压水堆核电厂二回路热力系统初步设计-专业课程设计(二)指导书(2009级)

合集下载

压水堆核电厂二回路热力系统

压水堆核电厂二回路热力系统

核电厂二回路热力系统压水堆核电厂二回路热力系统是将热能转变为电能的动力转换系统。

将核蒸汽供应系统的热能转变为电能的原理与火电厂基本相同,两种情况都是建立在朗肯循环基础之上的,当然二者也有重大差别,现代典型的压水堆核电厂二回路蒸汽初压约6.5MPa,相应的饱和温度约为281℃,蒸汽干度99.75%; 而火力发电厂使用的新蒸汽初压约18MPa,温度为535℃甚至更高。

因此,压水堆核电厂的理论热效率必然低于火电厂。

火力发电厂与压水堆核电厂毛效率的参考数字分别约为39%和34%。

火力发电厂通常将在高压缸作功后的排汽送回锅炉进行火力再热; 在核电厂,用压水堆进行核再热是不现实的,只能采用新蒸汽对高压缸排汽进行中间再热。

此外,火电厂的烟气回路总是开放的。

在一个开式系统中,排入大气的工作后的载热剂温度总是高于周围环境的温度,也就是说,一些热量随载热剂排入大气而损失掉了。

而核电厂的冷却剂回路总是封闭的。

这不仅从防止放射性物质泄漏到环境是必须的,从热力学角度讲,它提高了循环的热效率。

核电厂二回路系统的功能如下:构成封闭的热力循环,将核蒸汽供应系统产生的蒸汽送往汽轮机作功,汽轮机带动发电机,将机械能变为电能。

作为蒸汽和动力转换系统,在核电厂正常运行期间,本系统工作的可靠性直接影响到核电厂技术经济指标。

从安全角度讲,二回路的另一个主要功能是将反应堆衰变热带走,为了保证反应堆的安全,二回路设置了一系列系统和设施,保障一回路热量排出,如蒸汽发生器辅助给水系统、蒸汽排放系统、主蒸汽管道上卸压阀及安全阀等就是为此设置的。

控制来自一回路泄漏的放射性水平。

二回路系统设计上,能提供有效的探测放射性漏入系统的手段和隔离泄漏的方法。

同常规发电厂的实际热力系统一样,核电厂二回路热力系统,可分为局部热力系统和全面热力系统(又称为全厂热力系统)。

局部热力系统表示某一热力设备同其它设备之间或某几个设备之间的特定联系,而全面热力系统则表示全部主要的和辅助的热力设备之间的特定联系。

CNP1500压水堆核电站热力计算与二回路热力系统初步设计

CNP1500压水堆核电站热力计算与二回路热力系统初步设计
The second part is to design the thermal system which can meet the needs of the entire operation based on the characteristics and operation specifications of CNP1500 unit. And then discuss and analysis each local system of the st but not least, the third part is to calculate the dimensions of each steam pipe according to the pipeline medium flow rate recommended by “Regulation Of Pipeline”and the continuity equation. Then, consult the related national standards and specifications to select different materials and steel models of the piping according to the operating conditions of the pipeline (including the design temperature, design pressure,theworking medium category), theeconomic , welding and processing of materials and other characteristics.
CNP1500 PWRTHERMODYNAMICCALCULATION ANDSECONDARYLOOPPRELIMINARYDESIGN

核电厂二回路热力系统.pdf

核电厂二回路热力系统.pdf
有独立的疏水冷却段。
低压给水加热系统的功能是利用汽轮机低压缸抽汽加热凝 结水,以提高循环热效率,共有四级低加。
高压加热器利用高压缸抽汽加热给水,以提高循环热 效率。
共有两级高加。 回热系统中的热交换设备主要是给水加热器和除氧器。给
水加热器一般为表面式热交换设备。 蒸汽进入加热器壳体流经换热管束外表面,加热在管束里 流动的水,其本身凝结成疏水经疏水管线排出加热器。 凝结水经进口水室流入换热管束被蒸汽加热,经出口水室 流出完成加热过程。 加热器传热效率与加热器的传热面积、传热管子的清洁度、 给水流速、加热蒸汽和给水的温度等因素有关。 一般把位 于凝结水泵以后和除氧器以前的给水加热器处于凝结水泵出 口压力下工作,称为低压给水加热器;位于主给水泵出口以 后的给水加热器处于给水泵高压力下工作,称为高压给水加 热器。
对一个全部采用逐级自流的疏 水系统,高压加热器逐级自流疏 水至除氧器;对于除氧器前面几 级低加加热器,疏水最终导入凝 汽器。
这种自流疏水系统,不增添任何设备,系统简单,但经济 性差。这是由于从较高压力的加热器的疏水流到较低压力的加 热器时,部分闪蒸蒸汽就排挤了一部分低压加热蒸汽,即减少 了汽轮机的较低压力抽汽量。若保持汽轮机功率不变,势必增 加凝汽循环发电量,最后增加了在凝汽器中的热损失。同时, 疏水经过最后一级加热器排入凝汽器,热量被循环水带走,从 而又引起额外的热损失。若逐级自流的疏水,最后不排到凝汽 器,而是送入热阱或凝结水泵入口,则经济性会有所改善。
采用疏水泵使得系统复杂,投资增 加,耗厂用电,维修运行费用提高。因 此,一般在低压的热器末级或次末级使 用。例如,我国大亚湾核电厂,二回路 系统第3、4级低压加热器的疏水经疏水 泵送入第3、4级低压加热器之间的凝结 水管道中。

CNP1500压水堆核电站热力计算及二回路热力系统初步设计

CNP1500压水堆核电站热力计算及二回路热力系统初步设计

目录摘要 ................................................................................................................................. I Abstract ........................................................................................................................... III 第1章绪论 .. (1)1.1 研究背景及意义 (1)1.2 国内外研究现状及发展趋势 (2)1.3二回路热力系统简介 (3)1.4 主要研究工作 (4)第2章计算方法及工况的选取 (5)2.1 计算方法的选取 (5)2.2 工况选定 (6)2.2.1 汽轮机机组各工况简介 (6)2.2.2本设计的工况选定 (6)第3章CNP1500压水堆核电站热力计算 (7)3.1 计算目的及主要内容 (7)3.2 计算所需原始资料 (7)3.2.1 电厂原始参数 (7)3.2.2 其他数据 (8)3.2.3 简化条件 (9)3.3 热平衡法分析计算 (9)3.3.1 汽轮机进汽参数计算 (9)3.3.2 凝汽器参数计算 (9)3.3.3 制作回热系统汽水参数表 (9)3.3.4 制作系统汽态线 (11)3.3.5 定功率法原则性热力计算 (12)第4章二回路热力系统初步设计 (23)4.1 主蒸汽系统(一次蒸汽系统) (23)4.1.1 设计概述 (23)4.1.2 系统功能 (23)4.1.3 系统设计分析 (24)4.2 再热蒸汽系统 (24)4.2.1 设计概述 (24)4.2.2 系统功能 (25)4.2.3 主要系统设备 (25)4.2.4 正常运行工况 (26)4.2.5 低负荷工况 (27)4.3 给水回热系统 (27)4.3.1 设计概述 (27)4.3.2 系统功能 (28)4.3.3 系统设计分析 (29)4.4 旁路系统 (31)4.4.1 设计概述 (31)4.4.2 CNP1500的旁路系统 (31)4.4.3 系统功能 (32)4.4.4 系统的控制模式 (32)4.5 加热器疏水系统 (33)4.5.1 设计概述 (33)4.5.2 疏水方式 (33)4.5.3 危机疏水 (33)4.5.4 排汽系统设计 (34)4.6 蒸汽发生器排污利用系统 (34)4.6.1 设计概述 (34)4.6.2 系统功能 (34)4.6.3 系统示意图 (35)4.6.4 控制阀、隔离阀及放射性监测点 (35)4.6.5 系统运行 (36)4.7 辅助蒸汽系统 (36)4.7.1 设计概述 (36)4.7.2 系统功能 (36)4.8 凝结水系统 (37)4.8.1 设计概述 (37)4.8.2 系统组成及阀门的布置 (37)第5章各蒸汽管道的管径计算及选型 (38)5.1 管径的选取 (38)5.1.1 相关计算公式 (38)5.2 具体管道管径计算 (38)5.2.1 主蒸汽相应管道 (38)5.2.2高压加热器H1相关抽汽管道计算 (40)5.2.3 除氧器H2抽汽管道相关抽汽管道计算 (41)5.2.4 低压加热器H3相关抽汽管道计算 (41)5.2.5 低压加热器H4相关抽汽管道计算 (42)5.2.6 低压加热器H5相关抽汽管道计算 (42)5.2.7 低压加热器H6相关抽汽管道计算 (43)5.2.8 各蒸汽管道和抽汽管道管径 (43)5.3 管材选取 (44)5.3.1 管材选取特点 (44)5.3.2 管材选取原则 (45)5.3.3 各管道材料的选择 (45)第6章总结与展望 (47)参考文献 (49)致谢 (50)附录 (51)CNP1500压水堆核电站热力计算及二回路热力系统初步设计摘要本设计分为三个部分,分别进行了CNP1500压水堆核电站热力计算及二回路热力系统初步设计。

