13第十七届全国高中生物理竞赛复赛试题及答案

合集下载

高中生物理竞赛复赛试题及答案

高中生物理竞赛复赛试题及答案

全国中学生物理竞赛复赛试题全卷共六题,总分为140分。

一、(20分)一汽缸的初始体积为0V ,其中盛有2mol 的空气和少量的水(水的体积可以忽略)。

平衡时气体的总压强是3.0atm ,经做等温膨胀后使其体积加倍,在膨胀结束时,其中的水刚好全部消失,此时的总压强为2.0atm 。

若让其继续作等温膨胀,使体积再次加倍。

试计算此时:1.汽缸中气体的温度;2.汽缸中水蒸气的摩尔数;3.汽缸中气体的总压强。

假定空气和水蒸气均可以当作理想气体处理。

二、(25分)两个焦距分别是1f 和2f 的薄透镜1L 和2L ,相距为d ,被共轴地安置在光具座上。

1. 若要求入射光线和与之对应的出射光线相互平行,问该入射光线应满足什么条件?2. 根据所得结果,分别画出各种可能条件下的光路示意图。

三、(25分)用直径为1mm 的超导材料制成的导线做成一个半径为5cm 的圆环。

圆环处于超导状态,环内电流为100A 。

经过一年,经检测发现,圆环内电流的变化量小于610A -。

试估算该超导材料电阻率数量级的上限。

提示:半径为r 的圆环中通以电流I 后,圆环中心的磁感应强度为02I B rμ= ,式中B 、I 、r 各量均用国际单位,720410N A μπ=⨯⋅--。

四、(20分)经过用天文望远镜长期观测,人们在宇宙中已经发现了许多双星系统,通过对它们的研究,使我们对宇宙中物质的存在形势和分布情况有了较深刻的认识。

双星系统由两个星体构成,其中每个星体的线度都远小于两星体之间的距离。

一般双星系统距离其他星体很远,可以当作孤立系统处理。

现根据对某一双星系统的光度学测量确定,该双星系统中每个星体的质量都是M ,两者相距L 。

他们正绕两者连线的中点作圆周运动。

1. 试计算该双星系统的运动周期T 计算。

2. 若实验上观测到的运动周期为T 观测,且:1:1)T T N =>观测计算。

为了解释T 观测与T 计算的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗物质。

[实用参考]高中物理竞赛第17届到26届预赛试题及答案.doc

[实用参考]高中物理竞赛第17届到26届预赛试题及答案.doc

第17届到第26届高中全国物理奥赛预赛试题汇集第17届全国中学生物理竞赛第18届全国中学生物理竞赛第19届全国中学生物理竞赛第20届全国中学生物理竞赛第21届全国中学生物理竞赛第22届全国中学生物理竞赛第23届全国中学生物理竞赛第24届全国中学生物理竞赛第25届全国中学生物理竞赛第26届全国中学生物理竞赛第十G届全国中学生物理竞赛预赛试卷全卷共八题,总分为140分。

一、(10分)1.(5分)1978年在湖北省发掘了一座战国早期(距今大约2400多年前)曾国国君的墓葬一一一曾侯乙墓,出土的众多墓葬品中被称为中国古代文明辉煌的象征的是一组青铜铸造的编钟乐器(共64件),敲击每个编钟时,能发出音域宽广、频率准确的不同音调。

与铸造的普通圆钟不同,圆钟的横截面呈圆形,每个编钟的横截面均呈杏仁状。

图1为圆钟截面的,图2为编钟的截面,分别敲击两个钟的A、B、C和D、E、F三个部位,则圆钟可发出___个基频的音调,编钟可发出___个基频的音调。

2、我国在1999年11月20日用新型运载火箭成功地发射了一艘实验航天飞行器,它被命名为____号,它的目的是为____作准备。

二、一半径为R=1.00m的水平光滑圆桌面,圆心为O,有一竖直的立柱固定在桌面上的圆心附近,立柱与桌面的交线是一条凸的平滑的封闭曲线C,如图所示。

一根不可伸长的柔软的细轻绳,一端固定在封闭曲线上的某一点,另一端系一质量为m=7.5×10-2Kg的小物块。

将小物块放在桌面上并把绳拉直,再给小物块一个方向与绳垂直大小为v0=4.0ms-1的初速度。

物块在桌面上运动时,绳将缠绕在立柱上。

已知当绳的张力为T0=2.0N时,绳即断开,在绳断开前物块始终在桌面上运动.1.问绳刚要断开时,绳的伸直部分的长度为多少?2.若绳刚要断开时,桌面圆心O到绳的伸直部分与封闭曲线的接触点的连线正好与绳的伸直部分垂直,问物块的落地点到桌面圆心O的水平距离为多少?已知桌面高度H=0.80m.物块在桌面上运动时未与立柱相碰.取重力加速度大小为10m/s2.三、(15分)有一水平放置的平行平面玻璃板H,厚3.0cm,折射率n=1.5。

最新武汉第17届全国中学生物理竞赛决赛试题及答案资料

最新武汉第17届全国中学生物理竞赛决赛试题及答案资料

第十七届全国中学生物理竞赛决 赛 试 题一、(30分)近来一种新型的定点起重设备“平衡吊”被广泛应用于几十到几百千克工件的频繁吊运,其结构的示意图如图决17-1所示。

平衡吊主要由传动、杆系、回转座和立柱组成。

杆系是由ABD 、DEF 、BC 、CE 四杆铰接组成的四连杆机构,DECB 在任何情况下都是一个平行四边形。

杆系的A 处是一水平的转轴,通过电机可控制转轴,使之固定的竖直槽内的不同位置,从而调节挂在绞接于F 处吊钩上的重物的高度。

杆ABD 可绕转轴A 在竖直平面内无摩擦地转动。

杆系的C 点是能在光滑的水平槽上滑动的铰链,杆BC 和EC 都可绕C 点在竖直平面内转动。

绕铰链转动的摩擦均忽略不计。

下面用l 1表示AD 的长度,l 2表示AB 的长度,l 3表示DF 的长度,l 4表示BC 的长度。

(1)若将各杆都视为轻质(无自重)刚体,且无图中配重物时,试论证l 1、l 2、l 3、l 4应满足什么关系才能使平衡吊的吊钩(包括所吊的重物)位于同一水平面上的不同位置时平衡吊都能处于平衡状态。

(2)若考虑各杆的自重,为使平衡吊的吊钩(包括所吊的重物)位于同一水平面上不同位置时平衡吊都能处于平衡状态,必须在杆ABD 的另一端P 处加上配重物,P 点距A 轴的距离为l P 。

设配重物受到的重力大小为GP ,杆的AD 段、DF 段、BC 段、CE 段受到的重力的大小分别为G 1、G 3、G 4和G 5,不计杆的AP 段所受的重力。

问当杆长l 1、l 2、l 3、l 4和l P 已知,且取l 1= l 3、l 2=l 4时配重的大小G P 为多少?二、(共30分)太阳风是从太阳大气外层(称为日冕)不断向星际空间发射的稳定的、由相同数目的质子和电子构成的带电粒子流,它使太阳每年减少的质量相对于太阳质量M S 可忽略不计。

观测表明,太阳风的速度的大小v 随着与太阳中心的距离r 的增加而增大。

现提出一简单的模型来解释太阳风的速度变化的机制:假定日冕中的大量电子可视为理想气体;日冕中的电子气是等温(温度为T )的、各向同性的,以球对称的速率v (r )(太阳风的速率)向外膨胀;太阳风中质子的定向运动速度比电子的小得多,太阳风的速度其实是电子定向运动的速度,太阳风可解释为日冕中的电子气向外的等温膨胀。

第17届全国中学生物理竞赛复赛题参考解答

第17届全国中学生物理竞赛复赛题参考解答

1第十七届全国中学生物理竞赛复赛题参考解答一、参考解答设玻璃管内空气柱的长度为h ,大气压强为0p ,管内空气的压强为p ,水银密度为ρ,重力加速度为g ,由图复解17-1-1可知0()p l h g p ρ+-= (1)根据题给的数据,可知0p l g ρ=,得p gh ρ= (2)若玻璃管的横截面积为S ,则管内空气的体积为V Sh = (3)由(2)、(3)式得V p g S ρ= (4) 即管内空气的压强与其体积成正比,由克拉珀龙方程pV nRT =得2V g nRT Sρ= (5)由(5)式可知,随着温度降低,管内空气的体积变小,根据(4)式可知管内空气的压强也变小,压强随体积的变化关系为p V -图上过原点的直线,如图复解17-1-2所示.在管内气体的温度由1T 降到2T 的过程中,气体的体积由1V 变到2V ,体积缩小,外界对气体做正功,功的数值可用图中划有斜线的梯形面积来表示,即有221212121()22V V V W g V V g S S S V ρρ⎛⎫⎛⎫=+-= ⎪ ⎪⎝⎭⎝⎭- (6)1管内空气内能的变化V 21()U nC T T ∆=- (7) 设Q 为外界传给气体的热量,则由热力学第一定律W Q U +=∆,有Q U W =∆- (8) 由(5)、(6)、(7)、(8)式代入得V 211()2Q n T T C R ⎛⎫=-+ ⎪⎝⎭ (9) 代入有关数据得0.247J Q =-0Q <表示管内空气放出热量,故空气放出的热量为0.247J Q Q '=-= (10)评分标准:本题20分(1)式1分,(4)式5分,(6)式7分,(7)式1分,(8)式2分,(9)式1分,(10)式3分。

