2018年立体几何选择、填空难题训练(含解析)

合集下载

2018届高考数学(理)二轮专题复习: 专题五 立体几何 1-5-3 Word版含答案.doc

2018届高考数学(理)二轮专题复习: 专题五 立体几何 1-5-3 Word版含答案.doc

限时规范训练十四 空间向量与立体几何限时45分钟,实际用时分值81分,实际得分一、选择题(本题共6小题,每小题5分,共30分)1.(2017·山东青岛模拟)已知正三棱柱ABC ­A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦值等于( )A.64B.104 C.22D.32解析:选A.如图所示建立空间直角坐标系,设正三棱柱的棱长为2,则O (0,0,0),B (3,0,0),A (0,-1,0),B 1(3,0,2),则AB 1→=(3,1,2),则BO →=(-3,0,0)为侧面ACC 1A 1的法向量,故sin θ=|AB 1→·BO →||AB 1→||BO →|=|-3|22×3=64.2.在直三棱柱ABC ­A 1B 1C 1中,AA 1=2,二面角B ­AA 1­C 1的大小为60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,则直线BC 1与直线AB 1所成角的正切值为( )A.7B. 6C. 5D .2解析:选A.由题意可知,∠BAC =60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,所以在三角形ABC 中,AB =2,AC =4,BC =23,∠ABC =90°,则AB 1→·BC 1→=(BB 1→-BA →)·(BB 1→+BC →)=4,|AB 1→|=22,|BC 1→|=4,cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→|·|BC 1→|=24, 故tan 〈AB 1→,BC 1→〉=7.3.如图所示,在三棱锥P ­ABC 中,PA ⊥平面ABC ,D 是棱PB 的中点,已知PA =BC =2,AB=4,CB ⊥AB ,则异面直线PC ,AD 所成角的余弦值为( )A .-3010B .-305C.305 D.3010解析:选D.因为PA ⊥平面ABC ,所以PA ⊥AB ,PA ⊥BC . 过点A 作AE ∥CB ,又CB ⊥AB ,则AP ,AB ,AE 两两垂直.如图,以A 为坐标原点,分别以AB ,AE ,AP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,0),P (0,0,2),B (4,0,0),C (4,-2,0). 因为D 为PB 的中点,所以D (2,0,1). 故CP →=(-4,2,2),AD →=(2,0,1).所以cos 〈AD →,CP →〉=AD →·CP →|AD →|×|CP →|=-65×26=-3010.设异面直线PC ,AD 所成的角为θ, 则cos θ=|cos 〈AD →,CP →〉|=3010.4.(2017·山西四市联考)在空间直角坐标系O ­xyz 中,已知A (2,0,0),B (2,2,0),C (0,2,0),D (1,1,2).若S 1,S 2,S 3分别是三棱锥D ­ABC 在xOy ,yOz ,zOx 坐标平面上的正投影图形的面积,则( )A .S 1=S 2=S 3B .S 2=S 1且S 2≠S 3C .S 3=S 1且S 3≠S 2D .S 3=S 2且S 3≠S 1解析:选D.如图所示,△ABC 为三棱锥在坐标平面xOy 上的正投影,所以S 1=12×2×2=2.三棱锥在坐标平面yOz 上的正投影与△DEF (E ,F 分别为OA ,BC 的中点)全等,所以S 2=12×2×2= 2.三棱锥在坐标平面xOz 上的正投影与△DGH (G ,H 分别为AB ,OC 的中点)全等,所以S 3=12×2×2= 2.所以S 2=S 3且S 1≠S 3,故选D.5.如图,点E ,F 分别是正方体ABCD ­A 1B 1C 1D 1的棱AB ,AA 1的中点,点M ,N 分别是线段D 1E 与C 1F 上的点,则与平面ABCD 垂直的直线MN 的条数有( )A .0条B .1条C .2条D .无数条解析:选B.假设存在满足条件的直线MN ,如图,建立空间直角坐标系,不妨设正方体的棱长为2,则D 1(2,0,2),E (1,2,0),设M (x ,y ,z ),D 1M →=mD 1E →(0<m <1),∴(x -2,y ,z -2)=m (-1,2,-2),x =2-m ,y =2m ,z =2-2m ,∴M (2-m,2m,2-2m ),同理,若设C 1N →=nC 1F →(0<n<1),可得N (2n,2n,2-n ),MN →=(m +2n -2,2n -2m,2m -n ).又∵MN ⊥平面ABCD .∴⎩⎪⎨⎪⎧m +2n -2=0,2n -2m =0,解得⎩⎪⎨⎪⎧m =23,n =23,即存在满足条件的直线MN ,且只有一条.6.(2017·安徽合肥模拟)如图,在棱长为1的正方体ABCD ­A 1B 1C 1D 1中,点P 在线段AD 1上运动,给出以下四个命题:①异面直线C 1P 和CB 1所成的角为定值; ②二面角P ­BC 1­D 的大小为定值; ③三棱锥D ­BPC 1的体积为定值;④直线CP 与平面ABC 1D 1所成的角为定值. 其中真命题的个数为( ) A .1 B .2 C .3D .4解析:选C.如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则C (0,1,0),B (1,1,0),C 1(0,1,1),B 1(1,1,1). 设P (t,0,1-t ),0≤t ≤1.①中,C 1P →=(t ,-1,-t ),CB 1→=(1,0,1),因为C 1P →·CB 1→=0,所以C 1P ⊥CB 1,故①对;②中,因为D 1A ∥C 1B ,所以平面PBC 1即平面ABC 1D 1,两平面都固定,所以其二面角为定值,故②对;③中,因为点P 到直线BC 1的距离AB =1,所以V 三棱锥D ­BPC 1=13×⎝ ⎛⎭⎪⎫12×BC 1×AB ×12CB 1=16,故③对;④中,CP →=(t ,-1,1-t ),易知平面ABC 1D 1的一个法向量为CB 1→=(1,0,1),所以cos 〈CP →,CB 1→〉不是定值,故④错误.