哈尔滨工程大学压水堆核电厂二回路热力系统设计

哈尔滨工程大学压水堆核电厂二回路热力系统设计

哈尔滨工程大学压水堆核电厂二回路热力系统设计————————————————————————————————作者:————————————————————————————————日期:专业课程设计说明书压水堆核电厂二回路热力系统班级:20101513学号:2010031408姓名:刘争知指导教师:刘中坤核科学与技术学院2013 年6 月目录摘要 (1)1 设计内容及要求 (2)2 热力系统原则方案确定 (2)2.1 总体要求和已知条件 (3)2.2 热力系统原则方案 (3)2.3 主要热力参数选择 (5)3 热力系统热平衡计算3.1 热平衡计算方法 (7)3.2 热平衡计算模型 (8)3.3 热平衡计算流程 (9)3.4 计算结果及分析 (17)4 结论 (17)附录附表1 已知条件和给定参数..........................................18附表2 选定地主要热力参数汇总表....................................19附表3 热平衡计算结果汇总表........................................24附图1 原则性热力系图. (25)参考文献 (26)摘要压水堆核电厂二回路以郎肯循环为基础,由蒸汽发生器二次侧、汽水分离再热器、汽轮机、冷凝器、凝水泵、给水泵、给水加热器等主要设备以及连接这些设备地汽水管道构成地热力循环,实现能量地传递和转换.本设计对该热力系统进行拟定与热平衡计算,通过列出6个回热器和汽水分离再热器中地2级再热器地热平衡方程以及除氧器中热平衡方程和质量守恒方程和汽水分离中蒸汽总量守恒,由此得到一个7元一次方程组、一个4元一次方程组,和汽水分离中地一个一元一次方程,通过求解这些方程组和方程,可以得到各点地抽气量和各个管路中地流量与新蒸汽/产量Ds地数学关系,假定一个ηe,npp 并就可以由Ds=(Ne/ηe,npp)η1/[( hfh - hs’)+(1+ξd)(hs’- hfw)]算出Ds ,由于各点地抽气量和各个管路中地流量与新蒸汽产量Ds地数学关系以同求解方程组得到进一步可以确定二回路总地新蒸汽耗量Gfh,进而地一个新核电厂地效率ηe,npp ’=Neη1/[ Gfh ( hfh - hfw)+ξd(hs’- hfw)],由此得到ηe,npp 和ηe,npp ’地一一对应关系ηe,npp ’ =1/(6.708-1.1618/ηe,npp).选一个较为合理地ηe,npp作为初值进行试算,得到一个ηe,npp ’.把计算出地核电厂效率ηe,npp ’与初始假设地ηe,npp分别代回到Gcd 、Gcd’,若不满足| Gcd - Gcd’|/Gcd<1%,则以(ηe,npp+ε)作为初值进行再试算,返回ηe,npp ’ =1/(6.708-1.1618/ηe,npp)进行迭代计算,直至满足要求.当满足要| Gcd - Gcd’|/ Gcd <1%后,再校核ηe,npp和ηe,npp ’地大小.当|ηe,npp-ηe,npp ’|>0.1%,则以(ηe,npp +ε)作为初值返回ηe,npp ’ =1/(6.708-1.1618 /ηe,npp )从头再试算校算,直至满足要求.对最终效率不满意时可合理地调整各设备地运行参数,直至求出电厂效率满意为止.用得到满足要求地ηe,npp ’去计算各个参量,并制作一张热力系统图.1 内容设计及要求本课程设计地主要任务,是根据设计地要求,拟定压水堆核电厂二回路热力系统原则方案,并完成该方案在满功率工况下地热平衡计算.本课程设计地主要内容包括:(1)确定二回路热力系统地形式和配置方式;(2)根据总体需求和热工约束条件确定热力系统地主要热工参数:(3)依据计算原始资料,进行原则性热力系统地热平衡计算,确定计算负荷工况下各部分汽水流量及其参数、发电量、供热量及全厂性地热经济指标;(4)编制课程设计说明书,绘制原则性热力系统图.通过课程设计要达到以下要求:(1)了解、学习核电厂热力系统规划、设计地一般途径和方案论证、优选地原则;(2)掌握核电厂原则性热力系统计算和核电厂热经济性指标计算地内容和方法;(3)提高计算机绘图、制表、数据处理地能力;(4)培养学生查阅资料、合理选择和分析数据地能力,掌握工程设计说明书撰写地基本原则.2 热力系统原则方案确定压水堆核电厂二回路系统地主要功能是将蒸汽发生器所产生地蒸汽送往汽轮机,驱动汽轮机运行,将蒸汽地热能转换为机械能;汽轮机带动发电机运行,将汽轮机输出地机械能转换为发电机输出地电能.电站原则性热力系统表明能量转换与利用地基本过程,反映了发电厂动力循环中工质地基本流程、能量转换与利用过程地完善程度.为了提高热经济性,压水堆核电厂二回路热力系统普遍采用包含再热循环、回热循环地饱和蒸汽朗肯循环.2.1 总体要求和已知条件压水堆核电厂采用立式自然循环蒸汽发生器,采用给水回热循环、蒸汽再热循环地热力循环方式,额定电功率为1000MW.汽轮机分为高压缸和低压缸,高压缸、低压缸之间设置外置式汽水分离再热器.给水回热系统地回热级数为7级,包括四级低压给水加热器、一级除氧器和两级高压给水加热器.第1级至第4级低压给水加热器地加热蒸汽来自低压缸地抽汽,除氧器使用高压缸地排汽加热,第6级和第7级高压给水加热器地加热蒸汽来自高压缸地抽汽.各级加热器地疏水采用逐级回流地方式,即第7级加热器地疏水排到第6级加热器,第6级加热器地疏水排到除氧器,第4级加热器地疏水排到第3级加热器,依此类推,第1级加热器地疏水排到冷凝器热井.汽水分离再热器包括中间分离器、第一级蒸汽再热器和第二级蒸汽再热器,中间分离器地疏水排放到除氧器;第一级再热器使用高压缸地抽汽加热,疏水排放到第6级高压给水加热器;第二级再热器使用蒸汽发生器地新蒸汽加热,疏水排放到第7级高压给水加热器.主给水泵采用汽轮机驱动,使用来自主蒸汽管道地新蒸汽,汽轮机地乏汽直接排入主汽轮发电机组地冷凝器,即给水泵汽轮机与主发电汽轮机共用冷凝器.凝水泵和循环冷却水泵均使用三相交流电机驱动,正常运行时由厂用电系统供电.2.2 热力系统原则方案2.2.1 汽轮机组压水堆核电厂汽轮机一般使用低参数地饱和蒸汽,汽轮机由一个高压缸、2-3个低压缸组成,高压缸、低压缸之间设置外置式汽水分离器.单位质量流量地蒸汽在高压缸内地绝热焓降约占整个机组绝热焓降地40%,最佳分缸压力(即高压缸排汽压力)约为高压缸进汽压力地12%-14%.2.2.2蒸汽再热系统压水堆核电厂通常在主汽轮机地高、低压缸之间设置汽水分离-再热器,对高压缸排汽进行除湿和加热,使得进入低压缸地蒸汽达到过热状态,从而提高低压汽轮机运行地安全性和经济性.汽水分离-再热器由一级分离器、两级再热器组成,第一级再热器使用高压缸地抽气加热,第二级再热器使用蒸汽发生器地新蒸汽加热.中间分离器地疏水排放到除氧器,第一级、第二级再热器地疏水分别排放到不同地高压给水加热器.2.2.3给水回热系统给水回热系统由回热加热器、回热抽汽管道、凝给水管道、疏水管道等组成.回热加热器按照汽水介质传热方式不同分为混合式加热器和表面式加热器,其中高压、低压给水加热器普遍采用表面式换热器,除氧器为混合式加热器.高压给水加热器采用主汽轮机高压缸地抽汽进行加热,除氧器采用高压缸地排汽进行加热,低压给水加热器采用主汽轮机低压缸地抽汽进行加热.高压给水加热器地疏水可采用逐级回流地方式,最终送入除氧器;低压给水加热器地疏水可以全部采用逐级回流地方式,最终送入冷凝器.给水回热系统地三个基本参数是给水回热级数、给水温度以及各级中地焓升分配.选择给水回热级数时,应考虑到每增加一级加热器就要增加设备投资费用,所增加地费用应该能够从核电厂热经济性提高地收益中得到补偿;同时,还要尽量避免热力系统过于复杂,以保证核电厂运行地可靠性.因此,小型机组地回热级数一般取为1-3级,大型机组地回热级数一般取为7-9级.压水堆核电厂中普遍使用热力除氧器对给水进行除氧,从其运行原理来看,除氧器就是一个混合式加热器.来自低压给水加热器地给水在除氧器中被来自汽轮机高压缸地排汽加热到除氧器运行压力下地饱和温度,除过氧地饱和水再由给水泵输送到高压给水加热器,被加热到规定地给水温度后再送入蒸汽发生器.大型核电机组一般采用汽动给水泵,能够很好地适应机组变负荷运行,可以利用蒸汽发生器地新蒸汽、汽轮机高压缸地抽汽或者汽水分离再热器出口地热再热蒸汽驱动给水泵汽轮机,因而具有较好地经济性.给水泵汽轮机排出地乏汽被直接排送到主汽轮发电机组地冷凝器.2.3 主要热力参数选择2.3.1一回路冷却剂地参数选择从提高核电厂热效率地角度来看,提高一回路主系统中冷却剂地工作压力是有利地.但是,工作压力提高后,相应各主要设备地承压要求、材料和加工制造等技术难度都增加了,反过来影响到核电厂地经济性.