高分子分离膜材料及研究进展.

合集下载

高分子材料的研究现状及发展前景

高分子材料的研究现状及发展前景

SCIENTIST81 高分子材料的基本概念1)高分子化合物指分子量很大的有机化合物,每个分子可含几千、几万甚至几十万个原子,也叫高聚物或聚合物;分子量<500,叫低分子;分子量>500,叫高分子,一般高分子材料的分子量在103~106之间。

如表1所示。

表12)高分子材料指以高分子化合物为主要组分的材料,主要包括塑料、橡胶、化学纤维等。

如图1所示。

图12 高分子材料的研究现状现在高分子材料已经同金属材料及无机非金属材料一样,成为一种重要的材料,在机械工业、燃料电池、农业种子处理及智能隐身技术等各个领域都发挥着重要的作用,也就是说人类已经进入高分子时代,从工农业生产到人们的衣食住行方方面面都渗透着高分子材料的应用。

目前为满足人们的生活生产需求以及市场的需要,我国重点对工程、复合、液晶高分子、高分子分离和生物医药这5项高分子材料进行研究,并已取得重大成果。

2.1 高分子材料应用于机械工业目前材料科学研究的重点和热门是“以塑代钢”和“以塑代铁”,此类研究不仅能够拓宽材料的选择范围,而且比高消耗又笨重的传统材料更加经济耐用、安全轻便。

例如聚甲醛材料的突出特点是具有耐磨性,经机油、四氟乙烯、二硫化钥等改性后,其磨耗系数和摩擦系数减小,被大量应用于各种螺母、齿轮、凸轮、轴承、各种导轨及泵体等机械零件的制造。

2.2 高分子材料应用于燃料电池高分子电解质可大大减薄膜的厚度,从而大大降低电池内阻,使输出功率增大。

全氟磺酸质子交换膜具有很好的化学耐受性和机械强度,同时氟素化合物的僧水性能良好,易于使水排出,但是也降低了电池运转时的保水率,影响了膜导电性,经高分子电解质膜加湿技术后,虽保证了其导电性,但也带来了电池尺寸变大、系统复杂化等一系列问题。

现在研究者正关注能耐高温的增强型全氟磺酸型等高分子材料。

2.3 高分子材料应用于农业种子处理在农业上一般将高分子材料制成干型或者湿型成膜剂,用于包裹种子,不仅可以将农药和其他物质固定在种子表面,还可以改变种子的形状,以便于机械播种,节省人力物力。

高分子材料在水处理中的应用研究

高分子材料在水处理中的应用研究

高分子材料在水处理中的应用研究高分子材料在水处理中的应用研究摘要:随着工业化和城市化进程的不断加快,水资源的供需矛盾日益突出。

同时,水污染问题也日益严重,对环境和人类健康产生了巨大的威胁。

因此,水处理技术的发展和研究变得尤为重要。

高分子材料作为一种重要的材料,在水处理领域发挥着重要的作用。

本文主要探讨了高分子材料在水处理中的应用。

关键词:高分子材料;水处理;吸附材料;膜分离;聚电解质;高分子凝胶1. 引言水作为生命活动的基本物质,在农业、工业和人类生活中有着无法替代的地位。

然而,目前世界上许多地区的水资源短缺和水污染问题严重,已经成为制约经济社会发展的瓶颈。

因此,水处理技术的发展和研究对解决水资源问题至关重要。

2. 高分子材料在水处理中的应用2.1 吸附材料高分子材料通过吸附剂的作用,可以有效去除水中的有机物、重金属离子等污染物。

树脂是一种常用的高分子吸附材料,常用于工业废水处理中。

例如,聚合甲醛树脂可以去除水中的苯酚,聚合硫醇树脂可以去除金属离子。

此外,还可以利用高分子吸附材料制备微球吸附材料,如聚合丙烯酸钠微球用于废水中重金属离子的吸附。

2.2 膜分离高分子材料的分离性能优良,可用于膜分离技术。

膜分离技术是一种将溶质分离出来的方法,其原理是利用膜的选择性通透性,实现物质的分离。

高分子材料膜分离广泛应用于饮用水处理、海水淡化和废水处理等领域。

例如,以聚偏氟乙烯作为膜材料可以实现海水淡化,以聚丙烯膜过滤可以实现微污染物的去除。

2.3 聚电解质聚电解质是一种高分子化合物,主要由阳离子和阴离子组成。

在水处理中,聚电解质可以用作絮凝剂和絮凝剂辅助剂,以促进悬浮物的沉降和去除。

聚合氯化铝、聚合硫酸铝等聚电解质广泛应用于饮用水和废水处理。

此外,聚合物电解质还可用于电化学处理技术,如电吸附、电析等。

2.4 高分子凝胶高分子凝胶是由高分子物质和水或溶剂组成的胶体系统。

高分子凝胶在水处理中有着广泛的应用,如吸附、过滤和固化等。

浅析高分子材料发展现状和应用趋势

浅析高分子材料发展现状和应用趋势

浅析高分子材料发展现状和应用趋势【篇1】浅析高分子材料发展现状和应用趋势一、有机高分子材料概述有机高分子材料是指区别于通用的、具有高性能或特殊功能等特点的有机高分子材料,表现为性能优异,价格高,产量低。

其特点覆盖面广、产品种类多;投资与技术高度密集,技术含量高;高风险、高收益。

按使用性质划分,有塑料、橡胶、合成纤维、专用及精细化学品等;按用途划分有结构型和功能型;按功能型细分则有光、电、磁功能和生物相容功能;以生物质为原料生产的高分子材料也被划入了新型有机高分子材料。

新型有机高分子材料应用广泛,工程塑料、复合材料、功能高分子材料、有机硅及氟系材料、液晶材料、特种橡胶、高性能密封材料等新型高分子材料被广泛应用于电子电器、交通运输、机械、建筑、生物、医疗及农业生产资料等领域。

二、有机高分子材料国内现状国内有机高分子材料的研究不断取得新的进展:国家重点科技攻关项目聚醚砜、聚醚醚酮、双马型聚酰亚胺等类树脂专用材料及其加工技术,通过了国家有关部门的验收;一种用于家电产品的新型紫外光固化涂料 JD-1紫外光固化树脂已开发成功;超高分子量聚丙烯酰胺合成技术在大庆油田化工总厂研制成功; PTC智能恒温电缆、多功能超强吸水保水剂、粉煤灰高效活化剂等等,都是我国在高分子材料领域取得的不俗成果。

我国在高分子单链单晶的研究也取得国际领先的成绩:成功地制备出顺丁橡胶的单链单晶,独创性地开展了单分子链玻璃体的研究,首次观察到高分子液晶态的新的纹影结构。

塑料行业单纯从实验室阶段的研究来讲,我国与国际上的差距并不是很大。

但从实验室研究走向产业化这一阶段,与国外相比,我们的差距就被大幅度拉开了,因此塑料产业的发展趋势主要是尽快对主要新型品种的产业化。

橡胶工业的发展重点是进一步完善橡胶装置技术工艺,进行产品结构调整,提高氯丁胶、乙丙橡胶、丁腈胶和丁基胶的产业化生产能力;充分利用原料、市场条件现已成熟的有利时机,加快推进异戊橡胶工业化进程,尽快实现工业化生产;大力发展改性丁二烯橡胶、三元乙丙橡胶等市场急需的产品品种。

功能高分子材料-第三章-高分子分离膜..