二、填空题(本题共3小题,每小题5分,共15分)7.(2017·江苏南京三模)如图,三棱锥A ­BCD 的棱长全相等,点E 为AD 的中点,则直线CE 与BD 所成角的余弦值为________.解析:设AB =1,则CE →·BD →=(AE →-AC →)·(AD →-AB →)=⎝ ⎛⎭⎪⎫12AD →-AC →·(AD →-AB →)=12AD →2-12AD →·AB →-AC →·AD →+AC →·AB →=12-12cos 60°-cos 60°+cos 60°=14. ∴cos〈CE →,BD →〉=CE →·BD→|CE →||BD →|=1432=36. 答案:368.在直三棱柱ABC ­A 1B 1C 1中,若BC ⊥AC ,∠BAC =π3,AC =4,点M 为AA 1的中点,点P 为BM的中点,Q 在线段CA 1上,且A 1Q =3QC ,则异面直线PQ 与AC 所成角的正弦值为________.解析:由题意,以C 为原点,以AC 边所在直线为x 轴,以BC 边所在直线为y 轴,以CC 1边所在直线为z 轴建立空间直角坐标系,如图所示.设棱柱的高为a ,由∠BAC =π3,AC =4,得BC =43,所以A (4,0,0),B (0,43,0),C (0,0,0),A 1(4,0,a ),M ⎝⎛⎭⎪⎫4,0,a 2,P ⎝⎛⎭⎪⎫2,23,a 4,Q ⎝ ⎛⎭⎪⎫1,0,a 4.所以QP →=(1,23,0),CA →=(4,0,0).设异面直线QP 与CA 所成的角为θ,所以|cos θ|=|QP →·CA →||QP →|·|CA →|=4413=1313.由sin 2θ+cos 2θ=1得,sin 2θ=1213,所以sin θ=±23913,因为异面直线所成角的正弦值为正,所以sin θ=23913即为所求.答案:239139.(2017·河北衡水模拟)如图,在正方体ABCD ­A 1B 1C 1D 1中,点M, N 分别在AB 1,BC 1上,且AM =13AB 1,BN =13BC 1,则下列结论:①AA 1⊥MN ;②A 1C 1∥MN ;③MN ∥平面A 1B 1C 1D 1;④BD 1⊥MN .其中正确命题的序号是________.(写出所有正确命题的序号)解析:如图,建立以D 为坐标原点,DC ,DA ,DD 1所在直线分别为x 轴、y 轴、z 轴的空间直角坐标系.令正方体的棱长为3,可得D (0,0,0),A (0,3,0),A 1(0,3,3),C 1(3,0,3),D 1(0,0,3),B (3,3,0),M (1,3,1),N (3,2,1).①中,AA 1→=(0,0,3),MN →=(2,-1,0),因为AA 1→·MN →=0,所以①正确;②中,A 1C 1→=(3,-3,0),与MN →不成线性关系,所以②错;③中,易知平面A 1B 1C 1D 1的一个法向量为DD 1→=(0,0,3),而DD 1→·MN →=0,且MN ⊄平面A 1B 1C 1D 1,所以③正确;④中,BD 1→=(-3,-3,3),因为BD 1→·MN →≠0,所以④错误.答案:①③三、解答题(本题共3小题,每小题12分,共36分)10.(2017·高考全国卷Ⅱ)如图,四棱锥P ­ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.(1)证明:直线CE ∥平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成锐角为45°,求二面角M ­AB ­D 的余弦值. 解:(1)证明:取PA 中点F ,连接EF ,BF ,CE . ∵E ,F 为PD ,PA 中点,∴EF 为△PAD 的中位线, ∴EF ═∥12AD .又∵∠BAD =∠ABC =90°,∴BC ∥AD . 又∵AB =BC =12AD ,∴BC ═∥12AD ,∴EF ═∥BC .∴四边形BCEF 为平行四边形,∴CE ∥BF . 又∵BF ⊂面PAB ,∴CE ∥面PAB .(2)以AD 中点O 为原点,如图建立空间直角坐标系.设AB =BC =1,则O (0,0,0),A (0,-1,0),B (1,-1,0),C (1,0,0),D (0,1,0),P (0,0,3).M 在底面ABCD 上的投影为M ′,∴MM ′⊥BM ′.又BM 与底面ABCD 所成角为45°,∴∠MBM ′=45°,∴△MBM ′为等腰直角三角形. ∵△POC 为直角三角形,且|OP ||OC |=3,∴∠PCO =60°. 设|MM ′|=a ,|CM ′|=33a ,|OM ′|=1-33a . ∴M ′⎝ ⎛⎭⎪⎫1-33a ,0,0.BM ′→=⎝ ⎛⎭⎪⎫-33a ,1,0,|BM ′|=⎝ ⎛⎭⎪⎫33a 2+12+02=13a 2+1=a ⇒a =62. ∴|OM ′|=1-33a =1-22. ∴M ′⎝ ⎛⎭⎪⎫1-22,0,0,M ⎝⎛⎭⎪⎫1-22,0,62 AM →=⎝ ⎛⎭⎪⎫1-22,1,62,AB →=(1,0,0).设平面ABM 的法向量m =(0,y 1,z 1).y 1+62z 1=0,∴m =(0,-6,2) AD →=(0,2,0),AB →=(1,0,0).设平面ABD 的法向量为n =(0,0,z 2),n =(0,0,1).∴cos〈m ,n 〉=m·n |m ||n |=210×1=21010=105.∴二面角M ­AB ­D 的余弦值为105. 11.如图所示的几何体中,ABC ­A 1B 1C 1为三棱柱,且AA 1⊥平面ABC ,四边形ABCD 为平行四边形,AD =2CD ,∠ADC =60°.(1)若AA 1=AC ,求证:AC 1⊥平面A 1B 1CD .(2)若CD =2,AA 1=λAC ,二面角C ­A 1D ­C 1的余弦值为24,求三棱锥C 1­A 1CD 的体积. 解:(1)证明:若AA 1=AC ,则四边形ACC 1A 1为正方形, 则AC 1⊥A 1C ,因为AD =2CD ,∠ADC =60°, 所以△ACD 为直角三角形,则AC ⊥CD , 因为AA 1⊥平面ABC ,所以AA 1⊥CD , 又AA 1∩AC =A ,所以CD ⊥平面ACC 1A 1,则CD ⊥AC 1, 因为A 1C ∩CD =C ,所以AC 1⊥平面A 1B 1CD . (2)若CD =2,因为∠ADC =60°,所以AC =23,则AA 1=λAC =23λ,建立以C 为坐标原点,CD ,CA ,CC 1分别为x ,y ,z 轴的空间直角坐标系如图所示,则C (0,0,0),D (2,0,0,),A (0,23,0),C 1(0,0,23λ),A 1(0,23,23λ). 