第届全国中学生物理竞赛复赛试题及答案
高中生物理竞赛复赛试题及答案
全国中学生物理竞赛复赛试题全卷共六题,总分为140分。
一、(20分)一汽缸的初始体积为0V ,其中盛有2mol 的空气和少量的水(水的体积可以忽略)。
平衡时气体的总压强是3.0atm ,经做等温膨胀后使其体积加倍,在膨胀结束时,其中的水刚好全部消失,此时的总压强为2.0atm 。
若让其继续作等温膨胀,使体积再次加倍。
试计算此时:1.汽缸中气体的温度;2.汽缸中水蒸气的摩尔数;3.汽缸中气体的总压强。
假定空气和水蒸气均可以当作理想气体处理。
二、(25分)两个焦距分别是1f 和2f 的薄透镜1L 和2L ,相距为d ,被共轴地安置在光具座上。
1. 若要求入射光线和与之对应的出射光线相互平行,问该入射光线应满足什么条件?2. 根据所得结果,分别画出各种可能条件下的光路示意图。
三、(25分)用直径为1mm 的超导材料制成的导线做成一个半径为5cm 的圆环。
圆环处于超导状态,环内电流为100A 。
经过一年,经检测发现,圆环内电流的变化量小于610A -。
试估算该超导材料电阻率数量级的上限。
提示:半径为r 的圆环中通以电流I 后,圆环中心的磁感应强度为02I B rμ= ,式中B 、I 、r 各量均用国际单位,720410N A μπ=⨯⋅--。
四、(20分)经过用天文望远镜长期观测,人们在宇宙中已经发现了许多双星系统,通过对它们的研究,使我们对宇宙中物质的存在形势和分布情况有了较深刻的认识。
双星系统由两个星体构成,其中每个星体的线度都远小于两星体之间的距离。
一般双星系统距离其他星体很远,可以当作孤立系统处理。
现根据对某一双星系统的光度学测量确定,该双星系统中每个星体的质量都是M ,两者相距L 。
他们正绕两者连线的中点作圆周运动。
1. 试计算该双星系统的运动周期T 计算。
2. 若实验上观测到的运动周期为T 观测,且:1:1)T T N =>观测计算。
为了解释T 观测与T 计算的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗物质。
全国中学生物理竞赛复赛试卷及参考解答
全国中学生物理竞赛复赛试卷(本题共七大题,满分160分)一、(20分)如图所示,一块长为m L 00.1=的光滑平板PQ 固定在轻质弹簧上端,弹簧的下端与地面固定连接。
平板被限制在两条竖直光滑的平行导轨之间(图中未画出竖直导轨),从而只能地竖直方向运动。
平板与弹簧构成的振动系统的振动周期s T 00.2=。
一小球B 放在光滑的水平台面上,台面的右侧边缘正好在平板P 端的正上方,到P 端的距离为m h 80.9=。
平板静止在其平衡位置。
水球B 与平板PQ 的质量相等。
现给小球一水平向右的速度0μ,使它从水平台面抛出。
已知小球B 与平板发生弹性碰撞,碰撞时间极短,且碰撞过程中重力可以忽略不计。
要使小球与平板PQ 发生一次碰撞而且只发生一次碰撞,0μ的值应在什么范围内?取2/8.9s m g =二、(25分)图中所示为用三角形刚性细杆AB 、BC 、CD 连成的平面连杆结构图。
AB 和CD 杆可分别绕过A 、D 的垂直于纸面的固定轴转动,A 、D 两点位于同一水平线上。
BC 杆的两端分别与AB 杆和CD 杆相连,可绕连接处转动(类似铰链)。
当AB 杆绕A 轴以恒定的角速度ω转到图中所示的位置时,AB 杆处于竖直位置。
BC 杆与CD 杆都与水平方向成45°角,已知AB 杆的长度为l ,BC 杆和CD 杆的长度由图给定。
求此时C 点加速度c a 的大小和方向(用与CD 杆之间的夹角表示)三、(20分)如图所示,一容器左侧装有活门1K ,右侧装有活塞B ,一厚度可以忽略的隔板M 将容器隔成a 、b 两室,M 上装有活门2K 。
容器、隔板、活塞及活门都是绝热的。
隔板和活塞可用销钉固定,拔掉销钉即可在容器内左右平移,移动时不受摩擦作用且不漏气。
整个容器置于压强为P 0、温度为T 0的大气中。
初始时将活塞B 用销钉固定在图示的位置,隔板M 固定在容器PQ 处,使a 、b 两室体积都等于V 0;1K 、2K 关闭。
初中物理竞赛(复赛)试题及解答
初中物理竞赛复赛试题说明:1、本试题共有五大题,答题时间为120分钟,试卷满分为150分。
2、答案及解答过程均写在答卷纸上。
其中第一大题~第二大题只要写出答案,不写解答过程;第三大题~第五大题要写出完整的解答过程。
一.选择题(以下每题只有一个选项符合题意,每小题4分,共32分)1.在下列四个事件中,经历时间最接近一秒钟的是( )A 人眨一下眼。
B 人在安静时呼吸一次。
C 人在感冒时打一个喷嚏。
D 人在做剧烈运动时(如快速蹬楼)脉博跳动一次。
2.手掌中托一小石块,将它竖直向上抛出,在小石块与手掌脱离时,则( )A 小石块不受任何力的作用。
B 小石块与手掌的运动速度相等。
C 小石块比手掌运动得快。
D 小石块速度继续增大,手掌速度将减小。
3.向如图1所示的玻璃瓶内注入水,然后将插有细玻璃管的软木塞塞紧玻璃瓶,玻璃瓶壁有A、B两个孔,也用软木塞子塞住。
瓶内液面如图1所示,现将A、B处的木塞同时拔去后,则下列说法中正确的是( )A A、B两孔中均无水射出。
图1B A 、B 两孔中均有水射出。
C A 孔中无水射出,B 孔中有水射出。
D A 孔中有水射出,B 孔中无水射出。
4.如图2所示,有三只底面积均为S 、水面高度相同,但形状不同的盛水容器a 、b 、c 。
现将三只相同的实心铝球分别放入容器a 、b 、c 中,铝球受到的浮力为F 。
设水对容器底部压强的增大值分别为△P 1、△P 2和△P 3,则下列说法中正确的是( ) A △P 1=△P 2=△P 3=F/S 。
B △P 1>F/S ,△P 2=F/S ,△P 3<F/S。
C △P 1=F/S ,△P 2<F/S ,△P 3>F/S 。
D △P 1<F/S ,△P 2>F/S ,△P 3<F/S.5.如图3所示,用一根电阻为6R 的粗细均匀的镍铬合金线做成一个环,在环上6个对称的点上,焊接6个不计电阻的导线,并与接线柱连接,现有一根不计电阻的导线将6个接线柱中的任意两个相连接,利用这种方法,可以在其它各接线柱之间的获得不同阻值(不含零电阻)的总个数和最大电阻值分别是( ) A 9种,最大为1.5R 。
(高考生物)年第届全国中学生物理竞赛复赛试卷及答案
(生物科技行业)年第届全国中学生物理比赛复赛试卷及答案第 27 届全国中学生物理比赛复赛试卷本卷共九题,满分160 分.计算题的解答应写出必需的文字说明、方程式和重要的演算步骤.只写出最后结果的不可以得分.有数字计算的题.答案中一定明确写出数值和单位.填空题把答案填在题中的横线上,只需给出结果,不需写出求解的过程.一、( 15 分)蛇形摆是一个用于演示单摆周期与摆长关系的实验仪器(见图).若干个摆球位于同一高度并等间距地排成一条直线,它们的悬挂点在不一样的高度上,摆长挨次减小.设重力加快度g=9.80m/s 2 ,1 .试设计一个包括十个单摆的蛇形摆(即求出每个摆的摆长),要求知足:(a )每个摆的摆长不小于0.450m ,不大于 1.00m;(b )初始时将所有摆球由均衡点沿x 轴正方向挪动相同的一个小位移xo(xo<<0.45m),而后同时开释,经过40s 后,所有的摆能够同时回到初始状态.2.在上述情况中,从所有的摆球开始摇动起,到它们的速率初次所有为零所经过的时间为________________________________________.二、( 20 分)距离我们为 L 处有一恒星,其质量为M ,观察发现其地点呈周期性摇动,周期为 T,摇动范围的最大张角为△θ.假定该星体的周期性摇动是因为有一颗环绕它作圆周运动的行星惹起的,试给出这颗行星的质量m 所知足的方程.若 L=10 光年, T=10 年,△θ=3 毫角秒, M=Ms( Ms 为太阳质量),则此行星的质量和它运动的轨道半径 r 各为多少?分别用太阳质量Ms 和国际单位AU (均匀日地距离)作为11单位,只保存一位有效数字.已知 1 毫角秒 =1000角秒,1 角秒 =度,1AU=1.5 ×10 8 km,3600光速 c=3.0 ×10 5km/s.三、( 22 分)如图,一质量均匀散布的刚性螺旋环质量为m ,半径为 R,螺距 H= πR,可绕竖直的对称轴OO ′无,摩擦地转动,连结螺旋环与转轴的两支撑杆的质量可忽视不计.一质量也为m 的小球穿在螺旋环上并可沿螺旋环无摩擦地滑动,第一扶住小球使其静止于螺旋环上的某一点 A ,这时螺旋环也处于静止状态.而后松开小球,让小球沿螺旋环下滑,螺旋环便绕转轴OO ′,转动.求当小球下滑到离其初始地点沿竖直方向的距离为h 时,螺旋环转动的角速度和小球对螺旋环作使劲的大小.四、( 12 分)以下图,一质量为m 、电荷量为q(q>0 )的粒子作角速度为ω、半径为R 的匀速圆周运动.一长直细导线位于圆周所在的平面内,离圆心的距离为d(d>R) ,在导线上通有随时间变化的电流I,t=0时辰,粒子速度的方向与导线平行,离导线的距离为d+R.若粒子做圆周运动的向心力等于电流i,的磁场对粒子的作使劲,试求出电流i 随时间的变化规律.不考虑变化的磁场产生的感生电场及重力的影响.长直导线电流产生的磁感觉强度表示式中的比率系数k 已知.五、( 20 分)以下图,两个固定的均匀带电球面,所带电荷量分别为+Q 和 -Q(Q>0),半径分别为R 和 R/2 ,小球面与大球面内切于 C 点,两球面球心O 和 O ’的连线MN 沿竖直方在MN 与两球面的交点B、0 和 C 处各开有足够小的孔因小孔损失的电荷量忽视不计,有一质量为m ,带电荷为q(q>0的质点自MN线上离B点距离为R 的 A 点竖直上抛。
2023年全国中学生物理竞赛复赛试题参考解答
全国中学生物理竞赛复赛试题参考解答、评分标准一、参考解答令 表达质子的质量, 和 分别表达质子的初速度和到达a 球球面处的速度, 表达元电荷, 由能量守恒可知2201122mv mv eU =+ (1)由于a 不动, 可取其球心 为原点, 由于质子所受的a 球对它的静电库仑力总是通过a 球的球心, 所以此力对原点的力矩始终为零, 质子对 点的角动量守恒。
所求 的最大值相应于质子到达a 球表面处时其速度方向刚好与该处球面相切(见复解20-1-1)。
以 表达 的最大值, 由角动量守恒有 max 0mv l mvR = (2)由式(1)、(2)可得20max 1/2eU l R mv =- (3) 代入数据, 可得max 22l R = (4) 若把质子换成电子, 则如图复解20-1-2所示, 此时式(1)中 改为 。
同理可求得 max 62l R =(5)评分标准: 本题15分。
式(1)、(2)各4分, 式(4)2分, 式(5)5分。
二、参考解答在温度为 时, 气柱中的空气的压强和体积分别为, (1)1C V lS = (2)当气柱中空气的温度升高时, 气柱两侧的水银将被缓慢压入A 管和B 管。
设温度升高届时 , 气柱右侧水银刚好所有压到B 管中, 使管中水银高度增大C BbS h S ∆= (3) 由此导致气柱中空气体积的增大量为C V bS '∆= (4)与此同时, 气柱左侧的水银也有一部分进入A 管, 进入A 管的水银使A 管中的水银高度也应增大 , 使两支管的压强平衡, 由此导致气柱空气体积增大量为A V hS ''∆=∆ (5)所以, 当温度为 时空气的体积和压强分别为21V V V V '''=+∆+∆ (6)21p p h =+∆ (7)由状态方程知112212p V p V T T = (8) 由以上各式, 代入数据可得2347.7T =K (9)此值小于题给的最终温度 K, 所以温度将继续升高。
全国高中生物理竞赛复赛试题含答案
全国中学生物理竞赛复赛试卷、参考答案全卷共六题,总分140分。
一、(22分)有一放在空气中的玻璃棒,折射率n= 1.5 ,中心轴线长L= 45cm,一端是半径为R1= 10cm的凸球面.1.要使玻璃棒的作用相当于一架理想的天文望远镜(使主光轴上无限远处物成像于主光轴上无限远处的望远系统),取中心轴线为主光轴,玻璃棒另一端应磨成什么样的球面?2.对于这个玻璃棒,由无限远物点射来的平行入射光束与玻璃棒的主光轴成小角度φ1时,从棒射出的平行光束与主光轴成小角度φ2,求φ2/φ1(此比值等于此玻璃棒望远系统的视角放大率).解:1.对于一个望远系统来说,从主光轴上无限远处的物点发出的入射光为平行于光轴的光线,它经过系统后的出射光线也应与主光轴平行,即像点也在主光轴上无限远处,如图18-2-6所示,图中C1为左端球面的球心.图18-2-6由正弦定理、折射定律和小角度近似得(-R1)/R1=sinr1/sin(i1-r1)≈r1/(i1-r1)=1/((i1/r1)-1)≈1/(n-1),...①即..(/R1)-1=1/(n-1)....②光线PF1射到另一端面时,其折射光线为平行于主光轴的光线,由此可知该端面的球心C2一定在端面顶点B的左方,C2B等于球面的半径R2,如图18-2-6所示.仿照上面对左端球面上折射的关系可得(/R2)-1=1/(n-1),...③又有=L-,④由②、③、④式并代入数值可得R2=5cm.则右端为半径等于5cm的向外凸的球面.图18-2-7.设从无限远处物点射入的平行光线用①、②表示,令①过C1,②过A,如图18-2-7所示,则这两条光线经左端球面折射后的相交点M,即为左端球面对此无限远物点成的像点.现在求M点的位置,在△AC1M中,有/sin(π-φ1)=/sinφ1=R1/sin(φ1-φ1′),又..nsinφ1′=sinφ1,已知φ1、φ1′均为小角度,则有/φ1=R1/φ1(1-(1/n)).与②式比较可知,≈,即M位于过F1垂直于主光轴的平面上.上面已知,玻璃棒为天文望远系统,则凡是过M点的傍轴光线从棒的右端面射出时都将是相互平行的光线.容易看出,从M射出C2的光线将沿原方向射出,这也就是过M点的任意光线(包括光线①、②)从玻璃棒射出的平行光线的方向,此方向与主光轴的夹角即为φ2,由图18-2-7可得/φ1=/=(-R1)/(-R2),由②、③式可得(-R1)/(-R2)=R1/R2,则φ2/φ1=R1/R2=2.二、(22分)正确使用压力锅的方法是:将已盖好密封锅盖的压力锅(如图复18-2-1)加热,当锅内水沸腾时再加盖压力阀S,此时可以认为锅内只有水的饱和蒸气,空气已全部排除.然后继续加热,直到压力阀被锅内的水蒸气顶起时,锅内即已达到预期温度(即设计时希望达到的温度).现有一压力锅,在海平面处加热能达到的预期温度为120℃,某人在海拔5000m的高山上使用此压力锅,锅内有足量的水.1.若不加盖压力阀,锅内水的温度最高可达多少?2.若按正确方法使用压力锅,锅内水的温度最高可达多少?3.若未按正确方法使用压力锅,即盖好密封锅盖一段时间后,在点火前就加上压力阀,此时水温为27℃,那么加热到压力阀刚被顶起时,锅内水的温度是多少?若继续加热,锅内水的温度最高可达多少?假设空气不溶于水.已知:水的饱和蒸气压pW(t)与温度t的关系图线如图18-2-2所示.大气压强p(z)与高度z的关系的简化图线如图18-2-3所示.当t=27℃时,pW(27°)=3.6×103Pa;z= 0处,p(0)= 1.013×105Pa.解:1.由图18-2-8知在海平面处,大气压强p(0)=101.3×103Pa.在z=5000m时,大气压强为p(5000)=53×103Pa.图18-2-8图18-2-9此处水沸腾时的饱和蒸气压pW应等于此值.由图18-2-9可知,对应的温度即沸点为t2=82℃.达到此温度时,锅内水开始沸腾,温度不再升高,故在5000m高山上,若不加盖压力锅,锅内温度最高可达82℃..由图18-2-9可知,在t=120℃时,水的饱和蒸气压pW(120°)=198×103Pa,而在海平面处,大气压强p(0)=101×103Pa.可见压力阀的附加压强为pS=pW(120°)-p(0)=(198×103-101.3×103)Pa=96.7×103Pa.在5000m高山上,大气压强与压力阀的附加压强之和为p′=pS+p(5000)=(96.7×103+53×103)Pa=149.7×103Pa.若在t=t2时阀被顶起,则此时的pW应等于p′,即pW=p′,由图18-2-9可知t2=112℃.此时锅内水开始沸腾,温度不再升高,故按正确方法使用此压力锅,在5000m高山上锅内水的温度最高可达112℃..在未按正确方法使用压力锅时,锅内有空气,设加压力阀时,内部水蒸汽已饱和.由图18-2-9可知,在t=27℃时,题中已给出水的饱和蒸气压pW(27°)=3.6×103Pa,这时锅内空气的压强(用pa表示)为pa(27°)=p(5000)-pW(27°)=(53×103-3.6×103)Pa=49.4×103Pa.当温度升高时,锅内空气的压强也随之升高,设在温度为t(℃)时,锅内空气压强为pa(t),则有pa(t)/(273+t)=pa(27℃)/(273+27),pa(t)=(164.7t+45.0×103)Pa.若在t=t′时压力阀刚好开始被顶起,则有pW(t′)+pa(t′)=p′,由此得pW(t′)=p′-pa(t′)=(105×103-164.7t′)Pa,画出函数p′-pa(t′)的图线,取t=0℃,有..p′-pa(0℃)=105×103Pa,取t=100℃,有.p′-pa(100℃)=88.6×103Pa.由此二点便可在图18-2-9上画出此直线,此直线与图18-2-9中的pW(t)-t曲线的交点为A,A即为所求的满足上式的点,由图可看出与A点对应的温度为t′=97℃.即在压力阀刚开始被顶起时,锅内水的温度是97℃,若继续加热,压力阀被顶起后,锅内空气随水蒸汽一起被排出,最终空气排净,锅内水温仍可达112℃.三、(22分)有两个处于基态的氢原子A、B,A静止,B以速度v0与之发生碰撞.已知:碰撞后二者的速度vA和vB在一条直线上,碰撞过程中部分动能有可能被某一氢原子吸收,从而该原子由基态跃迁到激发态,然后,此原子向低能级态跃迁,并发出光子.如欲碰后发出一个光子,试论证:速度v0至少需要多大(以m/s表示)?已知电子电量e= 1.602×10-19C,质子质量为mp= 1.673×10-27kg,电子质量为me= 0.911×10-31kg,氢原子的基态能量为E1=-13.58eV.解:为使氢原子从基态跃迁到激发态,需要能量最小的激发态是n=2的第一激发态.已知氢原子的能量与其主量子数的平方成反比.即En=k1/n2,...①又知基态(n=1)的能量为-13.58eV,即E1=k1/12=-13.58eV,所以..k=-13.58eV.n=2的第一激发态的能量为E2=k1/22=-13.58×(1/4)=-3.39eV....②为使基态的氢原子激发到第一激发态所需能量为E内=E2-E1=(-3.39+13.58)eV=10.19eV....③这就是氢原子从第一激发态跃迁到基态时发出的光子的能量,即hν=E内=10.19eV=10.19×1.602×10-19J=1.632×10-18J....④式中ν为光子的频率,从开始碰到发射出光子,根据动量和能量守恒定律有mv0=mvA+mvB+光子的动量,...⑤(1/2)mv02=(1/2)m(vA2+vB2)+hν,...⑥光子的动量pν=hν/c.由⑥式可推得mv0>2hν/v0,因为v0<<c,所以mv0>>hν/c,故⑤式中光子的动量与mv0相比较可忽略不计.⑤式变为mv0=mvA+mvB=m(vA+vB),⑦符合⑥、⑦两式的v0的最小值可推求如下:由⑥式及⑦式可推得(1/2)mv02=(1/2)m(vA+vB)2-mvAvB+hν=(1/2)mv02-mvA(v0-vA)+hν,mvA2-mvAv0+hν=0,经配方得m(vA-(1/2)v0)2-(1/4)mv02+hν=0,(1/4)mv02=hν+m(vA-(1/2)v0)2,...⑧由⑧式可看出,当vA=(1/2)v0时,v0达到最小值v0min,此时vA=vB,v0min=2,代入有关数值,得v0min=6.25×104m/s.答:B原子的速度至少应为6.25×104m/s.四、(22分)如图18-4所示,均匀磁场的方向垂直纸面向里,磁感应强度B随时间t变化,B=B0-kt(k为大于零的常数).现有两个完全相同的均匀金属圆环相互交叠并固定在图中所示位置,环面处于图中纸面内.