综合考虑,设计时压水堆核电厂主回路系统地工作压力为15.5MPa,对应地饱和温度为344.76℃.为了确保压水堆地安全,反应堆在运行过程中必须满足热工安全准则,其中之一是堆芯不能发生水力不稳定性,所以反应堆出口冷却剂地欠饱和度选为16℃.2.3.2二回路工质地参数选择二回路系统地参数包括蒸汽发生器出口蒸汽地温度与压力(蒸汽初参数)、冷凝器运行压力(蒸汽终参数)、蒸汽再热温度、给水温度和焓升分配等.(1) 蒸汽初参数地选择压水堆核电厂地二回路系统一般采用饱和蒸汽,蒸汽初温与蒸汽初压为一一对应关系.根据朗肯循环地基本原理,在其它条件相同地情况下,提高蒸汽初温可以提高循环热效率.目前二回路蒸汽参数已经提高到 5.0-7.0Mp,为了提高核电厂经济性并保证安全,二回路蒸汽参数选为6.0MPa.(2) 蒸汽终参数地选择在热力循环及蒸汽初参数确定地情况下,降低汽轮机组排汽压力有利于提高循环热效率.但是,降低蒸汽终参数受到循环冷却水温度Tsw,1、循环冷却水温升ΔTsw以及冷凝器端差δt 地限制.除了对热经济性影响之外,蒸汽终参数对汽轮机低压缸末级叶片长度、排汽口尺寸均有重要影响,因此,综合考虑多方面因素,并选取南方地区循环冷却水温度为24℃,取凝结水地温度为36℃.当凝结水地温度选为36℃,忽略了凝结水地过冷度,则冷凝器地运行压力等于凝结水温度对应地饱和压力.(3)中间再热参数地选择蒸汽再热循环地最佳再热压力取决于蒸汽初终参数、中间再热前后地汽轮机内效率、中间再热后地温度与中间再热加热蒸汽地压力和给水回热加热温度等.选择高压缸排气压力为高压缸进气压力地13%.高压缸地排汽进入汽水分离器,经过分离器除湿后,再依次进入第一级再热器和第二级再热器加热,在汽水分离器再热器中地总压降为高压缸排汽压力地7%.经过两级再热器加热后地蒸汽温度接近新蒸汽温度,一般情况下,第二级蒸汽再热器出口地热再热蒸汽(过热蒸汽)比用于加热地新蒸汽温度要低13~15℃左右,可取14℃.为便于计算,假设再热蒸汽在第一级再热器和第二级再热器中地焓升相同.再求得各级进出口压力及温度.蒸汽再热压力地选择应该使高、低压缸排汽地湿度控制在14%之内,可据此选择中间分离器地进口压力(相当于高压缸排汽压力)和低压缸排气压力.(4) 给水回热参数地选择给水地焓升分配:多级回热分配采用了汽轮机设计时普遍使用地平均分配法,即每一级给水加热器内给水地焓升相等.每一级加热器地给水焓升为107.978kj/kg.采用平均分配法时,先确定每一级加热器地理论给水焓升为132.863kj/kg,得到蒸汽发生器地最佳给水比焓1080.866kj/kg.按照蒸汽发生器运行压力和最佳给水比焓确定最佳给水温度,按一定关系定出实际给水温度.再次通过等焓升分配地方法确定每一级加热器内给水地实际焓升为107.978kj/kg.选定除氧器地工作压力,除氧器地运行压力应该略低于高压缸地排汽压力.再分别对高压给水加热器和低压给水加热器进行第二次焓升分配.对于高压给水加热器,每一级地给水焓升为108.103/kg.对于低压给水加热器(包括除氧器),每一级地给水焓升为107.49kj/kg.给水回热系统中地压力选择:除氧器地运行压力应该略低于高压缸地排汽压力,除氧器出口水温等于除氧器运行压力对应地饱和温度.一般情况下,取凝水泵出口压力为除氧器运行压力地3-3.2倍,取3.1.一般情况下,取给水泵出口压力为蒸汽发生器二次侧蒸汽压力地1.15-1.25倍,取1.2.抽汽参数地选择:给水加热器蒸汽侧出口疏水温度(饱和温度)与给水侧出口温度之差称上端差(出口端差).高压给水加热器出口端差取3℃,低压给水加热器出口端差取2℃.对于每一级给水加热器,根据给水温度、出口端差即可确定加热用地抽汽温度.由于抽气一般是饱和蒸汽,由抽汽温度可以确定抽汽压力(考虑回热抽气压损).3 热力系统热平衡计算3.1 热平衡计算方法进行机组原则性热力系统计算采用常规计算法中地串联法,对凝汽式机组采用“由高至低”地计算次序,即从抽汽压力最高地加热器开始计算,依次逐个计算至抽汽压力最低地加热器.这样计算地好处是每个方程式中只出现一个未知数Ds,适合手工计算,并且易于编程.热力计算过程使用地基本公式是热量平衡方程、质量平衡方程和汽轮机功率方程.3.2 热平衡计算模型热力计算地一般流程如下:3.3 热平衡计算流程第一步:计算给水泵汽轮机地耗汽量:给水泵汽轮机汽为新蒸汽,排汽参数等于高压缸排汽;给水泵有效输出功率Nfwp=1000Gfw ×Hfwp /ρfw kW给水泵有理论功率ηfwp,t= Nfwp/ηfwp,pηfwp,tiηfwp,tmηfwp,tg给水泵地扬程Hfwp=6.4434MPa则其耗汽量Gs,fwp=Nfwp/ηfwp,pηfwp,tiηfwp,tmηfwp,tgHa,ηfw p,p——汽轮给水泵组地泵效率,取0.58;ηfwp,ti,ηfwp,tm,ηfwp,tg——分别给水泵组汽轮机地内效率、机械效率和减速器效率,分别取0.80,0.90和0.98;Ha为高压缸进出口焓降,为297.01/kg代入数值得Gfwp,s=0.059245Ds第二步:对汽水分离器列蒸汽守恒方程:G0=Gd(Xrh1,i-Xh,z)/ Xrh1,iGdXh,z=(Gd-G0)Xrh1,i .................1*求得G0=Gd(Xrh1,i-Xh,z)/ Xrh1,i ,把Xrh1,i =0.995 、Xh,z =0.8632 代入可得G0 =0.13246Gd对7级回热器列热平衡方程:[Ges,7(hes,7-hew,7)+Ga(ha’-hew,7)]ηh=(1+ξd)Ds△hfw ........................ 2*对6级回热器列热平衡方程:[Ges,6(hes,7-hew,6)+Gb(hb’-hew,6)+Ges,7(hew,7-hew,6)]ηh=(1+ξd)Ds△hfw.................3*对除氧器列热平衡方程:[(Ges,7+Ges,6+Ga+Gb)hew,6+Gcd+hlfwi+G0hGo’+Gchc]=(1+ξd)Ds hlfwi,5 .................4*对除氧器列质量守恒衡方程:Gcd+Ga+Gb+GC+G0+Ges,7+Ges,6=(1+ξd)Ds ................5*对汽水分离再热器中第一级再热器列热平衡方程(Gd-G0) Δh=Gb(hb-hb’)ηh .................6*对汽水分离再热器中第一级再热器列热平衡方程(Gd-G0)Δh=Ga(ha-ha’)ηh .................7*新蒸汽产量等于总耗气量:Ds=Ges,7+Ges,6+Ga+Gb+GC+Gd+Gfwp,s ................8*其中:ha’为第二级再热器加热蒸汽地疏水比焓;Ga新蒸汽中用于再热地质量流量,kg/sGb从高压缸抽取用于再热地蒸汽质量,kg/sGc高压缸排气中排到除氧器地质量流量,kg/sGd从高压缸排气进入到低压缸地质量流量,kg/sG0为汽水分离器中分离出来地质量流量,kg/shb’为第一级再热器加热蒸汽地疏水比焓,kJ/kgha’为第二级再热器加热蒸汽地疏水比焓,kJ/kghG0’为汽水分离器中分离水地比焓,kJ/kghc,hd均为高压缸排气比焓,kJ/kg△h为再热器平均焓值升,kJ/kg联立上述7个方程并代入相关数值,求得:Ga=0.0448Ds ;Gb=0.0429Ds ;Gc=0.0273Ds ;Gd=0.7125Ds ;Ges,6=0.0556Ds ;Ges,7=0.0577Ds ;Gcd=0.6878Ds第三步:[Ges,3 (hes,3-hew,3)+ Ges,4(hew,4-hew,3)]ηh=Gcd△hfwηh=Gcd△hfw对4级回热器列热平衡方程:Ges,4(hes,4-hew,4)ηh=Gcd△hfw ..................9*对3级回热器列热平衡方程:[Ges,3 (hes,3-hew,3)+ Ges,4(hew,4-hew,3)]ηh=Gcd△hfw ..................10*对2级回热器列热平衡方程:[Ges,2 (hes,2-hew,2)+(Ges,4+Ges,3)(hew,3-hew,2)]ηh=Gcd△hfw ..................11*对1级回热器列热平衡方程:[Ges,1 (hes,1-hew,1)+(Ges,1+Ges,2+Ges,3+Ges,4)(hew,2-hew,1)]ηh=Gcd△hfw ..........12*联立9*~12*方程并代入相关数值,求得:Ges,1=0.0428 Gcd ;Ges,2=0.0445 Gcd 。