则A 1D →=(2,-23,-23λ),CD →=(2,0,0),C 1A 1→=(0,23,0). 设平面CA 1D 的一个法向量为m =(x ,y ,z ). 则m ·A 1D →=2x -23y -23λz =0,m ·CD →=2x =0, 则x =0,y =-λz ,令z =1,则y =-λ,则m =(0,-λ,1). 设平面A 1DC 1的一个法向量为n =(x 1,y 1,z 1),n ·A 1D →=2x 1-23y 1-23λz 1=0, n ·C 1A 1→=23y 1=0,则y 1=0,2x 1-23λz 1=0,令z 1=1,则x 1=3λ, 则n =(3λ,0,1), 因为二面角C ­A 1D ­C 1的余弦值为24. 所以cos 〈m ,n 〉=m·n |m |·|n |=11+λ2·1+3λ2=24. 即(1+λ2)(1+3λ2)=8,得λ=1,即AA 1=AC , 则三棱锥C 1­A 1CD 的体积V =VD ­A 1C 1C =13CD ·12AC ·AA 1=13×2×12×23×23=4. 12.(2017·浙江宁波模拟)如图(1),在边长为4的菱形ABCD 中,∠BAD =60°,DE ⊥AB 于点E ,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1D ⊥DC ,如图(2).(1)求证:A 1E ⊥平面BCDE . (2)求二面角E ­A 1B ­C 的余弦值.(3)判断在线段EB 上是否存在一点P ,使平面A 1DP ⊥平面A 1BC ?若存在,求出EPPB的值;若不存在,说明理由.解析:(1)证明:∵DE ⊥BE ,BE ∥DC ,∴DE ⊥DC . 又∵AD 1⊥DC ,A 1D ∩DE =D ,∴DC ⊥平面A 1DE , ∴DC ⊥A 1E .又∵A 1E ⊥DE ,DC ∩DE =D ,∴A 1E ⊥平面BCDE .(2)∵A 1E ⊥平面BCDE ,DE ⊥BE ,∴以EB ,ED ,EA 1所在直线分别为x 轴,y 轴和z 轴,建立空间直角坐标系.易知DE =23,则A 1(0,0,2),B (2,0,0),C (4,23,0),D (0,23,0),∴BA 1→=(-2,0,2),BC →=(2,23,0),平面A 1BE 的一个法向量为n =(0,1,0). 设平面A 1BC 的法向量为m =(x ,y ,z ), 由BA 1→·m =0,BC →·m =0, 得⎩⎨⎧-2x +2z =0,2x +23y =0.令y =1,得m =(-3,1,-3),∴cos〈m ,n 〉=m·n |m |·|n |=17×1=77.由图,得二面角E ­A 1B ­C 为钝二面角,∴二面角E ­A 1B ­C 的余弦值为-77. (3)假设在线段EB 上存在一点P ,使得平面A 1DP ⊥平面A 1BC .设P (t,0,0)(0≤t ≤2),则A 1P →=(t,0,-2),A 1D →=(0,23,-2),设平面A 1DP 的法向量为p =(x 1,y 1,z 1),由⎩⎨⎧A 1D →·p =0,A 1P →·p =0,得⎩⎨⎧ 23y 1-2z 1=0,tx 1-2z 1=0.令x 1=2,得p =⎝ ⎛⎭⎪⎫2,t 3,t . ∵平面A 1DP ⊥平面A 1BC ,∴m·p =0,即23-t3+3t =0,解得t =-3.∵0≤t ≤2,∴在线段EB 上不存在点P ,使得平面A 1DP ⊥平面A 1BC .。

最新-2018年高考数学真题汇编 7:立体几何 理 精品

最新-2018年高考数学真题汇编 7:立体几何 理 精品

2018高考真题分类汇编:立体几何一、选择题1.【2018高考真题新课标理7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【答案】B2.【2018高考真题浙江理10】已知矩形ABCD ,AB=1,BC=2。

将△沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中。

A.存在某个位置,使得直线AC 与直线BD 垂直.B.存在某个位置,使得直线AB 与直线CD 垂直.C.存在某个位置,使得直线AD 与直线BC 垂直.D.对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直 【答案】C3.【2018高考真题新课标理11】已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为( )()A 6 ()B ()C 3 ()D 2【答案】A4.【2018高考真题四川理6】下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行【答案】C5.【2018高考真题四川理10】如图,半径为R 的半球O 的底面圆O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径CD 作平面α成45角的平面与半球面相交,所得交线上到平面α的距离最大的点为B ,该交线上的一点P 满足60BOP ∠= ,则A 、P两点间的球面距离为( )A 、arccos 4R 、4R π C 、R 、3R π【答案】A6.【2018高考真题陕西理5】如图,在空间直角坐标系中有直三棱柱111ABC A B C -,12CA CC CB ==,则直线1BC 与直线1AB 夹角的余弦值为( )35【答案】A.7.【2018高考真题湖南理3】某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是【答案】D8.【2018高考真题湖北理4】已知某几何体的三视图如图所示,则该几何体的体积为A.8π3B.3πC.10π3D.6π【答案】B9.【2018高考真题广东理6】某几何体的三视图如图所示,它的体积为A.12π B.45π C.57π D.81π【答案】C10.【2018高考真题福建理4】一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是A.