功能高分子材料-第三章-高分子分离膜..
膜的形式可以是固态的,也可以是液态的。 被膜分割的流体物质可以是液态的,也可以是气 态的。膜至少具有两个界面,膜通过这两个界面 与被分割的两侧流体接触并进行传递。分离膜对 流体可以是完全透过性的,也可以是半透过性的, 但不能是完全不透过性的。
9
膜分离技术是利用膜对混合物中各组分的选 择渗透性能的差异来实现分离、提纯和浓缩的新 型分离技术。
◆ 第四道:RO逆渗透系统 美国高科技的RO逆渗透膜,去 除重金属离子杂质,有效去除过滤性病毒及细菌等有害物 质:
◆ 第五道:后置活性炭系统 高密度活性炭(T33)提高和增 加活净水口感,使水质更加甘甜可口,补充人体所需微量 元素和矿物质。
24
开发膜组件的几个基本要求:
◆ 适当均匀的流动,无静水区; ◆ 具有良好的机械稳定性、化学稳定性和热稳
分离的类型包括同种物质按不同大小尺寸的 分离;异种物质的分离;不同物质状态的分离等。
在化工单元操作中,常见的分离方法有筛分、 过滤、蒸馏、蒸发、重结晶、萃取、离心分离等。 然而,对于高层次的分离,如分子尺寸的分离、 生物体组分的分离等,采用常规的分离方法是难 以实现的,或达不到精度,或需要损耗极大的能 源而无实用价值。
纤维素酯类材料易受微生物侵蚀,pH值适应 范围较窄,不耐高温和某些有机溶剂或无机溶剂。 因此发展了非纤维素酯类(合成高分子类)膜。
34
二、聚砜类
O
聚砜结构中的特征基团为 S
O
聚砜类树脂常用的制膜溶剂有:二甲基甲 酰胺、二甲基乙酰胺、N-甲基吡咯烷酮、二甲 基亚砜等。
聚砜类树脂具有良好的化学、热学和水解 稳定性,强度也很高,pH值适应范围为1~13, 最高使用温度达120℃,抗氧化性和抗氯性都十 分优良。因此已成为重要的膜材料之一。

高分子功能膜材料

高分子功能膜材料

11/15/2018
三、导电聚合物的结构特点及导电机理
• 所谓导电聚合物是由一些具有共扼二键的聚合物 经化学或电化学掺杂后形成的、导电率可从绝缘 体延伸到导体范围的一类高分子材料。 • 导电聚合物是完全不同于由金属或碳粉末与聚合 物共混而制成的导电塑料,它除了具有聚合物结构 外,还含有由掺杂入的一价对阴离子一型掺杂或对 阳离子一型掺杂,所 以通常导电聚合物的结构分为 聚合物链和与链非键合的一价对阴离子或对阳离 子两部分组成。导电聚合物除了具有高分子本身 特性之外,还兼具了因掺杂而带来的半导体或导体 的特性。
◆ 一般通过溶液浇铸法制备平板或管状超滤膜,以 纺丝法制备中空纤维超滤膜。 ◆ L-S相转化法是一种较为简单的制膜方法, 其工艺简单,操作方便,且用途广泛,可用来制备 各种形态的膜.目前大多数的工业用膜的制备工艺
(1)称取一定量预先干燥的聚合物溶入DMF中,加入 一定量的添加剂,通过搅拌使聚合物及其添加剂充 分溶解,制成均匀的铸膜液。 ◆ (2)过滤铸膜液,去除未溶解的杂质。 ◆ (3)静置24 h以上,以使铸膜液完全脱泡。 ◆ (4)用刮刀将铸膜液匀速涂在洁净、干燥的制膜板 上,于空气中放置一定时间,以挥发部分溶剂,然后, 将制膜板置于水凝结浴中。 ◆ (5)将基膜在水凝结浴中浸泡一定时间后,取出基 膜进行系列表征。
11/15/2018
二、高分子功能膜分类
混合物分离膜 使用功能划分 药物释放缓释膜 分隔作用保护膜 气体分离膜 液体分离膜 根据被分离物质性质 固体分离膜 离子分离膜 微生物分离膜 被分离物质粒度大小 超细滤膜、超滤膜、微滤膜
熔融拉伸膜
高 分 子 功 能 膜
膜形成过程
根据膜性质
11/15/2018
被截留的溶质分子的分子尺寸。这是由于亲水性的多孔膜表面吸附有 活动性、相对较小的水分子层而使有效孔径相应变小,这种效应孔径 愈小愈显著。 表面荷电的多孔膜可以在表面吸附一层以上的对离子,因而荷点膜 的有效孔径比一般多孔膜更小。

高分子膜材料

高分子膜材料

高分子膜材料姓名:***指导老师:**专业:高分子材料2011年6月8号摘要:高分子膜材料具有制备简单、性能稳定以及与指示剂相容性好等特点。

本文介绍高分子膜材料的分类、性能以及高分子膜材料在工业、农业以及日常生活中的应用,主要是论述高分子膜材料的研究进展以及发展前景等。

前言:高分子膜材料虽然很早就出现,但是对它的研究还是近些年来才开始。

在上世纪20年代,由于石油工业的发展促进了三大合成材料品种的不断增多,高分子膜材料的应用范围也在逐渐扩大。

由包装膜开始,在30年代已经将纤维膜应用于超滤分离;40年代则出现了离子交换膜和点渗析分离法;50年代出现了饭渗透法膜分离技术;60年代又加拿大和美国学者分别成功的制造出了高效能膜和超过滤膜,总之,国外高分子膜材料技术的发展是迅速的。

近年来,我国的科研工作者也开始重视这方面的研究,膜的汇总类及应用范围在不断扩大,其中用量最大的是选择性分离膜,如离子交换膜、微孔过滤膜、超过滤膜、液膜、液晶膜等等。

目前已应用的领域有核燃料及金属提炼、气体分离、海水淡化、超纯水制备、污废处理、人工脏器的孩子早、医药、食品农药、化工等各个方面。

众所周知,进入二十一世纪以后,环境已经成为制约各国发展的重要因素,各种各样的工业废水、废气以及工业垃圾对环境造成了巨大破坏。

而高分子膜材料以其独特的微处理性可以很好的清除废水、废气以及工业垃圾中所含有的有毒重金属、有机物和矿物质等物质,因而在新世纪高分子膜材料必然迎来新的发展。

目录第一节:高分子膜材料的研究分类 (2)第二节:各种高分子膜材料的的介绍 (3)第三节:高分子膜材料的发展前景 (5)第四节:高分子膜材料的性能 (6)第五节:高分子膜材料的应用 (8)参考文献 (11)第一节:高分子膜材料的研究分类目前,高分子膜材料的种类繁多,而且分类方法也不相同,关于高分子膜材料的分类方法一般包括两个方面:已是制备方法,二是膜的性能测定方法,两者结合起来可以探讨膜的性能也合成条件之间的关系,从而达到有目的地合成性鞥有一得膜材料。