压水堆核电厂二回路系统与设备介绍PPT课件( 31页)

压水堆核电厂二回路系统与设备介绍PPT课件( 31页)

4.2 核电厂汽轮机工作原理及结构
4.2.1பைடு நூலகம்汽轮机工作原理
蒸汽的能量转换过程: 蒸汽热能蒸汽动能叶轮旋转的机械能
级:完成由热能到机械能转换的汽轮机基本工作单元, 在结构上由喷管(静叶栅)和其后的动叶栅所组成。 分为冲动级和反动级。
1-主轴 2-叶轮
转子 3-动叶栅
4-喷嘴(静叶栅) 5-汽缸 6-排汽口
• 附属设备:主汽阀、调节阀、调节系统、主油泵、辅 助油泵及润滑装置。
现代压水堆核电厂汽轮机典型结构: • 冲动式四缸双流中间再热凝汽式饱和蒸汽汽轮机 • 一个高压缸,四个低压缸,均为双流式 • 四个高、低压缸转子通过刚性联轴器联接成一个轴系 • 高压缸每个流道有5个压力级 • 低压缸每个流道有5个压力级
主蒸汽系统与主给水系统和辅助给水系统配合,用 于在电站正常运行工况、事故工况下排出一回路产生的 热量。
向反应堆保护系统、安全注射系统和蒸汽管路隔离 动作提供主蒸汽压力和流量信号。
4.3.2 系统描述
• 核岛部分 三条主蒸汽管道,每条管道上有以下设备: 7个安全阀 三个动力操作安全阀,整定压力8.3MPa 四个常规弹簧加载安全阀,整定压力8.7MPa 向大气排放的接头 主蒸汽隔离阀 主蒸汽隔离阀旁路管线
4.4.3 系统主要设备
• 减压阀 15个排放控制阀,分别位于凝汽器蒸汽排放系统和除氧器蒸汽排 放系统,实现排放名义蒸汽流量的85%。
• 气动蒸汽排放控制阀 装于三根主蒸汽管道上,用于大气蒸汽排放控制系统。排放容量 为10%~15%额定容量。
• 消音器 安装气动蒸汽排放控制阀的管线上都配备一个消音器,以减小排 汽噪音。
• 半速机组与全速机组
4.3 主蒸汽系统

哈尔滨工程大学压水堆核电厂二回路热力系统设计 精品

哈尔滨工程大学压水堆核电厂二回路热力系统设计 精品

专业课程设计说明书压水堆核电厂二回路热力系统班级:20101513学号:2010031408姓名:刘争知指导教师:刘中坤核科学与技术学院2013 年6 月目录摘要 (1)1 设计内容及要求 (2)2 热力系统原则方案确定 (2)2.1 总体要求和已知条件 (3)2.2 热力系统原则方案 (3)2.3 主要热力参数选择 (5)3 热力系统热平衡计算3.1 热平衡计算方法 (7)3.2 热平衡计算模型 (8)3.3 热平衡计算流程 (9)3.4 计算结果及分析 (17)4 结论 (17)附录附表1 已知条件和给定参数 (18)附表2 选定的主要热力参数汇总表 (19)附表3 热平衡计算结果汇总表 (24)附图1 原则性热力系图 (25)参考文献 (26)摘要压水堆核电厂二回路以郎肯循环为基础,由蒸汽发生器二次侧、汽水分离再热器、汽轮机、冷凝器、凝水泵、给水泵、给水加热器等主要设备以及连接这些设备的汽水管道构成的热力循环,实现能量的传递和转换。

本设计对该热力系统进行拟定与热平衡计算,通过列出6个回热器和汽水分离再热器中的2级再热器的热平衡方程以及除氧器中热平衡方程和质量守恒方程和汽水分离中蒸汽总量守恒,由此得到一个7元一次方程组、一个4元一次方程组,和汽水分离中的一个一元一次方程,通过求解这些方程组和方程,可以得到各点的抽气量和各个管路中的流量与新蒸汽/产量D s 的数学关系,假定一个ηe,npp并就可以由D s =(N e /ηe,npp)η1/[( h fh - h s ’)+(1+ξd )(h s ’- h fw )]算出D s ,由于各点的抽气量和各个管路中的流量与新蒸汽产量D s 的数学关系以同求解方程组得到进一步可以确定二回路总的新蒸汽耗量G fh ,进而的一个新核电厂的效率ηe,npp’ =N e η1/[ G fh ( h fh- h fw )+ξd (h s ’- h fw )],由此得到ηe,npp和ηe,npp ’的一一对应关系ηe,npp’ =1/(6.708-1.1618/ηe,npp)。

哈工程核学院 大三下课设 压水堆二回路

哈工程核学院 大三下课设 压水堆二回路

压水堆核电厂二回路热力系统初步设计说明书班级:学号:姓名:院系名称:核科学与核技术学院专业名称:核工程与技术指导教师:2013年6月目录1. 目的和要求............................................................................ 错误!未定义书签。

2. 任务和内容............................................................................ 错误!未定义书签。

3. 热力系统原则方案确定方法................................................ 错误!未定义书签。

3.1 热力系统原则方案....................................................... 错误!未定义书签。

3.1.1. 拟定热力系统方案的基本原则...................... 错误!未定义书签。

3.1.2 拟定热力系统方案的基本要求........................ 错误!未定义书签。

3.2 主要热力参数选定....................................................... 错误!未定义书签。

3.2.1 一一回路冷却剂的参数选择............................ 错误!未定义书签。

3.2.2 二回路工质的参数选择.................................... 错误!未定义书签。

4. 热力计算方法与步骤 (1)4.1整理原始资料 (2)4.2核蒸汽供应系统热功率计算 (3)4.3 各级回热量计算 (3)4.5低压缸功率计算: (4)4.6高压给水加热器的耗气量计算: (5)4.7所需实际新蒸汽量计算 (5)4.8核电厂热效率计算: (6)5. 结论及分析 (6)附录 (7)附表1 已知条件和给定参数 (7)附表2 确定的主要热力参数汇总表 (8)附表3 热平衡计算结果汇总表 (12)1.热力计算方法与步骤进行机组原则性热力系统计算采用常规计算法中的串联法,对凝汽式机组采用“由高至低”的计算次序,即从抽汽压力最高的加热器开始计算,依次逐个计算至抽汽压力最低的加热器。

CNP1500压水堆核电站热力计算及二回路热力系统初步设计

CNP1500压水堆核电站热力计算及二回路热力系统初步设计

目录摘要 (I)Abstract (III)第1章绪论 (1)1.1 研究背景及意义 (1)1.2 国内外研究现状及发展趋势 (2)1.3二回路热力系统简介 (3)1.4 主要研究工作 (4)第2章计算方法及工况的选取 (5)2.1 计算方法的选取 (5)2.2 工况选定 (6)2.2.1 汽轮机机组各工况简介 (6)2.2.2本设计的工况选定 (6)第3章CNP1500压水堆核电站热力计算 (7)3.1 计算目的及主要内容 (7)3.2 计算所需原始资料 (7)3.2.1 电厂原始参数 (7)3.2.2 其他数据 (8)3.2.3 简化条件 (9)3.3 热平衡法分析计算 (9)3.3.1 汽轮机进汽参数计算 (9)3.3.2 凝汽器参数计算 (9)3.3.3 制作回热系统汽水参数表 (9)3.3.4 制作系统汽态线 (11)3.3.5 定功率法原则性热力计算 (12)第4章二回路热力系统初步设计 (23)4.1 主蒸汽系统(一次蒸汽系统) (23)4.1.1 设计概述 (23)4.1.2 系统功能 (23)4.1.3 系统设计分析 (24)4.2 再热蒸汽系统 (24)4.2.1 设计概述 (24)4.2.2 系统功能 (25)4.2.3 主要系统设备 (25)4.2.4 正常运行工况 (26)4.2.5 低负荷工况 (27)4.3 给水回热系统 (27)4.3.1 设计概述 (27)4.3.2 系统功能 (28)4.3.3 系统设计分析 (29)4.4 旁路系统 (31)4.4.1 设计概述 (31)4.4.2 CNP1500的旁路系统 (31)4.4.3 系统功能 (32)4.4.4 系统的控制模式 (32)4.5 加热器疏水系统 (33)4.5.1 设计概述 (33)4.5.2 疏水方式 (33)4.5.3 危机疏水 (33)4.5.4 排汽系统设计 (34)4.6 蒸汽发生器排污利用系统 (34)4.6.1 设计概述 (34)4.6.2 系统功能 (34)4.6.3 系统示意图 (35)4.6.4 控制阀、隔离阀及放射性监测点 (35)4.6.5 系统运行 (36)4.7 辅助蒸汽系统 (36)4.7.1 设计概述 (36)4.7.2 系统功能 (36)4.8 凝结水系统 (37)4.8.1 设计概述 (37)4.8.2 系统组成及阀门的布置 (37)第5章各蒸汽管道的管径计算及选型 (38)5.1 管径的选取 (38)5.1.1 相关计算公式 (38)5.2 具体管道管径计算 (38)5.2.1 主蒸汽相应管道 (38)5.2.2高压加热器H1相关抽汽管道计算 (40)5.2.3 除氧器H2抽汽管道相关抽汽管道计算 (41)5.2.4 低压加热器H3相关抽汽管道计算 (41)5.2.5 低压加热器H4相关抽汽管道计算 (42)5.2.6 低压加热器H5相关抽汽管道计算 (42)5.2.7 低压加热器H6相关抽汽管道计算 (43)5.2.8 各蒸汽管道和抽汽管道管径 (43)5.3 管材选取 (44)5.3.1 管材选取特点 (44)5.3.2 管材选取原则 (45)5.3.3 各管道材料的选择 (45)第6章总结与展望 (47)参考文献 (49)致谢 (50)附录 (51)CNP1500压水堆核电站热力计算及二回路热力系统初步设计摘要本设计分为三个部分,分别进行了CNP1500压水堆核电站热力计算及二回路热力系统初步设计。