球B.三棱柱C.正方形D.圆柱【答案】D.11.【2018高考真题重庆理9】设四面体的六条棱的长分别为1,1,1,1a,且长为aa的取值范围是(A) (B) (C) (D)(1【答案】A12.【2018高考真题北京理7】某三棱锥的三视图如图所示,该三梭锥的表面积是( )A. 28+65B. 30+65C. 56+ 125D. 60+125【答案】B13.【2018高考真题全国卷理4】已知正四棱柱ABCD- A 1B 1C 1D 1中 ,AB=2,CC 1=为CC 1的中点,则直线AC 1与平面BED 的距离为【答案】D二、填空题14.【2018高考真题浙江理11】已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积等于________cm 3.【答案】115.【2018高考真题四川理14】如图,在正方体1111ABCD A BC D -中,M 、N 分别是CD 、1CC 的中点,则异面直线1A M 与DN 所成角的大小是____________。

2018全国高考立体几何(完整答案)

2018全国高考立体几何(完整答案)

2018全国高考立体几何(完整答案)一.解答题(共40小题)1.已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.2.如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D 的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.3.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.4.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA ⊥PD,PA=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.5.如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM 折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q ﹣ABP的体积.6.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥平面ABCD,BD交AC 于点E,F是线段PC中点,G为线段EC中点.(Ⅰ)求证:FG∥平面PBD;(Ⅱ)求证:BD⊥FG.7.如图所示,在四棱锥P﹣ABCD中,平面PAB⊥平面ABCD,AD∥BC,AD=2BC,∠DAB=∠ABP=90°.(Ⅰ)求证:AD⊥平面PAB;(Ⅱ)求证:AB⊥PC;(Ⅲ)若点E在棱PD上,且CE∥平面PAB,求的值.8.如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(1)求证:DE∥平面PBC;(2)求证:AB⊥PE;(3)求三棱锥P﹣BEC的体积.9.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥CB,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,,M是棱PC上的点.(Ⅰ)求证:平面PQB⊥平面PAD;(Ⅱ)若PA=PD=2,BC=1,,异面直线AP与BM所成角的余弦值为,求的值.10.如图,梯形ABCD中,AD=BC,AB∥CD,AC⊥BD,平面BDEF⊥平面ABCD,EF∥BD,BE⊥BD.(1)求证:平面AFC⊥平面BDFE;(2)若AB=2CD=2,BE=EF=2,求BF与平面DFC所成角的正弦值.11.如图,在三棱锥P﹣ABC中,AB⊥PC,CA=CB,M是AB的中点.点N在棱PC上,点D是BN的中点.求证:(1)MD∥平面PAC;(2)平面ABN⊥平面PMC.12.如图,已知PA垂直于矩形ABCD所在的平面,M,N分别是AB,PC的中点,若∠PDA=45°,(1)求证:MN∥平面PAD;(2)求证:MN⊥平面PCD.13.如图,正三棱柱ABC﹣A1B1C1中,AA1=AB,D为BB1的中点.(1)求证:A1C⊥AD;(2)若点P为四边形ABB1A1内部及其边界上的点,且三棱锥P﹣ABC的体积为三棱柱ABC﹣A1B1C1体积的,试在图中画出,P点的轨迹.并说明理由.14.如图,在三棱柱ABC﹣A1B1C1中,底面ABC为边长为2等边三角形,BB1=4,A1C1⊥BB1,且∠A1B1B=45°.(I)证明:平面BCC1B1⊥平面ABB1A1;(Ⅱ)求B﹣AC﹣A1二面角的余弦值.15.已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,∠BAC=90°,AB=AA1=2,AC=1,M,N分别是A1B1,BC的中点.(Ⅰ)证明:MN∥平面ACC1A1;(II)求二面角M﹣AN﹣B的余弦值.16.已知空间几何体ABCDE中,△BCD与△CDE均为边长为2的等边三角形,△ABC为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD.(1)试在平面BCD内作一条直线,使得直线上任意一点F与E的连线EF均与平面ABC平行,并给出详细证明;(2)求三棱锥E﹣ABC的体积.17.如图,在四棱锥P﹣ABCD中,∠ADB=90°,CB=CD,点E为棱PB的中点.(1)若PB=PD,求证:PC⊥BD;(2)求证:CE∥平面PAD.18.如图,长方体ABCD﹣A1B1C1D1中,AB=BC=2,A1C与底面ABCD所成的角为60°,(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1B与B1D1所成角的大小.19.如图,四棱锥P﹣ABCD的底面ABCD是边长为2的菱形∠BAD=60°.已知PB=PD=2,PA=.(Ⅰ)证明:PC⊥BD;(Ⅱ)若E为PA上一点,记三棱锥P﹣BCE的体积和四棱锥P﹣ABCD的体积分别为V1和V2,当V1:V2=1:8时,求的值.20.如图,正方体ABCD﹣A1B1C1D1的棱长为2,E,F分别是CB,CD的中点,点M在棱CC1上,CM=tCC1(0<t<1).