高分子分离膜材料

高分子分离膜材料

高分子分离膜材料高分子分离膜材料是一种具有特定结构和性能的材料,用于在液体或气体中分离、浓缩或纯化不同组分。

高分子分离膜材料广泛应用于水处理、废水处理、气体分离、食品工业等领域。

本文将介绍几种常见的高分子分离膜材料。

聚酯膜是一种常用的高分子分离膜材料,具有优异的抗化学腐蚀性能和机械强度。

聚酯膜具有独特的微孔结构,可以有效地分离和去除水中的微小颗粒、胶体和微生物等。

由于聚酯膜具有较高的通透性和分离效率,广泛应用于水处理领域。

聚醚膜是另一种常见的高分子分离膜材料,具有较高的化学稳定性和热稳定性。

聚醚膜具有独特的孔隙结构,能够有效地分离气体、液体和溶液中的组分。

聚醚膜广泛应用于气体分离、溶液浓缩和纯化等领域。

聚酰胺膜是高分子分离膜材料中一种重要的类型,具有优异的膜通透性和分离性能。

聚酰胺膜具有独特的孔隙结构,能够有效地分离和去除水中的溶解性固体、碱性和有机物质等。

聚酰胺膜广泛应用于废水处理、海水淡化和食品工业等领域。

聚酰亚胺膜是一种新型的高分子分离膜材料,具有极高的热稳定性和化学稳定性。

聚酰亚胺膜具有独特的孔隙结构和纳米级孔径,能够有效地分离和去除气体和液体中的微小分子。

聚酰亚胺膜广泛应用于气体分离、有机溶剂纯化和工业废气处理等领域。

除了上述几种常见的高分子分离膜材料外,还有许多其他种类的高分子分离膜材料,如聚丙烯膜、聚氨酯膜、聚碳酸酯膜等。

这些高分子分离膜材料各具特点,在不同的应用领域都有不同的优势。

总之,高分子分离膜材料是一类重要的功能材料,具有独特的结构和性能。

它们能够有效地分离、浓缩和纯化液体或气体中的组分,广泛应用于水处理、废水处理、气体分离、食品工业等领域。

随着科技的不断进步和需求的增加,高分子分离膜材料的研究和应用将更加广泛和深入。

膜分离技术应用的研究进展

膜分离技术应用的研究进展

膜分离技术应用的研究进展一、本文概述随着科技的不断进步,膜分离技术作为一种高效、环保的分离技术,已经在多个领域得到了广泛的应用。

膜分离技术,利用特定的膜材料对混合物中的不同组分进行选择性分离,具有操作简便、能耗低、分离效果好等优点,因此在化工、环保、食品、医药等领域有着广阔的应用前景。

本文旨在对膜分离技术应用的研究进展进行全面的综述,分析各类膜材料的性能特点,探讨膜分离技术在不同领域的应用现状,以及未来可能的发展趋势。

通过对膜分离技术的深入研究,我们期望能够为相关领域的科技进步和产业发展提供有益的参考。

二、膜分离技术的分类与特点膜分离技术是一种基于膜的选择性渗透原理,用于分离、提纯和浓缩溶液中的不同组分的高效分离技术。

根据其分离机制和操作原理,膜分离技术主要分为以下几类,并各自具有其独特的特点。

微滤(Microfiltration,MF):微滤膜通常具有较大的孔径,能够有效截留溶液中的悬浮物、颗粒物和细菌等。

其特点是操作简单、高通量、低能耗,广泛应用于水处理、食品加工和制药等领域。

超滤(Ultrafiltration,UF):超滤膜的孔径介于微滤和纳滤之间,能够截留分子量较大的溶质和胶体物质。

超滤技术具有分离效果好、操作简便、对热敏性物质损伤小等优点,常用于蛋白质、酶等生物大分子的分离和纯化。

纳滤(Nanofiltration,NF):纳滤膜的孔径较小,能够截留分子量较小的溶质和无机盐。

纳滤技术具有对有机物和无机盐的高效分离能力,且能在较低的操作压力下实现较高的分离效率,适用于水软化、废水处理和食品工业等领域。

反渗透(Reverse Osmosis,RO):反渗透膜具有极小的孔径,能够截留溶液中的绝大多数溶质,实现高纯度水的制备。

反渗透技术具有分离效果好、产水水质高、操作稳定等优点,是海水淡化、苦咸水脱盐、工业废水处理等领域的首选技术。

电渗析(Electrodialysis,ED):电渗析技术利用电场作用下的离子迁移原理,实现溶液中阴阳离子的分离。

高分子分离膜

高分子分离膜

超滤膜:不对称膜,形式有平板式、卷式、管式和中空纤维状等。
表面活性层:致密光滑,厚度,细孔孔径小于10nm
超滤 膜
过渡层:细孔大于10nm,厚度1-10μm
支撑层:厚度50-250μm,孔径大于10nm。起支撑作用,提高机械强度
性能主要取决于表面活性层和过渡层
超滤膜技术应用
超滤技术主要用于含分子量500-500,000的微粒溶液的分离,是目前应用最广的膜分离过程之一,应用领域涉及化 工、食品、医药、生化
3.4 高分子分离膜的制备方法
膜的制备工艺对分离膜的性能十分重要。同样的材料,由于不同的制作工艺和控制条件,其性能差别很大。 合理的、先进的制膜工艺是制造优良性能分离膜的重要保证。
制备方法
烧结法 拉伸法 径迹刻蚀法 相转化法 复合膜化法
多孔膜 最实用
1. 烧结法
将聚合物的微粒通过烧结形成多孔膜
聚合物的微粒
微孔膜的缺点: 颗粒容量较小,易被堵塞
微滤的应用
微粒和细菌的过滤。可用于水的高度净化、食品和饮料的除菌、药液的过滤、发酵工业的空气净化和除菌等。 微粒和细菌的检测。微孔膜可作为微粒和细菌的富集器,从而进行微粒和细菌含量的测定。 气体、溶液和水的净化。大气中悬浮的尘埃、纤维、花粉、细菌、病毒等;溶液和水中存在的微小固体颗粒和微生 物,都可借助微孔膜去除。
实用的有机高分子膜材料有:纤维素酯类、聚砜类、聚酰胺类及其他材料。
日本: 纤维素酯类膜:53%, 聚砜膜:33.3%, 聚酰胺膜:11.7%, 其他:2%
材料
纤维 素
二醋酸纤维素 (CDA)、三醋酸纤维素 (CTA)、硝化 纤维素(CN),混合纤维素(CN-CA)、乙基纤维素 (EC)等。
特点