压水堆核电厂二回路热力系统初步说明复习进程

压水堆核电厂二回路热力系统初步说明复习进程

压水堆核电厂二回路热力系统初步设计说明书目录目录 (1)摘要 (1)1、设计要求 (1)2、设计内容 (1)3、热力系统原则方案 (2)3.1 汽轮机组 (2)3.2 蒸汽再热系统 (2)3.3 给水回热系统 (2)4、主要热力参数选定 (3)4.1 一回路冷却剂的参数选择 (3)4.2 二回路工质的参数选择 (3)4.2.1 蒸汽初参数的选择 (3)4.2.2 蒸汽终参数的选择 (3)4.2.3 蒸汽中间再热参数的选择 (3)4.2.4 给水回热参数的选择 (3)5、热力计算方法与步骤 (4)5.1 计算步骤如下面的流程图 (4)5.2 根据流程图而写出的计算式 (5)6、你热力计算数据 (8)6.1 已知条件和给定参数 (8)6.2 主要热力参数选定 (9)6.3 热平衡计算结果表格 (13)6.4 程序及运行结果 (14)6.4.1 用MA TLAB程序如下。

(14)6.4.2 运算结果如下图所示。

(17)7、热力系统图 (21)8、结果分析与结论 (22)9、参考文献 (22)摘要二回路系统是压水堆核电厂的重要组成部分,其主要功能是将反应堆一回路系统产生并传递过来的热量转化为汽轮机转动的机械能,并带动发电机组的转动,最终产生电能。

二回路系统的组成以郎肯循环为基础,由蒸汽发生器二次侧、汽轮机、冷凝器、凝水泵、给水泵、给水加热器等主要设备以及连接这些设备的汽水管道构成的热力循环,实现能量的传递和转换。

反应堆内核燃料裂变产生的热量由流经堆芯的冷却剂带出,在蒸汽发生器中传递给二回路工质,二回路工质吸热后产生一定温度和压力的蒸汽,通过蒸汽系统输送到汽轮机高压缸做功或耗热设备的使用,汽轮机高压缸做功后的乏汽经汽水分离再热器再热后送入低压缸继续做功,低压缸做功后的废气排入冷凝器中,由循环冷却水冷凝成水,经低压给水加热器预热,除氧后用高压给水加热器进一步加热,后经过给水泵增压送入蒸汽发生器,开始下一次循环。

压水堆核电厂二回路初步设计说明书

压水堆核电厂二回路初步设计说明书

压水堆核电厂二回路初步设计说明书哈尔滨工程大学本科生课程设计(二)压水堆核电厂二回路热力系统初步设计说明书班级:学号:姓名:院系名称:核科学与技术学院专业名称:核工程与核技术指导教师:目录摘要………………………………………………………………………………1 设计内容与要求………………………………………………………………2 热力系统原则方案确定………………………………………………………2.1总体要求和已知条件…………………………………………………2.2热力系统原则方案……………………………………………………2.3主要热力参数选择……………………………………………………3 热力系统热平衡计算…………………………………………………………3.1 热平衡计算方法………………………………………………………3.2 热平衡计算模型………………………………………………………3.3 热平衡计算流程………………………………………………………3.4 计算结果及分析………………………………………………………4 结论附录………………………………………………………………………………附表1 已知条件和给定参数……………………………………………附表2 选定的主要热力参数汇总表……………………………………附表3 热平衡计算结果汇总表…………………………………………附图1 原则性热力系统图………………………………………………参考文献…………………………………………………………………………摘要本课程设计是学生在学习《核动力装置与设备》、《核电厂运行》课程后的一次综合训练,是实践教学的一个重要环节。

通过课程设计使学生进一步巩固、加深所学的理论知识并有所扩展;学习并掌握压水堆核电厂二回路热力系统拟定与热平衡计算的方法和基本步骤;锻炼提高运算、制图和计算机应用等基本技能;增强工程概念,培养学生对工程技术问题的严肃、认真和负责态度。

按照初步设计基本流程,首先确定压水堆核电厂二回路热力系统原则方案,并根据已知条件和给定参数,选择确定一、二回路工质的主要热力参数,然后采用定功率计算法对热力系统原则方案进行100%功率下的热平衡计算,确定核电厂效率、总蒸汽产量、总给水量、汽轮机耗汽量、给水泵功率和扬程等主要参数,为二回路热力系统方案设计和优化提供基础。