圆环的半径为R,电阻为r,相交点的电接触良好,两个环的接触点A与C间的劣弧对圆心O的张角为60°,求t=t0时,每个环所受的均匀磁场的作用力,不考虑感应电流之间的作用.解:1.求网络各支路的电流.因磁感应强度大小随时间减少,考虑到电路的对称性,可设两环各支路的感应电流I1、I2的方向如图18-2-10所示,对左环电路ADCFA,有图18-2-10.E=I1rCFA+I2rADC,因..rCFA=5r/6,rADC=r/6,E=kπR2,故..kπR2=I1(5r/6)+I2(r/6)....①因回路ADCEA所围的面积为((2π-3)/12)R2,故对该回路有k[2((2π-3)/12)R2]=2I2(r/6),解得..I2=((2π-3)R2/2r)k,代入①式,得.I1=((10π+3)R2/10r)k..求每个圆环所受的力.图18-2-11先求左环所受的力,如图18-2-11所示,将圆环分割成很多小圆弧,由左手定则可知,每段圆弧所受的力的方向均为径向,根据对称性分析,因圆弧PMA与圆弧CNQ中的电流方向相反,所以在磁场中受的安培力相互抵消,而弧PQ与弧AC的电流相对x轴上下是对称的,因而每段载流导体所受的安培力在y方向的合力为零,以载流导体弧PQ上的线段Δl′为例,安培力ΔF为径向,其x分量的大小表示为|ΔFx|=I1BΔl′cosα,因..Δl′cosα=Δl,故..|ΔFx|=I1BΔl,|Fx|=ΣI1BΔl=I1B=I1BR.由于导体弧PQ在y方向的合力为零,所以在t0时刻所受安培力的合力F1仅有x分量,即F1=|Fx|=I1BR=((10π+3)R2/10r)kBR=((10π+3)R2/10r)k(B0-kt0)R,方向向左.同理,载流导体弧AC在t0时刻所受的安培力为F2=I2BR=((2π-3)R2/2r)kBR=((2π-3)R2/2r)k(B0-kt0)R,方向向右.左环所受的合力大小为F=F1-F2=(9/5r)k(B0-kt0)R3.方向向左.五、(25分)如图18-5所示,一薄壁导体球壳(以下简称为球壳)的球心在O点.球壳通过一细导线与端电压U= 90V的电池的正极相连,电池负极接地.在球壳外A点有一电量为q1=10×10-9C的点电荷,B点有一电量为q2=16×10-9C的点电荷.点O、A之间的距离d1= 20cm,点O、B之间的距离d2= 40cm.现设想球壳的半径从a= 10cm开始缓慢地增大到50cm,问:在此过程中的不同阶段,大地流向球壳的电量各是多少?已知静电力常量k=9×109N·m2/C2.假设点电荷能穿过球壳壁进入导体球壳内而不与导体壁接触..解:分以下几个阶段讨论:.由于球壳外空间点电荷q1、q2的存在,球壳外壁的电荷分布不均匀,用σ表示面电荷密度.设球壳半径a=10cm时球壳外壁带的电量为Q1,因为电荷q1、q2与球壳外壁的电量Q1在球壳内产生的合场强为零,球壳内为电势等于U的等势区,在导体表面上的面元ΔS所带的电量为σΔS,它在球壳的球心O处产生的电势为ΔU1=kσΔS/a,球壳外壁所有电荷在球心O产生的电势U1为U1=ΣΔU1=kΣσΔS/α=kQ1/a.点电荷q1、q2在球壳的球心O处产生的电势分别为kq1/d1与kq2/d2,因球心O处的电势等于球壳的电势,按电势叠加原理,即有(kq1/d1)+(kq2/d2)+(kQ1/a)=U,代入数值后可解得球壳外壁的电量Q1为Q1=(aU/k)-a((q1/d1)+(q2/d2))=-8×10-9C.因球壳内壁无电荷,所以球壳的电量QⅠ等于球壳外壁的电量Q1,即QⅠ=Q1=-8×10-9C..当球壳半径趋于d1时(点电荷仍在球壳外),设球壳外壁的电量变为Q2,球壳外的电荷q1、q2与球壳外壁的电量Q2在壳内产生的合场强仍为零,因球壳内仍无电荷,球壳内仍保持电势值为U的等势区,则有(kq1/d1)+(kq2/d2)+(kQ2/d1)=U,解得球壳外壁的电量Q2=(d1U/k)-(d1(q1/d1+q2/d2))=-16×10-9C.因为此时球壳内壁的电量仍为零,所以球壳的电量就等于球壳外壁的电量,即QⅡ=Q2=-16×10-9C,在a=10cm到趋于d1的过程中,大地流向球壳的电量为ΔQⅠ=QⅡ-Q1=-8×10-9C..当点电荷q1穿过球壳,刚进入球壳内(导体半径仍为d1),点电荷q1在球壳内壁感应出电量-q1,因球壳的静电屏蔽,球壳内电荷q1与球壳内壁电荷-q1在球壳外产生的合电场为零,表明球壳外电场仅由球壳外电荷q2与球壳外壁的电荷Q3所决定.由于球壳的静电屏蔽,球壳外电荷q2与球壳外壁的电荷Q3在球壳内产生的合电场为零,表明对电荷q2与Q3产生的合电场而言,球壳内空间是电势值为U的等势区.q2与Q3在球心O处产生的电势等于球壳的电势,即(kq2/d2)+(kQ3/d1)=U,解得球壳外壁电量Q3=(d1U/k)-(d1q2/d2)=-6×10-9C,球壳外壁和内壁带的总电量应为QⅢ=Q3+(-q1)=-16×10-9C,在这过程中,大地流向球壳的电量为ΔQⅡ=QⅢ-QⅡ=0.这个结果表明:电荷q1由球壳外极近处的位置进入壳内,只是将它在球壳外壁感应的电荷转至球壳内壁,整个球壳与大地没有电荷交换..当球壳半径趋于d2时(点电荷q2仍在球壳外),令Q4表示此时球壳外壁的电量,类似前面第3阶段中的分析,可得(kq2/d2)+(kQ4/d2)=U,由此得Q4=(d2U/k)-(d2(q2/d2))=-12×10-9C,球壳的电量QⅣ等于球壳内外壁电量的和,即QⅣ=Q4+(-q1)=-22×10-9C,大地流向球壳的电量为ΔQⅢ=QⅣ-QⅢ=-6×10-9C..当点电荷q2穿过球壳,刚进入球壳内时(球壳半径仍为d2),球壳内壁的感应电荷变为-(q1+q2),由于球壳的静电屏蔽,类似前面的分析可知,球壳外电场仅由球壳外壁的电量Q5决定,即kQ5/d2=U,可得..Q5=d2U/k=4×10-9C,球壳的总电量是QⅤ=Q5-(q1+q2)=-22×10-9C,..(15)在这个过程中,大地流向球壳的电量是ΔQⅣ=QⅤ-QⅣ=0...(16).当球壳的半径由d2增至a1=50cm时,令Q6表示此时球壳外壁的电量,有k(Q6/a1)=U,..(17)可得..Q6=a1(U/k)=5×10-9C,球壳的总电量为QⅥ=Q6-(q1+q2)=-21×10-9C,大地流向球壳的电量为ΔQⅤ=QⅥ-QⅤ=1×10-9C.六、(27分)一玩具“火箭”由上下两部分和一短而硬(即劲度系数很大)的轻质弹簧构成.上部分G1的质量为m1,下部分G2的质量为m2,弹簧夹在G1与G2之间,与二者接触而不固连.让G1、G2压紧弹簧,并将它们锁定,此时弹簧的弹性势能为已知的定值E0.通过遥控可解除锁定,让弹簧恢复至原长并释放其弹性势能,设这一释放过程的时间极短.第一种方案是让玩具位于一枯井的井口处并处于静止状态时解除锁定,从而使上部分G1升空.第二种方案是让玩具在井口处从静止开始自由下落,撞击井底(井足够深)后以原速率反弹,反弹后当玩具垂直向上运动到离井口深度为某值h的时刻解除锁定.1.在第一种方案中,玩具的上部分G1升空到达的最大高度(从井口算起)为多少?其能量是从何种形式的能量转化而来的?2.在第二种方案中,玩具的上部分G1升空可能达到的最大高度(亦从井口算起)为多少?并定量讨论其能量可能是从何种形式的能量转化而来的.解:.1.在弹簧刚伸长至原长的时刻,设G1的速度的大小为v,方向向上,G2的速度大小为v1,方向向下,则有m1v1-m2v2=0,...①(1/2)m1v12+(1/2)m2v22=E0,...②解①、②两式,得v1=,...③v2=....④设G1升空到达的最高点到井口的距离为H1,则H1=v12/2g=((m2/m1g(m1+m2))E0,...⑤G1上升到最高点的重力势能为Ep1=m1gH1=(m2/(m1+m2))E0....⑥它来自弹簧的弹性势能,且仅为弹性势能的一部分..在玩具自井底反弹向上运动至离井口的深度为h时,玩具向上的速度为u=....⑦设解除锁定后,弹簧刚伸长至原长时,G1的速度大小为v1′,方向向上,G2的速度大小为v,方向向下,则有m1v1′-m2v2′=(m1+m2)u,...⑧(1/2)m1v1′+(1/2)m2v2′=(1/2)(m1+m2)u2+E0,...⑨消去⑧、⑨两式中的v2′,得v1′的方程式为m1(1+(m1/m2))v1′-2m1(1+(m1/m2))uv1′+m1(1+m1/m2)u2-2E0=0,由此可求得弹簧刚伸长至原长时,G1和G2的速度分别为v1′=u+,v2′=-u+,设G1从解除锁定处向上运动到达的最大高度为H2′,则有H2′=v1′/2g=(1/2g)(u+)2=h+(m2E0/m1g(m1+m2))+2,从井口算起,G1上升的最大高度为H2=H2′-h=(m2E0/m1g(m1+m2))+2.讨论:可以看出,在第二方案中,G1上升的最大高度H2大于第一方案中的最大高度H1,超出的高度与解除锁定处到井口的深度h有关.到达H2时,其重力势能为Ep2=m1gH2=(m2E0/(m1+m2))+2,(i)若Ep2<E0,即..2<m1E0/(m1+m2),这要求..h<E0m1/4m2g(m1+m2).这时,G1升至最高处的重力势能来自压紧的弹性势能,但仅是弹性势能的一部分.在这一条件下上升的最大高度为H2<E0/m1g.(ii)若Ep2=E0,2=m1E0/(m1+m2),这要求..h=E0m1/4m2g(m1+m2).此时G1升至最高处的重力势能来自压紧的弹簧的弹性势能,且等于全部弹性势能.在这一条件下,G1上升的高度为H2=E0/m1g.(iii)若Ep2>E0,2>m1E0/(m1+m2),这要求..h>E0m1/4m2g(m1+m2).此时G1升至最高处的重力势能大于压紧的弹簧的弹性势能,超出部分的能量只能来自G2的机械能.在这个条件下,G1上升的最大高度为H2>E0/m1g.。
全国高中物理竞赛复赛试题含答案
全国中学生物理竞赛复赛理论考试试题说明:所有答案 (包括填空)必须写在答题纸上,写在试题纸上无效。
一、(12分)2013年6月20日,“神舟十号”女航天员王亚平在“天宫一号”目标飞行器里成功进行了我国首次太空授课. 授课中的一个实验展示了失重状态下液滴的表面张力引起的效应. 视频中可发现漂浮的液滴处于周期性的“脉动”中(平时在地球表面附近,重力的存在会导致液滴下降太快,以至于很难观察到液滴的这种“脉动”现象). 假设液滴处于完全失重状态,液滴的上述“脉动”可视为液滴形状的周期性的微小变化(振动),如图所示. (1)该液滴处于平衡状态时的形状是__________;(2)决定该液滴振动频率f 的主要物理量是________________________________________; (3)按后面括号中提示的方法导出液滴振动频率与上述物理量的关系式.(提示:例如,若认为,,a b c 是决定该液滴振动频率的相互独立的主要物理量,可将液滴振动频率f 与,,a b c 的关系式表示为αβγ∝f a b c ,其中指数,,αβγ是相应的待定常数.) 二、(16分) 一种测量理想气体的摩尔热容比/p V C C γ≡的方法(Clement-Desormes 方法)如图所示:大瓶G 内装满某种理想气体,瓶盖上通有一个灌气(放气)开关H ,另接出一根U 形管作为压强计M .瓶内外的压强差通过U 形管右、左两管液面的高度差来确定. 初始时,瓶内外的温度相等,瓶内气体的压强比外面的大气压强稍高,记录此时U 形管液面的高度差i h .然后打开H ,放出少量气体,当瓶内外压强相等时,即刻关闭H . 等待瓶内外温度又相等时,记录此时U 形管液面的高度差f h .试由这两次记录的实验数据i h 和f h ,导出瓶内气体的摩尔热容比γ的表达式.(提示:放气过程时间很短,可视为无热量交换;且U 形管很细,可忽略由高差变化引起的瓶内气体在状态变化前后的体积变化)三、(20分)如图所示,一质量为m 、底边AB 长为b 、等腰边长为a 、质量均匀分布的等腰三角形平板,可绕过光滑铰链支点A 和B 的水平轴x 自由转动;图中原点O 位于AB 的中点,y 轴垂直于板面斜向上,z 轴在板面上从原点O 指向三角形顶点C . 今在平板上任一给定点000M (,0,)x z 加一垂直于板面的拉力Q .振动的液滴M 0 A BxQ ϕOy zC(1)若平衡时平板与竖直方向成的角度为ϕ,求拉力Q 以及铰链支点对三角形板的作用力N A 和N B ;(2)若在三角形平板上缓慢改变拉力Q 的作用点M 的位置,使平衡时平板与竖直方向成的角度仍保持为ϕ,则改变的作用点M 形成的轨迹满足什么条件时,可使铰链支点A 或B 对板作用力的垂直平板的分量在M 变动中保持不变?四、(24分)如图所示,半径为R 、质量为m 0的光滑均匀圆环,套在光滑竖直细轴OO '上,可沿OO '轴滑动或绕OO '轴旋转.圆环上串着两个质量均为m 的小球. 开始时让圆环以某一角速度绕OO '轴转动,两小球自圆环顶端同时从静止开始释放.(1)设开始时圆环绕OO '轴转动的角速度为ω0,在两小球从环顶下滑过程中,应满足什么条件,圆环才有可能沿OO '轴上滑?(2)若小球下滑至30θ=︒(θ是过小球的圆环半径与OO '轴的夹角)时,圆环就开始沿OO '轴上滑,求开始时圆环绕OO '轴转动的角速度ω0、在30θ=︒时圆环绕OO '轴转动的角速度ω和小球相对于圆环滑动的速率v .五、(20分)如图所示,现有一圆盘状发光体,其半径为5cm ,放置在一焦距为10cm 、半径为15cm 的凸透镜前,圆盘与凸透镜的距离为20cm ,透镜后放置一半径大小可调的圆形光阑和一个接收圆盘像的光屏.图中所有光学元件相对于光轴对称放置.请在几何光学近轴范围内考虑下列问题,并忽略像差和衍射效应.(1)未放置圆形光阑时, 给出圆盘像的位置、大小、形状;(2)若将圆形光阑放置于凸透镜后方6cm 处. 当圆形光阑的半径逐渐减小时,圆盘的像会有什么变化?是否存在某一光阑半径a r ,会使得此时圆盘像的半径变为(1)中圆盘像的半径的一半?若存在,请给出a r 的数值.(3)若将圆形光阑移至凸透镜后方18cm 处,回答(2)中的问题; (4)圆形光阑放置在哪些位置时,圆盘像的大小将与圆形光阑的半径有关? (5)若将图中的圆形光阑移至凸透镜前方6cm 处,回答(2)中的问题.六、(22分)如图所示,一电容器由固定在共同导电底座上的N +1片对顶双扇形薄金属板和固定在可旋转的导电对称轴上的N 片对顶双扇形薄金属板组成,所有顶点共轴,轴线与所有板面垂直,两组板面各自在垂直于轴线的平面上的投影重合,板面扇形半径均为R ,圆心角均为0θ(02πθπ≤<);固定金属板和可旋转的金属板相间排列,两相邻金属板之间距离均为s .此电容器的电容C 值与可旋转金属板的转角θ有关.已知静电力常量为k .(1)开始时两组金属板在垂直于轴线的平面上的投影重合,忽略边缘效应,求可旋转金属板的转角为θ(00θθθ-≤≤)时电容器的电容()C θ;(2)当电容器电容接近最大时,与电动势为E 的电源接通充电(充电过程中保持可旋转金属板的转角不变),稳定后断开电源,求此时电容器极板所带电荷量和驱动可旋转金属板的力矩; (3)假设02πθ=,考虑边缘效应后,第(1)问中的()C θ可视为在其最大值和最小值之间光滑变化的函数max min max min 11()()()cos222C C C C C θθ=++- 式中,max C 可由第(1)问的结果估算,而min C 是因边缘效应计入的,它与max C 的比值λ是已知的.若转轴以角速度m ω匀速转动,且m t θω=,在极板间加一交流电压0cos V V t ω=.试计算电容器在交流电压作用下能量在一个变化周期内的平均值,并给出该平均值取最大值时所对应的m ω.七、(26分)Z-箍缩作为惯性约束核聚变的一种可能方式,近年来受到特别重视,其原理如图所示.图中,长20 mm 、直径为5m μ的钨丝组成的两个共轴的圆柱面阵列,瞬间通以超强电流,钨丝阵列在安培力的作用下以极大的加速度向内运动, 即所谓自箍缩效应;钨丝的巨大动量转移到处于阵列中心的直径为毫米量级的氘氚靶球上,可以使靶球压缩后达到高温高密度状态,实现核聚变.设内圈有N 根钨丝(可视为长直导线)均匀地分布在半径为r 的圆周上,通有总电流7210A =⨯内I ;外圈有M 根钨丝,均匀地分布在半径为R 的圆周上,每根钨丝所通过的电流同内圈钨丝.已知通有电流i 的长直导线在距其r 处产生的磁感应强度大小为m i k r,式中比例常量772210T m/A 210N /A m k --=⨯⋅=⨯.(1)若不考虑外圈钨丝,计算内圈某一根通电钨丝中间长为L ∆的一小段钨丝所受到的安培力;N 片可旋转金属板(2)若不考虑外圈钨丝,内圈钨丝阵列熔化后形成了圆柱面,且箍缩为半径0.25cm r =的圆柱面时,求柱面上单位面积所受到的安培力,这相当于多少个大气压?(3)证明沿柱轴方向通有均匀电流的长圆柱面,圆柱面内磁场为零,即通有均匀电流外圈钨丝的存在不改变前述两小题的结果;(4)当1N >>时, 则通有均匀电流的内圈钨丝在外圈钨丝处的磁感应强度大小为m Ik R内,若要求外圈钨丝柱面每单位面积所受到的安培力大于内圈钨丝柱面每单位面积所受到的安培力,求外圈钨丝圆柱面的半径R 应满足的条件;(5)由安培环路定理可得沿柱轴方向通有均匀电流的长圆柱面外的磁场等于该圆柱面上所有电流移至圆柱轴后产生的磁场,请用其他方法证明此结论. (计算中可不考虑图中支架的影响)八、(20分)天文观测表明,远处的星系均离我们而去.著名的哈勃定律指出,星系离开我们的速度大小v =HD ,其中D 为星系与我们之间的距离,该距离通常以百万秒差距(Mpc )为单位;H 为哈勃常数,最新的测量结果为H =67.80km/(s ⋅Mpc).当星系离开我们远去时,它发出的光谱线的波长会变长(称为红移).红移量z 被定义为λλλ'-=z ,其中λ'是我们观测到的星系中某恒星发出的谱线的波长,而λ是实验室中测得的同种原子发出的相应的谱线的波长,该红移可用多普勒效应解释.绝大部分星系的红移量z 远小于1,即星系退行的速度远小于光速.在一次天文观测中发现从天鹰座的一个星系中射来的氢原子光谱中有两条谱线,它们的频率ν'分别为4.549⨯1014Hz 和6.141⨯1014Hz .由于这两条谱线处于可见光频率区间,可假设它们属于氢原子的巴尔末系,即为由n > 2的能级向k =2的能级跃迁而产生的光谱.(已知氢原子的基态能量013.60 eV =-E ,真空中光速82.99810m/s =⨯c ,普朗克常量346.62610J s -=⨯⋅h ,电子电荷量19 1.60210C -=⨯e )(1)该星系发出的光谱线对应于实验室中测出的氢原子的哪两条谱线?它们在实验室中的波长分别是多少?(2)求该星系发出的光谱线的红移量z 和该星系远离我们的速度大小v ; (3)求该星系与我们的距离D .金属极板 金属极板 外圈钨丝 内圈钨丝 靶球第31届全国中学生物理竞赛复赛理论考试试题解答2014年9月20日一、(12分) (1)球形(2)液滴的半径r 、密度ρ和表面张力系数σ(或液滴的质量m 和表面张力系数σ) (3)解法一假设液滴振动频率与上述物理量的关系式为αβγρσ=f k r ①式中,比例系数k 是一个待定常数. 任一物理量a 可写成在某一单位制中的单位[]a 和相应的数值{}a 的乘积{}[]=a a a . 按照这一约定,①式在同一单位制中可写成 {}[]{}{}{}{}[][][]αβγαβγρσρσ=f f k r r由于取同一单位制,上述等式可分解为相互独立的数值等式和单位等式,因而 [][][][]αβγρσ=f r ②力学的基本物理量有三个:质量m 、长度l 和时间t ,按照前述约定,在该单位制中有 {}[]=m m m ,{}[]=l l l ,{}[]=t t t于是[][]-=f t 1 ③[][]=r l ④ [][][]ρ-=m l 3 ⑤[][][]σ-=m t 2 ⑥将③④⑤⑥式代入②式得 [][]([][])([][])αβγ---=t l m l m t 132即[][][][]αββγγ--+-=t l m t 132 ⑦由于在力学中[]m 、[]l 和[]t 三者之间的相互独立性,有30αβ-=, ⑧0βγ+=, ⑨21γ= ⑩解为311,,222αβγ=-=-= ⑪将⑪式代入①式得=f ⑫ 解法二假设液滴振动频率与上述物理量的关系式为αβγρσ=f k r ①式中,比例系数k 是一个待定常数. 