聚苯硫醚分离膜材料研究进展

聚苯硫醚分离膜材料研究进展

Vol.40 No.6Dec.2020第40卷第6期2020年12月膜科学与技术MEMBRANE SCIENCE AND TECHNOLOGY聚苯硫瞇分离膜材料研究进展张伟元X 高 原2,张马亮2,李振环2$!•冀中能源峰峰集团有限公司,邯郸0560012.天津工业大学材料科学与工程学院,省部共建分离膜与膜过程国家重点实验室,天津300387)摘要:针对分离膜用PPS 树脂合成及改性、PPS 分离膜制备方法和PPS 分离膜改性及应用等 方面进行了阐述,分析了目前PPS 分离膜的研究进展,指出了现存的问题,展望了 PPS 分离膜的发展前景和未来发展方向.关键词:聚苯硫瞇分离膜;热致相成形技术;熔融拉伸技术;熔喷技术;膜过滤中图分类号:O631文献标志码:A 文章编号:1007-8924(2020)06012706doi: 10. 16159%. cnki. issnl007-8924. 2020. 06. 018膜分离技术是一门新型高效分离、浓缩、提纯和 净化技术,已广泛应用于能源、石油化工、医药卫生、 环境、轻工和冶金等领域•随着膜分离技术的发展,膜材料也由纤维素扩展到聚1、聚醞1、聚酰胺、聚 酰亚胺和聚偏氟乙烯等高分子材料,然而,常规膜材 料在许多情况下无法满足高温腐蚀性液体或气体浓缩和分离的需要,因而研究和开发耐高温、耐有机溶 剂、耐酸碱和耐氧化等类型膜分离技术已成为膜科 学技术的重要研究方向,也成为高分子材料科学与 工程领域的研究热点&1—3' •同时,将非常规条件下的 膜分离技术应用于该类废液和废气处理,被认为是环境治理和节能减排的有效手段.近年来,随着过程工业的发展,一些苛刻环境下 的分离问题集中凸显,如医药、能源、石化、冶炼等领域的废弃溶剂、高浓污水、高温尾气、腐蚀性固废等 已成为行业持续发展的瓶颈,对生命健康和环境质 量也造成了巨大的危害•因此,迫切需要将先进的过 滤分离与阻隔防护技术用于工业分离、水处理、空气净化、资源回收、电子电器阻隔及个体防护等领 域&一6'.聚苯硫醞(PPS)是迄今为止性价比最高的特种工程塑料,也是八大宇航材料之一,与聚醞醞酮、聚 酰亚胺、聚芳酯、聚1以及液晶聚合物合称为六大特 种工程塑料.其具有良好的耐热性,分解温度大于450 C,长期使用温度在200 C 左右,短期内能承受 260 C 的高温.同时,PPS 还具有优异的耐化学腐蚀 性,在200 C 下几乎没有溶剂能将其溶解,除氧化性 酸之外,PPS 几乎能耐所有酸、碱、高浓度盐溶液的腐蚀&7-9'. PPS 可在强酸、强碱和高温环境中长期使 用:8—9],开发PPS 基分离膜具有以下优势:①实现 对腐蚀性有机溶剂的直接处理;②实现强酸性或强碱性流体直接分离;③实现高温过滤,以提高膜通 量和降低膜污染等.同时,PPS 多孔膜可截留空气和液体中的悬浮颗粒、尘埃、细菌、真菌,在反渗透、 透析、超滤和气体分离等方面也有广泛的应用价 值W收稿日期:20200606;修改稿收到日期:20200 707基金项目:国家自然科学基金(21878231);冀中能源峰峰集团委托项目(028098);天津市自然科学重点项目(2019JCJDJC37300)第一作者简介:张伟元(1967-),男,河北保定人,本科,高级工程师,研究方向为煤化工,E-mail ;1337441561@qq. com.$ 通讯作者,E-mail : lizhenhuan@tiangong. edu. cm ; zhenhuanlil975@aliyum com引用本文:张伟元,高 原,张马亮,等•聚苯硫醸分离膜材料研究进展[J 1膜科学与技术,2020,40(6):127 — 132.Citation : Zhang W Y, Gao Y, Zhang M L eal Research progress of polyphemyleme sulfide separation membrane materi-als &J ''MembraneScienceandTechnology (Chinese #,2020,40(6#:127—132'-128-膜科学与技术第40卷1PPS分离膜用树脂合成与改性研究进展尽管国内外在PPS分离膜领域进行了研究,然而目前制备的pps分离膜材料难以满足气-液分离的需要,导致有关pps“膜工业应用”的报道甚少•原因是:①国内外长纤维用和膜用树脂中pps相对分子质量分布范围宽,含有过多低分子量PPS和非线性树脂,树脂脆性大、韧性低,导致PPS成膜性不好;②至今未发现良溶剂,且PPS黏流活化能大和结晶温度高,导致膜结构难以有效调控;③不耐氧化,玻璃化转变温度偏低(90°C).近10年来,天津工业大学与天津石化合作,研究了PPS链增长受限机理,原位检测了聚合反应进程,剖析了主反应和副反应竞争机制,实现了树脂结构的精准调控,剖析了 聚合体系内PPS的形态变迁过程,在相分离剂的协助下,实现了低聚物与高聚物的分离,制备了分离膜用、纤维用和熔喷用PPS树脂&10'.LI等口1-1?'和Zhang等&13-14'通过石墨烯、碳纳米管、足球烯和层状蒙脱土等调控了PPS的分子间作用力,提高了PPS的热力学、耐氧化和抗静电等性能,解析了添加物与PPS之间的界面作用途径•此外,利用1,3-二氯苯和1,3,5-三氯苯等精准调控了PPS相对分子质量分布范围、平均分子量大小、分子线性度和分子螺旋度等,进一步提升了PPS材料的成膜性能.然而,PPS树脂熔融温度(熔程)在280〜300C之间,即使在己内酰胺、N-甲基毗咯烷酮、a-氯茶和二苯甲酮等溶剂中也要在210C以上才能溶解,而且PPS分子链越长和线性度越低,其溶解所需温度越高,导致较大分子量的PPS很难溶解,在稀释剂中仍以胶态存在,不利于膜力学性能的提高和连续通道结构的形成•尽管提高溶解温度,使其接近或超过熔融温度,能促进PPS溶解,但长链PPS 分子高温下容易断裂,不利于制备具有较高力学性能的PPS膜材料.此外,PPS是半结晶性聚合物,分子之间只存在非键作用力(兀-兀作用和色散作用),黏流活化能高,树脂的熔融(或溶解)和结晶(或析出)对温度非常敏感,因此未改性的PPS树脂成膜过程难以调控•为此,未来为实现高品质PPS分离膜的备和应用,需在膜用结构和膜工艺优化领域开展系统工作,即:①调控PPS中的芳环结构或硫形态,制备聚芳硫醞新材料,调控分子链间的作用方式,改善溶解性能和结晶性能等;②研究材料结构对成膜过程、膜结构和膜性能的影响机制,剖析聚合物/稀释剂中液-液(L-L)分相和固-液(S-L)分相的决定性因素;③调控新型PPS改性树脂与稀释剂之间的相互作用参数,抑制树脂分子间强兀-兀作用等,促进低温溶解;④引入结构调控剂,调控树脂析出和结晶,研究可控分相途径.2PPS分离膜的成形研究进展自20世纪70年代起,日本率先开展了PPS分离膜制备的研究,并取得了一定的成果口5'.随后欧美国家也采用PPS为膜材料制备复合膜,且制备了用于特殊分离体系的气体分离膜•我国在PPS相关领域研究较晚,20世纪末天津工业大学&1—3'采用高温熔融纺丝,后热拉伸定型法制备了PPS中空纤维膜,并通过水通量测试发现存在贯通性孔道,但PPS 纤维膜孔隙率不高导致其水通量不高,且表面开孔不均匀•然而,常规的成膜方法在制备PPS膜时并不适用,因为低温下难以找到溶解PPS的溶剂.沈剑辉等采用PPS树脂与复合致孔剂混合均匀后,与超临界二氧化碳在挤出机内熔融共混并中空挤出,经过拉伸牵引和冷却定型处理得到大通量的PPS中空纤维膜,该方法经济环保,但表面开孔不均.近年来研究发现,热致相分离法(TIPS)是PPS 膜材料成型的重要手段,对比于熔融纺丝-拉伸法制备的分离膜内部能形成更多的连续贯穿孔,表面孔密度和孔隙率也有较大提升,更具实际应用价值. Zheng等&17'运用6种单一稀释剂来制备PPS膜,铸膜液中相分离主要以S-L或L-L分离的方式进行;不同的淬冷温度对PPS膜的表面结构与通量水平也会产生影响.Ding等口8'用二苯甲酮(DPK)或二苯l(DPS)作为稀释剂制备PPS膜,通过“旋节线分解”途径制备了枝状结构的PPS膜;通过成核-增长途径制备了开放或半开放的胞状孔结构膜;通过调整铸膜液中PPS的浓度,改变相图中“双节线”的位置或通过改变冷却速率,调控了PPS膜的结构与孔径•天津工业大学王丽华丽用自制的纺丝机进行熔融纺丝,制备了PPS中空纤维微滤膜,研究了纺丝温度、纺丝速度和氮气通量等对PPS中空纤维膜成型的影响;然后又用二苯甲酮与二苯瞇作为混合稀释剂制备了PPS膜材料,通过改变两种稀释剂之间的配比,改变“双节线”的温度,进而控制PPS 相分离与粗化过程,导致不同枝状结构的产生•第6期张伟元等:聚苯硫醸分离膜材料研究进展-129-Wang等采用二元与三元“PPS/稀释剂”体系制备了PPS微孔膜,解析了PPS与稀释剂之间的相互作用参数(利用PPS与稀释剂之间的溶解度参数计算);并基于Flory热力学相平衡理论,结合相分离动力学观点,阐述了二元和多元体系中PPS相分离及其成膜机制,探索了成膜条件与膜结构演化的内在关联;研究了强酸,强碱和强极性有机溶剂对PPS 膜结构和性能的影响,同时证明了PPS膜适合在极端环境中长期应用.3PPS分离膜的改性研究进展鉴于PPS亲水性较差(水接触角120。