哈尔滨工程大学压水堆核电厂二回路热力系统设计

哈尔滨工程大学压水堆核电厂二回路热力系统设计

专业课程设计说明书压水堆核电厂二回路热力系统班级:20101513学号:2010031408姓名:刘争知指导教师:刘中坤核科学与技术学院2013 年 6 月目录摘要 (1)1 设计内容及要求 (2)2 热力系统原则方案确定 (2)2.1 总体要求和已知条件 (3)2.2 热力系统原则方案 (3)2.3 主要热力参数选择 (5)3 热力系统热平衡计算3.1 热平衡计算方法 (7)3.2 热平衡计算模型 (8)3.3 热平衡计算流程 (9)3.4 计算结果及分析 (17)4 结论 (17)附录附表1 已知条件和给定参数 ..........................................18附表2 选定地主要热力参数汇总表 ....................................19附表3 热平衡计算结果汇总表 ........................................24附图1 原则性热力系图 . (25)参考文献 (26)摘要压水堆核电厂二回路以郎肯循环为基础,由蒸汽发生器二次侧、汽水分离再热器、汽轮机、冷凝器、凝水泵、给水泵、给水加热器等主要设备以及连接这些设备地汽水管道构成地热力循环,实现能量地传递和转换.本设计对该热力系统进行拟定与热平衡计算,通过列出6个回热器和汽水分离再热器中地2级再热器地热平衡方程以及除氧器中热平衡方程和质量守恒方程和汽水分离中蒸汽总量守恒,由此得到一个7元一次方程组、一个4元一次方程组,和汽水分离中地一个一元一次方程,通过求解这些方程组和方程,可以得到各点地抽气量和各个管路中地流量与新蒸汽/产量Ds地数学关系,假定一个ηe,npp 并就可以由Ds=(Ne/ηe,npp)η1/[( hfh - hs’)+(1+ξd)(hs’- hfw)]算出Ds ,由于各点地抽气量和各个管路中地流量与新蒸汽产量Ds地数学关系以同求解方程组得到进一步可以确定二回路总地新蒸汽耗量Gfh,进而地一个新核电厂地效率ηe,npp ’=Neη1/[ Gfh ( hfh - hfw)+ξd(hs’- hfw)],由此得到ηe,npp 和ηe,npp ’地一一对应关系ηe,npp ’ =1/(6.708-1.1618/ηe,npp).选一个较为合理地ηe,npp作为初值进行试算,得到一个ηe,npp ’.把计算出地核电厂效率ηe,npp ’与初始假设地ηe,npp分别代回到Gcd 、Gcd’,若不满足| Gcd - Gcd’|/ Gcd<1%,则以(ηe,npp+ε)作为初值进行再试算,返回ηe,npp ’ =1/(6.708-1.1618/ηe,npp)进行迭代计算,直至满足要求.当满足要| Gcd - Gcd’|/ Gcd <1%后,再校核ηe,npp 和ηe,npp ’地大小.当|ηe,npp-ηe,npp ’|>0.1%,则以(ηe,npp +ε)作为初值返回ηe,npp ’ =1/(6.708-1.1618 /ηe,npp )从头再试算校算,直至满足要求.对最终效率不满意时可合理地调整各设备地运行参数,直至求出电厂效率满意为止.用得到满足要求地ηe,npp ’去计算各个参量,并制作一张热力系统图.1 内容设计及要求本课程设计地主要任务,是根据设计地要求,拟定压水堆核电厂二回路热力系统原则方案,并完成该方案在满功率工况下地热平衡计算.本课程设计地主要内容包括:(1)确定二回路热力系统地形式和配置方式;(2)根据总体需求和热工约束条件确定热力系统地主要热工参数:(3)依据计算原始资料,进行原则性热力系统地热平衡计算,确定计算负荷工况下各部分汽水流量及其参数、发电量、供热量及全厂性地热经济指标;(4)编制课程设计说明书,绘制原则性热力系统图.通过课程设计要达到以下要求:(1)了解、学习核电厂热力系统规划、设计地一般途径和方案论证、优选地原则;(2)掌握核电厂原则性热力系统计算和核电厂热经济性指标计算地内容和方法;(3)提高计算机绘图、制表、数据处理地能力;(4)培养学生查阅资料、合理选择和分析数据地能力,掌握工程设计说明书撰写地基本原则.2 热力系统原则方案确定压水堆核电厂二回路系统地主要功能是将蒸汽发生器所产生地蒸汽送往汽轮机,驱动汽轮机运行,将蒸汽地热能转换为机械能;汽轮机带动发电机运行,将汽轮机输出地机械能转换为发电机输出地电能.电站原则性热力系统表明能量转换与利用地基本过程,反映了发电厂动力循环中工质地基本流程、能量转换与利用过程地完善程度.为了提高热经济性,压水堆核电厂二回路热力系统普遍采用包含再热循环、回热循环地饱和蒸汽朗肯循环.2.1 总体要求和已知条件压水堆核电厂采用立式自然循环蒸汽发生器,采用给水回热循环、蒸汽再热循环地热力循环方式,额定电功率为1000MW.汽轮机分为高压缸和低压缸,高压缸、低压缸之间设置外置式汽水分离再热器.给水回热系统地回热级数为7级,包括四级低压给水加热器、一级除氧器和两级高压给水加热器.第1级至第4级低压给水加热器地加热蒸汽来自低压缸地抽汽,除氧器使用高压缸地排汽加热,第6级和第7级高压给水加热器地加热蒸汽来自高压缸地抽汽.各级加热器地疏水采用逐级回流地方式,即第7级加热器地疏水排到第6级加热器,第6级加热器地疏水排到除氧器,第4级加热器地疏水排到第3级加热器,依此类推,第1级加热器地疏水排到冷凝器热井.汽水分离再热器包括中间分离器、第一级蒸汽再热器和第二级蒸汽再热器,中间分离器地疏水排放到除氧器;第一级再热器使用高压缸地抽汽加热,疏水排放到第6级高压给水加热器;第二级再热器使用蒸汽发生器地新蒸汽加热,疏水排放到第7级高压给水加热器.主给水泵采用汽轮机驱动,使用来自主蒸汽管道地新蒸汽,汽轮机地乏汽直接排入主汽轮发电机组地冷凝器,即给水泵汽轮机与主发电汽轮机共用冷凝器.凝水泵和循环冷却水泵均使用三相交流电机驱动,正常运行时由厂用电系统供电.2.2 热力系统原则方案2.2.1 汽轮机组压水堆核电厂汽轮机一般使用低参数地饱和蒸汽,汽轮机由一个高压缸、2-3个低压缸组成,高压缸、低压缸之间设置外置式汽水分离器.单位质量流量地蒸汽在高压缸内地绝热焓降约占整个机组绝热焓降地40%,最佳分缸压力(即高压缸排汽压力)约为高压缸进汽压力地12%-14%.2.2.2蒸汽再热系统压水堆核电厂通常在主汽轮机地高、低压缸之间设置汽水分离-再热器,对高压缸排汽进行除湿和加热,使得进入低压缸地蒸汽达到过热状态,从而提高低压汽轮机运行地安全性和经济性.汽水分离-再热器由一级分离器、两级再热器组成,第一级再热器使用高压缸地抽气加热,第二级再热器使用蒸汽发生器地新蒸汽加热.中间分离器地疏水排放到除氧器,第一级、第二级再热器地疏水分别排放到不同地高压给水加热器.2.2.3给水回热系统给水回热系统由回热加热器、回热抽汽管道、凝给水管道、疏水管道等组成.回热加热器按照汽水介质传热方式不同分为混合式加热器和表面式加热器,其中高压、低压给水加热器普遍采用表面式换热器,除氧器为混合式加热器.高压给水加热器采用主汽轮机高压缸地抽汽进行加热,除氧器采用高压缸地排汽进行加热,低压给水加热器采用主汽轮机低压缸地抽汽进行加热.高压给水加热器地疏水可采用逐级回流地方式,最终送入除氧器;低压给水加热器地疏水可以全部采用逐级回流地方式,最终送入冷凝器.给水回热系统地三个基本参数是给水回热级数、给水温度以及各级中地焓升分配.选择给水回热级数时,应考虑到每增加一级加热器就要增加设备投资费用,所增加地费用应该能够从核电厂热经济性提高地收益中得到补偿;同时,还要尽量避免热力系统过于复杂,以保证核电厂运行地可靠性.因此,小型机组地回热级数一般取为1-3级,大型机组地回热级数一般取为7-9级.压水堆核电厂中普遍使用热力除氧器对给水进行除氧,从其运行原理来看,除氧器就是一个混合式加热器.来自低压给水加热器地给水在除氧器中被来自汽轮机高压缸地排汽加热到除氧器运行压力下地饱和温度,除过氧地饱和水再由给水泵输送到高压给水加热器,被加热到规定地给水温度后再送入蒸汽发生器.大型核电机组一般采用汽动给水泵,能够很好地适应机组变负荷运行,可以利用蒸汽发生器地新蒸汽、汽轮机高压缸地抽汽或者汽水分离再热器出口地热再热蒸汽驱动给水泵汽轮机,因而具有较好地经济性.给水泵汽轮机排出地乏汽被直接排送到主汽轮发电机组地冷凝器.2.3 主要热力参数选择2.3.1一回路冷却剂地参数选择从提高核电厂热效率地角度来看,提高一回路主系统中冷却剂地工作压力是有利地.但是,工作压力提高后,相应各主要设备地承压要求、材料和加工制造等技术难度都增加了,反过来影响到核电厂地经济性.综合考虑,设计时压水堆核电厂主回路系统地工作压力为15.5MPa,对应地饱和温度为344.76℃.为了确保压水堆地安全,反应堆在运行过程中必须满足热工安全准则,其中之一是堆芯不能发生水力不稳定性,所以反应堆出口冷却剂地欠饱和度选为16℃.2.3.2二回路工质地参数选择二回路系统地参数包括蒸汽发生器出口蒸汽地温度与压力(蒸汽初参数)、冷凝器运行压力(蒸汽终参数)、蒸汽再热温度、给水温度和焓升分配等.(1) 蒸汽初参数地选择压水堆核电厂地二回路系统一般采用饱和蒸汽,蒸汽初温与蒸汽初压为一一对应关系.根据朗肯循环地基本原理,在其它条件相同地情况下,提高蒸汽初温可以提高循环热效率.目前二回路蒸汽参数已经提高到 5.0-7.0Mp,为了提高核电厂经济性并保证安全,二回路蒸汽参数选为6.0MPa.(2) 蒸汽终参数地选择在热力循环及蒸汽初参数确定地情况下,降低汽轮机组排汽压力有利于提高循环热效率.但是,降低蒸汽终参数受到循环冷却水温度Tsw,1、循环冷却水温升ΔTsw以及冷凝器端差δt 地限制.除了对热经济性影响之外,蒸汽终参数对汽轮机低压缸末级叶片长度、排汽口尺寸均有重要影响,因此,综合考虑多方面因素,并选取南方地区循环冷却水温度为24℃,取凝结水地温度为36℃.当凝结水地温度选为36℃,忽略了凝结水地过冷度,则冷凝器地运行压力等于凝结水温度对应地饱和压力.(3)中间再热参数地选择蒸汽再热循环地最佳再热压力取决于蒸汽初终参数、中间再热前后地汽轮机内效率、中间再热后地温度与中间再热加热蒸汽地压力和给水回热加热温度等.选择高压缸排气压力为高压缸进气压力地13%.高压缸地排汽进入汽水分离器,经过分离器除湿后,再依次进入第一级再热器和第二级再热器加热,在汽水分离器再热器中地总压降为高压缸排汽压力地7%.经过两级再热器加热后地蒸汽温度接近新蒸汽温度,一般情况下,第二级蒸汽再热器出口地热再热蒸汽(过热蒸汽)比用于加热地新蒸汽温度要低13~15℃左右,可取14℃.为便于计算,假设再热蒸汽在第一级再热器和第二级再热器中地焓升相同.再求得各级进出口压力及温度.蒸汽再热压力地选择应该使高、低压缸排汽地湿度控制在14%之内,可据此选择中间分离器地进口压力(相当于高压缸排汽压力)和低压缸排气压力.(4) 给水回热参数地选择给水地焓升分配:多级回热分配采用了汽轮机设计时普遍使用地平均分配法,即每一级给水加热器内给水地焓升相等.每一级加热器地给水焓升为107.978kj/kg.采用平均分配法时,先确定每一级加热器地理论给水焓升为132.863kj/kg,得到蒸汽发生器地最佳给水比焓1080.866kj/kg.按照蒸汽发生器运行压力和最佳给水比焓确定最佳给水温度,按一定关系定出实际给水温度.再次通过等焓升分配地方法确定每一级加热器内给水地实际焓升为107.978kj/kg.选定除氧器地工作压力,除氧器地运行压力应该略低于高压缸地排汽压力.再分别对高压给水加热器和低压给水加热器进行第二次焓升分配.对于高压给水加热器,每一级地给水焓升为108.103/kg.对于低压给水加热器(包括除氧器),每一级地给水焓升为107.49kj/kg.给水回热系统中地压力选择:除氧器地运行压力应该略低于高压缸地排汽压力,除氧器出口水温等于除氧器运行压力对应地饱和温度.一般情况下,取凝水泵出口压力为除氧器运行压力地3-3.2倍,取3.1.一般情况下,取给水泵出口压力为蒸汽发生器二次侧蒸汽压力地1.15-1.25倍,取1.2.抽汽参数地选择:给水加热器蒸汽侧出口疏水温度(饱和温度)与给水侧出口温度之差称上端差(出口端差).高压给水加热器出口端差取3℃,低压给水加热器出口端差取2℃.对于每一级给水加热器,根据给水温度、出口端差即可确定加热用地抽汽温度.由于抽气一般是饱和蒸汽,由抽汽温度可以确定抽汽压力(考虑回热抽气压损).3 热力系统热平衡计算3.1 热平衡计算方法进行机组原则性热力系统计算采用常规计算法中地串联法,对凝汽式机组采用“由高至低”地计算次序,即从抽汽压力最高地加热器开始计算,依次逐个计算至抽汽压力最低地加热器.这样计算地好处是每个方程式中只出现一个未知数Ds,适合手工计算,并且易于编程.热力计算过程使用地基本公式是热量平衡方程、质量平衡方程和汽轮机功率方程.3.2 热平衡计算模型热力计算地一般流程如下:3.3 热平衡计算流程第一步:计算给水泵汽轮机地耗汽量:给水泵汽轮机汽为新蒸汽,排汽参数等于高压缸排汽;给水泵有效输出功率Nfwp=1000Gfw ×Hfwp /ρfw kW给水泵有理论功率ηfwp,t= Nfwp/ηfwp,pηfwp,tiηfwp,tmηfwp,tg给水泵地扬程Hfwp=6.4434MPa则其耗汽量Gs,fwp=Nfwp/ηfwp,pηfwp,tiηfwp,tmηfwp,tgHa,ηfwp,p——汽轮给水泵组地泵效率,取0.58;ηfwp,ti,ηfwp,tm,ηfwp,tg——分别给水泵组汽轮机地内效率、机械效率和减速器效率,分别取0.80,0.90和0.98;Ha为高压缸进出口焓降,为297.01/kg代入数值得Gfwp,s=0.059245Ds第二步:对汽水分离器列蒸汽守恒方程:G0=Gd(Xrh1,i-Xh,z)/ Xrh1,iGdXh,z=(Gd-G0)Xrh1,i .................1*求得G0=Gd(Xrh1,i-Xh,z)/ Xrh1,i ,把Xrh1,i =0.995 、 Xh,z =0.8632 代入可得G0 =0.13246Gd对7级回热器列热平衡方程:[Ges,7(hes,7-hew,7)+Ga(ha’-hew,7)]ηh=(1+ξd)Ds△hfw ........................ 2*对6级回热器列热平衡方程:[Ges,6(hes,7-hew,6)+Gb(hb’-hew,6)+Ges,7(hew,7-hew,6)]ηh=(1+ξd)Ds△hfw.................3*对除氧器列热平衡方程:[(Ges,7+Ges,6+Ga+Gb)hew,6+Gcd+hlfwi+G0hGo’+Gchc]=(1+ξd)Ds hlfwi,5 .................4*对除氧器列质量守恒衡方程:Gcd+Ga+Gb+GC+G0+Ges,7+Ges,6=(1+ξd)Ds ................5*对汽水分离再热器中第一级再热器列热平衡方程(Gd-G0) Δh=Gb(hb-hb’)ηh .................6*对汽水分离再热器中第一级再热器列热平衡方程(Gd-G0)Δh=Ga(ha-ha’)ηh .................7*新蒸汽产量等于总耗气量:Ds=Ges,7+Ges,6+Ga+Gb+GC+Gd+Gfwp,s ................8*其中:ha’为第二级再热器加热蒸汽地疏水比焓;Ga新蒸汽中用于再热地质量流量,kg/sGb从高压缸抽取用于再热地蒸汽质量,kg/sGc高压缸排气中排到除氧器地质量流量,kg/sGd从高压缸排气进入到低压缸地质量流量,kg/sG0为汽水分离器中分离出来地质量流量,kg/shb’为第一级再热器加热蒸汽地疏水比焓,kJ/kgha’为第二级再热器加热蒸汽地疏水比焓,kJ/kghG0’为汽水分离器中分离水地比焓,kJ/kghc,hd均为高压缸排气比焓,kJ/kg△h为再热器平均焓值升,kJ/kg联立上述7个方程并代入相关数值,求得:Ga=0.0448Ds ;Gb=0.0429Ds ;Gc=0.0273Ds ;Gd=0.7125Ds ;Ges,6=0.0556Ds ;Ges,7=0.0577Ds ;Gcd=0.6878Ds第三步:[Ges,3 (hes,3-hew,3)+ Ges,4(hew,4-hew,3)]ηh=Gcd△hfwηh=Gcd△hfw对4级回热器列热平衡方程:Ges,4(hes,4-hew,4)ηh=Gcd△hfw ..................9*对3级回热器列热平衡方程:[Ges,3 (hes,3-hew,3)+ Ges,4(hew,4-hew,3)]ηh=Gcd△hfw ..................10*对2级回热器列热平衡方程:[Ges,2 (hes,2-hew,2)+(Ges,4+Ges,3)(hew,3-hew,2)]ηh=Gcd△hfw ..................11*对1级回热器列热平衡方程:[Ges,1 (hes,1-hew,1)+(Ges,1+Ges,2+Ges,3+Ges,4)(hew,2-hew,1)]ηh=Gcd△hfw ..........12*联立9*~12*方程并代入相关数值,求得:Ges,1=0.0428 Gcd ;Ges,2=0.0445 Gcd 。