任一物理量a 可写成在某一单位制中的单位[]a 和相应的数值{}a 的乘积{}[]=a a a . 在同一单位制中,①式两边的物理量的单位的乘积必须相等 [][][][]αβγρσ=f r ②力学的基本物理量有三个:质量M 、长度L 和时间T ,对应的国际单位分别为千克(kg )、米(m )、秒(s ). 在国际单位制中,振动频率f 的单位[]f 为s -1,半径r 的单位[]r 为m ,密度ρ的单位[]ρ为3kg m -⋅,表面张力系数σ的单位[]σ为1212N m =kg (m s )m kg s ----⋅⋅⋅⋅=⋅,即有[]s -=f 1 ③[]m =r ④ []kg m ρ-=⋅3 ⑤[]kg s σ-=⋅2 ⑥若要使①式成立,必须满足()()s m kg m kg s (kg)m s βγαβγαβγ---+--=⋅⋅=⋅⋅13232 ⑦由于在力学中质量M 、长度L 和时间T 的单位三者之间的相互独立性,有30αβ-=, ⑧0βγ+=, ⑨21γ= ⑩解为311,,222αβγ=-=-= ⑪将⑪式代入①式得f = ⑫评分标准:本题12分. 第(1)问2分,答案正确2分;第(2)问3分,答案正确3分;第(3)问7分,⑦式2分,⑪式3分,⑫式2分(答案为f、f =f 的,也给这2分).二、(16分)解法一:瓶内理想气体经历如下两个气体过程:000000(,,,)(,,,)(,,,)−−−−−−−→−−−−−→i i f f f p V T N p V T N p V T N 放气(绝热膨胀)等容升温其中,000000(,,,),(,,,,,,)i i f f f p V T N p V T N p V T N )和(分别是瓶内气体在初态、中间态与末态的压强、体积、温度和摩尔数.根据理想气体方程pV NkT =,考虑到由于气体初、末态的体积和温度相等,有f f iip N p N =①另一方面,设V '是初态气体在保持其摩尔数不变的条件下绝热膨胀到压强为0p 时的体积,即000(,,,)(,,,)i i i p V T N p V T N '−−−−→绝热膨胀此绝热过程满足1/00i V p V p γ⎛⎫= ⎪'⎝⎭②由状态方程有0i p V N kT '=和00f p V N kT =,所以f iN V N V ='③ 联立①②③式得1/0fi i p p p p γ⎛⎫= ⎪⎝⎭④此即ln i fp p p γ=⑤ 由力学平衡条件有0i i p p gh ρ=+ ⑥0f f p p gh ρ=+ ⑦式中,00p gh ρ=为瓶外的大气压强,ρ是U 形管中液体的密度,g 是重力加速度的大小.由⑤⑥⑦式得00ln(1)ln(1)ln(1)if i h h h hh h γ+=+-+ ⑧利用近似关系式:1, ln(1)xx x +≈当,以及 00/1, /1i f h h h h ,有000///i ii f i fh h h h h h h h h γ==--⑨评分标准:本题16分.①②③⑤⑥⑦⑧⑨式各2分.解法二:若仅考虑留在容器内的气体:它首先经历了一个绝热膨胀过程ab ,再通过等容升温过程bc 达到末态100000(,,)(,,)(,,)−−−−−→−−−−−→i f p V T p V T p V T 绝热膨胀ab 等容升温bc其中,100000(,,),(,,,,)i f p V T p V T p V T )和(分别是留在瓶内的气体在初态、中间态和末态的压强、体积与温度.留在瓶内的气体先后满足绝热方程和等容过程方程1100ab: γγγγ----=i p T p T①00bc://=f p T p T② 由①②式得1/0fi i p p p p γ⎛⎫= ⎪⎝⎭③此即ln i fp p p γ=④ 由力学平衡条件有0i i p p gh ρ=+ ⑤0f f p p gh ρ=+ ⑥式中,00p gh ρ=为瓶外的大气压强,ρ是U 形管中液体的密度,g 是重力加速度的大小.由④⑤⑥式得00ln(1)ln(1)ln(1)if i h h h hh h γ+=+-+ ⑦利用近似关系式:1, ln(1)xx x +≈当,以及 00/1, /1i f h h h h ,有000///i ii f i fh h h h h h h h h γ==--⑧评分标准:本题16分.①②式各3分,④⑤⑥⑦⑧式各2分.三、(20分)(1)平板受到重力C P 、拉力0M Q 、铰链对三角形板的作用力N A 和N B ,各力及其作用点的坐标分别为:C (0,sin ,cos )ϕϕ=--mg mg P ,(0,0,)h ; 0M (0,,0)Q =Q , 00(,0,)x z ;A A A A (,,)x y z N N N =N ,(,0,0)2b; B B B B (,,)x y z N N N =N , (,0,0)2b-式中h =是平板质心到x 轴的距离.平板所受力和(对O 点的)力矩的平衡方程为A Bx 0=+=∑xx FN N①A B sin 0ϕ=++-=∑yy y F Q N N mg②A B cos 0ϕ=+-=∑zz z FN N mg③ 0sin 0xMmgh Q z ϕ=-⋅=∑④B A 022=-=∑y zz b b M N N⑤0A B 022z yy b bM Q x N N =⋅+-=∑⑥联立以上各式解得sin mgh Q z ϕ=, A B x x N N =-,000sin 21()2Ay mg h b x N b z z ϕ⎡⎤=-+⎢⎥⎣⎦,000sin 21()2By mg h b x N b z z ϕ⎡⎤=--⎢⎥⎣⎦A B 1cos 2z z N N mg ϕ==即0M 0sin (0,,0)mgh z ϕ=Q ,⑦0A A 002sin 1(,1(),cos )22x x mg h b N mg b z z ϕϕ⎡⎤=-+⎢⎥⎣⎦N ,⑧0B A 002sin 1(,1(),cos )22x x mg h b N mg b z z ϕϕ⎡⎤=---⎢⎥⎣⎦N⑨(2)如果希望在M(,0,)x z 点的位置从点000M (,0,)x z 缓慢改变的过程中,可以使铰链支点对板的作用力By N 保持不变,则需sin 21()2By mg h b x N b z z ϕ⎡⎤=--=⎢⎥⎣⎦常量 ⑩ M 点移动的起始位置为0M ,由⑩式得0022-=-b x b x z z z z⑪ 或00022b x b x zz z ⎛⎫-=- ⎪⎝⎭ ⑫ 这是过A(,0,0)2b 点的直线. (*)因此,当力M Q 的作用点M 的位置沿通过A 点任一条射线(不包含A 点)在平板上缓慢改变时,铰链支点B 对板的作用力By N 保持不变. 同理,当力M Q 的作用点M 沿通过B 点任一条射线在平板上缓慢改变时,铰链支点A 对板的作用力Ay N 保持不变.评分标准:本题20分.第(1)问14分,①式1分,②③④⑤⑥式各2分,⑦⑧⑨式各1分;第(2)问6分,⑩⑫式各1分,(*) 2分,结论正确2分.四、(24分)(1)考虑小球沿径向的合加速度. 如图,设小球下滑至θ 角位置时,小球相对于圆环的速率为v ,圆环绕轴转动的角速度为ω .此时与速率v 对应的指向中心C 的小球加速度大小为 21a R=v① 同时,对应于圆环角速度ω,指向OO '轴的小球加速度大小为 2(sin )sin R a R ωωθθ=② 该加速度的指向中心C 的分量为22(sin )sin R a a Rωωθθ==③ 该加速度的沿环面且与半径垂直的分量为23(sin )cos cot R a a Rωωθθθ== ④l由①③式和加速度合成法则得小球下滑至θ 角位置时,其指向中心C 的合加速度大小为 2212(sin )v ωθ=+=+R R a a a R R⑤ 在小球下滑至θ 角位置时,将圆环对小球的正压力分解成指向环心的方向的分量N 、垂直于环面的方向的分量T . 值得指出的是:由于不存在摩擦,圆环对小球的正压力沿环的切向的分量为零. 在运动过程中小球受到的作用力是N 、T 和mg . 这些力可分成相互垂直的三个方向上的分量:在径向的分量不改变小球速度的大小,亦不改变小球对转轴的角动量;沿环切向的分量即sin θmg 要改变小球速度的大小;在垂直于环面方向的分量即T 要改变小球对转轴的角动量,其反作用力将改变环对转轴的角动量,但与大圆环沿'OO 轴的竖直运动无关. 在指向环心的方向,由牛顿第二定律有22(sin )cos R R N mg ma mRωθθ++==v ⑥ 合外力矩为零,系统角动量守恒,有202(sin )L L m R θω=+ ⑦式中L 0和L 分别为圆环以角速度ω0和ω转动时的角动量.如图,考虑右半圆环相对于轴的角动量,在θ角位置处取角度增量∆θ, 圆心角∆θ所对圆弧l ∆的质量为m l λ∆=∆(02m Rλπ≡),其角动量为 2sin L m r l rR Rr z R S ωλωθλωλω∆=∆=∆=∆=∆ ⑧式中r 是圆环上θ 角位置到竖直轴OO '的距离,S ∆为两虚线间窄条的面积.⑧式说明,圆弧l ∆的角动量与S ∆成正比. 整个圆环(两个半圆环)的角动量为2200122222m R L L R m R R πωωπ=∆=⨯=∑ ⑨[或:由转动惯量的定义可知圆环绕竖直轴OO '的转动惯量J 等于其绕过垂直于圆环平面的对称轴的转动惯量的一半,即2012J m R = ⑧则角动量L 为2012L J m R ωω== ⑨ ]同理有200012L m R ω= ⑩力N 及其反作用力不做功;而T 及其反作用力的作用点无相对移动,做功之和为零;系统机械能守恒. 故22012(1cos )2[(sin )]2k k E E mgR m R θωθ-+⨯-=⨯+v ⑪式中0k E 和k E 分别为圆环以角速度0ω和ω转动时的动能.圆弧l ∆的动能为222111()sin 222k E m r l rR R S ωλωθλω∆=∆=∆=∆整个圆环(两个半圆环)的动能为22220011222224k k m R E E R m R R πωωπ=∆=⋅⋅⋅⋅=∑ ⑫ [或:圆环的转动动能为22201124k E J m R ωω== ⑫ ]同理有2200014k E m R ω= ⑬根据牛顿第三定律,圆环受到小球的竖直向上作用力大小为2cos N θ,当02cos N m g θ≥ ⑭时,圆环才能沿轴上滑.由⑥⑦⑨⑩⑪⑫ ⑬式可知,⑭式可写成2220000220cos 6cos 4cos 102(4sin )ωθθθθ⎡⎤-+--≤⎢⎥+⎣⎦m R m m m m gm m ⑮式中,g 是重力加速度的大小.(2)此时由题给条件可知当=30θ︒时,⑮式中等号成立,即有20020912()m m m m m ⎤⎛-+=- ⎥+⎝⎣⎦或00(m m ω=+ ⑯由⑦⑨⑩⑯式和题给条件得0000200+4sin +m m m m m m ωωωθ== ⑰ 由⑪⑫⑬⑯⑰式和题给条件得v ⑱评分标准:本题24分.第(1)问18分,①②③④⑤式各1分,⑥⑦式各2分,⑨⑩式各1分,⑪式2分,⑫⑬式各1分,⑭式2分,⑮式1分;第(2)问6分,⑯⑰⑱式各2分.五、(20分)(1)设圆盘像到薄凸透镜的距离为v . 由题意知:20cm u =, 10cm f =,代入透镜成像公式111u f+=v ① 得像距为20cm =v ②其横向放大率为1uβ=-=-v ③可知圆盘像在凸透镜右边20cm ,半径为5cm ,为圆盘状,圆盘与其像大小一样. (2)如下图所示,连接A 、B 两点,连线AB 与光轴交点为C 点,由两个相似三角形AOC ∆与BB'C ∆的关系可求得C 点距离透镜为15cm. 1分若将圆形光阑放置于凸透镜后方6cm 处,此时圆形光阑在C 点左侧. 1分 当圆形光阑半径逐渐减小时,均应有光线能通过圆形光阑在B 点成像,因而圆盘像的形状及大小不变,而亮度变暗. 2分此时不存在圆形光阑半径a r 使得圆盘像大小的半径变为(1)中圆盘像大小的半径的一半.1分(3)若将圆形光阑移至凸透镜后方18cm 处,此时圆形光阑在C 点(距离透镜为15cm )的右侧. 由下图所示,此时有: CB'=BB'=5cm, R'B'=2cm,利用两个相似三角形CRR'∆与CBB'∆的关系,得CR'52RR'=BB'=5cm 3cm CB'5r -=⨯⨯= ④ 可见当圆盘半径3cm r =(光阑边缘与AB 相交)时,圆盘刚好能成完整像,但其亮度变暗. 4分ACO BB' CRBR'B'若进一步减少光阑半径,圆盘像就会减小.当透镜上任何一点发出的光都无法透过光阑照在原先像的一半高度处时,圆盘像的半径就会减小为一半,如下图所示.此时光阑边缘与AE相交,AE 与光轴的交点为D ,由几何关系算得D 与像的轴上距离为207cm. 此时有620DR'=cm, DE'=cm, EE'=2.5cm,77利用两个相似三角形DRR'∆与DEE'∆的关系,得DR'20/72RR'=EE'= 2.5cm 0.75cm DE'20/7a r -=⨯⨯= ⑤可见当圆形光阑半径a r =0.75cm ,圆盘像大小的半径的确变为(1)中圆盘像大小的半径的一半. 3分(4)只要圆形光阑放在C 点(距离透镜为15cm )和光屏之间,圆盘像的大小便与圆形光阑半径有关. 2分(5)若将图中的圆形光阑移至凸透镜前方6cm 处,则当圆形光阑半径逐渐减小时,圆盘像的形状及大小不变,亮度变暗; 2分同时不存在圆形光阑半径使得圆盘像大小的半径变为(1)中圆盘像大小的半径的一半. 1分评分标准:第(1)问3分,正确给出圆盘像的位置、大小、形状,各1分;第(2)问5分,4个给分点分别为1、1、2、1分; 第(3)问7分,2个给分点分别为2、3分; 第(4)问2分,1个给分点为2分;第(5)问3分,2个给分点分别为2、1分.六、(22分)(1)整个电容器相当于2N 个相同的电容器并联,可旋转金属板的转角为θ时 1()2()C NC θθ=①式中1()C θ为两相邻正、负极板之间的电容1()()4A C ksθθπ=②这里,()A θ是两相邻正负极板之间相互重迭的面积,有DRER' E'2000200200200012(2), 212(), 02()12(), 0212(2), 2R R A R R θπθθθπθθθπθθθθθπθθππθθθ⎧⨯--≤≤-⎪⎪⎪⨯+-≤≤⎪=⎨⎪⨯-≤≤-⎪⎪⎪⨯--<<⎩当当当当③由②③式得2000200120020001(2), 41(), 04()1(), 041(2), 4R ks R ksC R ks R ksθπθθθππθθθπθπθθθθπθπθππθθθπ⎧--≤≤-⎪⎪⎪+-≤≤⎪=⎨⎪-≤≤-⎪⎪⎪--<<⎩当当当当④由①④式得20002002002000(2), 2(), 02()(), 02(2), 2N R ks N R ks C N R ks N R ksθπθθθππθθθπθπθθθθπθπθππθθθπ⎧--≤≤-⎪⎪⎪+-≤≤⎪=⎨⎪-≤≤-⎪⎪⎪--<<⎩当当当当⑤(2)当电容器两极板加上直流电势差E 后,电容器所带电荷为 ()()θθ=Q C E⑥当0θ=时,电容器电容达到最大值max C ,由⑤式得 20max2NR C ksθπ=⑦充电稳定后电容器所带电荷也达到最大值max Q ,由⑥式得 20max2NR Q E ksθπ= ⑧断开电源,在转角θ取0θ=附近的任意值时,由⑤⑧式得,电容器内所储存的能量为2222max 0000() 2()4()θθθθπθθπθθ==-≤≤--Q NR E U C ks 当⑨设可旋转金属板所受力矩为()T θ(它是由若干作用在可旋转金属板上外力i F 产生的,不失普遍性,可认为i F 的方向垂直于转轴,其作用点到旋转轴的距离为i r ,其值i F 的正负与可旋转金属板所受力矩的正负一致),当金属板旋转θ∆(即从θ变为θθ+∆)后,电容器内所储存的能量增加U ∆,则由功能原理有 ()()()θθθθ∆=∆=∆=∆∑∑i i i i T F r F l U⑩式中,由⑨⑩式得22200020()() 4()θθθθθπθθπθθ∆==-≤≤-∆-NR E U T ks 当⑪当电容器电容最大时,充电后转动可旋转金属板的力矩为2204θθπ=∆⎛⎫== ⎪∆⎝⎭U NR E T ks⑫(3)当0cos V V t ω=,则其电容器所储存能量为 []222max min max min 02max min max min 020max min max min max min max min 2012111()()cos2cos 222111()()cos2(1cos2)422()()cos2()cos2()cos2cos28{(8m m m m U CV C C C C t V t C C C C t V t V C C C C t C C t C C t t V ωωωωωωωω=⎡⎤=++-⎢⎥⎣⎦⎡⎤=++-+⎢⎥⎣⎦=++++-+-=max min max min max min max min )()cos2()cos21()[cos2()cos2()]}2m m m C C C C t C C t C C t t ωωωωωω++++-+-++-⑬由于边缘效应引起的附加电容远小于max C ,因而可用⑦式估算max C .如果m ωω≠,利用⑦式和题设条件以及周期平均值公式cos2=0 cos2=0, cos2()=0, cos2()=0m m m t t t t ωωωωωω+-,⑭可得电容器所储存能量的周期平均值为 2221max min 001(1)()832NR U C C V V ksλ+=+=⑮如果m ωω=,⑭式中第4式右端不是零,而是1.利用⑦式和题设条件以及周期平均值公式的前3式得电容器所储存能量的周期平均值为222222max min 0max min 0max min 00111(3)()()(3)8161664NR U C C V C C V C C V V ksλ+=++-=+= ⑯由于边缘效应引起的附加电容与忽略边缘效应的电容是并联的,因而max C 应比用⑦式估计max C 大;这一效应同样使得min 0C >;可假设实际的max min ()C C -近似等于用⑦式估计max C .如果m ωω≠,利用⑦式和题设条件以及周期平均值公式cos2=0 cos2=0, cos2()=0, cos2()=0m m m t t t t ωωωωωω+-,⑰可得电容器所储存能量的周期平均值为2221max min 001(12)()832NR U C C V V ksλ+=+=⑱[如果m ωω=,⑭中第4式右端不是零,而是1.利用⑦式和题设条件以及周期平均值公式⑭的前3式得电容器所储存能量的周期平均值为222222max min 0max min 0max min 00111(34)()()(3)8161664NR U C C V C C V C C V V ksλ+=++-=+= ⑲]212 U U U >因为,则最大值为,所对应的m ω为m ωω=⑳评分标准:本题22分.第(1)问6分,①②式各1分,③⑤式各2分;第(2)问9分,⑥⑦⑧⑨⑩式各1分(⑩式中没有求和号的,也同样给分;没有力的符号,也给分),⑪⑫式各2分;第(3)问7分,⑬⑭式各2分,⑮⑯⑳式各1分.七、(26分)(1)通有电流i 的钨丝(长直导线)在距其r 处产生的磁感应强度的大小为m iB k r= ① 由右手螺旋定则可知,相应的磁感线是在垂直于钨丝的平面上以钨丝为对称轴的圆,磁感应强度的方向沿圆弧在该点的切向,它与电流i 的方向成右手螺旋. 两根相距为d 的载流钨丝(如图(a ))间的安培力是相互吸引力,大小为2m k Li F B Li d∆=∆= ② 考虑某根载流钨丝所受到的所有其他载流钨丝对它施加的安培力的合力.由系统的对称性可知,每根钨丝受到的合力方向都指向轴心;我们只要将其他钨丝对它的吸引力在径向的分量叠加即可.如图,设两根载流钨丝到轴心连线间的夹角为ϕ,则它们间的距离为 2sin2d r ϕ=③由②③式可知,两根载流钨丝之间的安培力在径向的分量为22sin 2sin(/2)22m m r k Li k Li F r r ϕϕ∆∆== ④它与ϕ无关,也就是说虽然处于圆周不同位置的载流钨丝对某根载流钨丝的安培力大小和方向均不同,但在径向方向上的分量大小却是一样的;而垂直于径向方向的力相互抵消.因此,某根载流钨丝所受到的所有其他载流钨丝对它施加的安培力的合力为222(1)(1)22-∆-∆==m m N k L I N k Li F r rN 内⑤ 其方向指向轴心. (2)由系统的对称性可知,所考虑的圆柱面上各处单位面积所受的安培力的合力大小相等,方向与柱轴垂直,且指向柱轴.所考虑的圆柱面,可视为由很多钨丝排布而成,N 很大,但总电流不变.圆柱面上ϕ∆角对应的柱面面积为图(a)s r L ϕ=∆∆⑥ 圆柱面上单位面积所受的安培力的合力为22(1)24m N N k Li N F P s r L ϕππ-∆∆==∆⑦由于1N ,有22(1)-=N N i I 内 ⑧ 由⑦⑧式得224π=m k I P r 内⑨ 代入题给数据得1221.0210N/m P =⨯ ⑩一个大气压约为5210N/m ,所以710atm P ≈⑪ 即相当于一千万大气压.(3)考虑均匀通电的长直圆柱面内任意一点A 的磁场强度. 根据对称性可知,其磁场如果不为零,方向一定在过A 点且平行于通电圆柱的横截面. 在A 点所在的通电圆柱的横截面(纸面上的圆)内,过A 点作两条相互间夹角为微小角度θ∆的直线,在圆上截取两段微小圆弧L 1和L 2,如图(b )所示. 由几何关系以及钨丝在圆周上排布的均匀性,通过L 1和L 2段的电流之比/I I 12等于它们到A 点的距离之比/l l 12: 111222==I L l I L l ⑫ 式中,因此有 1212=m m I I k k l l ⑬ 即通过两段微小圆弧在A 点产生的磁场大小相同,方向相反,相互抵消.整个圆周可以分为许多“对”这样的圆弧段,因此通电的外圈钨丝圆柱面在其内部产生的磁场为零,所以通电外圈钨丝的存在,不改变前述两小题的结果.(4)由题中给出的已知规律,内圈电流在外圈钨丝所在处的磁场为=m IB k R内 ⑭ 方向在外圈钨丝阵列与其横截面的交点构成的圆周的切线方向,由右手螺旋法则确定.外圈钨丝的任一根载流钨丝所受到的所有其他载流钨丝对它施加的安培力的合力为222(1)(2)+ 22-∆∆+=∆=m m m M k L I I k I k L I I I F L RM M R RM外外内外内外外 ⑮ 式中第一个等号右边的第一项可直接由⑤式类比而得到,第二项由⑭式和安培力公式得到.因此圆柱面上单位面积所受的安培力的合力为22(2)24ϕπϕπ+∆==∆∆外外内外外m F k I I I M P R L R ⑯若要求2222244ππ+>外内外内()m m k I I I k I R r ⑰ 只需满足222222 = ++<外内外内I I I R M NMr I N ⑱(5)考虑均匀通电的长直圆柱面外任意一点C 的磁场强度. 根据对称性可知,长直圆柱面上的均匀电流在该点的磁场方向一定在过C 点且平行于通电圆柱的横截面(纸面上的圆),与圆的径向垂直,满足右手螺旋法则. 在C 点所在的通电圆柱的横截面内,过C 点作两条。
