcass composition that the optimal dietary energy level was 13.55 ,12.81 and 13.20 MJ/kg at 15~30 kg, 30~60 kg, 60~100 kg body weights, respectively, which was higher at 15~30 kg and 60~100 kg body weights and lower at 30~60 kg body weight compared with the Chinese feeding standard of local breeds.4 CONCLUSIONS①Dietary energy level had significant effects on growth performance. The optimal dietary energy levels to attain the best growth potential were 14.01, 13.15, and 12.98 MJ/kg at 15~30 kg, 30~60 kg and 60~100 kg body weights.②Dietary energy level could significantly affect carcass composition. The optimal dietary energy levels to reach the best carcass composition were 11.13, 11.36 and 11.71 MJ/kg at the three body weights, respectively.③Considering growth performance and carcass composition, the optimal dietary energy levels to attain the best growth performance and carcass composition were 13.55, 12.81 and 13.20 MJ/kg during the 15~30 kg, 30~60 kg and 60~100 kg growth stages.REFERENCE:[1]Wang Z Q, Rong Y X. Study on Dahe black pig and (Da He) Wujin pig. Yunnan Agricultural Science andTechnology, 2004, Suppl: 41-44. (in Chinese)[2]Yang C K. Yunnan local pig commercial extention, Pig Science, 2006, 4: 23-24. (in Chinese)[3]Zhang H F, Zhang Z Y. Animal Nutritional Parameter and Feeding Standard: Feeding standard of Chinesefatty during growth-finishing pig: Chinese Agricultural Publisher, 1998, 96. (in Chinese)[4]National meat quality research seminar of swine. The measurement method of meat quality for swine.North-east feeding swine, 1987, 3: 7.[5]Peng Z Z, Sun Y Y. Fuzzy mathematics and implications. Wuhan: Wuhan University Publishers, 2002,122-131. (in Chinese)[6]Liu C H, Wang Y F. Grey association analysis and comprehensive evaluation evaluation of pig meat quality.Chinese Husbandry Magazine, 2003, 39 (2): 19-21 (in Chinese).[7]Bruns K W, Pritchard R H, Boggs D L. The relationships among body weight, body composition, andintramuscular fat content in steers. Journal of Animal Science, 2004, 82: 1315-1322.……乌金猪日粮能量水平对生长性能和胴体品质的影响张曦赵素梅葛长荣赖桦李长强高士争*(云南农业大学云南省动物营养与饲料重点实验室,昆明650201)摘要:(目的)本文旨在研究日粮不同能量水平对乌金猪生长性能及胴体品质的影响,采用模糊综合评定系统分析并确定最佳生长性能和胴体品质所需的日粮适宜能量水平。