(Ⅰ)三棱锥C﹣EFM,C1﹣B1D1M的体积分别为V1,V2,当t为何值时,V1•V2最大?最大值为多少?(Ⅱ)若A1C∥平面B1D1M,证明:平面EFM⊥平面B1D1M.21.如图,直角梯形ABEF中,∠ABE=∠BAF=90°,C、D分别是BE、AF上的点,且DA=AB=BC=a,DF=2CE=2a.沿CD将四边形CDFE翻折至CDPQ,连接AP、BP、BQ,得到多面体ABCDPQ,且AP=a.(Ⅰ)求多面体ABCDPQ的体积;(Ⅱ)求证:平面PBQ⊥平面PBD.22.如图,已知四棱锥P﹣ABCD的底面ABCD是菱形,∠BAD=60°,PA=PD,O 为AD边的中点.(1)证明:平面POB⊥平面PAD;(2)若,求四棱锥P﹣ABCD的体积.23.如图,在四棱锥P﹣ABCD中.底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD.Q为AD的中点,M是棱PC上的点,PA=PD=2.BC=AD=1,CD=.(I)求证:平面PBC⊥平面PQB;(Ⅱ)若平面QMB与平面PDC所成的锐二面角的大小为60°,求PM的长.24.在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,AB∥CD,,AB=2BC=2,AC⊥FB.(Ⅰ)求证:AC⊥平面FBC;(Ⅱ)求四面体FBCD的体积;(Ⅲ)线段AC上是否存在点M,使EA∥平面FDM?证明你的结论.25.如图所示的几何体中,平面PAD⊥平面ABCD,△PAD是直角三角形,∠APD=90°,四边形ABCD是直角梯形,AB∥DC,AB⊥AD,PQ∥DC,PQ=PD=DC=1,PA=AB=2.(I)求证:PD∥平面QBC;(Ⅱ)求证:QC⊥平面PABQ;(Ⅲ)在线段QB上是否存在点M,使得AM⊥BC,若存在,求QM的值;若不存在,请说明理由.26.如图1,△ABC是边长为3的等边三角形,D在边AC上,E在边AB上,且AD=BE=2AE.将△ADE沿直线DE折起,得四棱锥A'﹣BCDE,如图2(1)求证:DE⊥A'B;(2)若平面AD'E⊥底面BCDE,求三棱锥D﹣A'CE的体积.27.如图,在三棱锥P﹣ABC中,PA⊥AC,AB⊥BC,PA=BC=2,PB=AC=2,D 为线段AC的中点,将△CBD折叠至△EBD,使得平面EDB⊥平面ABC且PC交平面EBD于F.(1)求证:平面BDE⊥平面PAC.(2)求三棱锥P﹣EBC的体积.28.如图1,在矩形ABCD中,AD=2AB=4,E是AD的中点.将△ABE沿BE折起使A到点P的位置,平面PEB⊥平面BCDE,如图2.(Ⅰ)求证:PB⊥平面PEC;(Ⅱ)求三棱锥D﹣PEC的高.29.如图1,ABCD是一个直角梯形,∠ABC=∠BAD=90,E为BC边上一点,AE、BD相交于O,AD=EC=3,BE=1,AB=.将△ABE沿AE折起,使平面ABE⊥平面ADE,连接BC、BD,得到如图2所示的四棱锥B﹣AECD.(Ⅰ)求证:CD⊥平面BOD;(Ⅱ)求直线AB与面BCD所成角的余弦值.30.如图,四棱柱ABCD﹣A1B1C1D1为长方体,点P是CD中点,Q是A1B1的中点.(I)求证:AQ∥平面PBC1;(l)若BC=CC1,求证:平面A1B1C⊥平面PBC1.31.如图,在四棱锥P﹣ABCD中,AD∥BC,AD=3BC=6,,点M在线段AD上,且DM=4,AD⊥AB,PA⊥平面ABCD.(1)证明:平面PCM⊥平面PAD;(2)当∠APB=45°时,求四棱锥P﹣ABCM的表面积.32.已知等腰梯形ABCD中,AD∥EC,EC=2AD=2AE=4,B为EC的中点,如图1,将三角形ABE沿AB折起到ABE′(E′⊄平面ABCD),如图2.(1)点F为线段AE′的中点,判断直线DF与平面BCE′的位置关系,并说明理由;(2)当平面ABE′与平面DE′C所成的二面角的大小为时,证明:平面ABE′⊥平面ABCD.33.如图,在四棱锥P﹣ABCD中,△PAD和△BCD都是等边三角形,平面PAD ⊥平面ABCD,且AD=2AB=4,.(I)求证:CD⊥PA;(II)E,F分别是棱PA,AD上的点,当平面BEF∥平面PCD时,求四棱锥C﹣PEFD的体积.34.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,AB=AC=2,AD=2,PB=,PB⊥AC.(1)求证:平面PAB⊥平面PAC;(2)若∠PBA=45°,试判断棱PA上是否存在与点P,A不重合的点E,使得直线CE与平面PBC所成角的正弦值为,若存在,求出的值;若不存在,请说明理由.35.如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD为直角梯形,AD ∥BC,∠BAD=∠CBA=90°,PA=AB=BC=1,AD=2,E,F,G分别为BC,PD,PC的中点.(1)求EF与DG所成角的余弦值;(2)若M为EF上一点,N为DG上一点,是否存在MN,使得MN⊥平面PBC?若存在,求出点M,N的坐标;若不存在,请说明理由.36.如图所示,在多面体ABC﹣A1B1C1中,D,E,F分别是AC,AB,CC1的中点,AC=BC=4,,CC1=2,四边形BB1C1C为矩形,平面ABC⊥平面BB1C1C,AA1∥CC1(1)求证:平面DEF⊥平面AA1C1C;(2)求直线EF与平面ABC所成的角的正切值.37.如图,在三棱柱ABC﹣A1B1C1中,BC⊥平面AA1B1B,AB=AA1=2,∠A1AB=60°.(Ⅰ)证明:平面AB1C⊥平面A1BC;(Ⅱ)若四棱锥A﹣BB1C1C的体积为,求该三棱柱的侧面积.38.如图,在四棱锥P﹣ABCD中,PD⊥底面ABCD,底面ABCD为正方形,E,F,G分别是AB,PB,PC的中点.(1)求证:CD∥平面PAB;(2)求证:CD⊥平面EFG.39.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,平面ABP⊥平面BCP,∠APB=90°,BP=BC,M为CP的中点.求证:(1)AP∥平面BDM;(2)BM⊥平面ACP.40.已知梯形ABCD中,AD∥BC,,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图).G是BC的中点,以F、B、C、D为顶点的三棱锥的体积记为f (x).