第全国高中物理竞赛复赛题试卷及参考解答
额份市来比阳光实验学校本卷共七题,总分值140分.一、(20分)薄膜材料气密性能的优劣常用其透气系数来加以评判.对于均匀薄膜材料,在一温度下,某种气体通过薄膜渗透时间,过的气体分子数dPSt k N ∆=,其中t 为渗透持续S 为薄膜的面积,d 为薄膜的厚度,P ∆为薄膜两侧气体的压强差.k 称为该薄膜材料在该温度下对该气体的透气系数.透气系数愈小,材料的气密性能愈好.图为测薄膜材料对空气的透气系数的一种装置示意图.EFGI 为渗透室,U 形管左管上端与渗透室相通,右管上端封闭;U 形管内横截面积A =0.150cm 2.中,首先测得薄膜的厚度d =0.66mm ,再将薄膜固于图中C C '处,从而把渗透室分为上下两,上面的容积30cm 00.25=V ,下面连同U 形管左管水面以上的总容积为V 1,薄膜能够透气的面积S =1.00cm 2.翻开开关K 1、K 2与大气相通,大气的压强P 1=1.00atm ,此时U 形管右管中气柱长度cm 00.20=H ,31cm 00.5=V .关闭K 1、K 2后,翻开开关K 3,对渗透室上迅速充气至气体压强atm 00.20=P ,关闭K 3并开始计时.两小时后, U 形管左管中的水面高度下降了cm 00.2=∆H .过程中,始终保持温度为C 0 .求该薄膜材料在C 0 时对空气的透气系数.〔本中由于薄膜两侧的压强差在过程中不能保持恒,在压强差变化不太大的情况下,可用计时开始时的压强差和计时结束时的压强差的平均值P ∆来代替公式中的P ∆.普适气体常量R = 1Jmol -1K -1,1.00atm = 1.013×105Pa 〕.二、(20分) 两颗人造卫星绕地球沿同一椭圆轨道同向运动,它们通过轨道上同一点的时间相差半个周期.轨道近地点离地心的距离是地球半径R 的2倍,卫星通过近地点时的速度RGM 43=v ,式中M 为地球质量,G 为引力常量.卫星上装有同样的角度测量仪,可测出卫星与任意两点的两条连线之间的夹角.试设计一种测量方案,利用这两个测量仪测太空中某星体与地心在某时刻的距离.〔最后结果要求用测得量和地球半径R 表示〕 三、(15分)子在相对自身静止的惯性参考系中的平均寿命v =s 100.260-⨯≈τ.宇宙射线与大气在高空某处发生核反产生一批子,以0.99c 的速度〔c 为真空中的光速〕向下运动并衰变.根据放射性衰变律,相对给惯性参考系,假设t = 0时刻的粒子数为N (0), t 时刻剩余的的粒子数为N (t ),那么有()()τt N t N -=e 0,式中为相对该惯性系粒子平均寿命.假设能到达地面的子数为原来的5%,试估算子产生处相对于地面的高度h .不考虑重力和地磁场对子运动的影响.四、(20分)目前,大功率半导体激光器的主要结构形式是由许多发光区距离地排列在一条直线上的长条状,通常称为激光二极管条.但这样的半导体激光器发出的是很多束发散光束,光能分布很不集中,不利于传输和用.为了解决这个问题,需要根据具体用的要求,对光束进行必需的变换〔或称整形〕.如果能把一个半导体激光二极管条发出的光变换成一束很细的平行光束,对半导体激光的传输和用将是非常有意义的.为此,有人提出了先把多束发散光会聚到一点,再变换为平行光的方案,其根本原理可通过如下所述的简化了的情况来说明.第21届生物理竞赛复赛题试卷K 3K 2P 1 V 1CC ΄P 0 V 0K 1如图,S 1、S 2、S 3 是距离〔h 〕地排列在一直线上的三个点光源,各自向垂直于它们的连线的同一方向发出半顶角为束.请使=arctan ()41的圆锥形光用三个完全相同的、焦距为f = 0h 、半径为r =0.75 h 的圆形薄凸透镜,经加工、组装成一个三者在同一平面内的组合透镜,使三束光都能投射到这个组合透镜上,且经透镜折射后的光线能会聚于z 轴〔以S 2为起点,垂直于三个点光源连线,与光束中心线方向相同的射线〕上距离S 2为 L = 12.0 h 处的P 点.〔加工时可对透镜进行外形的改变,但不能改变透镜焦距.〕 1.求出组合透镜中每个透镜光心的位置.2.说明对三个透镜如何加工和组装,并求出有关数据.五、(20分)如下图,接地的空心导体球壳内半径为R ,在空腔内一直径上的P 1和P 2处,放置电量分别为q 1和q 2的点电荷,q 1=q 2=q ,两点电荷到球心的距离均为a .由静电感与静电屏蔽可知:导体空腔内外表将出现感电荷分布,感电荷电量于-2q .空腔内部的电场是由q 1、q 2和两者在空腔内外表上的感电荷共同产生的.由于我们尚不知道这些感电荷是怎样分布的,所以很难用场强叠加原理直接求得腔内的电势或场强.但理论上可以证明,感电荷对腔内电场的奉献,可用假想的位于腔外的〔效〕点电荷来代替〔在此题中假想(效)点电荷为两个〕,只要假想的〔效〕点电荷的位置和电量能满足这样的条件,即:设想将整个导体壳去掉,由q 1在原空腔内外表的感电荷的假想〔效〕点电荷1q '与q 1共同产生的电场在原空腔内外表所在位置处各点的电势皆为0;由q 2在原空腔内外表的感电荷的假想〔效〕点电荷2q '与q 2共同产生的电场在原空腔内外表所在位置处各点的电势皆为0.这样确的假想电荷叫做感电荷的效电荷,而且这样确的效电荷是唯一的.效电荷取代感电荷后,可用效电荷1q '、2q '和q 1、q 2来计算原来导体存在时空腔内部任意点的电势或场强.1.试根据上述条件,确假想效电荷1q '、2q '的位置及电量. 2.求空腔内部任意点A 的电势U A .A 点到球心O 的距离为r ,OA 与1OP 的夹角为.六、(20分)如下图,三个质量都是m 的刚性小球A 、B 、C 位于光滑的水平桌面上〔图中纸面〕,A 、B 之间,B 、C 之间分别用刚性轻杆相连,杆与A 、B 、C 的各连接处皆为“铰链式〞的〔不能对小球产生垂直于杆方向的作用力〕.杆AB 与BC 的夹角为 ,</2.DE 为固在桌面上一块挡板,它与AB 连线方向垂直.现令A 、B 、C 一起以共同的速度v 沿平行于AB 连线方向向DE 运动,在C 与挡板碰撞过程中C 与挡板之间无摩擦力作用,求碰撞时当C 沿垂直于DE 方向的速度由v 变为0这一极短时间内挡板对C 的冲量的大小.七、〔25分〕如下图,有二平行金属导轨,相距l ,位于同一水ABCπ-αDxO yv 0c a bydLS 1 3αα2 h h zrP 2P 1 θRaa平面内〔图中纸面〕,处在磁感强度为B 的匀强磁场中,磁场方向竖直向下〔垂直纸面向里〕.质量均为m 的两金属杆ab 和cd 放在导轨上,与导轨垂直.初始时刻, 金属杆ab 和cd 分别位于x = x 0和x = 0处.假设导轨及金属杆的电阻都为零,由两金属杆与导轨构成的回路的自感系数为L .今对金属杆ab 施以沿导轨向右的瞬时冲量,使它获得初速0v .设导轨足够长,0x 也足够大,在运动过程中,两金属杆之间距离的变化远小于两金属杆的初始间距0x ,因而可以认为在杆运动过程中由两金属杆与导轨构成的回路的自感系数L 是恒不变的.杆与导轨之间摩擦可不计.求任意时刻两杆的位置x ab 和x cd 以及由两杆和导轨构成的回路中的电流i 三者各自随时间t 的变化关系.第21届生物理竞赛复赛题参考解答一、开始时U 形管右管中空气的体积和压强分别为 V 2 = HA 〔1〕p 2= p 1经过2小时,U 形管右管中空气的体积和压强分别为A H H V )(2∆-='〔2〕2222V V p p '='〔3〕渗透室下部连同U 形管左管水面以上气体的总体积和压强分别为HAV V ∆+='11 〔4〕H g p p Δ221ρ+'=〔5〕式中为水的密度,g 为重力加速度.由理想气体状态方程nRT pV =可知,经过2小时,薄膜下部增加的空气的摩尔数RTV p RT V p n 1111-''=∆ 〔6〕在2个小时内,通过薄膜渗透过去的分子数 A nN N ∆=〔7〕式中N A 为阿伏伽德罗常量.渗透室上部空气的摩尔数减少,压强下降.下降了p0V ΔnRTp =∆ 〔8〕经过2小时渗透室上中空气的压强为p p p ∆-='00〔9〕测试过程的平均压强差[])(211010p p ()p p p '-'+-=∆ 〔10〕根据义,由以上各式和有关数据,可求得该薄膜材料在0℃时对空气的透气系数11111s m Pa 104.2---⨯=∆=tSp Nd k 〔11〕评分: 此题20分.(1)、(2)、(3)、(4)、(5)式各1分,(6)式3分,(7)、(8)、(9)、(10) 式各2分,(11) 式4分.二、如图,卫星绕地球运动的轨道为一椭圆,地心位于轨道椭圆的一个焦点O处,设待测量星体位于C 处.根据题意,当一个卫星运动到轨道的近地点A 时,另一个卫星恰好到达远地点B 处,只要位于A 点的卫星用角度测量仪测出AO和AC 的夹角1,位于B 点的卫星用角度测量仪测出BO 和BC 的夹角2,就可以计算出此时星体C 与地心的距离OC .因卫星椭圆轨道长轴的长度远近+r r AB =(1)式中r 近、与r 远分别表示轨道近地点和远地点到地心的距离.由角动量守恒远远近近=r m r v mv (2)式中m 为卫星的质量.由机械能守恒远远近近--r GMm m r GMm m 222121v v = (3) R r 2=近, RGM 43=近v得 R r 6=远(4) 所以R R R AB 862=+=(5)在△ABC 中用正弦理 ()ABBC 211πsin sin ααα--=(6) 所以()AB BC 211sin sin ααα+=(7)地心与星体之间的距离为OC ,在△BOC 中用余弦理2222cos 2αBC r BC r OC ⋅-+=远远(8)由式(4)、(5)、(7)得 ()()212121212sin cos sin 24sin sin 1692ααααααα+-++=R OC (9)评分:此题20分.(1)式2分,(2)、(3)式各3分,(6) 、(8)式各3分, (9) 式6分.三、因子在相对自身静止的惯性系中的平均寿命根据时间膨胀效,在地球上观测到的子平均寿命为,()21c v -=ττ (1)代入数据得= ×10-5s(2) 相对地面,假设子到达地面所需时间为t ,那么在t 时刻剩余的子数为()()τt N t N -=e 0(3)根据题意有()()%5e 0==-τt N t N(4)对上式号两边取e 为底的对数得1005lnτ-=t (5)代入数据得s 1019.45-⨯=t (6)根据题意,可以把子的运动看作匀速直线运动,有t h v =(7)代入数据得 m 1024.14⨯=h(8)评分:此题15分. (1)式或(2)式6分,(4)式或(5)式4分,(7) 式2分,(8) 式3分.四、1.考虑到使3个点光源的3束光分αLS 1 α2h h 1S ' S 3’O 1 O 2(S 2’) O 3M ’u别通过3个透镜都成实像于P 点的要求,组合透镜所在的平面垂直于z 轴,三个光心O 1、O 2、O 3的连线平行于3个光源的连线,O 2位于z 轴上,如图1所示.图中M M '表示组合透镜的平面,1S '、2S '、3S '为三个光束中心光线与该平面的交点. 22O S = u 就是物距.根据透镜成像公式 fu L u111=-+(1)可解得因为要保证经透镜折射后的光线都能会聚于P 点,来自各光源的光线在投射到透镜之前不能交叉,必须有2u tan ≤h 即u ≤2h .在上式中取“-〞号,代入f 和L 的值,算得 h u )236(-=≈57h (2) 此解满足上面的条件.分别作3个点光源与P 点的连线.为使3个点光源都能同时成像于P 点,3个透镜的光心O 1、O 2、O 3分别位于这3条连线上〔如图1〕.由几何关系知,有h h h L u L O O O O 854.0)24121(3221≈+=-==(3)即光心O 1的位置在1S '之下与1S '的距离为h O O h O S 146.02111=-=' (4) 同理,O 3的位置在3S '之上与3S '的距离为0.146h 处.由(3)式可知组合透镜中相邻薄透镜中心之间距离必须于0.854h ,才能使S 1、S 2、S 3都能成像于P 点. 2.现在讨论如何把三个透镜L 1、L 2、L 3加工组装成组合透镜.因为三个透镜的半径r = 0.75h ,将它们的光心分别放置到O 1、O 2、O 3处时,由于21O O =32O O =0.854h <2r ,透镜必然发生相互重叠,必须对透镜进行加工,各切去一,然后再将它们粘起来,才能满足(3)式的要求.由于对称关系,我们只需讨论上半的情况.图2画出了L 1、L 2放在M M '平面内时相互交叠的情况〔纸面为M M '平面〕.图中C 1、C 2表示L 1、L 2的边缘,1S '、2S '为光束中心光线与透镜的交点,W 1、W 2分别为C 1、C 2与O 1O 2的交点.1S '为圆心的圆1和以2S '〔与O 2重合〕为圆心的圆2分别是光源S 1和S 2投射到L 1和L 2时产生的光斑的边缘,其半径均为 h u 439.0tan ==αρ (5) 根据题意,圆1和圆2内的光线必须能进入透镜.首先,圆1的K 点〔见图2〕是否落在L 1上?由几何关系可知()h r h h S O K O 75.0585.0146.0439.0111=<=+='+=ρ (6) 故从S 1发出的光束能进入L 1.为了保证光束能进入透镜组合,对L 1和L 2进行加工时必须保存圆1和圆2内的透镜.下面举出一种对透镜进行加工、组装的方法.在O 1和O 2之间作垂直于O 1O 2且分别与圆1和圆2相切的切线Q Q '和N N '.假设沿位于Q Q '和N N '之间且与它们平行的任意直线T T '对透镜L 1和L 2进行切割,去掉两透镜的弓形,然后把它们沿此线粘合就得到符合所需组合透镜的上半部.同理,对L 2的下半部和L 3进行切割,然后将L 2的下半部和L 3粘合起来,就得到符合需要的整个组合透镜.这个组合透镜可以将S 1、S 2、S 3发出的光线都会聚到P 点.0.146h 0.854h 0.439h0.439h h S 1’O 2 (S 2’)O 1W 1W 2 Q Q ’ N N ’TT ’ C 1 C 2’圆1 圆2图2 xx K现在计算Q Q '和N N '的位置以及对各个透镜切去的大小符合的条件.设透镜L 1被切去沿O 1O 2方向的长度为x 1,透镜L 2被切去沿O 1O 2方向的长度为x 2,如图2所示,那么对任意一条切割线T T ', x 1、x 2之和为h O O r x x d 646.022121=-=+=〔7〕由于T T '必须在Q Q '和N N '之间,从图2可看出,沿Q Q '切割时,x 1达最大值(x 1M ),x 2达最小值(x 2m ),代入r ,和11O S '的值,得h x M 457.01=(8)代入(7)式,得h x d x M m 189.012=-=(9)由图2可看出,沿N N '切割时,x 2达最大值(x 2M ),x 1达最小值(x 1m ), 代入r 和的值,得h x M 311.02= (10)h x d x M m 335.021=-=〔11〕由对称性,对L 3的加工与对L 1相同,对L 2下半部的加工与对上半部的加工相同. 评分:此题20分.第1问10分,其中〔2〕式5分,〔3〕式5分,第2问10分,其中(5)式3分,(6)式3分,(7)式2分,(8)式、(9)式共1分,(10)式、(11)式共1分.如果学生解答中没有(7)—(11)式,但说了“将图2中三个圆锥光束照射到透镜保存,透镜其它可根据需要磨去〔或切割掉〕〞给3分,再说明将加工后的透镜组装成透镜组合时必须保证O 1O 2=O 1O 2=0.854h ,再给1分,即给(7)—(11)式的全分〔4分〕. 五、1.解法Ⅰ:如图1所示,S 为原空腔内外表所在位置,1q '的位置位于1OP 的线上的某点B 1处,2q '的位置位于2OP 的线上的某点B 2处.设A 1为S 面上的任意一点,根据题意有0111111='+B A q kP A q k(1)0212212='+B A q kP A q k (2)怎样才能使 (1) 式成立呢?下面分析图1中11A OP ∆与11B OA ∆的关系.假设效电荷1q '的位置B 1使下式成立,即211R OB OP =⋅ (3) 即 1111OB OA OA OP =(4)那么 1111B OA A OP ∽△△有RaOA OP B A P A ==111111 (5)由 (1)式和 (5)式便可求得效电荷1q '11q aRq -=' (6)由 (3) 式知,效电荷1q '的位置B 1到原球壳中心位置O 的距离aR OB 21=(7)同理,B 2的位置使2112B OA A OP ∽△△,用类似的方法可求得效电荷22q aRq -=' (8)B 2B 1P 2 P 1O Ra a θ图1SA 1效电荷2q '的位置B 2到原球壳中心O 位置的距离 aR OB 22=(9)解法Ⅱ:在图1中,设111r P A =,111r B A '=,d OB =1.根据题意,1q 和1q '两者在A 1点产生的电势和为零.