高分子膜材料在膜分离过程中的应用探析

高分子膜材料在膜分离过程中的应用探析

第1期2021年2月No.1February,2021随着科技的进步,膜分离技术在各领域的应用也变得越来越广泛,尤其是在污水处理、冶金、纺织以及化工等领域的发展中发挥了巨大的推动作用。

对于膜分离技术而言,膜材料的研发与应用一直都是发展的主要方向,其中高分子膜材料就是较为主流的膜技术,其应用会对膜分离技术的效用发挥造成直接的影响,因此,针对高分子膜材料在膜分离过程中的实践应用加强研究是很有必要的。

1 在膜分离期间高分子膜材料的具体应用1.1 在膜制备方面的应用1.1.1 聚酰胺类材料所谓的聚酰胺类材料,实际上就是一些含有酰胺链段的聚合物,对其进行应用,可以制备气体分离膜以及液体分离膜等。

相关人员借助螺旋形聚醚砜中空纤维膜对洗毛废水的处理效果进行了研究。

试验发现,利用这种高分子膜材料对于羊毛脂能够实现92%以上的截留率,对于废水的浊度以及化学需氧量(Chemical Oxygen Demand ,COD )的去除率分别能够达到91%和99%。

由此可见,将其应用在膜分离技术中能够获得良好的处理效果。

也有研究人员对聚酰胺纳滤膜的分离效果进行了研究,分别对含有红色和黑色的活性染料废水进行处理,获得的截留率分别是92%和94%,而对COD 的去除率也能够达到94%。

此外,相关人员还对聚砜膜进行了试验,发现这种高分子膜材料表面具有负电荷,而很多染料分子同样含有负电荷,所以会产生相互排斥的作用,确保了相应的截留率及膜通量[1]。

尽管有很多高分子材料都可以用于膜的制备,但仍需要相关领域从功能材料、合金材料以及膜面化学改性等方面入手加强研究,不断提升高分子膜的性能、扩大适用范围。

1.1.2 纤维素纤维素这种高分子材料具有明显的天然性特征,主要是以植物细胞材料为来源。

目前,醋酸纤维素(Cellulose Acetate ,CA )在膜分离过程中的应用较为广泛。

早在1960年,相关人员就已经在膜分离工艺中对该项材料进行了有效的应用,使得膜分离期间的透水率以及脱盐率得到了显著的提升。

PVB在分离膜材料领域的应用研究进展

PVB在分离膜材料领域的应用研究进展

PVB 在分离膜材料领域的应用研究进展柳巨澜(安徽皖维集团有限责任公司,安徽合肥238002)摘要:聚乙烯醇缩丁醛(PVB)是亲水性高分子材料,具有优良的成膜性能,近年来在制备亲水性膜分离材料方面得到广泛关注。

旨在对PVB 应用于制膜的研究进展进行综述,以期为PVB 制备分离膜材料的研究提供借鉴。

关键词:PVB ;膜材料;分离;亲水性doi :10.3969/j.issn.1008-553X.2021.01.006中图分类号:TB383.2文献标识码:A文章编号:1008-553X (2021)01-0017-03收稿日期:2020-10-09作者简介:柳巨澜(1968-),男,毕业于安徽大学有机合成专业,高级工程师,从事聚乙烯醇及其衍生物研究工作,julanliu@ 。

聚乙烯醇缩丁醛(Polyvinyl Butyral ,简称PVB)是聚乙烯醇与正丁醛的缩合产物,其结构式如图1所示[1],分子中含有较长支链及羟基,使其成为具有优良亲水性的高分子材料。

PVB 具有良好的耐光性、耐水性,适用温度范围广,且具有耐酸碱腐蚀和良好的成膜性能,是一种受欢迎的亲水性膜材。

目前PVB 膜的制备方法大致有浸没-沉淀法[2]、溶液纺丝法[3]、TIPS 法[4]。

按照PVB 在膜材料中的使用比例可以分为作本体材料、与其他膜材料共混及其改性相关研究。

本文旨在介绍PVB 应用于制备膜材料的研究进展。

图1PVB 结构式1以PVB 为本体的膜材料制备许多研究者采用PVB 作为本体高分子材料制备膜分离材料。

热致相分离(TIPS)是一种易于控制膜孔结构的制膜方法。

漆静[4]选用PVB 为制膜材料,聚乙二醇为稀释剂,采用TIPS 法制备了PVB 中空纤维膜。

通过旋节线相分离机理控制,制备的PVB 膜具有相互贯通的海绵状本体结构特点。

结果表明,随空气距增大,外表面致密皮层厚度增加;随挤出温度升高,膜内表面孔变小,二者均会使截留率和力学性能提高,通量降低。

高分子功能膜材料

高分子功能膜材料

2024/10/12
多孔膜
按膜旳材料分类
表6—1 膜材料旳分类
类别
膜材料
纤维素酯类 纤维素衍生物类
聚砜类
聚酰(亚)胺类
非纤维素酯类 聚酯、烯烃类
含氟(硅)类
其他
举例 醋酸纤维素,硝酸纤维素,乙基纤维素等 聚砜,聚醚砜,聚芳醚砜,磺化聚砜等 聚砜酰胺,芳香族聚酰胺,含氟聚酰亚胺等 涤纶,聚碳酸酯,聚乙烯,聚丙烯腈等 聚四氟乙烯,聚偏氟乙烯,聚二甲基硅氧烷等 壳聚糖,聚电解质等
H2O,H(He),H2S,CO2,O2,Ar(CO),N2(CH4),C2H6,C3H8