二、参考解答在由直线BC 与小球球心O 所确定的平面中,激光光束两次折射的光路BCDE 如图复解17-2所示,图中入射光线BC 与出射光线DE 的延长线交于G ,按照光的折射定律有0sin sin n n αβ= (1)式中α与β分别是相应的入射角和折射角,由几何关系还可知sin l rα= (2)1激光光束经两次折射,频率ν保持不变,故在两次折射前后,光束中一个光子的动量的大小p 和p '相等,即h p p c ν'=- (3) 式中c 为真空中的光速,h 为普朗克常量.因射入小球的光束中光子的动量p 沿BC 方向,射出小球的光束中光子的动量p '沿DE 方向,光子动量的方向由于光束的折射而偏转了一个角度2θ,由图中几何关系可知22()θαβ=- (4) 若取线段1GN 的长度正比于光子动量p ,2GN 的长度正比于光子动量p ',则线段12N N 的长度正比于光子动量的改变量p ∆,由几何关系得2sin 2sin h p p cνθθ∆== (5) 12GN N ∆为等腰三角形,其底边上的高GH 与CD 平行,故光子动量的改变量p ∆的方向沿垂直CD 的方向,且由G 指向球心O .光子与小球作用的时间可认为是光束在小球内的传播时间,即02cos /r t cn nβ∆= (6) 式中0/cn n 是光在小球内的传播速率。

第十七届全国中学生物理竞赛

第十七届全国中学生物理竞赛

第十七届全国中学生物理竞赛复 赛 试 卷全卷共六题,总分为140分。

一、(20分)在一大水银槽中竖直插有一根玻璃管,管上端封闭,下端开口。

已知槽中水银液面以上的那部分玻璃管的长度l = 76 cm ,管内封闭有n = 1.0×310-mol 的空气。

保持水银槽与玻璃管都不动而设法使玻璃管内空气的温度缓慢地降低10℃,问在此过程中管内空气放出的热量为多少?已知管外大气的压强为76cm 汞柱高,每摩尔空气的内能U = V C T ,其中T 为绝对温度,常量V C = 20.5 J ·1)K mol (-⋅,普适气体恒量R = 8.31 J ·1)K mol (-⋅二、(20分)如图复17-2所示,在真空中有一个折射率为n (n >0n ,0n 为真空的折射率)、半径为r 的质地均匀的小球,频率为ν的细激光束在真空中沿直线BC 传播,直线BC 与小球球心O 的距离为l ( l <r ),光束于小球体表面的C 点经折射进入小球(小球成为光传播的媒质),并于小球表面的D 点又经折射进入真空。

设激光束的频率在上述两次折射后保持不变。

求在两次折射过程中激光束中一个光子对小球作用的平均力的大小。

三、(25分)1995年,美国费米国家实验室CDF 实验组和DO 实验组在质子反质子对撞机TEV ATRON 的实验中,观察到了顶夸克,测得它的静止质量τm = 1.75×1110eV/2c = 3.1×2510-kg ,寿命τ= 0.4×2410-s ,这是近十几年来粒子物理研究最重要的实验进展之一。

1、正反顶夸克之间的强相互作用势能可写为V (r )= - K r3a4s ,式中r 是正反顶夸克之间的距离,s a = 0.12是强相互作用耦合常数,K 是与单位制有关的常数,在国际单位制中K = 0.319×2510-J ·m 。

为估算正反顶夸克能否构成一个处在束缚状态的系统,可把束缚状态设想为正反顶夸克在彼此间的吸引力作用于下绕它们连线的中点做匀速圆周运动。

全国高中物理竞赛几何光学训练题答案

全国高中物理竞赛几何光学训练题答案

【训练题答案】1、两块平面镜宽度均为5=L cm ,相交成角︒=12α,如图(a )所示,构成光通道。

两镜的右端相距为2=d cm ,左端靠在光接收器的圆柱形的感光面上。

试问入射光线与光通道的轴成的最大角度m ax ϕ为多少,才能射到光接收器上?解:从最大角度射入的光线应当与光接收器表面相切。

为了简化解题,可以讨论入射光线在两块平面镜之间未经受多次反射就通过平面镜系统的情况。

如图(b )所示,由三角形AOC 得到光接收器圆柱形表面的半径 2sin2αd r L =+L d r -=2sin2α由于平面镜的反射不会影响到光线到接收器圆心的垂直距离,故可以不考虑多次反射的情况。

从三角形ABO 中可以知道477.02sin 21sin =-=+=αβd L r L r 故 ︒=5.28β于是 ︒=+=5.342max αβϕ2、如图(a )所示,两平面镜A 和B 的镜面分别与纸面垂直,两镜面的交线过图中的O 点,两镜面间夹角为︒=15α,今自A 镜面上的C 点处沿与A 镜面夹角︒=30β的方向在纸面内射出一条光线,此光线在两镜面经多次反射后而不再与镜面相遇。

设两镜面足够大,1=CO m 。

试求:(1)上述光线的多次反射中,最后一次反射是发生在哪块镜面上? (2)光线自C 点出发至最后一次反射,共经历多长的时间? 解:首先就一般情况进行讨论,如图(b )。

设光线第一次在平面镜B 上发生反射时,CD 为入射光线,DE 为反射光线,又设图中的A 为平面镜A 关于OB 的对称镜面,则图中E D '图(a ) 图(b )图(a)与DE 也关于OB 对称,即DE E D ='。

又由光的反射定律和图中的对称关系容易得出:C 、D 、E '三点在同一直线上,且E D '对平面镜1A 的入射角等于DE 对平面镜A 的入射角。

因此光线由E D C --所经过的路径和它将进一步发生反射的情况,可以用光线在D 处不发生反射而沿直线前进至镜面1A 上的情况来代替。

全国高中物理竞赛题目附答案-全国高中物理竞赛

全国高中物理竞赛题目附答案-全国高中物理竞赛

全国高中物理竞赛题目附答案-全国高中物理竞赛第一题问题:在一个实验室中,研究人员用一根长30厘米的细绳拧成了一个均匀的扁圆环,并使绳中没有节点。

现用一个透明的粗绳绑在扁圆环的一部分上,被实验者拉紧,如图所示。

当实验者放手,绳可以自由滑动,且没有外部摩擦阻力。

实验者拉绳的作用力为10牛,拉绳的方向竖直向上。

已知绳的线密度为ρ,绳的横截面积为A。

试分析并计算此时扁圆环上存在的应力分布情况。

答案:设扁圆环上任意一点的切线方向为x轴方向,半径方向为y轴方向。

由牛顿第一定律可知,扁圆环上各点的切线方向的合力为零。

此时,切线方向上的应力等于拉绳的作用力,即:σ = F/A,其中,σ为应力,F为拉绳的作用力,A为绳的横截面积。

第二题问题:一个弹簧的伸长量跟受力的大小有关。

现有一个弹簧,质量忽略不计,劲度系数为k。

已知一个物体以速度v撞击弹簧,撞击后弹簧发生最大压缩,此时物体速度为零。

试分析并计算弹簧的最大压缩量。

答案:由动量守恒定律可知,物体撞击弹簧后,合外力为零,故动量守恒。

物体的初动量为mv,撞击后为0。

弹簧的质心相对物体的速度为v,则根据动量守恒定律:mv + Mv = 0,其中,m为物体的质量,v为物体的速度,M为弹簧的质量,V为弹簧质心相对物体的速度。

由此可得:v = -(mv) / M,将此结果代入动能定理可得:kx² / 2 = (1/2)mv²,其中,x为弹簧的最大压缩量。

将上式中的v代入,整理得:kx² = Mv²,x = √(Mv² / k)。

第三题问题:一根长度为L的均质细棒,质量为M,直角弯曲成一个半径为R的圆环,如图所示。

试分析并计算细棒上各点受到的压力分布情况。

答案:设细棒上任意一点的切线方向为x轴方向,圆环上的圆周方向为y轴方向。

由牛顿第一定律可知,细棒上各点的切线方向的合力为零。

此时,切线方向上的压力等于使细棒弯曲的力,即由压力造成的。

第17届全国中学生物理竞赛预赛题参考解答

第17届全国中学生物理竞赛预赛题参考解答

第十七届全国中学生物理竞赛预赛题参考解答一、参考解答 1.1,22.神船,载人飞行 二、参考解答1.因桌面是光滑的,轻绳是不可伸长的和柔软的,且在断开前绳根基上被拉紧的,故在绳断开前,物块在沿桌面运动的过程中,其速度始终与绳垂直,绳的张力对物块不做功,物块速度的大小维持不变。

设在绳刚要断开时绳的伸直局部的长度为x ,假设现在物块速度的大小为x v ,那么有0x v v =〔1〕绳对物块的拉力仅改变物块速度的方向,是作用于物块的向心力,故有2200xmv mv T x x ==〔2〕 由此得200mv x T =〔3〕代进数据得0.60m x =〔4〕2.设在绳刚要断开时,物块位于桌面上的P 点,BP 是绳的伸直局部,物块速度0v 的方向如图预解17-2所示.由题意可知,OB BP ⊥.因物块离开桌面时的速度仍为0v ,物块离开桌面后便做初速度为0v 的平抛运动,设平抛运动经历的时刻为t ,那么有212H gt =〔5〕 物块做平抛运动的水平射程为 10s v t =〔6〕由几何关系,物块落地地点与桌面圆心O 的水平距离s 为22221s s R x x ⎡⎤=+-+⎢⎥⎣⎦〔7〕 解〔5〕、〔6〕、〔7〕式,得222202H s v R x x g ⎡⎤=+-+⎢⎥⎣⎦(8)代人数据得 2.5m s =三、参考解答物体S 通过平行玻璃板及透镜成三次像才能被瞧瞧到。