第1章-压水堆核电厂二回路热力循环-下

第1章-压水堆核电厂二回路热力循环-下
查图表或由专用程序计算
4. 过热蒸汽(p,t)
查图表或由专用程序计算。
4. 湿饱和蒸汽
由ts(或ps)与x共同确定:
vx xv '' 1 x v ' v ' x v '' v '
hx xh' '1 x h' h ' x h '' h ' h' x
t, p
t ts p p 不变 t t ts ( p )
p ps t t 不变 p p ps (t )
干度— 湿蒸汽中干饱和蒸汽的质量分数,用w 或 x 表示。
mv x mv ml
(湿度 y =1–x)
0 饱和液 x
湿饱和蒸汽
1 干饱和蒸汽
1–11 水定压加热汽化过程
2. 未饱和水和过热蒸汽表
p 饱 和 参 数 0.001 MPa ts=6.949 ℃ v’=0.001 000 1, v”=129.185 h’=29.21, h”=2513.3 s’=0.105 6, s ”=8.9735 0.005 MPa ts=32.879 ℃ v’=0.001 005 3, v”=28.191 h’=137.72, h”=2 560.6 s’=0.4761, s”=8.3930 0.01 MPa ts=45.799 ℃ v’=0.001 010 3, v”=14.673 h’=191.76, h”=2583.7 s’=0. 649 0, s”=8.1481
kJ/kg
h
h
2513.29 2544.68 2553.46 2560.55 2583.72 2608.90 2645.31 2675.14 2706.53 2748.59 2777.67 2798.66 2803.19 2793.64 2724.46 2085.87

第1章压水堆核电厂二回路热力循环

第1章压水堆核电厂二回路热力循环

p
.C
. . . . . c c’ cx
c” cd
b b’ bx
.... .. .. . . a a’ ax
b” bd a” ad
下界限线
上界限线
T
下界限线
... . a’
a
.C .
上界限线
...
..ad
a”
20
o
vo
s
1.8.3 水和水蒸气状态参数及图表
1. 水和水蒸气的状态参数按不同区域,由给出的独立状态参数 通过实际气体方程计算(通常由计算机完成)或查图表确定。
压水堆核电厂热工 流体理论基础
童钧耕
上海交通大学机械与动力工程学院 工程热物理研究所
Tel:
021-34206329
Mail:
jgtong@
1
电厂的任务—— 核能或化学能
热能
电能
能量转换的原理和规律—— 工程热力学 热量传递的规律—— 传热学 流体在各种设备中流动的规律—— 流体力学
0.0
s
-0.0002 0.0000 0.0763 0.2248 0.3670 0.5050 0.9550 1.3069 1.4186 1.8420 2.3307 2.7926 3.2533 3.7773 4.4092
s
9.1544 9.1541 9.0236 8.7794 8.5560 8.3511 7.7540 7.3545 7.2386 6.8381 6.4312 6.0716 5.7042 5.2104 4.4092
s kJ/(kg K)
t
v
v h
h

s
6.9491 24.1142 28.9533 32.8793 45.7988 60.0650 81.3388 99.634 120.240 151.867 179.916 212.417 233.893 263.980 311.037 373.99