聚酰亚胺溶解性差,制膜困难,所以开发了可 溶性聚酰亚胺,其构造为:
2024/10/12
O
O
C N
C
CH2 CH2 CH CH
C N
C
O
O
R n
(v)乙烯基聚合物 用作膜材料旳乙烯基聚合物涉及聚乙烯醇、聚 乙烯吡咯烷酮、聚丙烯酸、聚丙烯腈、聚偏氯乙 烯、聚丙烯酰胺等。共聚物涉及:聚丙烯醇/苯 乙烯磺酸、聚乙烯醇/磺化聚苯醚、聚丙烯腈/甲 基丙烯酸酯、聚乙烯/乙烯醇等。聚乙烯醇/丙烯 腈接枝共聚物也可用作膜材料。
2024/10/12
电渗析技术在食品工业、化工及工业废水旳 处理方面也发挥着主要旳作用。尤其是与反渗 透、纳滤等精过滤技术旳结合,在电子、制药 等行业旳高纯水制备中扮演主要角色。
另外,离子互换膜还大量应用于氯碱工业。 全氟磺酸膜(Nafion)以化学稳定性著称, 是目前为止唯一能同步耐40%NaOH和 100℃温度旳离子互换膜,因而被广泛应用作 食盐电解制备氯碱旳电解池隔膜。
三、分离膜制备措施
相转换法
粉末烧结

高分子分离膜的材料

高分子分离膜的材料

无机高分子材料
陶瓷膜材料
如氧化铝、氧化锆等,具有极高 的化学稳定性和热稳定性,适用 于高温、高压和强腐蚀环境下的
分离过程。
玻璃膜材料
如石英玻璃、硼硅酸盐玻璃等,具 有优异的透光性和耐酸性,常用于 光学膜和生物膜反应器等领域。
金属膜材料
如不锈钢、钛合金等,具有优良的 机械性能和导电性,但成膜性较差, 常用于特殊环境下的分离过程。
聚酰亚胺类分离膜材料
聚酰亚胺(PI)是一种高性能的 高分子材料,具有优异的耐高温 性能、机械性能和电绝缘性能。
PI分离膜具有较高的选择透过性 和耐化学腐蚀性能,适用于高温、 高压和腐蚀性环境下的分离过程。
PI分离膜在制备过程中可通过调 整聚合工艺和添加剂的种类和用
量来调控膜的结构和性能。
其他有机高分子分离膜材料
金属有机骨架分离膜材料
MOFs分离膜
金属有机骨架(MOFs)是一种由金属离子和有机配体构成的多孔晶体材料,具有 可调的孔径和化学功能,适用于气体分离、液体分离和离子交换等领域。
ZIFs分离膜
类沸石咪唑酯骨架(ZIFs)是一种类似于沸石结构的金属有机骨架材料,具有良好 的热稳定性和化学稳定性,适用于高温、高压和腐蚀性环境下的分离过程。
其他无机高分子分离膜材料
碳纳米管分离膜
由碳纳米管构成的分离膜具有极高的比表面积和优异的机 械性能,适用于气体分离和液体分离等领域。
石墨烯分离膜
石墨烯是一种由单层碳原子构成的二维材料,具有超高的 电子迁移率和机械强度,可应用于制备高性能的分离膜材 料。
无机纳米复合分离膜
将无机纳米粒子与高分子材料相结合制备而成的复合分离 膜,具有优异的力学性能和分离性能,可广泛应用于水处 理、生物医学和能源等领域。

膜分离技术研究现状与发展

膜分离技术研究现状与发展
1 高分子膜
以高分子分离膜为代表的膜分离技术作为一种 新型、高效流体分离单元操作技术, 30 年来取得了 令人瞩目的飞速发展。 1.1 反渗透膜的应用现状
在各种膜分离技术中, 反渗透技术是近年来国 内应用最成功、发展最快、普及最广的一种。反渗透 技术的应用已带动我国水处理行业全年 10 亿人民 币以上的产值。
[摘 要]综述了几种高分子膜和无机陶瓷膜的应用现状、最新进展和发展趋势。
[关键词]分离; 高分子膜; 无机膜; 陶瓷膜
[中图分类号] TQ 028. 8
[文献标识码] A
[文章编号] 1003- 5095( 2006) 04- 0050- 04
半个世纪以来, 膜分离技术成为一项高效节能 的新型技术。在能源紧张、资源短缺、生态环境恶化 的今天, 产业界和科技界把膜过程视为 21 世纪工业 技术改造中的一项极为重要的新技术。膜技术在食 品加工、海水淡化、纯水、超纯水制备、医药、生物、环 保等领域得到了开发和应用。
在国外, 纳滤膜最大应用市场的饮用水领域, 主 要 用 于 脱 除 三 卤 甲 烷 中 间 体( THM) 、异 味 、色 度 、农 药、合成洗涤剂、可溶有机物、Ca、Mg 等硬度成分。今 后国内在此领域会逐步有较大突破。目前在饮用水 领域还主要使用与反渗透膜材质相同的聚酰胺纳滤 膜。纳滤膜另一个很有前途的应用领域是环保和废 水处理; 纳滤膜应用开发较为热门的一个领域是各 种医药、生化、食品、化工物料水溶液的分离、精制或 浓缩过程。
·52·
河北化工
第4期
体) 被膜截留而达到分离、浓缩、纯化和环保等目的。 陶瓷超滤膜是以氧化铝、氧化钛等作为基本材
料, 以不同规格的陶瓷管为支撑体, 经表面涂膜、高 温烧制而成。由于其耐酸碱、耐高温和在极端环境下 的化学稳定性, 又由于陶瓷超滤膜的孔径在 0. 2 μm 以下, 可以成功地实现分子级过滤, 因此它主要用于 对液态、气态混合物进行过滤分离, 可以取代传统的 离心、蒸发、精馏、过滤等分离技术, 达到提高产品质 量、降低生产成本的目标, 应用领域极为广泛。 2. 2. 2 主要应用

高分子膜材料在膜分离过程的应用

高分子膜材料在膜分离过程的应用

高分子膜材料在膜分离过程的应用王志斌,申静,高朝祥,周文(四川化工职业技术学院,四川泸州646005)摘要:介绍了常用高分子膜材料在膜分离过程中的应用,总结了高分子材料的改性方法,阐述了改性高分子材料膜的应用特性,提出了高分子膜材料的研究课题,并对膜分离过程的未来发展进行了展望。

关键词:高分子材料;膜改性;分离过程;应用中图分类号:TQ028.8文献标识码:A文献标识码:1005-8265(2010)02-0001-04收稿日期:2010-04-25基金项目:泸州市重点科技资助项目(2008-s-17-6/6)作者简介:王志斌(1963-),男,教授,博士,研究方向:过滤与分离(含膜分离).前言膜分离技术是一种新颖高效的分离技术,它是借助于外界能量或化学位的推动,对两组分或多组分的气体或液体进行分离、分级、提纯或富集[1]。

自从18世纪人类认识生物膜以来,在长达两百多年的时间里对膜分离技术积累了大量的理论基础研究,为后来的广泛应用提供了良好的基础。

目前膜分离技术在许多方面得到了广泛应用,而且在某些方面还应用得比较成熟。

与传统分离方法(蒸发、萃取或离子交换等)相比,它是在常温下操作,最适宜对热敏性物质和生物活性物质进行分离与浓缩,因而在化工、轻工、电子、纺织、冶金、污水处理等领域得到广泛应用。