设透镜的主轴与玻璃板下外表和上外表的交点分不为A 和B ,S作为物,通过玻璃板H 的下外表折射成像于点1S 处,由图预解17-3,依据折射定律,有 式中 1.0n '=是空气的折射率,对傍轴光线,i 、r 特别小,sin tan i i ≈,sin tan r r ≈,那么 式中SA 为物距,1S A 为像距,有1S A nSA =〔1〕将1S 作为物,再通过玻璃板H 的上外表折射成像于点2S 处,这时物距为11S B S A AB =+.同样依据折射定律可得像距12S BS B n=〔2〕 将2S 作为物,通过透镜L 成像,设透镜与H 上外表的距离为x ,那么物距2u x S B =+.依据题意知最后所成像的像距()v x SA AB =-++,代进透镜成像公式,有2111fx S B x SA AB -=+++〔3〕由〔1〕、〔2〕、〔3〕式代进数据可求得 1.0cm x =〔4〕即L 应置于距玻璃板H 上外表1.0cm 处。

高中物理:第17届全国物理预赛

高中物理:第17届全国物理预赛

第十七届全国中学生物理竞赛预赛一、(共10分)1、(5分)1978年在湖北省随县发掘了一座战国早期(距今大约2400多年前)曾国国君的墓葬——曾侯乙墓,出土的众多墓葬品中被称为中国古代文明辉煌的象征的是一组青铜铸造的编钟乐器(共64件)敲击每个编钟时,能发出音域宽广、频率准确的不同音调,与铸造的普通圆钟不同,圆钟的横截面呈圆形,每个编钟的横截面均呈杏仁状,图甲为圆钟的截面,图乙为编钟的截面,分别敲击两个钟的A 、B 、C 和D 、E 、F 三个部位,则圆钟可发出_________个基频的音调,编钟可发出_________个基频的音调。

2、(5分)我国在1999年11月20日用新型运载火箭成功地发射了一艘实验航天飞行器,它被命名为_________号,它的目的是为_________作准备。

二、(15分)一半径为R =1.00m 的水平光滑圆桌面,圆心为O ,有一竖直的立柱固定在桌面上的圆心附近,立柱与桌面的交线是一条凸的平滑的封闭曲线C ,如图所示,一根不可伸长的柔软的细绳,一端固定在封闭曲线上的某一点,另一端系一质量为m =7.5×10-2kg 的小物块,将小物块放在桌面上并把绳拉直,再给小物块一个方向与绳垂直大小为v 0=4.0m/s 的初速度,物块在桌面上运动时,绳将缠绕在立柱上,已知当绳的张力为T 0=2.0N 时,绳即断开,在绳断开前物块始终在桌面上运动。

(1)绳刚要断开时,绳的伸直部分的长度为多少?(2)若绳刚要断开时,桌面圆心O 到绳的伸直部分与封闭曲线的接触点的连线正好与绳的伸直部分垂直,问物块的落地点到桌面圆心O 的水平距离为多少?已知桌面高度H =0.80m ,物块在桌面上运动时未与立柱相碰,取重力加速度大小为10m/s 2。

三、(15分)有一水平放置的平行平面玻璃板H ,厚3.0cm ,折射率n =1.5,在其下表面下2.0cm 处有一小物S ,在玻璃板上方有一薄凸透镜L ,其焦距f =30cm ,透镜的主轴与玻璃板面垂直,S 位于透镜的主轴上,如图所示,若透镜上方的观察者顺着主轴方向观察到S 的像就在S 处,问透镜与玻璃板上表面的距离为多少?四、(20分)某些非电磁量的测量是可以通过一些相应的装置转化为电磁量来测量的,一平板电容器的两个极板竖直放置在光滑的水平平台上,极板的面积为S ,极板间的距离为d ,极板1固定不动,与周围绝缘,极板2接地,且可在水平平台上滑动并始终与极板1保持平行,极板2的两个侧边与劲度系数为k ,自然长度为L 的两个完全相同的弹簧相连,两弹簧的另一端固定,图为这一装置的俯视图,先将电容器充电至电压DL1 d2 SLU后即与电源断开,再在极板2的右侧的整个表面上施以均匀的向左有持续压强p,使两极板之间的距离发生微小变化,如图所示,测得此时电容器的电压改变量为ΔU,设作用在电容器极板2上的静电作用力不致引起弹簧的可测量到的形变,试求待测压强p。

【精品】高中物理竞赛选拔综合经典习题(Word版含详细答案)

【精品】高中物理竞赛选拔综合经典习题(Word版含详细答案)

高中物理竞赛复赛经典练习题1. (本题6分)一长度为l 的轻质细杆,两端各固结一个小球A 、B (见图),它们平放在光滑水平面上。

另有一小球D ,以垂直于杆身的初速度v 0与杆端的Α球作弹性碰撞.设三球质量同为m ,求:碰后(球Α和Β)以及D 球的运动情况.2. (本题6分)质量m =10 kg 、长l =40 cm 的链条,放在光滑的水平桌面上,其一端系一细绳,通过滑轮悬挂着质量为m 1 =10 kg 的物体,如图所示.t = 0时,系统从静止开始运动, 这时l 1 = l 2 =20 cm< l 3.设绳不伸长,轮、绳的质量和轮轴及桌沿的摩擦不计,求当链条刚刚全部滑到桌面上时,物体m 1速度和加速度的大小.3. (本题6分) 长为l 的匀质细杆,可绕过杆的一端O 点的水平光滑固定轴转动,开始时静止于竖直位置.紧挨O 点悬一单摆,轻质摆线的长度也是l ,摆球质量为m .若单摆从水平位置由静止开始自由摆下,且摆球与细杆作完全弹性碰撞,碰撞后摆球正好静止.求: (1) 细杆的质量.(2) 细杆摆起的最大角度θ.4. (本题6分)质量和材料都相同的两个固态物体,其热容量为C .开始时两物体的温度分别为T 1和T 2(T 1 > T 2).今有一热机以这两个物体为高温和低温热源,经若干次循环后,两个物体达到相同的温度,求热机能输出的最大功A max .5. (本题6分)如图所示,123415641 为某种一定量的理想气体进行的一个循环过程,它是由一个卡诺正循环12341 和一个卡诺逆循环15641 组成.已知等温线温度比T 1 / T 2 = 4,卡诺正逆循环曲线所包围面积大小之比为S 1 / S 2 = 2.求循环123415641的效率η.6. (本题6分)将热机与热泵组合在一起的暖气设备称为动力暖气设备,其中带动热泵的动力由热机燃烧燃料对外界做功来提供.热泵从天然蓄水池或从地下水取出热量,向温度较高的暖气系统的水供热.同时,暖气系统的水又作为热机的冷却水.若燃烧1kg 燃料,锅炉能获得的热量为H ,锅炉、地下水、暖气系统的水的温度分别为210℃,15℃,60℃.设热机及热泵均是可逆卡诺机.试问每燃烧1kg 燃料,暖气系统所获得热量的理想数值(不考虑各种实际损失)是多少?7. (本题5分) 如图所示,原点O 是波源,振动方向垂直于纸面,波长是λ .AB 为波的反射平面,反射时无相位突变π.O 点位于A 点的正上方,h AO =.Ox 轴平行于AB .求Ox 轴上干涉加强点的坐标(限于x ≥ 0).8. (本题6分)一弦线的左端系于音叉的一臂的A 点上,右端固定在B 点,并用T = 7.20 N 的水平拉力将弦线拉直,音叉在垂直于弦线长度的方向上作每秒50次的简谐振动(如图).这样,在弦线上产生了入射波和反射波,并形成了驻波.弦的线密度η = 2.0 g/m , 弦线上的质点离开其平衡位置的最大位移为4 cm .在t = 0时,O 点处的质点经过其平衡位置向下运动,O 、B 之间的距离为L = 2.1 m .试求:12T 1 6543 VpOT 2A(1) 入射波和反射波的表达式; (2) 驻波的表达式.9. (本题6分)用每毫米300条刻痕的衍射光栅来检验仅含有属于红和蓝的两种单色成分的光谱.已知红谱线波长λR 在 0.63─0.76μm 范围内,蓝谱线波长λB 在0.43─0.49 μm 范围内.当光垂直入射到光栅时,发现在衍射角为24.46°处,红蓝两谱线同时出现. (1) 在什么角度下红蓝两谱线还会同时出现?(2) 在什么角度下只有红谱线出现?10. (本题6分)如图所示,用波长为λ= 632.8 nm (1 nm = 10-9 m)的单色点光源S 照射厚度为e = 1.00×10-5 m 、折射率为n 2 = 1.50、半径为R = 10.0 cm 的圆形薄膜F ,点光源S 与薄膜F 的垂直距离为d = 10.0 cm ,薄膜放在空气(折射率n 1 = 1.00)中,观察透射光的等倾干涉条纹.问最多能看到几个亮纹?(注:亮斑和亮环都是亮纹).11. (本题6分)507⨯双筒望远镜的放大倍数为7,物镜直径为50mm .据瑞利判据,这种望远镜的角分辨率多大?设入射光波长为nm 550.已知眼睛瞳孔的最大直径为7.0mm .求出眼睛对上述入射光的分辨率.用得数除以7,和望远镜的角分辨率对比,然后判断用这种望远镜观察时实际起分辨作用的是眼睛还是望远镜.12. (本题6分)一种利用电容器控制绝缘油液面的装置示意如图. 平行板电容器的极板插入油中,极板与电源以及测量用电子仪器相连,当液面高度变化时,电容器的电容值发生改变,使电容器产生充放电,从而控制电路工作. 已知极板的高度为a ,油的相对电容率为εr ,试求此电容器等效相对电容率与液面高度h 的关系.13. (本题6分)在平面螺旋线中,流过一强度为I 的电流,求在螺旋线中点的磁感强度的大小.螺旋线被限制在半径为R 1和R 2的两圆之间,共n 圈.[提示:螺旋线的极坐标方程为b a r +=θ,其中a ,b 为待定系数]14. (本题6分)一边长为a 的正方形线圈,在t = 0 时正好从如图所示的均匀磁场的区域上方由静止开始下落,设磁场的磁感强度为B ϖ(如图),线圈的自感为L ,质量为m ,电阻可忽略.求线圈的上边进入磁场前,线圈的速度与时间的关系.15. (本题6分)如图所示,有一圆形平行板空气电容器,板间距为b ,极板间放一与板绝缘的矩形线圈.线圈高为h ,长为l ,线圈平面与极板垂直,一边与极板中心轴重合,另一边沿极板半径放置.若电容器极板电压为U 12 = U m cos ω t ,求线圈电压U 的大小.Bϖ16. (本题6分)在实验室中测得电子的速度是0.8c ,c 为真空中的光速.假设一观察者相对实验室以0.6c 的速率运动,其方向与电子运动方向相同,试求该观察者测出的电子的动能和动量是多少?(电子的静止质量m e =9.11×10-31kg )17. (本题6分)已知垂直射到地球表面每单位面积的日光功率(称太阳常数)等于1.37×103 W/m 2.(1) 求太阳辐射的总功率. (2) 把太阳看作黑体,试计算太阳表面的温度.(地球与太阳的平均距离为1.5×108 km ,太阳的半径为6.76×105 km ,σ = 5.67×10-8 W/(m 2·K 4))18. (本题6分))已知氢原子的核外电子在1s 态时其定态波函数为 a r a /3100e π1-=ψ,式中 220em h a e π=ε .试求沿径向找到电子的概率为最大时的位置坐标值.( ε0 = 8.85×10-12 C 2·N -1·m -2 ,h = 6.626×10-34 J ·s , m e = 9.11×10-31 kg , e = 1.6 ×10-19 C )参考答案1. (本题6分)解:设碰后刚体质心的速度为v C ,刚体绕通过质心的轴的转动的角速度为ω,球D 碰后的速度为v ',设它们的方向如图所示.因水平无外力,系统动量守恒:C m m m v v v )2(0+'= 得:(1)20C v v v ='- 1分 弹性碰撞,没有能量损耗,系统动能不变;222220])2(2[21)2(212121ωl m m m m C ++'=v v v ,得 (2)22222220l C ω+='-v v v 2分 系统对任一定点的角动量守恒,选择与A 球位置重合的定点计算.A 和D 碰撞前后角动量均为零,B 球只有碰后有角动量,有])2([0C B l ml ml v v -==ω,得(3)2lC ω=v 2分(1)、(2)、(3)各式联立解出 lC 00;2;0vv v v ==='ω。