有01111=''+r q k r q k 〔1'〕 式中1221)cos 2(θRa a R r -+= 〔2'〕1221)cos 2(θRd d R r -+=' 〔3'〕 由〔1'〕、〔2'〕、〔3'〕式得)cos 2()cos 2(22212221θθRa a R q Rd d R q -+'=-+ 〔4'〕 〔4'〕式是以θcos 为变量的一次多项式,要使〔4'〕式对任意θ均成立,号两边的相系数相,即)()(22212221a R q d R q +'=+ 〔5'〕a q d q 2121'=〔6'〕由〔5'〕、〔6'〕式得0)(2222=++-aR d R a ad 〔7'〕 解得aR a R a d 2)()(2222-±+=〔8'〕由于效电荷位于空腔外部,由〔8'〕式求得aR d 2=〔9'〕由〔6'〕、〔9'〕式有212221q aR q =' 〔10'〕考虑到〔1'〕式,有11q aRq -=' 〔11'〕 同理可求得aR OB 22=〔12'〕22q aR q -=' 〔13'〕2.A 点的位置如图2所示.A 的电势由q 1、1q '、q 2、2q '共同产生,即 ⎪⎪⎭⎫ ⎝⎛-+-=A B a R A P A B a R A P kq U A 22111111 (10)因22221cos 2⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-=a R aR r r A B θ代入 (10) 式得图2⎪⎪⎭⎫++-+++422222cos 2cos 21R raR r a Ra ra r θθ (11)评分:此题20分.第1问18分,解法Ⅰ中(1)、(2)、(6)、(7)、(8)、(9) 式各3分.解法Ⅱ的评分可参考解法Ⅰ. 第2问2分,即(11)式2分.六、令I 表示题述极短时间t 内挡板对C 冲量的大小,因为挡板对C 无摩擦力作用,可知冲量的方向垂直于DE ,如下图;I '表示B 、C 间的杆对B 或C 冲量的大小,其方向沿杆方向,对B 和C 皆为推力;C v 表示t 末了时刻C 沿平行于DE方向速度的大小,B v 表示t 末了时刻B 沿平行于DE 方向速度的大小,⊥B v 表示t 末了时刻B 沿垂直于DE 方向速度的大小.由动量理, 对C 有Cm I v ='αsin (1) v m I I ='-αcos(2)对B 有B m I v ='αsin(3)对AB 有()⊥-='B m I v v 2cos α(4)因为B 、C 之间的杆不能伸、缩,因此B 、C 沿杆的方向的分速度必相.故有αααsin cos sin B B C v v v -=⊥(5)由以上五式,可解得v m I αα22sin 31sin 3++= (6)评分:此题20分. (1)、(2)、(3)、(4)式各2分. (5)式7分,(6)式5分. 七、解法Ⅰ:当金属杆ab 获得沿x 轴正方向的初速v 0时,因切割磁力线而产生感电动势,由两金属杆与导轨构成的回路中会出现感电流.由于回路具有自感系数,感电流的出现,又会在回路中产生自感电动势,自感电动势将阻碍电流的增大,所以,虽然回路的电阻为零,但回路的电流并不会趋向无限大,当回路中一旦有了电流,磁场作用于杆ab 的安培力将使ab 杆减速,作用于cd 杆的安培力使cd 杆运动.设在任意时刻t ,ab 杆和cd 杆的速度分别为v 1和v 2〔相对地面参考系S 〕,当v 1、v 2为正时,表示速度沿x 轴正方向;假设规逆时针方向为回路中电流和电动势的正方向,那么因两杆作切割磁力线的运动而产生的感电动势()21v v -=Bl E(1)当回路中的电流i 随时间的变化率为t i ∆∆时,回路中的自感电动势tiLL ∆∆-=E (2)根据欧姆律,注意到回路没有电阻,有0=+L E E(3)金属杆在导轨上运动过程中,两杆构成的系统受到的水平方向的合外力为零,系统的质心作匀速直线运动.设系统质心的速度为V C ,有 C mV m 20=v(4)得B ACπ-αD20v =C V (5)V C 方向与v 0相同,沿x 轴的正方向.现取一的参考系S ',它与质心固连在一起,并把质心作为坐标原点O ',取坐标轴x O ''与x 轴平行.设相对S '系,金属杆ab 的速度为u ,cd 杆的速度为u ',那么有 u V C +=1v (6)u V C '+=2v(7)因相对S '系,两杆的总动量为零,即有0='+u m mu(8) 由(1)、(2)、(3)、(5)、(6) 、(7) 、(8)各式,得ti LBlu ∆∆=2 (9)在S '系中,在t 时刻,金属杆ab 坐标为x ',在t +t 时刻,它的坐标为x x '∆+',那么由速度的义tx u ∆'∆=(10)代入 (9) 式得i L x Bl ∆='∆2(11)假设将x '视为i 的函数,由〔11〕式知i x ∆'∆为常数,所以x '与i 的关系可用一直线方程表示b i BlLx +='2 (12)式中b 为常数,其值待.现在t =时刻,金属杆ab 在S '系中的坐标x '=021x ,这时i = 0,故得0212x i Bl L x +=' (13)或⎪⎭⎫⎝⎛-'=0212x x L Bl i (14)021x 表示t =时刻金属杆ab 的位置.x '表示在任意时刻t ,杆ab 的位置,故⎪⎭⎫⎝⎛-'021x x 就是杆ab 在t 时刻相对初始位置的位移,用X 表示,021x x X -'= (15)当X >0时,ab 杆位于其初始位置的右侧;当X <0时,ab 杆位于其初始位置的左侧.代入(14)式,得X LBli 2= (16)这时作用于ab 杆的安培力XLl B iBl F 222-=-= (17)ab 杆在初始位置右侧时,安培力的方向指向左侧;ab 杆在初始位置左侧时,安培力的方向指向右侧,可知该安培力具有弹性力的性质.金属杆ab 的运动是简谐振动,振动的周期()Ll B m T 222π2= (18)在任意时刻t , ab 杆离开其初始位置的位移⎪⎭⎫⎝⎛+=ϕt T A X π2cos(19)A 为简谐振动的振幅,为初相位,都是待的常量.通过参考圆可求得ab 杆的振动速度⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-=ϕt TT A u π2sin π2(20)(19)、(20)式分别表示任意时刻ab 杆离开初始位置的位移和运动速度.现在t =0时刻,ab 杆位于初始位置,即X = 0速度故有解这两式,并注意到(18)式得2π3=ϕ(21)22400mLBlT A vv ==π (22)由此得ab 杆的位移t TmL Bl t TmL BlX π2sin 222π3π2cos 2200v v =⎪⎭⎫ ⎝⎛+=〔23〕由 (15) 式可求得ab 杆在S '系中的位置t TmL Blx x π2sin 222100abv +=' (24)因相对质心,任意时刻ab 杆和cd 杆都在质心两侧,到质心的距离相,故在S '系中,cd 杆的位置t TmL Blx x π2sin 222100cdv --='(25) 相对地面参考系S ,质心以021v =C V 的速度向右运动,并注意到〔18〕式,得ab杆在地面参考系中的位置t mL Bl mL Blt x x ⎪⎪⎭⎫ ⎝⎛++=2sin 2221000ab v v (26)cd 杆在S 系中的位置t mL Bl mL Blt x ⎪⎪⎭⎫ ⎝⎛-=2sin 222100cd v v 〔27〕回路中的电流由 (16) 式得t mL Bl L m t T mL BlL Bl i ⎪⎪⎭⎫ ⎝⎛==2sin 2π2sin 22200v v (28)解法Ⅱ:当金属杆在磁场中运动时,因切割磁力线而产生感电动势,回路中出现电流时,两金属杆都要受到安培力的作用,安培力使ab 杆的速度改变,使cd 杆运动.设任意时刻t ,两杆的速度分别为v 1和v 2〔相对地面参考系S 〕,假设规逆时针方向为回路电动势和电流的正方向,那么由两金属杆与导轨构成的回路中,因杆在磁场中运动而出现的感电动势为()21v v -=Bl E(1’)令u 表示ab 杆相对于cd 杆的速度,有Blu L =E(2’)当回路中的电流i 变化时,回路中有自感电动势E L ,其大小与电流的变化率成正比,即有tiLL ∆∆-=E (3’)根据欧姆律,注意到回路没有电阻,有由式(2’)、(3’)两式得tiLBlu ∆∆= (4’)设在t 时刻,金属杆ab 相对于cd 杆的距离为x ',在t +t 时刻,ab 相对于cd 杆的距离为x '+x '∆,那么由速度的义,有tx u ∆'∆=(5’)代入 4' 式得i L x Bl ∆='∆(6’)假设将x '视为i 的函数,由(6’)式可知,i x ∆'∆为常量,所以x '与i 的关系可以用一直线方程表示,即b i BlLx +=' (7’)式中b 为常数,其值待.现在t =时刻,金属杆ab 相对于cd 杆的距离为0x ,这时i = 0,故得 0x i Bl Lx +=' (8’) 或()0x x L Bli -'= (9’)0x 表示t =时刻金属杆ab 相对于cd 杆的位置.x '表示在任意时刻t 时ab杆相对于cd 杆的位置,故()0x x -'就是杆ab 在t 时刻相对于cd 杆的相对位置相对于它们在t =时刻的相对位置的位移,即从t =到t =t 时间内ab 杆相对于cd 杆的位移0x x X -'=(10')于是有X L Bli = (11’)任意时刻t ,ab 杆和cd 杆因受安培力作用而分别有加速度a ab 和a cd ,由牛顿律有 ab ma iBl =- (12’)cd ma iBl =(13’)两式相减并注意到9'式得()XLl B iBl a a m 22cd ab22-=-=- (14’)式中()cd ab a a -为金属杆ab 相对于cd 杆的加速度,而X 是ab 杆相对cd 杆相对位置的位移.Ll B 222是常数,说明这个相对运动是简谐振动,它的振动的周期()Ll B m T 222π2= (15’)在任意时刻t ,ab 杆相对cd 杆相对位置相对它们初始位置的位移⎪⎭⎫⎝⎛+=ϕt T A X π2cos(16’)A 为简谐振动的振幅,为初相位,都是待的常量.通过参考圆可求得X 随时间的变化率即速度⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=ϕT T A V π2sin π2(17’)现在t =0时刻,杆位于初始位置,即X = 0,速度0v =V 故有解这两式,并注意到(15’) 式得由此得t mL Bl mL Bl t TmL BlX ⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+=2sin 22π3π2cos 200v v (18’)因t = 0时刻,cd 杆位于x = 0 处,ab 杆位于x = x 0 处,两者的相对位置由x 0表示;设t 时刻,cd 杆位于x = x cd 处,ab 杆位于x = x ab 处,两者的相对位置由x ab -x cd 表示,故两杆的相对位置的位移又可表示为X = x ab -x cd -x 0(19’)所以t mL Bl mL Blx x x ⎪⎪⎭⎫ ⎝⎛+=-2sin 200cd ab v (20’)(12’)和(13’)式相加, 得由此可知,两杆速度之和为一常数即v 0,所以两杆的位置x ab 和x cd 之和为x ab +x cd = x 0+v 0t (21’)由(20’)和(21’)式相加和相减,注意到(15’)式,得 t mL BlmL Bl t x x ⎪⎪⎭⎫ ⎝⎛++=2sin 2221000ab v v 〔22’〕t mL Bl mL Blt x ⎪⎪⎭⎫ ⎝⎛-=2sin 222100cd v v 〔23’〕由(11’)、〔19’〕(22’)、(23’)式得回路中电流t mL Bl L m i ⎪⎪⎭⎫ ⎝⎛=2sin 20v 〔24’〕评分:此题25分.解法Ⅰ 求得(16)式8分,(17)、(18)、(19)三式各2分. (23)式4分,(24)、(25)二式各2分,(26)、(27)、(28)三式各1分.解法Ⅱ的评分可参照解法Ⅰ评分中的相式子给分.。
第届全国中学生物理竞赛复赛试题及答案
第23届全国中学生物理竞赛复赛试卷一、(23分)有一竖直放置、两端封闭的长玻璃管,管内为真空,管内有一小球自某处自由下落(初速度为零),落到玻璃管底部时与底部发生弹性碰撞.以后小球将在玻璃管内不停地上下跳动。
现用支架固定一照相机,用以拍摄小球在空间的位置。
每隔一相等的确定的时间间隔T拍摄一张照片,照相机的曝光时间极短,可忽略不计。
从所拍到的照片发现,每张照片上小球都处于同一位置。
求小球开始下落处离玻璃管底部距离(用H表示)的可能值以及与各H值相应的照片中小球位置离玻璃管底部距离的可能值。
二、(25分)如图所示,一根质量可以忽略的细杆,长为2l,两端和中心处分别固连着质量为m的小球B、D和C,开始时静止在光滑的水平桌面上。
桌面上另有一质量为M的小球A,以一给定速度v沿垂直于杆DB的方间与右端小球B作弹性碰撞。
求刚碰后小球A,B,C,D的速度,并详细讨论以后可能发生的运动情况。
三、(23分)有一带活塞的气缸,如图1所示。
缸内盛有一定质量的气体。
缸内还有一可随轴转动的叶片,转轴伸到气缸外,外界可使轴和叶片一起转动,叶片和轴以及气缸壁和活塞都是绝热的,它们的热容量都不计。
轴穿过气缸处不漏气。
如果叶片和轴不转动,而令活塞缓慢移动,则在这种过程中,由实验测得,气体的压强p和体积V遵从以下的过程方程式图1其中a,k均为常量, a>1(其值已知)。
可以由上式导出,在此过程中外界对气体做的功为式中2V 和1V ,分别表示末态和初态的体积。
如果保持活塞固定不动,而使叶片以角速度ω做匀角速转动,已知在这种过程中,气体的压强的改变量p ∆和经过的时间t ∆遵从以 图2 下的关系式式中V 为气体的体积,L 表示气体对叶片阻力的力矩的大小。
上面并没有说气体是理想气体,现要求你不用理想气体的状态方程和理想气体的内能只与温度有关的知识,求出图2中气体原来所处的状态A 与另一已知状态B 之间的内能之差(结果要用状态A 、B 的压强A p 、B p 和体积A V 、B V 及常量a 表示) 四、(25分)图1所示的电路具有把输人的交变电压变成直流电压并加以升压、输出的功能,称为整流倍压电路。
高中物理竞赛复赛模拟试题(有答案)
高中物理竞赛模拟试题〔复赛〕一、某一构件由两个菱形组成,AB 和DE 是两根硬杆,各焦点都用铰链连接,大菱形的边长是2l ,小菱形的边长是l ,现设法使顶点F 以加速度a 水平向右运动,求: 〔1〕C 点的加速度多大?〔2〕当两个菱形都是正方形,F 点的速度为ν时,A 点的加速度的大小和方向。
二、长为L 的杆AO 用铰链固定在O 点,以角速度ω围绕O 点转动,在O 点的正上方有一个定滑轮B ,一轻绳绕过B 滑轮的一端固定在杆的A 端,另一端悬挂一质量为M 的重物C ,O 、B 之间的距离为h ,求:〔1〕当AB 绳与竖直方向成θ角时,重物的运动速度; 〔2〕此时绳上的张力为多少?三、一对半径为r 的轻轮安装在一根细轴上它们共同以某一速度ν沿图示的平面向右滚动。
斜面与平面接触的顶角A 处足够粗糙〔即轮不会产生滑动〕,斜面与水平面成α角,要求轮从平面滚动到斜面时不要离开顶角,问ν的最大值为多少?四、一架大型民航飞机在降落到机场前撞上一只正在飞行的天鹅,试估算,天鹅转击飞机的力为多少〔只要数量级正确即可〕?五、有一汽缸,除底部外都是绝热的。
上面是一个不计重量的活塞,中间是固定的导热隔板,把汽缸分成相等的两局部A 和B ,上下各有1mol 氮气,现从底部将350J 的热量传送给气体,求:〔1〕A 、B 内的气体温度各改变了多少? 〔2〕它们各吸收了多少热量?假设是将中间的隔板变成一个导热的活塞其他条件不变,如此A 、B 的温度又是多少?〔不计一切摩擦〕A六、两个绝缘的相距较远的球形导体,半径分别为r 1、r 2,带电后电势分别为ν1和ν2,假设用细导线将两个球连接起来,求在导线上放出的电量。
七、一个正方形的导线框ABCD ,边长为l ,每边的电阻为R ,在它中点处内接一个小一些的正方形线框EFGH ,然后在各边中点在内接一个更小的正方形导线框 一直下去,直至无穷。
如果所有正方形导线框用的导线都是一样的,所有接触点接触良好。
第 届全国中学生物理竞赛复赛试题及答案
化的电压VAB (VAB VA VB ,图中只画出了一个周期的图线),电压的最大值和最小值分
别为 V0 和-V0,周期为T 。若以 表示每个周期中电压处于最大值的时间间隔,则电压处 于最小值的时间间隔为 T- 。已知 的值恰好使在 VAB 变化的第一个周期内通过电容器到
体积内的磁场中,磁场方向沿圆柱的轴线,圆柱的轴线过圆环的圆心并与环面垂直。圆中两
个同心的实线圆代表圆环的边界,与实线圆同心的虚线圆为电子在加速过程中运行的轨道。
已知磁场的磁感应强度 B 随时间 t 的变化规律为 B B0 cos(2t / T ) ,其中T 为磁场变化的
周期。B0 为大于 0 的常量。当 B 为正时,磁场的方向垂直于纸面指向纸外。若持续地将初
定这一温区的温度。在设计温度计时,要保证当 B 处于温度低于TV 25K 时,B 中一定要
有液态氢存在,而当温度高于TV 25K 时,B 中无液态氢。到达到这一目的,VM VE 与
VB 间应满足怎样的关系?已知TV 25K 时,液态氢的饱和蒸气压 pV 3.3105 Pa 。
3、已知室温下压强 p1 1.04105 Pa 的氢气体积是同质量的液态氢体积的 800 倍,试论证
用球与横梁的撞击点到横梁轴线的垂线与水平方向(垂直于横梁的轴线)的夹角 (小于
90 )来表示。不计空气及重力的影响。
四、(20 分)图示为低温工程中常用的一种气体、蒸气压联合温度计的原理示意图,M 为指 针压力表,以 VM 表示其中可以容纳气体的容积;B 为测温饱,处在待测温度的环境中,以 VB 表示其体积;E 为贮气容器,以 VE 表示其体积;F 为阀门。M、E、B 由体积可忽略的毛
第届全国中学生物理竞赛复赛试题及答案
第31届全国中学生物理竞赛复赛理论考试试题解答2014年9月20日一、(12 分) (1) 球形(2) 液滴的半径r 、密度和表面张力系数(或液滴的质量 m 和表面张力系数)(3)解法一假设液滴振动频率与上述物理量的关系式为f k r①式中,比例系数k 是一个待定常数.任一物理量a 可写成在某一单位制中的单位 [a]和相应的数值{a}的乘 积a {a}[ a].按照这一约定,①式在同一单位制中可写成由于取同一单位制,上述等式可分解为相互独立的数值等式和单位等式,因而[f] [r][][]②力学的基本物理量有三个:质量 m 、长度I 和时间t ,按照前述约定,在该单位制中有m {m}[ m],I {l}[l],t {t}[ t]式中,比例系数k 是一个待定常数.任一物理量a 可写成在某一单位制中的单位 积a {a}[ a].在同一单位制中,①式两边的物理量的单位的乘积必须相等[f ] [r][][]②力学的基本物理量有三个:质量M 、长度L 和时间T ,对应的国际单位分别为千克 f 的单位[f ]为s 1,半径r 的单位[门为m ,密度 的单位[]为1 2 1 2的单位[]为N m 二kg (m s ) m kg s ,即有[f] s 1③[r] m④[]kg m 3⑤[]kg s 2⑥若要使①式成立,必须满足s 1 m kg m 3 kg s 2 (kg ) m 3 s 2⑦由于在力学中质量 M 、长度L 和时间T 的单位三者之间的相互独立性,有3 0,⑧于是[f][t] 1 ③ [][m][l] 3⑤将③④⑤⑥式代入②式得[t] [r] [I][][m][t][I] ([m][l]3) ([m][t]2) 即[t] 1[l] 3 [m] [t] 2由于在力学中[m]、[l]和[t]三者之间的相互独立性,有解为3 0, 0,21 3 112,2,2?将?式代入①式得解法二假设液滴振动频率与上述物理量的关系式为kr[a]和相应的数值{a}的乘 (kg )、米(m )、秒(s ).在国际单位制中,振动频率3 __kg m ,表面张力系数0,⑨解为3 1 1 2,2,2将?式代入①式得问2分,答案正确2分;第(2)问3分,答案正确3分;第(3)问7分, ⑦式2分,?式3分,?式2分(答案为f 二、(16 分)解法一:瓶内理想气体经历如下两个气体过程: 其中,(P i ,V o ,T o ,NJ,( p o ,V o ,T,N f )和(p f ,V o ,T o ,N f )分别是瓶内气体在初态、中间态与末态的压强、 体积、温度和摩尔数.根据理想气体方程 pV NkT ,考虑到由于气体初、末态的体积和温度相等,有P f N f P iN i另一方面,设V 是初态气体在保持其摩尔数不变的条件下绝热膨胀到压强为p 0时的体积,即此绝热过程满足1/V o V _P oP i②由状态方程有p o vN i kT 和 p o V ofkT ,所以N f N i V o V③联立①②③式得P f 1/Po ④pP i此即lnRP o⑤In P iP f由力学平衡条件有P P o gh i⑥P f P ogh f⑦式中,p ogh o 为瓶外的大气压强,是U 形管中液体的密度,g 是重力加速度的大小•由⑤⑥⑦式得lnd P ) _________ h oh i h fln(1 十)ln(1 -)h o h o当 x = 1, ln(1 x) x ,以及 h / 馆=1, h f / h 0 = 1,有h /h °h h i /h o h f /h oh h f⑨评分标准:本题16分•①②③⑤⑥⑦⑧⑨式各 2分.解法二:若仅考虑留在容器内的气体:它首先经历了一个绝热膨胀过程 末态评分标准:本题12分.第(1)利用近似关系式:ab,再通过等容升温过程 be 达到其中,(P iM ,T o ),( P O ,V O ,T )和(P f ,V o ,T o )分别是留在瓶内的气体在初态、中间态和末态的压强、体积与 温度•留在瓶内的气体先后满足绝热方程和等容过程方程P f由力学平衡条件有|n(1却h i h f ln(1 -) ln(1 -)h o h o利用近似关系式:当x = 1, ln(1 x) x ,以及h / h o = 1, h f / h o = 1,有h /h o h h i /h o h f /h oh h f⑧评分标准:本题16分.①②式各3分,④⑤⑥⑦⑧式各 2分. 三、(20分) (1)平板受到重力F C 、拉力Q M O 、铰链对三角形板的作用力N A 和N B ,各力及其作用点的坐标分别为:F C (O, mg sin , mg cos ), (O,O, h)QM O(O,Q,O), (X o ,O, Z o );N A b(N Ax ,N Ay ,N Az ),(JO,。