在膜技术的发展中,膜材料的开发是极其重要的工作,而高分子材料在膜分离中占有重要地位,所以许多专家学者对高分子分离膜材料的制备、结构、改性及性能都进行了大量研究,而且取得了很多成果,在此对高分子材料制备膜及其改性的研究进展进行概述。

1高分子材料在膜制备中的应用高分子聚合物广泛的应用于各种膜分离过程中,膜材料的性能直接决定了膜分离过程性能的高低。

目前,市场销售的分离膜主要以高分子膜为主,它几乎覆盖了所有的膜过程。

高分子材料主要有以下几类。

1.1纤维素纤维素是资源丰富的天然高分子化合物,主要来源于植物细胞材料。

在纤维素材料中,醋酸纤维素(CA )一直是应用较广泛的膜材之一,Loeb 和Sourira -jan [2,3]在1960年制造出具有高脱盐率和高透水量的非对称醋酸纤维素反渗透膜,与均质醋酸纤维素反渗透膜相比,在保持同等高的脱盐率条件下,水的透过量增加了近10倍[4],虽然醋酸纤维素能用作膜材,但是由于分子链中的—COOR 在酸、碱作用下容易水解,且水解速率与温度和pH 值密切相关,因此单纯CA 材料的使用受到一定限制;但若与其它材料共混制备膜,则其使用广泛程度大大提高,如周金盛等选用CA 和三醋酸纤维素(CTA )共混材料,利用L-S 法制备的不对称纳滤膜,其截留分子量在200~600之间,在1MPa 下对1000mg/L 的Na 2SO 4水溶液截留率达到85%~98%。

纤维素和壳聚糖的生物分离膜材料

纤维素和壳聚糖的生物分离膜材料

纤维素和壳聚糖是两种常见的生物高分子材料,它们在生物分离膜领域具有广泛的应用价值。

本文将就纤维素和壳聚糖生物分离膜材料的特性、制备方法、应用领域等方面进行介绍和分析。

一、纤维素和壳聚糖的特性纤维素是一种天然的高分子多糖化合物,主要存在于植物细胞壁中,具有结构稳定、生物相容性好、可降解和可再生等特点。

而壳聚糖是以甲壳贝外壳为原料制备而成的多糖类化合物,具有生物相容性、生物活性和生物可降解性等特点。

由于其独特的特性,纤维素和壳聚糖在生物分离膜材料方面具有广泛的应用前景。

二、纤维素和壳聚糖生物分离膜的制备方法1. 溶液浸渍法:将纤维素或壳聚糖溶解于适当的溶剂中,再浸渍到多孔支撑材料上,通过干燥和固化形成薄膜状的生物分离膜。

2. 直接干燥法:将纤维素或壳聚糖直接涂覆在多孔支撑材料上,经过干燥和固化形成薄膜状的生物分离膜。

3. 交联法:通过交联剂将纤维素或壳聚糖与多孔支撑材料交联,增强膜的机械性能和稳定性。

三、纤维素和壳聚糖生物分离膜的应用领域1. 生物医学领域:纤维素和壳聚糖生物分离膜可用于药物传递、组织工程和再生医学等方面,如药物载体、伤口敷料和人工血管等。

2. 食品工业:纤维素和壳聚糖生物分离膜可应用于食品加工中,如果蔬保鲜膜、食品包装材料等。

3. 环境保护领域:纤维素和壳聚糖生物分离膜可用于水处理、污水处理和废气处理等方面,具有良好的分离和过滤效果。

四、纤维素和壳聚糖生物分离膜的发展趋势1. 结构优化:通过改变纤维素和壳聚糖的结构和性质,设计合成新型生物分离膜,提高其性能和稳定性。

2. 功能扩展:将纤维素和壳聚糖与其他功能材料结合,赋予生物分离膜新的功能和应用,如抗菌、抗氧化、去污染等。

3. 制备工艺改进:优化纤维素和壳聚糖生物分离膜的制备工艺,降低成本,提高生产效率和质量稳定性。

纤维素和壳聚糖作为生物高分子材料,在生物分离膜领域具有重要的应用价值和发展前景。

希望本文的介绍和分析能够为相关领域的科研人员和工程师提供参考和指导,推动纤维素和壳聚糖生物分离膜材料的进一步研究和开发。

智能高分子材料的研究进展

智能高分子材料的研究进展

智能高分子材料的研究进展大学材料学院高分子1201摘要:智能高分子材料是材料研究的新领域,本文综述了智能高分子材料的分类及研究现状。

主要介绍了形状记忆高分子材料、智能高分子膜、智能药物释放体系、智能高分子凝胶、智能纤维织物的研究现状及应用,并展望了智能高分子材料的前景。

关键词:智能高分子;薄膜;形状记忆;药物释放;凝胶;纤维织物;应用前言:智能高分子材料又称机敏材料,也被称为刺激-响应型聚合物或环境敏感聚合物,是智能材料的一个重要的组成部分。

它是通过分子设计和有机合成的方法使有机材料本身具有生物所赋予的高级功能:如自修与自增殖能力,认识与鉴别能力,刺激响应与环境应变能力等。

环境刺激因素很多,如温度、pH值、离子、电场、磁场、溶剂、反应物、光(或紫外光)、应力和识别等,对这些刺激产生有效响应的智能聚合物自身性质会随之发生变化。

它的研究涉及到众多的基础理论研究,波及信息、电子、生命科学、宇宙、海洋科学等领域,不少成果已在高科技、高附加值产业中得到应用,已成为高分子材料的重要发展方向之一。

1.智能高分子材料的类别及应用智能材料按材料的种类可分为金属类智能材料、非金属类智能材料、高分子类智能材料和智能复合材料。

其中,智能高分子材料的研究最广。

其不完全类别及应用如下表:2.智能高分子材料的研究进展2.1形状记忆高分子材料形状记忆高分子材料是利用结晶或半结晶高分子材料经过辐射交联或化学交联后具有记忆效应的原理而制造的一类新型智能高分子材料。

高分子材料的形状记忆性,是通过它所具有的多重结构的相态变化来实现,如结晶的形成与熔化、玻璃态与橡胶态的转化等。

迄今开发的形状记忆高分子材料都具有两相结构,即能够固定和保持其成型物品固有初始形状的固定相以及在一定条件下能可逆地发生软化与固化,而获得二次形状的可逆相。

这两相结构的实质就是对应着形状记忆高分子部多重结构中的结点和这些结点之间的柔性链段。

故形状记忆过程可简单表述为:初始形状的制品-二次形变-形变固-形变回复[1]。

膜科学与技术

膜科学与技术

高分子气体分离膜——自具微孔高分子气体分离膜高分子分离膜(polymeric membrane for separation),是由聚合物或高分子复合材料制得的具有分离流体混合物功能的薄膜。

自具微孔高分子(PIMs)是近年来出现的一种新型有机微孔材料,由含有扭曲结构的刚性单体聚合而成,因其具有优越的气体分离性能,吸引了众多研究者的关注,并得到快速发展。

下面将从PIMs及其在气体分离膜中的应用,PIMs 的结构调控以及PIMs改性方面的研究进展进行介绍。

PIMs多由刚性强的多卤代物与含有多个羟基的化合物发生双亲核取代反应得到。

研究表明,只要参加反应的刚性单体中有一个具有扭曲的结构,就可以通过形成苯并二氧六环的反应将具有这种特点的单体与另一种功能型单体连接起来,制备出具有扭曲结构的高分子。