第十七届全国中学生物理竞赛复赛试题参考答案

第十七届全国中学生物理竞赛复赛试题参考答案

第十七届全国中学生物理竞赛复赛试题参考答案一、解:设玻璃管内空气柱的长度为h,大气压强为p0,管内空气的压强为p,水银密度为ρ,重力加速度为g,由图4知p+(l-h)ρg=p0,①根据题给的数据,可知p0=lρg,得p=ρgh,②若玻璃管的横截面积为S,则管内空气的体积为V=Sh,③由②、③式,得p=(V/S)ρg,④即管内空气的压强与其体积成正比,由克拉珀龙方程pV=nRT,得ρg(V2/S)=nRT,⑤由⑤式可知,随着温度降低,管内空气的体积变小,根据④式可知管内空气的压强也变小,压强随体积的变化关系为p-V图上过原点的直线,如图5所示.在管内气体的温度由T1降到T2的过程中,气体的体积由V1变到V2,体积缩小,外界对气体做正功,功的数值可用图中划有斜线的梯形面积来表示,即有图4 图5W=(1/2)ρg((V1/S)+(V2/S))(V1-V2)=ρg(V12-V22)/2S,⑥管内空气内能的变化为ΔU=nCV(T2-T1),⑦设Q为外界传给气体的热量,则由热力学第一定律W+Q=ΔU,有Q=ΔU-W,⑧由⑤、⑥、⑦、⑧式代入得Q=n(T2-T1)(CV+(1/2)R),⑨代入有关数据得Q=-0.247J,Q<0,表示管内空气放出热量,故空气放出的热量为Q′=-Q=0.247J.(10)二、解:在由直线BC与小球球心O所确定的平面中,激光光束两次折射的光路BCDE如图6所示,图中入射光线BC与出射光线DE的延长线交于点G,按照光的折射定律有图6n0sinα=nsinβ,①式中α与β分别是相应的入射角与折射角,由几何关系还可知sinα=l/r.②激光光束经两次折射,频率ν保持不变,故在两次折射前后,光束中一个光子的动量的大小p与p′相等,即p=hν/c=p′,③式中c为真空中的光速,h为普朗克常量.因射入小球的光束中光子的动量p沿BC方向,射出小球的光束中光子的动量p′沿DE方向,光子动量的方向由于光束的折射而偏转了一个角度2θ,由图中几何关系可知2θ=2(α-β).④若取线段GN1的长度正比于光子动量p,GN2的长度正比于光子动量p′,则线段N1N2的长度正比于光子动量的改变量Δp,由几何关系得Δp=2psinθ=2(hν/c)sinθ,⑤△GN1N2为等腰三角形,其底边上的高GH与CD平行,故光子动量的改变量Δp的方向沿垂直CD的方向,且由G指向球心O.光子与小球作用的时间可认为是光束在小球内的传播时间,即Δt=2rcosβ/(cn0/n),⑥式中cn0/n是光在小球内的传播速率,按照牛顿第二定律,光子所受小球平均作用力的大小为f=Δp/Δt=n0hνsinθ/nrcosβ,⑦按照牛顿第三定律,光子对小球的平均作用力大小F=f,即F=n0hνsinθ/nrcosβ,⑧力的方向由点O指向点G.由①、②、④及⑧式,通过三角函数关系运算,最后可得F=(n0lhν/nr2)(1-).⑨三、解:1.相距为r的电量为Q1与Q2的两点电荷之间的库仑力FQ与电势能UQ公式为FQ=k(Q1Q2/r2),UQ=-k(Q1Q2/r),①现在已知正反顶夸克之间的强相互作用势能为U(r)=-k(4as/3r),根据直接类比可知,正反顶夸克之间的强相互作用力为F(r)=-k(4as/3r2),②设正反顶夸克绕其连线的中点做匀速圆周运动的速率为v,因二者相距r0,二者所受的向心力均为F(r0),二者的运动方程均为m1v2/(r0/2)=k(4as/3r02).③由题给的量子化条件,粒子处于基态时,取量子数n=1,得2m1v(r0/2)=h/2π.④由③与④两式,解得r0=3h2/8π2m1ask,⑤代入数据得r0=1.4×10-17m.⑥2.由③、④两式,可得v=(π/h)(k4as/3),⑦由v与r0可算出正反顶夸克做匀速圆周运动的周期T为T=2π(r0/2)/v=h3/2π2m1(k4as/3)2,⑧代入数值得T=1.8×10-24s,⑨由此可知τ/T=0.22.(10)因正反顶夸克的寿命只有它们构成的束缚系统的周期的1/5,故正反顶夸克的束缚态通常是不存在的.四、解:1.设太阳的质量为M0,飞行器的质量为m,飞行器绕太阳做圆周运动的轨道半径为R.根据所设计的方案,可知飞行器是从其原先的圆轨道上某处出发,沿着半个椭圆轨道到达小行星轨道上的,该椭圆既与飞行器原先的圆轨道相切,又与小行星的圆轨道相切.要使飞行器沿此椭圆轨道运动,应点燃发动机使飞行器的速度在极短的时间内,由v0变为某一值u0.设飞行器椭圆轨道达小行星轨道到时的速度为u,因大小为u0与u的这两个速度的方向都与椭圆的长轴垂直,由开普勒第二定律,得u0R=6uR,①由能量关系,有(1/2)mu02-G(M0m/R)=(1/2)mu2-G(M0m/6R),②由牛顿万有引力定律,有G(M0m/R2)=m(v02/R),或者v0=.③解①、②、③式,得u0=v0,④u=v0.⑤设小行星绕太阳运动的速度为v,小行星的质量M,由牛顿万有引力定律,有GM0M/(6R)2=Mv2/6R,得v=v0,⑥能够看出v>u.⑦由此可见,只要选择好飞行器在圆轨道上合适的位置离开圆轨道,使得它到达小行星轨道外时,小行星的前缘也正好运动到该处,则飞行器就能被小行星撞击.能够把小行星看做是相对静止的,飞行器以相对速度为v-u射向小行星,由于小行星的质量比飞行器的质量大得多,碰撞后,飞行器以同样的速率v-u弹离,即碰撞后,飞行器相对小行星的速度的大小为v-u,方向与小行星的速度的方向相同,故飞行器相对太阳的速度为u1=v+v-u=2v-u,或者将⑤、⑥式代入得u1=(v0.⑧假如飞行器能从小行星的轨道上直接飞出太阳系,它应具有的最小速度为u2,则有(1/2)mu22-G(M0m/6R)=0,得u2=v0,⑨能够看出u1=v0=u2.(10)飞行器被小行星撞击后具有的速度足以保证它能飞出太阳系.2.为使飞行器能进入椭圆轨道,发动机应使飞行器的速度由v0增加到u0,飞行器从发动机取得的能量E1=(1/2)mu02-(1/2)mv02=(1/2)m(12/7)v02-(1/2)mv02=(5/14)mv02.(11)若飞行器从其圆周轨道上直接飞出太阳系,飞行器应具有的最小速度为u3,则有(1/2)mu32-G(M0m/R)=0,由此得u3=v0.(12)飞行器的速度由v0增加到u3,应从发动机获取的能量为E2=(1/2)mu32-(1/2)mv02=(1/2)mv02,(13)因此E1/E2=(5/14)mv22/(1/2)mv22=0.71.(14)五、解法一:带电质点静止释放时,受重力作用做自由落体运动,当它到达坐标原点时,速度为v1==2.0m·s-1,①方向竖直向下.带电质点进入磁场后,除受重力作用外,还受到洛伦兹力作用,质点速度的大小与方向都将变化,洛伦兹力的大小与方向亦随之变化.我们能够设想,在带电质点到达原点时,给质点附加上沿x轴正方向与负方向两个大小都是v0的初速度,由于这两个方向相反的速度的合速度为零,因而不影响带电质点以后的运动.在t=0时刻,带电质点因具有沿x轴正方向的初速度v0而受洛伦兹力f1的作用,即f1=qv0B,②其方向与重力的方向相反.适当选择v0的大小,使f1等于重力,即qv0B=mg,③v0=g/(q/m)B=2.0m·s-1,④只要带电质点保持④式决定的v0沿x轴正方向运动,f1与重力的合力永远等于零.但如今,位于坐标原点的带电质点还具有竖直向下的速度v1与沿x轴负方向的速度v0,二者的合成速度大小为v==2.8m·s-1,⑤方向指向左下方,设它与x轴的负方向的夹角为α,如图7所示,则tgα=v1/v0=1,α=π/4,⑥图7因而带电质点从t=0时刻起的运动能够看做是速率为v0,沿x轴的正方向的匀速直线运动与在xOy平面内速率为v的匀速圆周运动的合成.圆周半径为R=mv/qB=0.56m.⑦带电质点进入磁场瞬间所对应的圆周运动的圆心O′位于垂直于质点如今速度v的直线上,由图7可知,其坐标为xO′=Rsinα=0.40m,⑧yO′=Rcosα=0.40m.圆周运动的角速度为ω=v/R=5.0rad·s-1.⑨由图7可知,在带电质点离开磁场区域前的任何时刻t,质点位置的坐标为x=v0t-[Rsin(ωt+α)-xO′],(10)y=yO′-Rcos(ωt+α),(11)式中v0、R、ω、α、xO′、yO′已分别由④、⑦、⑨、⑥、⑧各式给出.