(1)当x=2时,求证:BD⊥EG;(2)求f(x)的最大值;(3)当f(x)取得最大值时,求异面直线AE与BD所成的角的余弦值.2018全国高考立体几何(完整答案)参考答案与试题解析一.解答题(共40小题)1.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.2.【解答】(1)证明:矩形ABCD所在平面与半圆弦所在平面垂直,所以AD⊥半圆弦所在平面,CM⊂半圆弦所在平面,∴CM⊥AD,M是上异于C,D的点.∴CM⊥DM,DM∩AD=D,∴CM⊥平面AMD,CM⊂平面CMB,∴平面AMD⊥平面BMC;(2)解:存在P是AM的中点,理由:连接BD交AC于O,取AM的中点P,连接OP,可得MC∥OP,MC⊄平面BDP,OP⊂平面BDP,所以MC∥平面PBD.3.【解答】证明:(1)平行六面体ABCD﹣A1B1C1D1中,AB∥A1B1,AB∥A1B1,AB⊄平面A1B1C,A1B1⊂∥平面A1B1C⇒AB∥平面A1B1C;(2)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,⇒四边形ABB1A1是菱形,⊥AB1⊥A1B.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1⇒AB1⊥BC.∴⇒AB1⊥面A1BC,且AB1⊂平面ABB1A1⇒平面ABB1A1⊥平面A1BC.4.【解答】证明:(Ⅰ)PA=PD,E为AD的中点,可得PE⊥AD,底面ABCD为矩形,可得BC∥AD,则PE⊥BC;(Ⅱ)由于平面PAB和平面PCD有一个公共点P,且AB∥CD,在平面PAB内过P作直线PG∥AB,可得PG∥CD,即有平面PAB∩平面PCD=PG,由平面PAD⊥平面ABCD,又AB⊥AD,可得AB⊥平面PAD,即有AB⊥PA,PA⊥PG;同理可得CD⊥PD,即有PD⊥PG,可得∠APD为平面PAB和平面PCD的平面角,由PA⊥PD,可得平面PAB⊥平面PCD;(Ⅲ)取PC的中点H,连接DH,FH,在三角形PCD中,FH为中位线,可得FH∥BC,FH=BC,由DE∥BC,DE=BC,可得DE=FH,DE∥FH,四边形EFHD为平行四边形,可得EF∥DH,EF⊄平面PCD,DH⊂平面PCD,即有EF∥平面PCD.5.【解答】解:(1)证明:∵在平行四边形ABCM中,∠ACM=90°,∴AB⊥AC,又AB⊥DA.且AD∩AC=A,∴AB⊥面ADC,∴AB⊂面ABC,∴平面ACD⊥平面ABC;(2)∵AB=AC=3,∠ACM=90°,∴AD=AM=3,∴BP=DQ=DA=2,由(1)得DC⊥AB,又DC⊥CA,∴DC⊥面ABC,∴三棱锥Q﹣ABP的体积V==××==1.6.【解答】证明:(Ⅰ)连接PE,G、F为EC和PC的中点,∴FG∥PE,FG⊄平面PBD,PE⊂平面PBD,∴FG∥平面PBD…(6分)(Ⅱ)∵菱形ABCD,∴BD⊥AC,又PA⊥面ABCD,BD⊂平面ABCD,∴BD⊥PA,∵PA⊂平面PAC,AC⊂平面PAC,且PA∩AC=A,∴BD⊥平面PAC,FG⊂平面PAC,∴BD⊥FG…(14分)7.【解答】(Ⅰ)证明:因为∠DAB=90°,所以AD⊥AB.……………………(1分)因为平面PAB⊥平面ABCD,……………………(2分)且平面PAB∩平面ABCD=AB,……………………(3分)所以AD⊥平面PAB.……………………(4分)(Ⅱ)证明:由已知得AD⊥AB因为AD∥BC,所以BC⊥AB.……………………(5分)又因为∠ABP=90°,所以PB⊥AB.……………………(6分)因为PB∩BC=B……………………(7分)所以AB⊥平面PBC……………………(8分)所以AB⊥PC.……………………(9分)(Ⅲ)解:过E作EF∥AD交PA于F,连接BF.……………………(10分)因为AD∥BC,所以EF∥BC.所以E,F,B,C四点共面.……………………(11分)又因为CE∥平面PAB,且CE⊂平面BCEF,且平面BCEF∩平面PAB=BF,所以CE∥BF,……………………(13分)所以四边形BCEF为平行四边形,所以EF=BC.在△PAD中,因为EF∥AD,所以,……………………(14分)即.8.【解答】证明:(1)∵D,E分别为AB,AC的中点,∴DE∥BC,又DE⊄平面PBC,BC⊂平面PBC,∴DE∥平面PBC.(2)连接PD,∵DE∥BC,又∠ABC=90°,∴DE⊥AB,又PA=PB,D为AB中点,∴PD⊥AB,又PD∩DE=D,PD⊂平面PDE,DE⊂平面PDE,∴AB⊥平面PDE,又PE⊂平面PDE,∴AB⊥PE.(3)∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,PD⊥AB,PD⊂平面PAB,∴PD⊥平面ABC,∵△PAB是边长为2的等边三角形,∴PD=,∵E是AC的中点,∴.9.【解答】证明:(Ⅰ)∵AD∥BC,,Q为AD的中点∴四边形BCDQ为平行四边形,∴CD∥BQ.∵∠ADC=90°,∴∠AQB=90°,即QB⊥AD.又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD.∵BQ⊥平面PAD∵BQ⊂平面PQB,∴平面PQB⊥平面PAD.解:(Ⅱ)∵PA=PD,Q为AD的中点,∴PQ⊥AD.∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD.∵PQ⊥平面ABCD.以Q为原点分别以、、为x轴、y轴、z轴的正方向建立空间直角坐标系,则Q(0,0,0),A(1,0,0),,,,设M(x0,y0,z0),∴,,.由M是PC上的点,设,化简得.设异面直线AP与BM所成角为θ,则.∴,解得或,故或.10.【解答】解:(1)证明:∵平面BDFE⊥平面ABCD,平面BDFE∩平面ABCD=BD,AC⊂平面ABCD,AC⊥BD,∴AC⊥平面BDFE.又AC⊂平面AFC,∴平面AFC⊥平面BDFE.(2)设AC∩BD=O,∵四边形ABCD为等腰梯形,AC⊥BD,AB=2CD=2,∴OD=OC=1,OB=OA=2,∵EF∥OB且EF=OB,∴四边形FEBO为平行四边形,∴OF∥BE,且OF=BE=2,又∵BE⊥平面ABCD,∴OF⊥平面ABCD.以O为原点,向量的方向分别为x轴,y轴,z轴的正方向,建立如图所示的空间直角坐标系,则B(0,2,0),D(0,﹣1,0),F(0,0,2),C(﹣1,0,0),∴=(0,1,2),=(1,﹣1,0),=(0,﹣2,2),设平面DFC的一个法向量为=(x,y,z),则有,即,不妨设z=1,得x=y=﹣2.