这种主链呈阶梯状的高分子可阻止分子链间有效堆积,形成微孔材料。

PIMs的微孔结构由分子结构决定,不受热处理方式和加工过程的影响。

根据化学结构的差异可将PIMs分为网状PIMs和链状PIMs。

链状PIMs具有可溶解性及微孔结构,特别适用于制备气体分离膜。

链状PIMs由直链单体聚合而成,易溶于大部分溶剂。

因缩聚反应类型的不同,又可将其分为苯并二氧六环体系PIMs和聚酰亚胺体系PIMs。

2004年,RGHH 等成功合成出可溶的链状PIM1-6,其中比表面积最高的是PIM-1。

除PIM-6外,其他PIMs均易溶于极性非质子型溶剂。

首次用于气体分离膜制备的PIMs材料,是2005年Budd等用形成苯并二氧六环的反应合成的PIM-7。

对PIM-1和PIM-7进行气体分离性能测试表明,在所测试的8种气体中,CO2渗透系数最大,这主要取决于PIMs 分子链上的极性基团与CO2之间的相互作用。

PIM-1和PIM-7气体分离膜优越的气体分离性能吸引了更多的研究者投入到对新型链状PIMs的研究中,更多可用于制备链状PIMs的单体也因此得到开发,其中一些研究者致力于不同侧链取代基的PIMs的研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 聚酰亚胺 聚酰亚胺因分子主链上含有芳环结构,具有优良的力学性 能、热稳定性和化学稳定性,其分离膜具有高透气性和高选择 性,广泛应用于气体分离膜。其结构较易设计,可以在分子水 平上设计出符合分离体系要求的分子结构。由于聚酰亚胺分子 链刚性较强,以及分子链间存在强相互作用,芳香族聚酰亚胺 溶解性较差,成膜困难。为改善聚酰亚胺可溶性,通常在聚合 物分子链中引入柔性基团(如醚键、硫醚键、亚甲基等),大 侧链基,构建非共平面结构、不对称结构、脂环结构等。
2 聚丙烯腈 聚丙烯腈分子基团上存在着强极性氰基,内聚能大,具有良 好的耐有机溶、耐霉菌性、耐水解性和抗氧化性。聚丙烯腈成膜 后平滑柔韧,被广泛用于制备超滤膜。然而聚丙烯腈是一种具有 线性结构的热塑性材料,热稳定性差,分离膜表面的亲水性较差 ,易造成膜污染。
聚酰胺类材料
1 聚酰胺类 聚酰胺类高分子是指含酰胺链段(-CONH-)的一系列聚合 物,其突出特点是机械强度高、化学稳定性好,特别是高温性能 优良,适合制作需要高机械强度场合的分离膜,由于聚酰胺类膜 对蛋白质溶质有强烈的吸附作用,容易由蛋白质吸附造成的膜污 染,降低膜通量的恢复和膜质量。改善膜表面的亲水性及粗糙度 为改善防污染性能提供了思路,如表面涂覆、表面聚合、嵌段共 聚等。
2 壳聚糖类
甲壳素的化学结构与纤维素类似,是一种天然有机高分子惰性 多糖,无毒无味、耐酸碱、耐高温、耐腐蚀,具有稳定化学。甲壳 素分子中存在氢键作用,其分子链结构排列有序,所以甲壳素不溶 于水、一般有机溶剂、酸或碱溶液。甲壳素来源广泛,环境友好, 是一种具有潜在使用价值的天然资源,成膜后有较好的力学性能和 生物相容性,适合制作人工器官内使用的透析膜。壳聚糖也是一类 天然分离膜材料,由甲壳素脱乙酰化制得,分子中存在的碱性氨基 基团,经质子化后失去氢键能力,可溶于酸性溶液。由于壳聚糖分 子内含有反应活性的羟基、氨基,易进行化学修饰(酰基化、硫酸 酯化、羟乙基化、羧甲基化等),成膜后具有良好的亲水性、透过 性,适合分离水系物料。目前,壳聚糖及其衍生物多用于制备反渗 透膜、渗透汽化膜、纳滤膜、超滤膜等,并得到了很好的应用。
高分子分离膜材料及研究进展
主讲人:关丽涛
天然高分子材料类 天然高分子材料类主要包括改性纤维素及其衍生物类、壳 聚糖类,此外,海藻酸钠类也是天然分离膜原料。
1 纤维素类
纤维素是一类资源丰富的天然高分子化合物,主要取源于 植物细胞材料,为可再生资源。纤维素高分子中椅形环状的葡 萄糖单元结构含有3个羟基基团,羟基之间形成分子间氢键, 因而纤维素的线型链结构排列比较规则,结晶度较高,结构稳 定,高度亲水而不溶于水。纤维素及其衍生物成膜性能好,成 膜后其有选择性高、亲水性强、透水量大等优点,广泛用于微 滤和超滤,也可以用于反渗透、气体分离和透析等。
ห้องสมุดไป่ตู้
THANKS!!!
含氟高分子材料
含氟高分子材料包括聚四氟乙烯、聚偏氟乙烯等,其突出特 点是耐腐蚀性能,适合用于电解等高腐蚀场合的膜材料。聚偏氟 乙烯是偏氟乙烯的均聚物,其中-C-F-键能较高,具有良好的化学 稳定性、机械强度,作为膜材料具有很好的耐温、耐腐蚀,耐溶 剂性,多用于制备超滤膜。由于聚偏氟乙烯制备的分离膜表面自 由能低,呈非极性,故疏水性强,容易吸附水中蛋白质、胶体粒 子等疏水性物质而造成膜污染。为改善此类分离膜表面的强疏水 性,常对膜材质基体进行改性,如通过共聚、嵌段共聚等方式在 膜材料中引入亲水性基团,也可以对分离膜表面进行接枝、辐照 以提高其亲水性。
聚砜类材料
聚砜类膜材料具有良好的耐氯、耐酸碱的化学性能以及化 学稳定性、机械强度、耐热性,最高使用温度达120 ℃,pH值 适应范围1~13。由聚砜制成的膜具有膜薄、内层孔隙率高且微 孔规则等特点,适合制作超滤膜、微滤膜和气体分离膜,并用 于制作复合膜的底膜。然而其制备的分离膜亲水性和抗污染性 能较差,在操作中容易遭到污染,导致膜的使用寿命降低。常 通过共聚、共混、表面接枝等方式对其进行改性,以改善分离 膜表面亲水性、机械强度、渗透性能和抗污染性能。
聚烯烃类材料 聚烯烃类材料包括聚乙烯、聚丙烯、聚乙烯醇、聚丙烯腈、
聚丙烯酰胺等。这类材料是工业产品,材料易得,加工容易;除 了少数几种之外,一般疏水性强,耐热性差,主要用于制备微滤 膜、超滤膜、密度膜等。
1 聚乙烯醇 聚乙烯醇是一种水溶性聚合物,由于含有大量羟基,具有良
好的亲水性、耐酸性,成膜后表现出卓越的耐油脂、抗蛋白质污 染性能,多用于制备超滤膜和反渗透膜。但聚乙烯醇膜材料易发 生溶胀、强度低、耐压性差、易发生蠕变,常用聚苯胺、醋酸纤 维素等对其改性,以提高膜的耐水性、力学性能和选择性。
相关文档
最新文档