带电质点到达磁场区域下边界时,y=L=0.80m,代入(11)式,再代入有关数值,解得t=0.31s,(12)将(12)式代入(10)式,再代入有关数值,得x=0.63m,(13)因此带电质点离开磁场下边界时的位置的坐标为x=0.63m,y=0.80m,z=0.(14)带电质点在磁场内的运动可分解成一个速率为v的匀速圆周运动与一个速率为v0的沿x轴正方向的匀速直线运动,任何时刻t,带电质点的速度v′便是匀速圆周运动速度v与匀速直线运动的速度v0的合速度.若圆周运动的速度在x方向与y方向的分量为vx′、vy′,则质点合速度在x方向的分速度分别为vx′=vx+v0,(15)vy′=vy.(16)尽管=v,v由⑤式决定,其大小是恒定不变的,v0由④式决定,也是恒定不变的,但在质点运动过程中因v的方向不断变化,它在x方向与y方向的分量vx与vy都随时间变化,因此vx′与vy′也随时间变化,取决于所考察时刻质点做圆周运动速度的方向,由于圆周运动的圆心的y坐标恰为磁场区域宽度的一半,由对称性可知,带电质点离开磁场下边缘时,圆周运动的速度方向应指向右下方,与x轴正方向夹角α′=π/4,故代入数值得vx=vcosα′=2.0m·s-1,vy=vsinα′=2.0m·s-1,将以上两式及⑤式代入(15)、(16)式,便得带电质点刚离开磁场区域时的速度分量,它们分别为vx′=4.0m·s-1,(17)vy′=2.0m·s-1,(18)速度大小为v′==4.5m·s-1,(19)设v′的方向与x轴的夹角为β,如图8所示,则tgβ=vy′/vx′=1/2,得β=27°.(20)图8解法二:若以带电质点到达坐标原点O的时刻作为起始时刻(t=0),则质点的初速度为v1==2.0m·s-1,①方向沿y轴正方向.进入磁场区后,带电质点将受到洛伦兹力作用,洛伦兹力在x方向的分力取决于质点在y方向的分速度,因此质点动量在x方向的分量的增量为mΔvx=qvyBΔt=qΔyB,②Δy是带电质点在Δt时间内沿y方向的位移,质点在磁场中运动的整个过程中,此式对每一段Δt时间都成立,因此在t=0到t=t时间内x方向的分量的改变为mvx-mv0x=qB(y-y0),因初始时刻(t=0),带电质点在x轴方向的动量mv0x为零,其位置在原点,y0=0,因而得mvx=qyB,即vx=(qB/m)y.③当带电质点具有x方向的速度后,便立即受到沿y负方向的洛伦兹力的作用.根据牛顿第二定律,在y方向上有加速度ay,则may=mg-qvxB,④将③式代入④式,得may=-[(qB)2/m](y-(m2/q2B2)g),⑤令y′=y-D,⑥式中D=m2g/(qB)2=g/(q/m)2B2=0.40m,⑦即在y方向作用于带电质点的合力Fy=-ky′,其中k=q2B2/m,Fy是准弹性力,在Fy作用下,带电质点在y′方向的运动是简谐运动,其振动的圆频率为ω==5.0rad·s-1,⑧y′随时间变化的规律为y′=Acos(ωt+φ0),⑨或者y=Acos(ωt+φ0)+D,(10)图9A与φ0是待求的常量,质点的简谐运动能够用参考圆来描写,以所考察的简谐运动的振幅A为半径作一圆,过圆心O1作一直角坐标x′O1y′.若有质点M沿此圆周做匀速率圆周运动,运动的角速度等于所考察简谐运动的角频率ω,且按逆时针方向转动,在t=0时刻,点M的在圆周上的位置恰使连线O1M与y′轴的夹角等于⑨式中的常量φ0,则在任意时刻t,点O1与点M的连线与y′轴的夹角等于ωt+φ0,因此连线O1M在y′轴上的投影即为⑨式所示的简谐运动,将x′轴平行下移D=0.40m,连线O1M在y轴的投影即如(10)式所示(参看图9所示),点M做圆周运动的速度大小v=Aω,方向与O1M垂直,速度v的y分量就是带电质点沿y轴做简谐运动的速度,即vy=-Aωsin(ωt+φ0),(11)(10)与(11)两式中的A与φ0可由下面的方法求得:由于已知在t=0时,带电质点位于y=0处,速度vy=v1,把这个条件代入(10)式与(11)式,得Acosφ0+D=0,v1=-Aωsinφ0.解上面两式,结合①、⑧式,注意到振幅A总是正的,故得φ0=5π/4,(12)A=0.56m.(13)把(10)式代入③式,便得带电质点沿x轴运动的速度为vx=ωD+Aωcos(ωt+φ0),(14)(14)式表示带电质点在x方向上的速度是由两个速度合成的,即沿x方向的匀速运动速度ωD与x方向的简谐运动速度Aωcos(ωt+φ0)的合成,带电质点沿x方向的简谐运动匀速运动的位移为x′=ωDt.(15)由沿x方向的简谐振动速度Aωcos(ωt+φ0)可知,沿x方向振动位移的振幅等于速度的最大值与角频率的比值(参看图8),即等于A.由参考圆方法可知,沿x方向的振动的位移x″具有如下的形式,即Acos(ωt+φ0-(π/2))=Asin(ωt+φ0),它可能是x″=Asin(ωt+φ0),亦可能是x″-b=Asin(ωt+φ0).在本题中,t=0时刻,x应为零,故前一表示不符合题意.后一表示式中,b应取的值为b=-Asinφ0,故有x″=-Asinφ0+Asin(ωt+φ0).(16)带电质点在x方向的合位移x=x′+x″,由(15)、(16)式,得x=ωDt-Asinφ0+Asin(ωt+φ0).(17)(17)、(10)、(14)与(11)式分别给出了带电质点在离开磁场区域前任何时刻t的位置坐标与速度的x分量与y分量,式中常量ω、A、φ0、D已分别由⑧、(13)、(12)与⑦式给出.当带电质点达到磁场的下边界时,有y=L=0.80m,(18)将与(10)式有关的数据代入,可解得t=0.31s,(19)代入(17)式,得x≈0.63m,(20)将(19)式分别代入(14)、(11)式,得vx=4.0m·s-1,vy=2.0m·s-1,速度大小为v==4.5m·s-1,(21)速度方向为α=arctg(vy/vx)=27°.(22)图10六、1.由于光纤内所有光线都从轴上的点O出发,在光纤中传播的光线都与轴相交,位于通过轴的纵剖面内,图10为纵剖面内的光路图,设由点O发出的与轴的夹角为α的光线,射至A、B分界面的入射角为i,反射角也为i.该光线在光纤中多次反射时的入射角均为i,射至出射端面时的入射角为α.若该光线折射后的折射角为θ,则由几何关系与折射定律可得i+α=90°,①nAsinα=nFsinθ.②当i大于全反射临界角iC时将发生全反射,没有光能缺失,相应的光线将以不变的光强射向出射端面,而i<iC的光线则因在发生反射时有部分光线通过折射进入B,反射光强随着反射次数的增大而越来越弱,以致在未到达出射端面之前就已经衰减为零了.因而能射向出射端面的光线的i的数值一定大于或者等于iC,iC的值由下式决定,即nAsiniC=nB,③与iC对应的α值为αC=90°-iC,④当α0>αC时,即sinα0>sinαC=cosiC=时,或者nAsinα0>时,由点O发出的光束中,只有α≤αC的光线才满足i≥iC的条件,才能射向端面,如今出射端面处α的最大值为αmax=αC=90°-iC.⑤若α0<αC,即nAsinα0<时,则由点O发出的光线都能满足i>iC的条件,因而都能射向端面,如今出射端面处α的最大值为αmax=α0.⑥端面处入射角α最大时,折射角θ也达最大值,设为θmax,由②式可知nFsinθmax=nAsinαmax.⑦由⑥、⑦式可得,当α0<αC时,有nF=nAsinα0/sinθmax,⑧当α0≥αC时,由③至⑦式可得,nF=nAcosiC/sinθmax=/sinθmax,⑨θmax的数值可由图11上的几何关系求得sinθmax=((d2-d1)/2)/.(10)图11因此当α0<αC时,nF的表达式应为nF=nAsinα0(/((d2-d1)/2),(11)当α0≥αC时,有nF=(/((d2-d1)/2).(12)2.可将输出端介质改为空气,光源保持不变,按同样手续再做一次测量,可测得h1′、h2′、d1′、d2′,这里打撇的量与前面未打撇的量意义相同.已知空气的折射率等于1,故有当α0<αC时,有1=nAsinα0/((d2′-d1′)/2),(13)当α0≥αC时,有1=(/((d2′-d1′)/2),(14)将(11)、(12)两式分别与(13)、(14)式相除,均得nF=((d2′-d1′)/(d2-d1))(/).(15)此结果适用于α0为任何值的情况.。