全国中学生物理竞赛复赛试题及参考答案
全国中学生物理竞赛复赛考试试题解答与评分标准一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g .参考解答:以滑块和地球为系统,它在整个运动过程中机械能守恒. 滑块沿半球面内侧运动时,可将其速度v 分解成纬线切向 (水平方向)分量ϕv 及经线切向分量θv . 设滑块质量为m ,在某中间状态时,滑块位于半球面内侧P 处,P 和球心O 的连线与水平方向的夹角为θ. 由机械能守恒得2220111sin 222m mgR m m ϕθθ=-++v v v (1) 这里已取球心O 处为重力势能零点. 以过O 的竖直线为轴. 球面对滑块的支持力通过该轴,力矩为零;重力相对于该轴的力矩也为零. 所以在整个运动过程中,滑块相对于轴的角动量守恒,故0cos m R m R ϕθ=v v . (2)由 (1) 式,最大速率应与θ的最大值相对应max max ()θ=v v . (3)而由 (2) 式,q 不可能达到π2. 由(1)和(2)式,q 的最大值应与0θ=v 相对应,即max ()0θθ=v . (4)[(4)式也可用下述方法得到:由 (1)、(2) 式得22202sin tan 0gR θθθ-=≥v v .若sin 0θ≠,由上式得220sin 2cos gRθθ≤v .实际上,sin =0θ也满足上式。
由上式可知max 22max 0sin 2cos gRθθ=v .由(3)式有222max max 0max ()2sin tan 0gR θθθθ=-=v v . (4’)将max ()0θθ=v 代入式(1),并与式(2)联立,得()2220max max max sin 2sin 1sin 0gR θθθ--=v . (5)以max sin θ为未知量,方程(5)的一个根是sin q =0,即q =0,这表示初态,其速率为最小值,不是所求的解. 于是max sin 0θ≠. 约去max sin θ,方程(5)变为22max 0max 2sin sin 20gR gR θθ+-=v . (6)其解为20maxsin 14gR θ⎫=-⎪⎪⎭v . (7)注意到本题中sin 0θ≥,方程(6)的另一解不合题意,舍去. 将(7)式代入(1)式得,当max θθ=时,(22012ϕ=v v ,(8) 考虑到(4)式有max ==v评分标准:本题15分. (1)式3分, (2) 式3分,(3) 式1分,(4) 式3分, (5) 式1分,(6) 式1分,(7) 式1分, (9) 式2分.二、(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为m α(α为常数)的小物块B ,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动. 一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略. 一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连. 一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D ,并与之发生完全弹性正碰,碰撞时间极短. 碰撞 时滑块C 恰好静止在距轴为r (r >l )处.1. 若碰前滑块A 的速度为0v ,求碰撞过程中轴受到的作用力的冲量;2. 若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度0v 应满足的条件.参考解答:1. 由于碰撞时间t ∆很小,弹簧来不及伸缩碰撞已结束. 设碰后A 、C 、D 的速度分别为A v 、C v 、D v ,显然有D C2l r =v v . (1)以A 、B 、C 、D 为系统,在碰撞过程中,系统相对于轴不受外力矩作用,其相对于轴的角动量守恒D C A 0222m l m r m l m l ++=v v v v . (2)由于轴对系统的作用力不做功,系统内仅有弹力起作用,所以系统机械能守恒. 又由于碰撞时间t ∆很小,弹簧来不及伸缩碰撞已结束,所以不必考虑弹性势能的变化. 故2222D C A 011112222m m m m ++=v v v v . (3) 由 (1)、(2)、(3) 式解得2200022222248,,888C D A lr l r l r l r l r===-+++v v v v v v (4)[代替 (3) 式,可利用弹性碰撞特点0D A =-v v v . (3’) 同样可解出(4). ]设碰撞过程中D 对A 的作用力为1F ',对A 用动量定理有221A 0022428l r F t m m m l r+'∆=-=-+v v v ,(5)方向与0v 方向相反. 于是,A 对D 的作用力为1F 的冲量为221022428l r F t m l r+∆=+v (6)方向与0v 方向相同.以B 、C 、D 为系统,设其质心离转轴的距离为x ,则22(2)2mr m l l r x m αα++==++. (7)质心在碰后瞬间的速度为C 0224(2)(2)(8)l l r x r l r α+==++v v v . (8) 轴与杆的作用时间也为t ∆,设轴对杆的作用力为2F ,由质心运动定理有()210224(2)28l l r F t F t m m l rα+∆+∆=+=+v v . (9) 由此得2022(2)28r l r F t m l r-∆=+v . (10) 方向与0v 方向相同. 因而,轴受到杆的作用力的冲量为2022(2)28r l r F t m l r -'∆=-+v ,(11) 方向与0v 方向相反. 注意:因弹簧处在拉伸状态,碰前轴已受到沿杆方向的作用力;在碰撞过程中还有与向心力有关的力作用于轴. 但有限大小的力在无限小的碰撞时间内的冲量趋于零,已忽略.[代替 (7)-(9) 式,可利用对于系统的动量定理21C D F t F t m m ∆+∆=+v v . ][也可由对质心的角动量定理代替 (7)-(9) 式. ]2. 值得注意的是,(1)、(2)、(3) 式是当碰撞时间极短、以至于弹簧来不及伸缩的条件下才成立的. 如果弹簧的弹力恰好提供滑块C 以速度02248C lrl r =+v v 绕过B 的轴做匀速圆周运动的向心力,即()222C 022216(8)l r k r m m r l r -==+v v(12) 则弹簧总保持其长度不变,(1)、(2)、(3) 式是成立的. 由(12)式得碰前滑块A 的速度0v 应满足的条件0=v (13)可见,为了使碰撞后系统能保持匀速转动,碰前滑块A 的速度大小0v 应满足(13)式.评分标准:本题20分.第1问16分,(1)式1分, (2) 式2分,(3) 式2分,(4) 式2分, (5) 式2分,(6) 式1分,(7) 式1分,(8) 式1分,(9) 式2分,(10) 式1分,(11) 式1分; 第2问4分,(12) 式2分,(13) 式2分.三、(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动. 杆在水平状态由静止开始下摆, 1. 令mLλ=表示细杆质量线密度. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其转动动能可表示为 k E k L αβγλω=式中,k 为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出α、β和γ的值.2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数k 的值.3. 试求当杆摆至与水平方向成θ角时在杆上距O 点为r 处的横截面两侧部分的相互作用力. 重力加速度大小为g .提示:如果)(t X 是t 的函数,而))((t X Y 是)(t X 的函数,则))((t X Y 对t 的导数为d (())d d d d d Y X t Y Xt X t=例如,函数cos ()t θ对自变量t 的导数为dcos ()dcos d d d d t t tθθθθ=参考解答:1. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其动能是独立变量λ、ω和L 的函数,按题意 可表示为k E k L αβγλω= (1)式中,k 为待定常数(单位为1). 令长度、质量和时间的单位分别为[]L 、[]M 和[]T (它们可视为相互独立的基本单位),则λ、ω、L 和k E 的单位分别为 1122[][][],[][],[][],[][][][]k M L T L L E M L T λω---==== (2)在一般情形下,若[]q 表示物理量q 的单位,则物理量q 可写为 ()[]q q q = (3)式中,()q 表示物理量q 在取单位[]q 时的数值. 这样,(1) 式可写为 ()[]()()()[][][]k k E E k L L αβγαβγλωλω= (4)在由(2)表示的同一单位制下,上式即()()()()k E k L αβγλω= (5) [][][][]k E L αβγλω= (6)将 (2)中第四 式代入 (6) 式得22[][][][][][]M L T M L T αγαβ---= (7)(2)式并未规定基本单位[]L 、[]M 和[]T 的绝对大小,因而(7)式对于任意大小的[]L 、[]M 和[]T 均成立,于是1,2,3αβγ=== (8)所以23k E k L λω= (9)2. 由题意,杆的动能为,c ,r k k k E E E =+ (10)其中, 22,cc 11()222k L E m L λω⎛⎫== ⎪⎝⎭v (11) 注意到,杆在质心系中的运动可视为两根长度为2L的杆过其公共端(即质心)的光滑水平轴在铅直平面内转动,因而,杆在质心系中的动能,r k E 为 32,r2(,,)222k k L L E E k λωλω⎛⎫== ⎪⎝⎭(12)将(9)、 (11)、 (12)式代入(10)式得2323212222L L k L L k λωλωλω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭(13)由此解得16k = (14)于是E k =16lw 2L 3. (15)3. 以细杆与地球为系统,下摆过程中机械能守恒sin 2k L E mg θ⎛⎫= ⎪⎝⎭(16) 由(15)、(16)式得w =以在杆上距O 点为r 处的横截面外侧长为()L r -的那一段为研究对象,该段质量为()L r λ-,其质心速度为22c L r L rr ωω-+⎛⎫'=+= ⎪⎝⎭v . (18) 设另一段对该段的切向力为T (以θ增大的方向为正方向), 法向(即与截面相垂直的方向)力为N (以指向O 点方向为正向),由质心运动定理得()()cos t T L r g L r a λθλ+-=- (19) ()()sin n N L r g L r a λθλ--=- (20)式中,t a 为质心的切向加速度的大小()3cos d d d d d 2d 2d dt 4ct L r g L r L r a t t Lθωωθθ+'++====v (21) 而n a 为质心的法向加速度的大小()23sin 22n L r g L r a Lθω++==. (22) 由(19)、(20)、(21)、(22)式解得 ()()23cos 4L r r L T mg L θ--= (23)()()253sin 2L r L r N mg L θ-+=(24)评分标准:本题25分.第1问5分, (2) 式1分, (6) 式2分,(7) 式1分,(8) 式1分;第2问7分, (10) 式1分,(11) 式2分,(12) 式2分, (14) 式2分;不依赖第1问的结果,用其他方法正确得出此问结果的,同样给分;第3问13分,(16) 式1分,(17) 式1分,(18) 式1分,(19) 式2分,(20) 式2分,(21) 式2分,(22) 式2分,(23) 式1分,(24) 式1分;不依赖第1、2问的结果,用其他方法正确得出此问结果的,同样给分.四、(20分)图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成. 质量为m 、带电量为q 的球形液滴从G 缓慢地自由掉下(所谓缓慢,意指在G 和容器口之间总是只有一滴液滴). 液滴开始下落时相对于地面的高度为h . 设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G 的电荷对正在下落的液滴的影响.重力加速度大小为g . 若容器初始电势为零,求容器可达到的最高电势max V .参考解答:设在某一时刻球壳形容器的电量为Q . 以液滴和容器为体系,考虑从一滴液滴从带电液滴产生器 G 出口自由下落到容器口的过程. 根据能量守恒有2122Qq Qqmgh km mgR kh R R+=++-v . (1) 式中,v 为液滴在容器口的速率,k 是静电力常量. 由此得液滴的动能为 21(2)(2)2()Qq h R m mg h R kh R R-=---v . (2) 从上式可以看出,随着容器电量Q 的增加,落下的液滴在容器口的速率v 不断变小;当液滴在容器口的速率为零时,不能进入容器,容器的电量停止增加,容器达到最高电势. 设容器的最大电量为max Q ,则有 max (2)(2)0()Q q h R mg h R kh R R---=-. (3)由此得 max ()mg h R RQ kq-=. (4)容器的最高电势为maxmax Q V kR= (5) 由(4) 和 (5)式得 max ()mg h R V q-=(6) 评分标准:本题20分. (1)式6分, (2) 式2分,(3) 式4分,(4) 式2分, (5) 式3分,(6) 式3分.五、(25分)平行板电容器两极板分别位于2dz =±的平面内,电容器起初未被充电. 整个装置处于均匀磁场中,磁感应强度大小为B ,方向沿x 轴负方向,如图所示.1. 在电容器参考系S 中只存在磁场;而在以沿y 轴正方向的恒定速度(0,,0)v (这里(0,,0)v 表示为沿x 、y 、z 轴正方向的速度分量分别为0、v 、0,以下类似)相对于电容器运动的参考系S '中,可能既有电场(,,)xy z E E E '''又有磁场(,,)x y z B B B '''. 试在非相对论情形下,从伽利略速度变换,求出在参考系S '中电场(,,)xy z E E E '''和磁场(,,)x y z B B B '''的表达式. 已知电荷量和作用在物体上的合力在伽利略变换下不变.2. 现在让介电常数为ε的电中性液体(绝缘体)在平行板电容器两极板之间匀速流动,流速大小为v ,方向沿y 轴正方向. 在相对液体静止的参考系(即相对于电容器运动的参考系)S '中,由于液体处在第1问所述的电场(,,)xy z E E E '''中,其正负电荷会因电场力作用而发生相对移动(即所谓极化效应),使得液体中出现附加的静电感应电场,因而液体中总电场强度不再是(,,)xy z E E E ''',而是0(,,)xy z E E E εε''',这里0ε是真空的介电常数. 这将导致在电容器参考系S 中电场不再为零. 试求电容器参考系S 中电场的强度以及电容器上、下极板之间的电势差. (结果用0ε、ε、v 、B 或(和)d 表出. )参考解答:1. 一个带电量为q 的点电荷在电容器参考系S 中的速度为(,,)x y z u u u ,在运动的参考系S '中的速度为(,,)x y z u u u '''. 在参考系S 中只存在磁场(,,)(,0,0)x y z B B B B =-,因此这个点电荷在参考系S 中所受磁场的作用力为0,,x y z z y F F qu B F qu B==-= (1) 在参考系S '中可能既有电场(,,)xy z E E E '''又有磁场(,,)x y z B B B ''',因此点电荷q 在S '参考系中所受电场和磁场的作用力的合力为(),(),()x x y z z y y yx z z x z z x y y x F q E u B u B F q E u B u B F q E u B u B '''''''=+-'''''''=-+'''''''=+-(2) 两参考系中电荷、合力和速度的变换关系为 ,(,,)(,,),(,,)(,,)(0,,0)x y z x y z x y z x y z q q F F F F F F u u u u u u '='''='''=-v (3)由(1)、 (2)、 (3)式可知电磁场在两参考系中的电场强度和磁感应强度满足 ()0,,()xy z z y yx z z x z z x yy x y E u B u B E u B u B u B E u B u B u B '''+--='''-+=-'''+--=v v (4)它们对于任意的(,,)x y z u u u 都成立,故(,,)(0,0,),(,,)(,0,0)xy z xy z E E E B B B B B '''='''=-v (5)可见两参考系中的磁场相同,但在运动的参考系S '中却出现了沿z 方向的匀强电场.2. 现在,电中性液体在平行板电容器两极板之间以速度(0,,0)v 匀速运动. 电容器参考系S 中的磁场会在液体参考系S '中产生由(5)式中第一个方程给出的电场. 这个电场会把液体极化,使得液体中的电场为(,,)(0,0,)xy z E E E B εε'''=v . (6) 为了求出电容器参考系S 中的电场,我们再次考虑电磁场的电场强度和磁感应强度在两个参考系之间的变换,从液体参考系S '中的电场和磁场来确定电容器参考系S 中的电场和磁场. 