即=(﹣2,﹣2,1),于是cos<,>===.设BF与平面DFC所成角为θ,则sinθ=|cos<,>|=.∴BF与平面DFC所成角的正弦值为.11.【解答】证明:(1)在ABN中,∵M是AB的中点,D是BN的中点,∴MD∥AN,又AN⊂平面PAC,MD⊄平面PAC,∴MD∥平面PAC.(2)在△ABC中,∵CA=CB,M是AB的中点,∴AB⊥MC,又∵AB⊥PC,PC⊂平面PMC,MC⊂平面PMC,PC∩MC=C,∴AB⊥平面PMC.又∵AB⊂平面ABN,∴平面ABN⊥平面PMC.12.【解答】证明:(1)如图,取PD的中点E,连接AE,NE.∵E、N分别为PD,PC的中点,∴EN CD,又M为AB的中点,∴AM CD,∴EN AM,∴四边形AMNE为平行四边形.∴MN∥AE,∴MN∥平面PAD.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(2)∵PA⊥平面ABCD,∠PDA=45°,∴△PAD为等腰直角三角形,∴AE⊥PD,又∵CD⊥AD,CD⊥PA,AD∩PA=A,∴CD⊥平面PAD,∵AE⊂平面PAD,∴CD⊥AE,又CD∩PD=D,∴AE⊥平面PCD,∴MN⊥平面PCD.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)13.【解答】(1)证明:取AB的中点F,连接CF,A1F,∵A1A⊥平面ABC,CF⊂平面ABC,∴所以A1A⊥CF.∵△ABC为正三角形,F为AB的中点,∴BA⊥CF,又∵AA1,AB⊂平面AA1B1B,AA1∩AB=A,∴CF⊥平面AA1B1B,又∵AD⊂平面AA1B1B,所以CF⊥AD,正方形AA1B1B中,∵Rt△A1AF≌Rt△ABD,∴∠DAB=∠FA1A,又∵∠AFA1+∠FA1A=90°,∴∵∠AFA1+∠DAB=90°,,故AD⊥A1F,又∵CF∩A1F=F,CF,A1F⊂平面A1FC,∴AD⊥平面A1FC,又∵A1C⊂平面A1FC,∴A1C⊥AD.(2)取AA1中点E,连接DE,则线段DE为点P的运动轨迹.理由如下:∵DE∥AB,DE⊄平面ABC,AB⊂平面ABC,∴ED∥平面ABC,∴P到平面ABC的距离为.所以V==.14.【解答】证明:(Ⅰ)过点A1在平面ABB1A1内作BB1的垂线,垂足为O,连结C1O,∵A1C1⊥B1B,A1O⊥B1B,A1C1∩A1O=A1,∴B1B⊥平面A1OC1,∵OC1⊂平面A1OC1,∴B1B⊥OC1,由题可知A1B1=A1C1=B1C1=2,在B△A1OB1中,∵A1O⊥OB1,∠A1B1B=45°,A1B1=2,∴OA1=OB1=2,在△OB1C1中,∵C1O⊥OB1,B1C1=2,OB1=2,∴OC1=2,∴=A1C12,∴OC1⊥OA1,∵OA1∩OB1=O,∵OC1⊂平面BCC1B1,∴平面BCC1B1⊥平面ABB1A1.解:(Ⅱ)由(Ⅰ)知OC1、OA1、OB1两两垂直,以O为坐标原点,OA1为x轴,OB1为y轴,OC1为z轴,建立空间直角坐标系,∵AB=2,BB1=4,OC1=2,OA1=2,OB1=2,∴A1(2,0,0),B1(0,2,0),C1(0,0,2),B(0,﹣2,0),A(2,﹣4,0),C(0,﹣4,2),=(2,﹣2,0),=(0,﹣2,2),=(﹣2,0,2),=(0,4,0),设=(x,y,z)是平面ABC的法向量,则,取x=1,得=(1,1,1),设=(x,y,z)是平面A1AC的法向量,则,取x=1,得=(1,0,1),∴cos<>==.∴二面角B﹣AC﹣A1的余弦值为.15.【解答】解:解法一:依条件可知AB、AC,AA1两两垂直,如图,以点A为原点建立空间直角坐标系A﹣xyz.根据条件容易求出如下各点坐标:A(0,0,0),B(0,2,0),C(﹣1,0,0),A1(0,0,2),B1(0,2,2),C1(﹣1,0,2),M(0,1,2),(I)证明:∵是平面ACCA1的一个法向量,且,所以又∵MN⊄平面ACC1A1,∴MN∥平面ACC1A1(II)设=(x,y,z)是平面AMN的法向量,因为,由得解得平面AMN的一个法向量=(4,2,﹣1)由已知,平面ABC的一个法向量为=(0,0,1)∴二面角M﹣AN﹣B的余弦值是解法二:(I)证明:设AC的中点为D,连接DN,A1D∵D,N分别是AC,BC的中点,∴又∵,∴,∴四边形A 1DNM是平行四边形∴A1D∥MN∵A1D⊂平面ACC1A1,MN⊄平面ACC1A1∴MN∥平面ACC1A1(II)如图,设AB的中点为H,连接MH,∴MH∥BB1∵BB1⊥底面ABC,∵BB1⊥AC,BB1⊥AB,∴MH⊥AC,MH⊥AB∴AB∩AC=A∴MH⊥底面ABC在平面ABC内,过点H做HG⊥AN,垂足为G 连接MG,AN⊥HG,AN⊥MH,HG∩MH=H ∴AN⊥平面MHG,则AN⊥MG∴∠MGH是二面角M﹣AN﹣B的平面角∵MH=BB1=2,由△AGH∽△BAC,得所以所以∴二面角M﹣AN﹣B的余弦值是16.【解答】解:(1)∵平面CDE⊥平面BCD,平面ABC⊥平面BCD.∴过E作EQ⊥平面BCD,交CD于Q,过A作AP⊥平面BCD,交BC于P,∴EQ∥AP,过Q作QO∥BC,交BD于O,则直线OQ就是在平面BCD内所求的直线,使得直线OQ上任意一点F与E的连线EF均与平面ABC平行.证明如下:∵EQ∥AP,QO∥BC,EQ∩QO=Q,AP∩BC=P,EQ、QO⊂平面EQO,AP、BC⊂平面ABC,∴平面EQO∥平面ABC,∴直线OQ上任意一点F与E的连线EF均与平面ABC平行.(2)∵△BCD与△CDE均为边长为2的等边三角形,△ABC为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD,∴AP==2,∴S==2,△ABC点E到平面ABC的距离d===,∴三棱锥E﹣ABC的体积V E===.﹣ABC17.【解答】证明:(1)取BD的中点O,连结CO,PO,因为CD=CB,所以△CBD为等腰三角形,所以BD⊥CO.因为PB=PD,所以△PBD为等腰三角形,所以BD⊥PO.又PO∩CO=O,所以BD⊥平面PCO.因为PC⊂平面PCO,所以PC⊥BD.解:(2)由E为PB中点,连EO,则EO∥PD,又EO⊄平面PAD,所以EO∥平面PAD.