第17届全国中学生物理竞赛复赛试卷(含答案)

第17届全国中学生物理竞赛复赛试卷(含答案)

第十七届全国中学生物理竞赛复赛试题题 号 一 二 三 四 五 六 总 计全卷共六题,总分140分一、(20分)在一大水银槽中竖直插有一根玻璃管,管上端封闭,下端开口.已知槽中水银液面以上的那部分玻璃管的长度76cm l =,管内封闭有31.010mol n =⨯-的空气,保持水银槽与玻璃管都不动而设法使玻璃管内空气的温度缓慢地降低10℃,问在此过程中管内空气放出的热量为多少?已知管外大气的压强为76cm 汞柱高,每摩尔空气的内能V U C T =,其中T 为绝对温度,常量1V 20.5J (mol K)C =⋅⋅-,普适气体常量18.31J (mol K)R =⋅⋅-。

二、(20分)如图复17-2所示,在真空中有一个折射率为n (0n n >,0n 为真空的折射率)、半径为r 的质地均匀的小球。

频率为ν的细激光束在真空中沿直线BC 传播,直线BC 与小球球心O 的距离为l (l r <),光束于小球体表面的点C 点经折射进入小球(小球成为光传播的介质),并于小球表面的点D 点又经折射进入真空.设激光束的频率在上述两次折射后保持不变.求在两次折射过程中激光束中一个光子对小球作用的平均力的大小. 三、(25分)1995年,美国费米国家实验室CDF 实验组和DO 实验组在质子反质子对撞机TEVATRON 的实验中,观察到了顶夸克,测得它的静止质量112251 1.7510eV/c 3.110kg m =⨯=⨯-,寿命240.410s τ=⨯-,这是近十几年来粒子物理研究最重要的实验进展之一.1.正、反顶夸克之间的强相互作用势能可写为4()3Sa U r kr=-,式中r 是正、反顶夸克之间的距离,0.12S a =是强相互作用耦合常数,k 是与单位制有关的常数,在国际单位制中250.31910J m k =⨯⋅-.为估算正、反顶夸克能否构成一个处在束缚状态的系统,可把束缚状态设想为正反顶夸克在彼此间的吸引力作用下绕它们连线的中点做匀速圆周运动.如能构成束缚态,试用玻尔理论确定系统处于基态中正、反顶夸克之间的距离0r .已知处于束缚态的正、反夸克粒子满足量子化条件,即2000年021,2,3,22r h mv nn π⎛⎫== ⎪⎝⎭式中02r mv ⎛⎫⎪⎝⎭为一个粒子的动量mv 与其轨道半径02r 的乘积,n 为量子数,346.6310J s h =⨯⋅-为普朗克常量.2.试求正、反顶夸克在上述设想的基态中做匀速圆周运动的周期T .你认为正、反顶夸克的这种束缚态能存在吗? 四、(25分)宇宙飞行器和小行星都绕太阳在同一平面内做圆周运动,飞行器的质量比小行星的质量小得很多,飞行器的速率为0v ,小行星的轨道半径为飞行器轨道半径的6倍.有人企图借助飞行器与小行星的碰撞使飞行器飞出太阳系,于是他便设计了如下方案:Ⅰ. 当飞行器在其圆周轨道的适当位置时,突然点燃飞行器上的喷气发动机,经过极短时间后立即关闭发动机,以使飞行器获得所需的速度,沿圆周轨道的切线方向离开圆轨道;Ⅱ. 飞行器到达小行星的轨道时正好位于小行星的前缘,速度的方向和小行星在该处速度的方向相同,正好可被小行星碰撞;Ⅲ. 小行星与飞行器的碰撞是弹性正碰,不计燃烧的燃料质量.1.试通过计算证明按上述方案能使飞行器飞出太阳系;2.设在上述方案中,飞行器从发动机取得的能量为1E .如果不采取上述方案而是令飞行器在圆轨道上突然点燃喷气发动机,经过极短时间后立即关闭发动机,以使飞行器获得足够的速度沿圆轨道切线方向离开圆轨道后能直接飞出太阳系.采用这种办法时,飞行器从发动机取得的能量的最小值用2E 表示,问12E E 为多少? 五、(25分)在真空中建立一坐标系,以水平向右为x 轴正方向,竖直向下为y 轴正方向,z 轴垂直纸面向里(图复17-5).在的0y L ≤≤的区域内有匀强磁场,0.80m L =,磁场的磁感强度方向沿z 轴的正方向,其大小0.10T B =.今把一荷质比1/50C kg q m =⋅-的带正电质点在0x =,0.20m y =-,0z =处静止释放,将带电质点过原点的时刻定为0t =时刻,求带电质点在磁场中任一时刻t 的位置坐标.并求它刚离开磁场时的位置和速度.取重力加速度210m s g =⋅-。

2023年第十三届全国中学生物理竞赛复赛试题

2023年第十三届全国中学生物理竞赛复赛试题

第十三届全国中学生物理竞赛复赛试题全卷共六题,总分为140分。

一、(20)如图复13 - 1所示,有一匀质细导线弯成的半径为a 的圆线圈和一内接等边三角形的电阻丝组成的电路(电路中各段的电阻值见图)。

在圆线圈平面内有垂直纸面向里的均匀磁场,磁感应强度B随时间t 均匀减小,其变化率的大小为一已知常量k 。

已知21r =32r 。

试求图中A 、B 两点的电势差A U -B U 。

二、(20分)长度为4毫米的物体AB 由图复13 - 2所示的光学系统成像。

光学系统由一个直角棱镜、一个会聚透镜和一个发散透镜组成,各有关参数和几何尺寸均标示于图上。

求(1)像的位置;(2)像的大小,并作图说明是实像还是虚像,是正立还是倒立的。

图复13 - 2三、(25分)如图复13 - 3所示,四个质量均为m的质点,用同样长图复13 - 111C图复13 - 3度且不可伸长的轻绳联结成菱形ABCD 。

静止放在水平光滑的桌面上。

若忽然给质点A 一个历时极短沿CA 方向的冲击,当冲击结束的时刻,质点A 的速度为V ,其它质点也获得一定速度,∠BAD = 2α(α<π/4 )。

求此质点系统受冲击后所具有的总动量和总能量。

四、(25分)在一个半径为R 的导体球外,有一个半径为r 的细圆环,圆环的圆心与导体球心的连线长为a (a >R),且与环面垂直,如图复13 - 4所示。

已知环上均匀带电,总电量为q ,试问:1、当导体球接地时,球上感应电荷总电量是多少?2、当导体球不接地而所带总电量为零时,它的电势如何?3、当导体球的电势为0V 时,球上总电荷又是多少?4、情况3与情况1相比,圆环受导体球的作用力改变量的大小和方向如何?5、情况2与情况1相比,圆环受导体球的作用力改变量的大小和方向如何?〔注〕已知:装置不变时,不同的静电平衡带电状态可以叠加,叠加后仍为静电平衡状态。

五、有一个用伸缩性极小且不漏气的布料制作的气球(布的质量可忽略不计),直径为 d = 2.0米。

第十七届全国高中生物理竞赛复赛试题及答案#(精选.)