考虑一带电量为q 的点电荷在两参考系中所受的电场和磁场的作用力. 在液体参考系S '中,这力(,,)x y z F F F '''如(2)式所示. 它在电容器参考系S 中的形式为(),(),()x x y z z y y y x z z x z z x y y x F q E u B u B F q E u B u B F q E u B u B =+-=-+=+-(7) 利用两参考系中电荷、合力和速度的变换关系(3)以及(6)式,可得 00,,()x y z z y y x z z x z z x y y x y E u B u B E u B u B u B BE u B u B u B εε+-=-+=-+-=+-v v (8)对于任意的(,,)x y z u u u 都成立,故 0(,,)(0,0,(1)),(,,)(,0,0)x y z x y z E E E B B B B B εε=-=-v (9) 可见,在电容器参考系S 中的磁场仍为原来的磁场,现由于运动液体的极化,也存在电场,电场强度如(9)中第一式所示.注意到(9)式所示的电场为均匀电场,由它产生的电容器上、下极板之间的电势差为z V E d =-. (10)由(9)式中第一式和(10)式得01V Bd εε⎛⎫=- ⎪⎝⎭v . (11)评分标准:本题25分.第1问12分, (1) 式1分, (2) 式3分, (3) 式3分,(4) 式3分,(5) 式2分;第2问13分, (6) 式1分,(7) 式3分,(8) 式3分, (9) 式2分, (10) 式2分,(11) 式2分.六、(15分)温度开关用厚度均为0.20 mm 的钢片和青铜片作感温元件;在温度为20C ︒时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片. 若钢和青铜的线膨胀系数分别为51.010-⨯/度和52.010-⨯/度. 当温度升高到120C ︒时,双金属片将自动弯成圆弧形,如图所示. 试求双金属片弯曲的曲率半径. (忽略加热时金属片厚度的变化. )参考解答:设弯成的圆弧半径为r ,金属片原长为l ,圆弧所对的圆心角为φ,钢和青铜的线膨胀系数分别为1α和2α,钢片和青铜片温度由120C T =︒升高到2120C T =︒时的伸长量分别为1l ∆和2l ∆. 对于钢片1()2dr l l φ-=+∆ (1)1121()l l T T α∆=- (2) 式中,0.20 mm d =. 对于青铜片2()2dr l l φ+=+∆ (3)2221()l l T T α∆=- (4) 联立以上各式得2122121212()()2.010 mm 2()()T T r d T T αααα++-==⨯-- (5)评分标准:本题15分. (1)式3分, (2) 式3分,(3) 式3分,(4) 式3分, (5) 式3分.七、(20分)一斜劈形透明介质劈尖,尖角为θ,高为h . 今以尖角顶点为坐标原点,建立坐标系如图(a)所示;劈尖斜面实际上是由一系列微小台阶组成的,在图(a)中看来,每一个小台阶的前侧面与xz 平面平行,上表面与yz 平面平行. 劈尖介质的折射率n 随x 而变化,()1n x bx =+,其中常数0b >. 一束波长为λ的单色平行光沿x 轴正方向照射劈尖;劈尖后放置一薄凸透镜,在劈尖与薄凸透镜之间放一档板,在档板上刻有一系列与z 方向平行、沿y 方向排列的透光狭缝,如图(b)所示. 入射光的波面(即与平行入射光线垂直的平面)、劈尖底面、档板平面都与x 轴垂直,透镜主光轴为x 轴. 要求通过各狭缝的透射光彼此在透镜焦点处得到加强而形成亮纹. 已知第一条狭缝位于y =0处;物和像之间各光线的光程相等.1. 求其余各狭缝的y 坐标;2. 试说明各狭缝彼此等距排列能否仍然满足上述要求.图(a) 图(b) 参考解答:1. 考虑射到劈尖上某y 值处的光线,计算该光线由0x =到x h =之间的光程()y δ. 将该光线在介质中的光程记为1δ,在空气中的光程记为2δ. 介质的折射率是不均匀的,光入射到介质表面时,在0x = 处,该处介质的折射率()01n =;射到x 处时,该处介质的折射率()1n x bx =+. 因折射率随x线性增加,光线从0x =处射到1x h =(1h 是劈尖上y 值处光线在劈尖中传播的距离)处的光程1δ与光通过折射率等于平均折射率()()()1111110111222n n n h bh bh =+=++=+⎡⎤⎣⎦ (1) 的均匀介质的光程相同,即2111112nh h bh δ==+ (2)x忽略透过劈尖斜面相邻小台阶连接处的光线(事实上,可通过选择台阶的尺度和档板上狭缝的位置来避开这些光线的影响),光线透过劈尖后其传播方向保持不变,因而有21h h δ=- (3)于是()212112y h bh δδδ=+=+. (4)由几何关系有1tan h y θ=. (5)故()22tan 2b y h y δθ=+. (6)从介质出来的光经过狭缝后仍平行于x 轴,狭缝的y 值应与对应介质的y 值相同,这些平行光线会聚在透镜焦点处. 对于0y =处,由上式得d 0()=h . (7)y 处与0y =处的光线的光程差为()()220tan 2b y y δδθ-=. (8)由于物像之间各光线的光程相等,故平行光线之间的光程差在通过透镜前和会聚在透镜焦点处时保持不变;因而(8)式在透镜焦点处也成立. 为使光线经透镜会聚后在焦点处彼此加强,要求两束光的光程差为波长的整数倍,即22tan ,1,2,3,2b y k k θλ==. (9)由此得y A θθ===. (10) 除了位于y =0处的狭缝外,其余各狭缝对应的y 坐标依次为,,,,A . (11)2. 各束光在焦点处彼此加强,并不要求(11)中各项都存在. 将各狭缝彼此等距排列仍可能满足上述要求. 事实上,若依次取,4,9,k m m m =,其中m 为任意正整数,则49,,,m m m y y y ===. (12),光线在焦点处依然相互加强而形成亮纹. 评分标准:本题20分.第1问16分, (1) 式2分, (2) 式2分, (3) 式1分,(4) 式1分,(5) 式2分,(6) 式1分,(7) 式1分,(8) 式1分, (9) 式2分, (10) 式1分,(11) 式2分; 第2问4分,(12) 式4分(只要给出任意一种正确的答案,就给这4分).八、(20分)光子被电子散射时,如果初态电子具有足够的动能,以至于在散射过程中有能量从电子转移到光子,则该散射被称为逆康普顿散射. 当低能光子与高能电子发生对头碰撞时,就会出现逆康普顿散射. 已知电子静止质量为e m ,真空中的光速为 c . 若能量为e E 的电子与能量为E γ的光子相向对碰,1. 求散射后光子的能量;2. 求逆康普顿散射能够发生的条件;3. 如果入射光子能量为2.00 eV ,电子能量为 1.00´109 eV ,求散射后光子的能量. 已知 m e =0.511´106 eV /c 2. 计算中有必要时可利用近似:如果1x <<»1-12x .参考解答:1. 设碰撞前电子、光子的动量分别为e p (0e p >)、p γ(0p γ<),碰撞后电子、光子的能量、动量分别为,,,ee E p E p γγ''''. 由能量守恒有 E e +E g =¢E e +¢E g . (1)由动量守恒有cos cos ,sin sin .e eep p p p p p γγγαθαθ''+=+''=. (2)式中,α和θ分别是散射后的电子和光子相对于碰撞前电子的夹角. 光子的能量和动量满足E g =p g c ,¢E g =¢p g c . (3)电子的能量和动量满足22224e e e E p c m c -=,22224e e e E p c m c ''-= (4)由(1)、(2)、(3)、(4)式解得e E E E γγ'=[由(2)式得22222()2()cos ee e p c p c p c p c p c p c p c γγγγθ'''=++-+此即动量p '、ep '和e p p γ+满足三角形法则. 将(3)、(4)式代入上式,并利用(1)式,得 22(2)()22cos 2e e e E E E E E E E E E E E γγγγγγγγθθ''+-+=+--此即(5)式. ]当0θ→时有e E E E γγ'=(6)2. 为使能量从电子转移到光子,要求¢E g >E g . 由(5)式可见,需有E E γγ'-=>此即E γ 或 e p p γ>(7)注意已设p e >0、p g <0.3. 由于2e e E m c >>和e E E γ>>,因而e p p p γγ+>>,由(5)式可知p p γγ'>>,因此有0θ≈. 又242e e em cE E -. (8)将(8)式代入(6)式得¢E g »2E e E g2E g +m e 2c 42E e. (9) 代入数据,得¢E g »29.7´106eV . (10)评分标准:本题20分.第1问10分, (1) 式2分, (2) 式2分, (3) 式2分,(4) 式2分,(5) 或(6)式2分; 第2问5分,(7) 式5分;第3问5分,(8) 式2分, (9) 式1分, (10) 式2分.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第届全国中学生物理竞赛复赛试题及答案TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-第23届全国中学生物理竞赛复赛试卷一、(23分)有一竖直放置、两端封闭的长玻璃管,管内为真空,管内有一小球自某处自由下落(初速度为零),落到玻璃管底部时与底部发生弹性碰撞.以后小球将在玻璃管内不停地上下跳动。
现用支架固定一照相机,用以拍摄小球在空间的位置。
每隔一相等的确定的时间间隔T 拍摄一张照片,照相机的曝光时间极短,可忽略不计。
从所拍到的照片发现,每张照片上小球都处于同一位置。
求小球开始下落处离玻璃管底部距离(用H 表示)的可能值以及与各H 值相应的照片中小球位置离玻璃管底部距离的可能值。
二、(25分)如图所示,一根质量可以忽略的细杆,长为2l ,两端和中心处分别固连着质量为m 的小球B 、D 和C ,开始时静止在光滑的水平桌面上。
桌面上另有一质量为M 的小球A ,以一给定速度0v 沿垂直于杆DB 的方间与右端小球B 作弹性碰撞。
求刚碰后小球A,B,C,D 的速度,并详细讨论以后可能发生的运动情况。
三、(23分)有一带活塞的气缸,如图1所示。
缸内盛有一定质量的气体。
缸内还有一可随轴转动的叶片,转轴伸到气缸外,外界可使轴和叶片一起转动,叶片和轴以及气缸壁和活塞都是绝热的,它们的热容量都不计。
轴穿过气缸处不漏气。
如果叶片和轴不转动,而令活塞缓慢移动,则在这种过程中,由实验测得,气体的压强p 和体积V 遵从以下的过程方程式 图1其中a ,k 均为常量, a >1(其值已知)。
可以由上式导出,在此过程中外界对气体做的功为式中2V 和1V ,分别表示末态和初态的体积。
如果保持活塞固定不动,而使叶片以角速度ω做匀角速转动,已知在这种过程中,气体的压强的改变量p ∆和经过的时间t ∆遵从以 图2 下的关系式式中V 为气体的体积,L 表示气体对叶片阻力的力矩的大小。
上面并没有说气体是理想气体,现要求你不用理想气体的状态方程和理想气体的内能只与温度有关的知识,求出图2中气体原来所处的状态A 与另一已知状态B 之间的内能之差(结果要用状态A 、B 的压强A p 、B p 和体积A V 、B V 及常量a 表示) 四、(25分)图1所示的电路具有把输人的交变电压变成直流电压并加以升压、输出的功能,称为整流倍压电路。
图中1D 和2D 是理想的、点接触型二极管(不考虑二极管的电容),1C 和2C 是理想电容器,它们的电容都为C ,初始时都不带电,G 点接地。
现在A 、G 间接上一交变电源,其电压A u ,随时间t 变化的图线如图2所示.试分别在图3和图4中准确地画出D 点的电压D u 和B 点的电压B u 在t =0到t=2T 时间间隔内随时间t 变化的图线,T 为交变电压A u 的周期。
图2 图1图3 图4五、(25分)磁悬浮列车是一种高速运载工具。
它具有两个重要系统。
一是悬浮系统,利用磁力(可由超导电磁铁提供)使车体在导轨上悬浮起来与轨道脱离接触。
另一是驱动系统,在沿轨道上安装的三相绕组(线圈)中,通上三相交流电,产生随时间、空间作周期性变化的磁场,磁场与固连在车体下端的感应金属板相互作用,使车体获得牵引力。
为了有助于了解磁悬浮列车的牵引力的来由,我们求解下面的问题。
设有一与轨道平面垂直的磁场,磁感应强度B 随时间t 和空间位置x 变化规律为 式中0B 、ω、k 均为已知常量,坐标轴x 与轨道平行。
在任一时刻t ,轨道平面上磁场沿x 方向的分布是不均匀的,如图所示。
图中Oxy 平面代表轨道平面,“×”表示磁场的方向垂直Oxy 平面指向纸里,“· ”表示磁场的方向垂直Oxy 平面指向纸外。
规定指向纸外时B 取正值。
“×”和“· ”的疏密程度表示沿着x 轴B 的大小分布。
一与轨道平面平行的具有一定质量的金属矩形框MNPQ 处在该磁场中,已知与轨道垂直的金属框边MN 的长度为l ,与轨道平行的金属框边MQ 的长度为d ,金属框的电阻为R ,不计金属框的电感。
1.试求在时刻t ,当金属框的MN 边位于x 处时磁场作用于金属框的安培力,设此时刻金属框沿x 轴正方向移动的速度为v 。
2.试讨论安培力的大小与金属框几何尺寸的关系。
六、(23分)有一种被称为直视分光镜的光谱学仪器。
所有光学元件均放在一直长圆筒内。
筒内有:三个焦距分别为1f 、2f 和3f 的透镜1L ,2L ,3L ,321f f f >=;观察屏P ,它是一块带有刻度的玻璃片;由三块形状相同的等腰棱镜构成的 图1分光元件(如图1所示),棱镜分别用折射率不同的玻璃制成,两侧棱镜的质料相同,中间棱镜则与它们不同,棱镜底面与圆筒轴平行。
圆筒的一端有一与圆筒轴垂直的狭缝,它与圆筒轴的交点为S ,缝平行于棱镜的底面.当有狭缝的一端对准筒外的光源时,位于圆筒另一端的人眼可观察到屏上的光谱。
已知:当光源是钠光源时,它的黄色谱线(波长为 nm ,称为D 线)位于圆筒轴与观察屏相交处。
制作棱镜所用的玻璃,一种为冕牌玻璃,它对钠D 线的折射率D n =;另一种为火石玻璃,它对钠D 线的折射率D n '=。
1.试在图2中绘出圆筒内诸光学元件相对位置的示意图并说出各元件的作用。
2.试论证三块棱镜各应由何种玻璃制成并求出三棱镜的顶角α的数值。
图2 七、(16分)串列静电加速器是加速质子、重离子进行核物理基础研究以及核技术应用研究的设备,右图是其构造示意图。
S 是产生负离子的装置,称为离子源;中间部分N 为充有氮气的管道,通过高压装置H 使其对地有61000.5⨯V 的高压。
现将氢气通人离子源S ,S 的作用是使氢分子变为氢原子,并使氢原子粘附上一个电子,成为带有一个电子电量的氢负离子。
氢负离子(其初速度为0)在静电场的作用下,形成高速运动的氢负离子束流,氢负离子束射入管道N 后将与氮气分子发生相互作用,这种作用可使大部分的氢负离子失去粘附在它们上面的多余的电子而成为氢原子,又可能进一步剥离掉氢原子的电子使它成为质子。
已知氮气与带电粒子的相互作用不会改变粒子的速度。
质子在电场的作用下由N 飞向串列静电加速器的终端靶子T 。
试在考虑相对论效应的情况下,求质子到达T 时的速度v 。
电子电荷量191060.1-⨯=q C ,质子的静止质量27010673.1-⨯=m kg 。
第23届全国中学生物理竞赛复赛题参考解答及评分标准一、参考解答:解法一小球沿竖直线上下运动时,其离开玻璃管底部的距离h 随时间t 变化的关系如图所示.设照片拍摄到的小球位置用A 表示,A 离玻璃管底部的距离为h A ,小球开始下落处到玻璃管底部的距离为H .小球可以在下落的过程中经过A 点,也可在上升的过程中经过A 点.现以τ表示小球从最高点(即开始下落处)落到玻璃管底部所需的时间(也就是从玻璃管底部反跳后上升到最高点所需的时间),1τ表示小球从最高点下落至A 点所需的时间(也就是从A 点上升至最高点所需的时间),2τ表示小球从A 点下落至玻璃管底部所需的时间(也就是从玻璃管底部反跳后上升至A 点所需的时间).显然,12τττ+=.根据题意,在时间间隔的起始时刻和终了时刻小球都在A 点.用n 表示时间间隔 内(包括起始时刻和终了时刻)小球位于A 点的次数(n ≥2).下面分两种情况进行讨论:1.A 点不正好在最高点或最低点. 当n 为奇数时有tOh()()()12111T n n n τττ=-+-=- 3,5,7,n = (1)在(1)式中,根据题意1τ可取10ττ<<中的任意值,而21τττ=-(2)当n 为偶数时有()()211222T n n n n ττττ=+-=+- 2,4,6,n = (3)由(3)式得12ττ= (4)由(1)、(3)、(4)式知,不论n 是奇数还是偶数,都有 ()1T n τ=- 2,3,4,n = (5)因此可求得,开始下落处到玻璃管底部的距离的可能值为2211221n T H g g n τ⎛⎫== ⎪-⎝⎭2,3,4,n = (6)若用n H 表示与n 对应的H 值,则与n H 相应的A 点到玻璃管底部的距离 2112A n h H g τ=- 2,3,4,n =(7)当n 为奇数时,1τ可取10ττ<<中的任意值,故有0A n h H << 2121n T H g n ⎡⎤⎛⎫=⎢⎥ ⎪-⎝⎭⎢⎥⎣⎦ n=3,5,7,· · · (8)可见与n H 相应的A h 的可能值为0与n H 之间的任意值.当n 为偶数时,112ττ=,由(6)式、(7)式求得n H 的可能值34A n h H = 2121n T H g n ⎡⎤⎛⎫=⎢⎥ ⎪-⎝⎭⎢⎥⎣⎦n=2,4,6,· · ·(9)2.若A 点正好在最高点或最低点. 无论n 是奇数还是偶数都有()21T n τ=- n=2,3,4,· · ·(10)()22112221n T H g g n τ⎡⎤==⎢⎥-⎢⎥⎣⎦n=2,3,4,· · ·(11)A n h H = ()21221n T H g n ⎧⎫⎡⎤⎪⎪=⎨⎢⎥⎬-⎢⎥⎪⎪⎣⎦⎩⎭n=2,3,4,· · ·(12)或0A h =(13)解法二因为照相机每经一时间间隔T 拍摄一次时,小球都位于相片上同一位置,所以小球经过该位置的时刻具有周期性,而且T 和这个周期的比值应该是一整数.下面我们就研究小球通过某个位置的周期性.设小球从最高点(开始下落处)落下至管底所需时间为,从最高点下落至相片上小球所在点(A 点)所需时间为1τ,从A 点下落至管底所需时间为2τ,则12τττ=+(1)(小球上升时通过相应路程段所需时间与下落时同一路程所需时间相同,也是、1τ和2τ)从小球在下落过程中经过A 点时刻开始,小球经过的时间22τ后上升至A 点,再经过时间12τ后又落到A 点,此过程所需总时间为12222τττ+=.以后小球将重复这样的运动.小球周期性重复出现在A 点的周期是多少分两种情况讨论:(1). 12ττ≠,1τ和2τ都不是小球在A 点重复出现的周期,周期是2τ. (2). 12ττ=,小球经过时间22ττ=回到A 点,再经过时间12ττ=又回到A 点,所以小球重复出现在A 点的周期为.下面就分别讨论各种情况中H 的可能值和A 点离管底的距离A h 的可能值.(如果从小球在上升过程中经过A 点的时刻开始计时,结果一样,只是1τ和2τ对调一下)1.H 的可能值(1).较普遍的情况,12ττ≠.T 与2τ的比值应为一整数,τ的可能值应符合下式2Tk τ=, 1,2,3,k = (2)由自由落体公式可知,与此相应的k H 的数值为2211222k T H g g k τ⎛⎫== ⎪⎝⎭1,2,3,k = (3)(2).12ττ=.τ的可能值应符合下式Tk τ'= 1,2,3,k '= (4)故k H '的可能值为221122k T H g g k τ'⎛⎫== ⎪'⎝⎭1,2,3,k '= (5)当k '为偶数时,即2,4,6,k '=时,(5)式与(3)式完全相同.可见由(3)式求得的H 的可能值包含了12ττ≠的全部情况和12ττ=的一部分情况.