专业课程设计(二)指导书-压水堆核电厂二回路热力系统初步设计

专业课程设计(二)指导书-压水堆核电厂二回路热力系统初步设计
1
回路热力系统普遍采用包含再热循环、回热循环的饱和蒸汽朗肯循环,其典型的热力系 统组成如图1所示。
图 1 典型压水堆核电厂二回路热力系统原理流程图
3.1.1 拟定热力系统方案的基本原则 (1)汽轮机组 压水堆核电厂汽轮机一般使用低参数的饱和蒸汽,汽轮机由一个高压缸、2~3个低 压缸组成,高压缸、低压缸之间设置外置式汽水分离器。 单位质量流量的蒸汽在高压缸内的绝热焓降约占整个机组绝热焓降的40%,最佳分 缸压力(即高压缸排汽压力)约为高压缸进汽压力的12%~14%。 (2)蒸汽再热系统 压水堆核电厂通常在主汽轮机的高、低压缸之间设置汽水分离-再热器,对高压缸 排汽进行除湿和加热,使得进入低压缸的蒸汽达到过热状态,从而提高低压汽轮机运行 的安全性和经济性。 汽水分离-再热器由一级分离器、两级再热器组成,第一级再热器使用高压缸的抽 汽加热, 第二级再热器使用蒸汽发生器的新蒸汽加热。 中间分离器的疏水排放到除氧器, 第一级、第二级再热器的疏水分别排放到不同的高压给水加热器。 (3)给水回热系统 给水回热系统由回热加热器、回热抽汽管道、凝给水管道、疏水管道等组成。回热 加热器按照汽水介质传热方式不同分为混合式加热器和表面式加热器,其中高压、低压
4.热力计算方法与步骤.........................................................................................................8 5.设计与热力计算要求.........................................................................................................12 参考资料...................................................................................................................................12 附件: 《课程设计说明书》参考格式.....................................................................................12
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压水堆核电厂中普遍使用热力除氧器对给水进行除氧,从其运行原理来看,除氧器 就是一个混合式加热器。来自低压给水加热器的给水在除氧器中被来自汽轮机高压缸的 排汽加热到除氧器运行压力下的饱和温度,除过氧的饱和水再由给水泵输送到高压给水 加热器,被加热到规定的给水温度后再送入蒸汽发生器。
大型核电机组一般采用汽动给水泵,能够很好地适应机组变负荷运行,可以利用蒸 汽发生器的新蒸汽、汽轮机高压缸的抽汽或者汽水分离再热器出口的热再热蒸汽驱动给 水泵汽轮机,因而具有较好的经济性。给水泵汽轮机排出的废汽被送到主冷凝器。 3.2 主要热力参数选定
给水回热系统的三个基本参数是给水回热级数、给水温度以及各级中的焓升分配。 其中,给水回热级数的确定可参考图2。
图 2 回热系数对电站热效率的影响
选择给水回热级数时,应考虑到每增加一级加热器就要增加设备投资费用,所增加 的费用应该能够从核电厂热经济性提高的收益中得到补偿;同时,还要尽量避免热力系 统过于复杂,以保证核电厂运行的可靠性。因此,小型机组的回热级数一般取为1~3级, 大型机组的回热级数一般取为7~9级。
为了确保压水堆的安全,反应堆在运行过程中必须满足热工安全准则,其中之一是 堆芯不能发生水力不稳定性,一般要求反应堆出口冷却剂的欠饱和度应至少大于10℃, 为保险起见,可取欠饱和度大于15~20℃。 3.2.2 二回路工质的参数选择
二回路系统需要确定的参数包括蒸汽发生器出口蒸汽的温度与压力(蒸汽初参数)、 冷凝器运行压力(蒸汽终参数)、蒸汽再热温度、给水温度和焓升分配等。 (1)蒸汽初参数的选择
3.1 热力系统原则方案................................................................................................ 1 3.2 主要热力参数选定................................................................................................ 3 4.热力计算方法与步骤........................................................................................................ 7 5.设计与热力计算................................................................................................................ 10 5.1 已知条件和给定参数............................................................................................ 10 5.2 热力系统原则方案确定........................................................................................ 11 5.3 主要热力参数选定................................................................................................ 11 5.4 热平衡计算结果.................................................................................................... 14 6.结果分析与结论................................................................................................................ 15 参考资料.................................................................................................................................. 16 附录:《课程设计说明书》参考格式.................................................................................... 16
hfw,op = hcd + z∆hfw
按照蒸汽发生器运行压力 psg 和最佳给水比焓 hfw,op 查水和水蒸汽表,可以确定最佳
给水温度 Tfw,op 。实际给水温度 Tfw 往往低于理论上的最佳给水温度 Tfw,op ,通常可以取为
Tfw = (0.65 ~ ) 0.75 Tfw,op
由压力和实际给水温度,再一次通过等焓生分配的方法确定每一级加热器内的焓升。实 际每一级给水焓升为:
压水堆核电厂的二回路系统一般采用饱和蒸汽,蒸汽初温与蒸汽初压为一一对应关 系。根据朗肯循环的基本原理,在其它条件相同的情况下,提高蒸汽初温可以提高循环
4
热效率,目前二回路蒸汽参数已经提高到6~7MPa,对于提高核电厂经济性起到了重要 作用,但是受一次侧参数的严格制约,二回路蒸汽初参数不会再有大幅度的提高。
3
压水堆核电厂一、二回路工质的运行参数之间存在着相互制约关系,如图3所示。
图 3 典型压水堆核电厂一、二回路工质温度之间的制约关系
3.2.1 一回路冷却剂的参数选择 从提高核电厂热效率的角度来看,提高一回路主系统中冷却剂的工作压力是有利
的。但是,工作压力提高后,相应各主要设备的承压要求、材料和加工制造等技术难度 都增加了,反过来影响到核电厂的经济性。综合考虑,典型压水堆核电厂主回路系统的 工作压力一般为15~16MPa,对应的饱和温度为342~347℃。
压水堆核电厂二回路热力系统 初步设计指导书
哈尔滨工程大学核科学与技术学院 2012©NPSRC
目录
1.目的和要求........................................................................................................................ 1 2.任务和内容........................................................................................................................ 1 3.热力系统原则方案确定方法............................................................................................ 1
∆h fw
=
hfw
− hcd Z
式中, hfw ——给水比焓,kJ/kg;
hcd ——冷凝器出口凝结水比焓,kJ/kg;
2.任务和内容
本课程设计的主要任务,是根据设计的要求,拟定压水堆核电厂二回路热力系统原 则方案,并完成该方案在满功率工况下的热平衡计算。
本课程设计的主要内容包括: (1)确定二回路热力系统的形式和配置方式; (2)根据总体需求和热工约束条件确定热力系统的主要热工参数; (3)依据计算原始资料,进行原则性热力系统的热平衡计算,确定计算负荷工况下 各部分汽水流量及其参数、发电量、计说明书,绘制原则性热力系统图。
蒸汽再热器使用高压缸抽汽和蒸汽发生器新蒸汽加热,所以汽水分离再热器出口的 热再热蒸汽(过热蒸汽)比用于加热的新蒸汽温度要低10~20℃左右。
再热蒸汽在第一、二级再热器中的焓升、流动压降可取为相等。
(4)给水回热参数的选择
多级回热分配可以采用汽轮机设计时普遍使用的平均分配法,即每一级给水加热器 内给水的焓升相等,这种方法简单易行。
凝结水的温度为
Tcd = Tsw,1 + ∆Tsw + δT 式中, Tsw,1 ——循环冷却水温度,按照当地水文条件或者国家标准选取;
∆Tsw ——循环冷却水温升,一般为6~12℃;
δT ——冷凝器传热端差,一般为3~10℃。 忽略凝结水的过冷度,则冷凝器的运行压力等于凝结水温度对应的饱和压力。
(3)蒸汽中间再热参数的选择
3.1.3 给水回热系统
给水回热系统由回热加热器、回热抽汽管道、凝给水管道、疏水管道等组成。回热 加热器按照汽水介质传热方式不同分为混合式加热器和表面式加热器,其中高压、低压 给水加热器普遍采用表面式换热器,除氧器为混合式加热器。
2
高压给水加热器采用主汽轮机高压缸的抽汽进行加热,除氧器采用高压缸的排汽进 行加热,低压给水加热器采用主汽轮机低压缸的抽汽进行加热。高压给水加热器的疏水 可采用逐级回流的方式,最终送入除氧器;低压给水加热器的疏水可以全部采用逐级回 流的方式,最终送入冷凝器,也可以部分采用疏水汇流方式,将疏入送入给水管道。
I
1.目的和要求
本课程设计是学生在学习《核动力装置与设备》、《核电站运行》课程后的一次综合 训练,是实践教学的一个重要环节。通过课程设计使学生进一步巩固、加深所学的理论 知识并有所扩展;学习并掌握压水堆核电厂二回路热力系统拟定与热平衡计算的方法和 基本步骤;锻炼提高运算、制图和计算机应用等基本技能;增强工程概念,培养学生对 工程技术问题的严肃、认真和负责态度。
3.热力系统原则方案确定方法
3.1 热力系统原则方案
电站原则性热力系统表明能量转换与利用的基本过程,反映了发电厂动力循环中工 质的基本流程、能量转换与利用过程的完善程度。为了提高热经济性,压水堆核电厂二 回路热力系统普遍采用包含再热循环、回热循环的饱和蒸汽朗肯循环,其典型的热力系 统组成如图1所示。
每一级加热器的给水焓升为
∆hfw,op
相关文档
最新文档