第十七届全国高中生物理竞赛复赛试题及答案#(精选.)

第十七届全国中学生物理比赛复赛试题题号一二三四五六总计全卷共六题,总分140 分一、( 20 分)在一大水银槽中竖直插有一根玻璃管,管上端封闭,下端张口.已知槽中水银液面以上的那部分玻璃管的长度l 76 cm ,管内封闭有n- 31.0 10 mol 的空气,保持水银槽与玻璃管都不动而想法使玻璃管内空气的温度迟缓地降低10℃,问在此过程中管内空气放出的热量为多少?已知管外大气的压强为76 cm 汞柱高,每摩尔空气的内能U C V T ,此中T为绝对温度,常量 C V 20.5 J (mol K) -1 ,普适气体常量R 8.31J (mol K) -1 。

二、( 20 分)如图复17-2 所示,在真空中有一个折射率为 n ( n n0, n0为真空的折射率)、半径为 r 的质地均匀的小球。

频次为的细激光束在真空中沿直线BC 流传,直线 BC 与小球球心 O 的距离为 l ( l r ),光束于小球体表面的点 C 点经折射进入小球(小球成为光流传的介质),并于小球表面的点 D 点又经折射进入真空.设激光束的频次在上述两次折射后保持不变.求在两次折射过程中激光束中一个光子对小球作用的均匀力的大小.三、( 25 分)1995年,美国费米国家实验室 CDF 实验组和 DO 实验组在质子反质子对撞机TEVATRON的实验中,察看到了顶夸克,测得它的静止质量 m111 2 -251.75 10 eV/c 3.1 10 kg ,寿命- 24s ,这是近十几年来粒子物理研究最重要的实验进展之一.0.4 101.正、反顶夸克之间的强互相作用势能可写为U (r ) 4a S,式中 r 是正、反顶夸克之k3r间的距离, a 0.12 是强互相作用耦合常数,k 是与单位制相关的常数,在国际单位制中Sk0.319 10-25 J m .为估量正、反顶夸克可否构成一个处在约束状态的系统,可把约束状态假想为正反顶夸克在相互间的吸引力作用下绕它们连线的中点做匀速圆周运动.如能构成约束态,试用玻尔理论确立系统处于基态中正、反顶夸克之间的距离r0.已知处于约束态的正、反夸克粒子知足量子化条件,即2mv r0 n hn 1, 2 , 3,2 2式中 mv r0为一个粒子的动量mv 与其轨道半径r0的乘积, n 为量子数, h 6.63 10-34 J s 2 2为普朗克常量.2.试求正、反顶夸克在上述假想的基态中做匀速圆周运动的周期T .你以为正、反顶夸克的这类约束态能存在吗 ?四、( 25 分)宇宙飞翔器和小行星都绕太阳在同一平面内做圆周运动,飞翔器的质量比小行星的质量小得好多,飞翔器的速率为v0,小行星的轨道半径为飞翔器轨道半径的 6 倍.有人企图借助飞翔器与小行星的碰撞使飞翔器飞出太阳系,于是他便设计了以下方案:Ⅰ.当飞翔器在其圆周轨道的适合地点时,忽然点燃飞翔器上的喷气发动机,经过极短时间后立刻封闭发动机,以使飞翔器获取所需的速度,沿圆周轨道的切线方向走开圆轨道;Ⅱ . 飞翔器抵达小行星的轨道时正好位于小行星的前缘,速度的方向和小行星在该处速度的方向相同,正好可被小行星碰撞;Ⅲ .小行星与飞翔器的碰撞是弹性正碰,不计焚烧的燃料质量.1.试经过计算证明按上述方案能使飞翔器飞出太阳系;2.设在上述方案中,飞翔器从发动机获得的能量为E1.假如不采纳上述方案而是令飞翔器在圆轨道上忽然点燃喷气发动机,经过极短时间后立刻封闭发动机,以使飞翔器获取足够的速度沿圆轨道切线方向走开圆轨道后能直接飞出太阳系.采纳这类方法时,飞翔器从发动机获得的能量的最小值用 E 表示,问E1为多少?2 E2五、( 25 分)在真空中成立一坐标系,以水平向右为x 轴正方向,竖直向下为 y 轴正方向,z轴垂直纸面向里(图复17-5).在0 y L 的地区内有匀强磁场,L 0.80 m ,磁场的磁感强度的方向沿 z 轴的正方向,其大小 B 0.10 T .今把一荷质比q / m 50 C kg-1的带正电质点在x 0 , y 0.20 m ,z 0 处静止开释,将带电质点过原点的时辰定为 t 0 时辰,求带电质点在磁场中任一时辰 t 的地点坐标.并求它刚走开磁场时的地点和速度.取重力加快度g10 m s-2。

第17届全国中学生物理竞赛预复赛试题及答案

第17届全国中学生物理竞赛预复赛试题及答案

十七届全国中学生物理竞赛预赛试题全卷共八题,总分为140分。

一、(10分)1.(5分)1978年在湖北省随县发掘了一座战国早期(距今大约2400多年前)曾国国君的墓葬——曾侯乙墓,出土的众多墓葬品中被称为中国古代文明辉煌的象征的是一组青铜铸造的编钟乐器(共64件),敲击每个编钟时,能发出音域宽广、频率准确的不同音调。

与铸造的普通圆钟不同,圆钟的横截面呈圆形,每个编钟的横截面均呈杏仁状。

图预17-1-1为圆钟截面的,图预17-1-2为编钟的截面,分别敲击两个钟的A、B、C和D、E、F三个部位,则圆钟可发出________个基频的音调,编钟可发出________个基频的音调。

2.(5分)我国在1999年11月20日用新型运载火箭成功地发射了一艘实验航天飞行器,它被命名为___________号,它的目的是为____________________作准备。

二、(15分)一半径为 1.00mR=的水平光滑圆桌面,圆心为O,有一竖直的立柱固定在桌面上的圆心附近,立柱与桌面的交线是一条凸的平滑的封闭曲线C,如图预17-2所示。

一根不可伸长的柔软的细轻绳,一端固定在封闭曲线上的某一点,另一端系一质量为27.510kgm=⨯-的小物块。

将小物块放在桌面上并把绳拉直,再给小物块一个方向与绳垂直、大小为4.0m/sv=的初速度。

物块在桌面上运动时,绳将缠绕在立柱上。

已知当绳的张力为2.0NT=时,绳即断开,在绳断开前物块始终在桌面上运动.1.问绳刚要断开时,绳的伸直部分的长度为多少?2.若绳刚要断开时,桌面圆心O到绳的伸直部分与封闭曲线的接触点的连线正好与绳的伸直部分垂直,问物块的落地点到桌面圆心O的水平距离为多少?已知桌面高度0.80mH=.物块在桌面上运动时未与立柱相碰.取重力加速度大小为210m/s.2000年三、(15分)有一水平放置的平行平面玻璃板H ,厚3.0 cm ,折射率 1.5n =。

在其下表面下2.0 cm 处有一小物S ;在玻璃扳上方有一薄凸透镜L ,其焦距30cm f =,透镜的主轴与玻璃板面垂直;S 位于透镜的主轴上,如图预17-3所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新全国中学生物理竞赛复赛试题题 号 一 二 三 四 五 六 总 计全卷共六题,总分140分一、(20分)在一大水银槽中竖直插有一根玻璃管,管上端封闭,下端开口.已知槽中水银液面以上的那部分玻璃管的长度76cm l =,管内封闭有31.010mol n =⨯-的空气,保持水银槽与玻璃管都不动而设法使玻璃管内空气的温度缓慢地降低10℃,问在此过程中管内空气放出的热量为多少?已知管外大气的压强为76cm 汞柱高,每摩尔空气的内能V U C T =,其中T 为绝对温度,常量1V 20.5J (mol K)C =⋅⋅-,普适气体常量18.31J (mol K)R =⋅⋅-。