当k '为奇数时,即1,3,5,k '=时,由(5)式得出的H 的可能值为212k T H g k '⎛⎫= ⎪'⎝⎭1,3,5,k '= (6)它们不在(3)式之内,故(3)式和(6)式得出的H 合在一起是H 的全部的可能值.2.与各H 值相应的A h 的可能值 a.与k H 相应的A h 的可能值由于在求得(3)式时未限定A 点的位置,故A h 的数值可取0和k H 之间的任意值,即0A k h H ≤≤ 2122k T H g k ⎡⎤⎛⎫=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦1,2,3,k = (7)b. 与k H '(k '为奇数)相应的A h 的可能值这些数值与A 位于特定的位置,122τττ==,相对应,所以对于每一个k H '对应的A h 是一个特定值,它们是21122A k T h H g k '⎛⎫=- ⎪'⎝⎭ 212k T H g k '⎡⎤⎛⎫=⎢⎥ ⎪'⎝⎭⎢⎥⎣⎦ 1,3,5,k '= (8)评分标准:本题23分 二、参考解答:1.求刚碰撞后小球A 、B 、C 、D 的速度设刚碰撞后,小球A 、B 、C 、D 的速度分别为A v 、B v 、C v 、D v ,并设它们的方向都与0v 的方向相同.由于小球C 位于由B 、C 、D 三球组成的系统的质心处,所以小球C 的速度也就是这系统的质心的速度.因碰撞前后四小球组成的质点组的动量守恒, 故有 0A C 3M M m =+v v v (1) 碰撞前后质点组的角动量守恒,有C D 02ml ml =+v v (2)这里角动量的参考点设在与B 球重合的空间固定点,且规定顺时针方向的角动量为正.因为是弹性碰撞,碰撞前后质点组的动能相等,有222220A B C D 11111+22222M M m m =++v v mv v v (3)因为杆是刚性杆,小球B 和D 相对于小球C 的速度大小必相等,方向应相反,所以有 B C C D --v v =v v(4) 解(1)、(2)、(3)、(4)式,可得两个解 C v =0 (5) 和C 0456MM m=+v v(6)因为C v 也是刚碰撞后由B 、C 、D 三小球组成的系统的质心的速度,根据质心运动定律,碰撞后这系统的质心不可能静止不动,故(5)式不合理,应舍去.取(6)式时可解得刚碰撞后A 、B 、D 三球的速度 A 05656M mM m -=+v v(7)B 01056M M m =+v v(8)D 0256MM m =-+v v(9)2.讨论碰撞后各小球的运动碰撞后,由于B 、C 、D 三小球组成的系统不受外力作用,其质心的速度不变,故小球C 将以(6)式的速度即C 0456MM m=+v v 沿0v 方向作匀速运动.由(4)、(8)、(9)式可知,碰撞后,B 、D 两小球将绕小球C 作匀角速度转动,角速度的大小为656B M l M m ω-==+C v v v l(10)方向为逆时针方向.由(7)式可知,碰后小球A 的速度的大小和方向与M 、m 的大小有关,下面就M 、m 取值不同而导致运动情形的不同进行讨论:(i )A 0v =,即碰撞后小球A 停住,由(7)式可知发生这种运动的条件是 即65M m = (11)(ii )A 0v <,即碰撞后小球A 反方向运动,根据(7)式,发生这种运动的条件是65M m < (12)(iii )A 0v >但A C <v v ,即碰撞后小球A 沿0v 方向作匀速直线运动,但其速度小于小球C 的速度.由(7)式和(6)式,可知发生这种运动的条件是 560M m ->和m M M 654->即665m M m << (13)(iv )A C >v v ,即碰撞后小球A 仍沿0v 方向运动,且其速度大于小球C 的速度,发生这种运动的条件是 6M m >(14) (v )A C =v v ,即碰撞后小球A 和小球C 以相同的速度一起沿0v 方向运动,发生这种运动的条件是6M m =(15) 在这种情形下,由于小球B 、D 绕小球C 作圆周运动,当细杆转过180时,小球D 将从小球A 的后面与小球A 相遇,而发生第二次碰撞,碰后小球A 继续沿0v 方向运动.根据质心运动定理,C 球的速度要减小,碰后再也不可能发生第三次碰撞.这两次碰撞的时间间隔是()056πππ6M m l lt Mω+===v v (16)从第一次碰撞到第二次碰撞,小球C 走过的路程C 2π3ld t ==v (17)3.求第二次碰撞后,小球A 、B 、C 、D 的速度刚要发生第二次碰撞时,细杆已转过180,这时,小球B 的速度为D v ,小球D 的速度为B v .在第二次碰撞过程中,质点组的动量守恒,角动量守恒和能量守恒.设第二次刚碰撞后小球A 、B 、C 、D 的速度分别为A 'v 、B 'v 、C 'v 和D 'v ,并假定它们的方向都与0v 的方向相同.注意到(1)、(2)、(3)式可得0AC 3M M m ''=+v v v (18) C B 02ml ml ''=+v v(19)222220A B C D 11111+22222M M m m ''''=++v v mv v v (20)由杆的刚性条件有D C C B ''''-=-v v v v(21)(19)式的角动量参考点设在刚要发生第二次碰撞时与D 球重合的空间点.把(18)、(19)、(20)、(21)式与(1)、(2)、(3)、(4)式对比,可以看到它们除了小球B 和D 互换之外是完全相同的.因此它们也有两个解C0'=v (22) 和C0456MM m'=+v v(23)对于由B 、C 、D 三小球组成的系统,在受到A 球的作用后,其质心的速度不可能保持不变,而(23)式是第二次碰撞未发生时质心的速度,不合理,应该舍去.取(22)式时,可解得 A 0'=v v (24)B 0'=v(25)D 0'=v(26)(22)、(24)、(25)、(26)式表明第二次碰撞后,小球A 以速度0v 作匀速直线运动,即恢复到第一次碰撞前的运动,但已位于杆的前方,细杆和小球B 、C 、D 则处于静止状态,即恢复到第一次碰撞前的运动状态,但都向前移动了一段距离2π3ld =,而且小球D 和B 换了位置.评分标准:本题25分. 三、参考解答:由k pV =α, 1>α (1)可知,当V 增大时,p 将随之减小(当V 减小时,p 将随之增大),在p V -图上所对应的曲线(过状态A )大致如图所示.在曲线上取体积与状态B 的体积相同的状态C .现在设想气体从状态A 出发,保持叶片不动,而令活塞缓慢地向右移动,使气体膨胀,由状态A 到达状态C ,在此过程中,外界对气体做功11111C A k W V V ααα--⎡⎤=-⎢⎥-⎣⎦(2)用U A 、U C 分别表示气体处于状态A 、C 时的内能,因为是绝热过程,所以内能的增量等于外界对气体做的功,即11111C A C A k U U V V ααα--⎡⎤-=-⎢⎥-⎣⎦(3)再设想气体处于状态C 时,保持其体积不变,即保持活塞不动,令叶片以角速度做匀速转动,这样叶片就要克服气体阻力而做功,因为缸壁及活塞都是绝热的,题设缸内其它物体热容量不计,活塞又不动(即活塞不做功),所以此功完全用来增加气体的内能.因为气体体积不变,所以它的温度和压强都会升高,最后令它到达状态B .在这过程中叶片转动的时间用t 表示,则在气体的状态从C 到B 的过程中,叶片克服气体阻力做功W L t ω'=∆(4)令U B 表示气体处于状态B 时的内能,由热力学第一定律得B C U U L t ω-=∆(5)由题知1p L t Vαω∆-=⋅∆ (6)由(4)、(5)、(6)式得()1BB C B C V U U p p α-=-- (7)(7)式加(3)式,得()111111B B A B C C A V k U U p p V V αααα--⎡⎤-=-+-⎢⎥--⎣⎦(8)利用pV k α=和C B V V =得()11B A B BA A U U p V p V α-=-- (9)评分标准:本题23分. 四、参考解答:答案:D u 如图1所示,B u 如图2 所示..点的(1) (2) 11C A Du u u C=-= (3)22C B G qu u u C=-=(4)式中q 1为C 1与A点连接的极板上的电荷量,q 2为C 2与B 点连接的极板上的电荷量.若二极管D 1截止,D 2导通,则称电路处在状态I. 当电路处在状态I 时有D B u u = 0D u >(5)若二极管D 1和D 2都截止,则称电路处在状态II. 当电路处在状态II 时有D B u u < 0D u >(6)若二极管D 1导通,D 2截止,则称电路处在状态III.当电路处在状态III 时有D B u u < 0=D u(7)电路处在不同状态时的等效电路如图3所示.在u D 1C 1因C 在u A B u =图0u DU-C 2C 2C 2 状态I状态状态最大值后将要减小,由于D 2的单向导电性,电容器C 、C 都不会放电,1C u 和2C u 保持不变,u D 将要小于12U ,即将要小于u B ,D 2将由导通变成截止,电路不再处于状态I . 所以从t = 0到14t T =时间间隔内,u D 、u B 随时间t 变化的图线如图4、图5中区域I 内的的直线所示. 2. 从14t T =起,因u D 小于u B ,D 2处在截止状态,电路从状态变为状态. 因为二极管的反向电阻为无限大,电容器C 、C 都不会放电,两极板间的电压都保持不变.当电路处在状态?时,D 点的电压B 点的电压随着u A 从最大值U 逐渐变小,u D 亦变小;当12A u U =时,对应的时刻为38t T =,0D u =.如果u A小于12U ,则u D 将小于0,D 1要从截止变成导通,电路不再处在状态II.所以在14t T =到38t T =时间间隔内,u D 、u B 随t 变化的图线如图4和图5中区域?内的直线所示.3.从38t T =起,u A 从12U 开始减小,D 1导通,但D B u u <,D 2仍是截止的,电路从状态II 变为状态III.当电路处在状态?时有在u A 减小的过程中,C 1两极板间的电压u C 1(= u A )也随之改变,从而维持u D 为0. 当u A 达到反向最大值即A u U =-时,对应的时刻为34t T =,1C u U =-.若u A 从U -开始增大(U -减小),因D 1的单向导电性,电容器C 1不会放电,1C u U =-保持不变,10D A C u u u =->,D 1要从导通变成截止,电路不再处于状态III.所以在38t T =到34t T =时间间隔内,u D 、u B 随t 变化的图线如图4和图5中区域?内的直线所示.4. 从34t T =起,u A 从U -开始增大, D 1变为截止状态,D A u u U =+从零开始增大,只要u D仍小于u B ,D 2仍是截止的,电路从状态III 变为状态II . 当电路处在状态?时,C 1和C 2不会放电,电容器两极板间的电压保持不变. 故有当u A 增大至12U -时,对应的时刻为78t T =,12D B u u U ==. 若u A 再增大,u D 将要大于u B ,D 2将要从截止变为导通,D B u u =,电路不再处于状态II . 所以在34t T =到78t T =时间间隔内,u D 、u B 随t 变化的图线如图4和图5中区域?中的直线所示.5. 从78t T =起,u A 要从12U -增大, D 2变为导通状态,这时D 1仍是截止的,电路又进入状态I . 当电路处在状态I 时,电源与C 1、C 2构成闭合回路,而当u A 变化时,12q q +将随之变化,但由导通的二极管D 2连接的C 1、C 2的两块极板所带的总电荷量12q q -+是恒定不变的.由于在78t T =时刻,1C u U =-,212C u U =,此时1q CU =-,212q CU =,故有由以上有关各式得u D 、u B 随着u A 的增大而增大. 当u A 达到最大值即A u U =时,对应的时刻为54t T =,54D B u u U ==.由于D 2单向导电,2B C u u =只增不减,u A 从最大值减小时,1C u 不变,u D 将要小于54U ,而2B C u u =保持为54U ,因而D B u u <,D 2从导通变成截止,电路不再是状态I. 所以在78t T =到T t 45=时间间隔内,u D 、u B 随t 变化的图线如图4和图5中 I 2中的直线所示. 6. 从54t T =起,u A 从U 开始减小, D 2变为截止状态,这时D 1仍是截止的,电路又进入状态II . 当电路处在状态?时,C 1和C 2不会放电,电容器两极板间的电压保持不变. 由54t T =时刻的u D 和u A 的值可知此时114C u U =-. 故有当u A 减少至14U -时,对应的时刻为=t 2516T ,0D u =,以后D 1将由截止变为导通,电路不再处在状态II . 所以在54t T =到2516t T =时间内,u D 、u B 随t 变化的图线如图4和图5中 II 3中的直线所示.7. 从2516t T =起,u A 从14U -开始减小,D 1变为导通状态,但D 2仍是截止的,电路又进入状态III ,故有在u A 减小的过程中,C 1两端的电压u C 1也随之改变,开始阶段D 1保持导通,u D = 0. 但当u A 减小至-U 时,对应的时刻为74t T =,u C 1 = U . 因D 1单向导电,且D B u u <,C 1右极板的正电荷只增不减,u A 到达-U 后要增大,u D 要大于0,D 1要从导通变为截止,电路不再处于状态III. 所以在2516t T =到74t T =时间间隔内,u D 、u B 随t 变化的图线如图4和图5中III 2内的直线所示.8. 从74t T =起,u A 从-U 开始增大,D 1变为截止状态,D 2仍是截止的,电路又进入状态II. 当电路处于状态?时,C 1和C 2不会放电,电容器两极板间的电压保持不变.由74t T =时刻的u D 和u A 的值可知,此时1C u U =-.故有u D 将随着u A 的增大而增大.当u A =14U 时,对应的时刻33216t T T =>,u D =54U ,与u B 相等.以后u D 要大于54U ,D 2要从截止变为导通,电路不再是状态II. 所以在74t T =到2t T =时间间隔内,u D 、u B 随t 变化的图线如图4和图5中II 4内的直线所示.总结以上讨论,各时段起讫时刻及D u 和B u 变化值如下表所示: 时 段 1 2 3 4 5 6 7 8 I 1II 1III 1II 2I 2II 3III 2II 4评分标准:在t 是t 平移速度0x tkω∆==∆v(1) 平移速度0v 为恒量.由此可见,题给出的磁场()()0,cos B x t B t kx ω=-可视为一在空间按余弦规律分布的非均匀磁场区域以速度0v 沿x 轴的正方向平移.如果金属框移动的速度小于磁场区域平移的速度,那么通过金属框的磁通将随时间发生变化,从而在金属框中产生感应电流,感应电流将受到磁场的安培力作用.由题已知,在时刻t ,金属框移动的速度为v ,金属框MN 边位于坐标x 处,PQ 边位于坐标x d +处.设此时金属框的磁通为Φ(规定由纸内到纸外Φ为正);经过一很短的时间间隔t ∆,整个磁场分布区域向x 方向移动了一段距离0t ∆v ,金属框向x0u D方向移动了一段距离t ∆v ,其结果是:MN 边左侧穿过面积为()0l t -∆v v 的磁通()()0,B x t l t -∆v v 移进了金属框,PQ 边左侧穿过面积为()0l t -∆v v 的磁通()()0,B x d t l t +-∆v v 移出了金属框,故在t t +∆时刻,通过金属框的磁通为在t ∆时间间隔内,通过金属框的磁通增量为()()()0,,B x t B x d t l t ΦΦΦ'∆=-=⎡-+⎤-∆⎣⎦v v(2)规定框内的感应电动势()t E 沿顺时针方向(沿回路MNPQM 方向)为正,由电磁感应定律,可得t 时刻的感应电动势()t tΦ∆=∆E (3)规定金属框内的感应电流()i t 沿顺时针方向(沿回路MNPQM 方向)为正,可得t 时刻的感应电流为()i t R=E (4)磁场对于上下两边NP 和MQ 的安培力的大小相等,方向相反,二者的合力为零.规定向右的力为正,则磁场作用于金属框MN 边的安培力为()(),i t B x t l ;由于PQ 边和MN 边的电流方向相反,磁场作用于金属框PQ 边的安培力为 ()(),i t B x d t l -+,故金属框的安培力的合力()()()()(),,f t i t B x t l i t B x d t l =-+(5)由(1)、(2)、(3)、(4)、(5)式及题给定的磁场分布规律,得()()(){}2202cos cos B l k f t t kx t kx kd ωωω⎛⎫- ⎪⎝⎭=--⎡--⎤⎣⎦v R(6)利用三角学公式,得()()()220222042sin sin sin 222B l t kx kd kd kd k f t F t kx ωωω⎛⎫- ⎪⎡--⎤⎛⎫⎡⎤⎝⎭==--⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎣⎦v R (7)0F 称为安培力()f t 的幅度.从(7)式可以看出,安培力()f t 在0F 的幅度内随时间变化,但其值不会小于零,表示磁场作用于金属框的安培力始终向右.2.讨论安培力的大小与线框几何尺寸的关系就是讨论0F 与线框几何尺寸的关系.0F 与金属框长度l 的平方成正比,与金属框的宽度d 有关:当2πkd n =, 即2π0,1,2,n d n k== (8)得00F =(9)当()21πkd n =+,即()21π 0,1,2,n d n k+==(10)0F 达最大值()2200max 4B l k F ω⎛⎫- ⎪⎝⎭=v R(11)当d 取其它值时,0F 介于0与最大值()0max F 之间.评分标准:本题25分. 六、参考解答:1. 圆筒内光学元件的相对位置如图1所示.各元件的作用如下:1射的平行光束.透镜L 2:使各种单色平行光束经L 2 成像在它的焦平面上,形成狭缝的像(即光谱观察屏P :位于L 2焦平面上,光源的谱线即在此屏上.透镜L 3:与P 的距离≤f 3,是人眼观察光谱线所用的放大镜(目镜).图2.已知钠黄光的谱线位于P 的中央,S 的像位于L 2 的焦点上,由此可知,对分光棱镜系统来说,钠黄光的入射光束和出射光束都与轴平行,由于棱镜系统是左右对称,因此钠黄光在棱镜内的光路应该是左右对称的,在中间棱镜中的光路应该与轴平行,分光元件中的光路图如图2所示,左半部的光路如图3.用i 1、r 1、i 2、r 2分别表示两次折射时的入射角和折射角,用n 1、n 2分别表示两块棱镜对D 线的折射率,由图3可以看出,在两棱镜界面上发生折射时,22i r >,表明21n n >,即中间的棱镜应用折射率较大的火石玻璃制成,两侧棱镜用冕牌玻璃制成,故有D n n =1=,D n n '=2=.由几何关系可得 122i r α==(1)12r i α+=(2) 由折射定律可得 111sin sin i n r =(3)1222sin sin n i n r =(4)从以上各式中消去1i 、2i 、1r 和2r 得22212sin 2n n α⎛⎫-= ⎪⎝⎭(5)解(5)式得()()221222124142sin n n n n -+-=⎪⎭⎫⎝⎛α (6)以5170.11=n ,7200.12=n 代入,得123.6α=(7)评分标准:本题23分. 七、参考解答:图2图3带电粒子在静电场内从S 到T 的运动过程中,经历了从S 到N 和从N 到T 的两次加速,粒子带的电荷量q 的大小均为191.6010C -⨯,若以U 表示N 与地之间的电压,则粒子从电场获得的能量2E qU ∆= (1)质子到达T 处时的质量m =(2)式中v 为质子到达T 时的速度.质子在S 处的能量为20m c ,到达T 处时具有的能量为2mc ,电子的质量与质子的质量相比可忽略不计,根据能量守恒有220mc E m c =∆+(3)由(1)、(2)、(3)式得 代入数据解得74.3410m/s =⨯v (4)评分标准:本题16分.。