二、(20分)如图复17-2所示,在真空中有一个折射率为n (0n n >,0n 为真空的折射率)、半径为r 的质地均匀的小球。

频率为ν的细激光束在真空中沿直线BC 传播,直线BC 与小球球心O 的距离为l (l r <),光束于小球体表面的点C 点经折射进入小球(小球成为光传播的介质),并于小球表面的点D 点又经折射进入真空.设激光束的频率在上述两次折射后保持不变.求在两次折射过程中激光束中一个光子对小球作用的平均力的大小. 三、(25分)1995年,美国费米国家实验室CDF 实验组和DO 实验组在质子反质子对撞机TEV A TRON 的实验中,观察到了顶夸克,测得它的静止质量112251 1.7510eV/c 3.110kg m =⨯=⨯-,寿命240.410s τ=⨯-,这是近十几年来粒子物理研究最重要的实验进展之一.1.正、反顶夸克之间的强相互作用势能可写为4()3Sa U r kr=-,式中r 是正、反顶夸克之间的距离,0.12S a =是强相互作用耦合常数,k 是与单位制有关的常数,在国际单位制中250.31910J m k =⨯⋅-.为估算正、反顶夸克能否构成一个处在束缚状态的系统,可把束缚状态设想为正反顶夸克在彼此间的吸引力作用下绕它们连线的中点做匀速圆周运动.如能构成束缚态,试用玻尔理论确定系统处于基态中正、反顶夸克之间的距离0r .已知处于束缚态的正、反夸克粒子满足量子化条件,即021,2,3,22r h mv nn π⎛⎫== ⎪⎝⎭L式中02r mv ⎛⎫⎪⎝⎭为一个粒子的动量mv 与其轨道半径02r 的乘积,n 为量子数,346.6310J sh =⨯⋅-为普朗克常量.2.试求正、反顶夸克在上述设想的基态中做匀速圆周运动的周期T .你认为正、反顶夸克的这种束缚态能存在吗? 四、(25分)宇宙飞行器和小行星都绕太阳在同一平面内做圆周运动,飞行器的质量比小行星的质量小得很多,飞行器的速率为0v ,小行星的轨道半径为飞行器轨道半径的6倍.有人企图借助飞行器与小行星的碰撞使飞行器飞出太阳系,于是他便设计了如下方案:Ⅰ. 当飞行器在其圆周轨道的适当位置时,突然点燃飞行器上的喷气发动机,经过极短时间后立即关闭发动机,以使飞行器获得所需的速度,沿圆周轨道的切线方向离开圆轨道;Ⅱ. 飞行器到达小行星的轨道时正好位于小行星的前缘,速度的方向和小行星在该处速度的方向相同,正好可被小行星碰撞;Ⅲ. 小行星与飞行器的碰撞是弹性正碰,不计燃烧的燃料质量. 1.试通过计算证明按上述方案能使飞行器飞出太阳系;2.设在上述方案中,飞行器从发动机取得的能量为1E .如果不采取上述方案而是令飞行器在圆轨道上突然点燃喷气发动机,经过极短时间后立即关闭发动机,以使飞行器获得足够的速度沿圆轨道切线方向离开圆轨道后能直接飞出太阳系.采用这种办法时,飞行器从发动机取得的能量的最小值用2E 表示,问12E E 为多少? 五、(25分)在真空中建立一坐标系,以水平向右为x 轴正方向,竖直向下为y 轴正方向,z 轴垂直纸面向里(图复17-5).在0y L ≤≤的区域内有匀强磁场,0.80m L =,磁场的磁感强度的方向沿z 轴的正方向,其大小0.10T B =.今把一荷质比1/50C kg q m =⋅-的带正电质点在0x =,0.20m y =-,0z =处静止释放,将带电质点过原点的时刻定为0t =时刻,求带电质点在磁场中任一时刻t 的位置坐标.并求它刚离开磁场时的位置和速度.取重力加速度210m s g =⋅-。

六、(25分)普通光纤是一种可传输光的圆柱形细丝,由具有圆形截面的纤芯A 和包层B 组成,B 的折射率小于A 的折射率,光纤的端面和圆柱体的轴垂直,由一端面射入的光在很长的光纤中传播时,在纤芯A 和包层B 的分界面上发生多次全反射.现在利用普通光纤测量流体F 的折射率.实验方法如下:让光纤的一端(出射端)浸在流体F 中.令与光纤轴平行的单色平行光束经凸透镜折射后会聚光纤入射端面的中心O ,经端面折射进入光纤,在光纤中传播.由点O 出发的光束为圆锥形,已知其边缘光线和轴的夹角为0α,如图复17-6-1所示.最后光从另一端面出射进入流体F .在距出射端面1h 处放置一垂直于光纤轴的毛玻璃屏D ,在D 上出现一圆形光斑,测出其直径为1d ,然后移动光屏D 至距光纤出射端面2h 处,再测出圆形光斑的直径2d ,如图复17-6-2所示.1.若已知A 和B 的折射率分别为A n 与B n ,求被测流体F 的折射率F n 的表达式.2.若A n 、B n 和0α均为未知量,如何通过进一步的实验以测出F n 的值?第十七届全国中学生物理竞赛复赛题参考解答一、参考解答设玻璃管内空气柱的长度为h ,大气压强为0p ,管内空气的压强为p ,水银密度为ρ,重力加速度为g ,由图复解17-1-1可知 0()p l h g p ρ+-= (1) 根据题给的数据,可知0p l g ρ=,得p gh ρ= (2)若玻璃管的横截面积为S ,则管内空气的体积为V Sh = (3)由(2)、(3)式得Vp g Sρ= (4)即管内空气的压强与其体积成正比,由克拉珀龙方程pV nRT =得 2V g nRT Sρ= (5)由(5)式可知,随着温度降低,管内空气的体积变小,根据(4)式可知管内空气的压强也变小,压强随体积的变化关系为p V -图上过原点的直线,如图复解17-1-2所示.在管内气体的温度由1T 降到2T 的过程中,气体的体积由1V 变到2V ,体积缩小,外界对气体做正功,功的数值可用图中划有斜线的梯形面积来表示,即有221212121()22V V V W g V V g S S S V ρρ⎛⎫⎛⎫=+-= ⎪ ⎪⎝⎭⎝⎭- (6)管内空气内能的变化V 21()U nC T T ∆=- (7) 设Q 为外界传给气体的热量,则由热力学第一定律W Q U +=∆,有Q U W =∆- (8) 由(5)、(6)、(7)、(8)式代入得V 211()2Q n T T C R ⎛⎫=-+ ⎪⎝⎭ (9)代入有关数据得0.247J Q =-0Q <表示管内空气放出热量,故空气放出的热量为0.247J Q Q '=-= (10) 评分标准:本题20分 (1)式1分,(4)式5分,(6)式7分,(7)式1分,(8)式2分,(9)式1分,(10)式3分。

二、参考解答在由直线BC 与小球球心O 所确定的平面中,激光光束两次折射的光路BCDE 如图复解17-2所示,图中入射光线BC 与出射光线DE 的延长线交于G ,按照光的折射定律有0sin sin n n αβ= (1) 式中α与β分别是相应的入射角和折射角,由几何关系还可知sin lrα=(2) 激光光束经两次折射,频率ν保持不变,故在两次折射前后,光束中一个光子的动量的大小p 和p '相等,即h p p cν'=- (3) 式中c 为真空中的光速,h 为普朗克常量.因射入小球的光束中光子的动量p 沿BC 方向,射出小球的光束中光子的动量p '沿DE 方向,光子动量的方向由于光束的折射而偏转了一个角度2θ,由图中几何关系可知22()θαβ=- (4)若取线段1GN 的长度正比于光子动量p ,2GN 的长度正比于光子动量p ',则线段12N N 的长度正比于光子动量的改变量p ∆,由几何关系得 2sin 2sin h p p cνθθ∆== (5) 12GN N ∆为等腰三角形,其底边上的高GH 与CD 平行,故光子动量的改变量p ∆的方向沿垂直CD 的方向,且由G 指向球心O .光子与小球作用的时间可认为是光束在小球内的传播时间,即02cos /r t cn nβ∆=(6)式中0/cn n 是光在小球内的传播速率。

按照牛顿第二定律,光子所受小球的平均作用力的大小为 0sin cos n h p f t nr νθβ∆==∆ (7) 按照牛顿第三定律,光子对小球的平均作用力大小F f =,即 0sin cos n h F nr νθβ=(8)力的方向由点O 指向点G .由(1)、(2)、(4)及(8)式,经过三角函数关系运算,最后可得021n lh F nrν⎡=⎢⎢⎣ (9) 评分标准:本题20分(1)式1分,(5)式8分,(6)式4分,(8)式3分,得到(9)式再给4分。

三、参考解答1.相距为r 的电量为1Q 与2Q 的两点电荷之间的库仑力Q F 与电势能Q U 公式为122Q QQ Q F k r = 12Q QQ Q U k r =- (1) 现在已知正反顶夸克之间的强相互作用势能为4()3S aU r k r=-根据直接类比可知,正反顶夸克之间的强相互作用力为24()3Sa F r k r=- (2)设正反顶夸克绕其连线的中点做匀速圆周运动的速率为v ,因二者相距0r ,二者所受的向心力均为0()F r ,二者的运动方程均为22004/23t S a m v k r r = (3) 由题给的量子化条件,粒子处于基态时,取量子数1n =,得0222t r hm v π⎛⎫- ⎪⎝⎭(4)由(3)、(4)两式解得20238S t h r m a kπ= (5)代入数值得170 1.410m r =⨯- (6)2. 由(3)与(4)两式得 43S a v kh π⎛⎫=⎪⎝⎭(7)由v 和0r 可算出正反顶夸克做匀速圆周运动的周期T30222(/2)2(4/3)t S r h T v m k a ππ== (8) 代入数值得241.810s T =⨯- (9) 由此可得 /0.2T τ= (10)因正反顶夸克的寿命只有它们组成的束缚系统的周期的1/5,故正反顶夸克的束缚态通常是不存在的.评分标准:本题25分1. 15分。

(2)式4分,(5)式9分,求得(6)式再给2分。

2. 10分。

(8)式3分。

(9)式1分,正确求得(10)式并由此指出正反顶夸克不能形成束缚态给6分。

相关文档
最新文档