由∠ADB=90°,以及BD⊥CO,所以CO∥AD,又CO⊄平面PAD,所以CO∥平面PAD.又CO∩EO=O,所以平面CEO∥平面PAD,而CE⊂平面CEO,所以CE∥平面PAD.18.【解答】解:(1)∵长方体ABCD﹣A1B1C1D1中,AB=BC=2,∴AA1⊥平面ABCD,AC==2,∴∠A1CA是A1C与底面ABCD所成的角,∵A1C与底面ABCD所成的角为60°,∴∠A1CA=60°,∴AA1=AC•tan60°=2•=2,=AB×BC=2×2=4,∵S正方形ABCD∴四棱锥A1﹣ABCD的体积:V===.(2)∵BD∥B1D1,∴∠A1BD是异面直线A1B与B1D1所成角(或所成角的补角).∵BD=,A1D=A1B==2,∴cos∠A1BD===.∴∠A1BD=arccos.∴异面直线A1B与B1D1所成角是arccos.19.【解答】证明:(Ⅰ)连接BD、AC交于O点,∵PB=PD,∴PO⊥BD,又∵ABCD是菱形,∴BD⊥AC,而AC∩PO=O,∴BD⊥平面PAC,且PC⊂平面PAC,∴BD⊥PC.解:(Ⅱ)由条件可知△ABD≌△PBD,∴AO=PO=,∵PA=,∴PA2=OA2+OP2,∴PO⊥AC,由(Ⅰ)知,BD⊥平面PAC,PO⊂平面PAC,∴PO⊥BD,∴PO⊥平面ABCD,∴平面APC⊥平面ABCD,过E点作EF⊥AC,交AC于F,则EF⊥平面ABCD,∴EF∥PO,∴EF、PO分别是三棱锥E﹣ABC和四棱锥P﹣ABCD的高.又V1=V P﹣ABC﹣V E﹣ABC=,,由=,得4(PO﹣EF)=PO,∴,又由△AEF∽△APO,=,∴=.20.【解答】解:(Ⅰ)由题可知,CM=2t,C1M=2﹣2t,∴V1=S△ECF•CM==,=S•C1M=(2﹣2t)=(1﹣t),V2∴V1•V2=≤•()2=.当且仅当t=1﹣t,即t=时等号成立.所以当t=时,V1•V2最大,最大值为.(Ⅱ)连接A1C1交B1D1于点O,则O为A1C1的中点,∵A1C∥平面B1D1M,平面A1CC1∩平面B1D1M=OM,∴A1C∥OM,∴M为CC1的中点,连接BD,∵E,F为BC、CD的中点,∴EF∥BD,又AC⊥BD,∴AC⊥EF.∵AA1⊥平面ABCD,EF⊂平面ABCD,∴AA1⊥EF,又AA1∩AC=A,∴EF⊥平面A1AC,又A1C⊂平面A1AC,∴EF⊥A1C.同理可得:EM⊥A1C,又EF∩EM=E,∴A1C⊥平面EFM.又A1C∥平面B1D1M,∴平面EFM⊥平面B1D1M.21.【解答】解:(Ⅰ)∵DA=AB=BC=a,∠ABE=∠BAF=90°,∴四边形ABCD是正方形,∴CD⊥AD,CD⊥DP,又AD∩DP=D,∴CD⊥平面ADP.∵AD2+DP2=AP2,∴AD⊥DP,又CD⊥AD,CD∩DP=D,∴AD⊥平面CDPQ,又AD∥BC,∴BC⊥平面CDPQ.∴V B﹣CDPQ==(a+2a)×a×a=a3,V B﹣ADP===.∴多面体ABCDPQ的体积为V B﹣CDPQ +V B﹣ADP=.(Ⅱ)取BP的中点G,连接GQ、DG、DQ,在△ABP中,BP==2a,∴BG=BP=a,在△BCQ中,BQ==a,PQ==a,∴PQ=BQ,∴GQ⊥BP.∴QG==a,又BD==2a=DP,∴DG⊥BP,∴DG==a,又DQ==a,∴DQ2=QG2+DG2,即QG⊥DG.又BP∩DG=G,∴QG⊥平面PBD,又QG⊂平面PBQ,∴平面PBQ⊥平面PBD.22.【解答】(1)证明:连接BD,因为底面ABCD是菱形,∠BAD=60°,所以△ABD 是正三角形,所以AD⊥BO,因为O为AD的中点,PA=PD,所以AD⊥PO,且PO∩BO=O,所以AD⊥平面POB,又AD⊂平面PAD,所以平面POB⊥平面PAD;(2)解:因为是正三角形,所以OB=3,在Rt△PAO中,,所以PO=2,又,所以OB2+PO2=PB2,所以∠POB=90°,即PO⊥OB,又AD⊥PO,且OB∩AD=O,所以PO⊥平面ABCD,因为,所以四棱锥P﹣ABCD的体积为.23.【解答】(I)证明:∵PA=PD,Q是AD的中点,∴PQ⊥AD,又平面PAD⊥底面ABCD,平面PAD∩底面ABCD=AD,PQ⊂平面PAD,∴PQ⊥平面ABCD,∴BC⊥PQ,∵BC=AD=DQ,BC∥AD,∠ADC=90°,∴四边形BCDQ是矩形,∴BC⊥BQ,又PQ∩BQ=Q,∴BC⊥平面PBQ,又BC⊂平面PBC,∴平面PBC⊥平面PQB.(II)过M作MN∥CD交PD与N,则平面BMQ∩平面PCD=MN,∵平面PAD⊥底面ABCD,平面PAD∩底面ABCD=AD,BQ⊥AD,BQ⊂平面PAD,∴BQ⊥平面PAD,又BQ∥CD∥MN,∴MN⊥平面PAD,∴MN⊥NQ,MN⊥PD,∴∠DNQ为平面BMQ与平面PCD所成角,即∠DNQ=60°,∵PD=PA=2,AD=2BC=2,∴∠PDO=60°,∴△DNQ是等比三角形,∴DN=DQ=1,即N是PD的中点,∴M是PC的中点,∵PD=2,CD=,∴PC=,∴PM==.24.【解答】(Ⅰ)证明:在△ABC中,∵,AB=2,BC=1,∴AC2+BC2=AB2.∴AC⊥BC.又∵AC⊥FB,BF∩CB=B,∴AC⊥平面FBC.(Ⅱ)解:∵AC⊥平面FBC,∴AC⊥FC.∵CD⊥FC,∴FC⊥平面ABCD.在Rt△ACB中,,∴∠CAB=30°,∴在等腰梯形ABCD中可得∠ABD=∠CDB=∠CBD=30°,∴CB=DC=1,∴FC=1.∴△BCD的面积S==.∴四面体FBCD的体积为:.(Ⅲ)解:线段AC上存在点M,且M为AC中点时,有EA∥平面FDM,证明如下:连接CE与DF交于点N,连接MN.由CDEF为正方形,得N为CE中点.∴EA∥MN.∵MN⊂平面FDM,EA⊄平面FDM,∴EA∥平面FDM.所以线段AC上存在点M,使得EA∥平面FDM成立.25.【解答】(Ⅰ)证明:∵PQ∥DC,PQ=PD=DC=1,∴四边形PQCD是平行四边形,∴PD∥CQ,∵PD⊄平面QBC,CQ⊂平面QBC,∴PD∥平面QBC.(Ⅱ)证明:∵∠APD=90°,∴PD⊥PA,∵平面PAD⊥平面ABCD,△PAD是直角三角形,四边形ABCD是直角梯形,AB ∥DC,AB⊥AD,∴AB⊥平面PAD,∴AB⊥PD,∵PD∥QC,∴PA⊥QC,AB⊥QC,∵PA∩AB=A,∴QC⊥平面PABQ.(Ⅲ)解:存在.由(Ⅱ)可知QC⊥平面PABQ;作AM⊥BQ,交BQ于M,可知AM⊥CQ,BQ∩CQ=Q,所以AM⊥平面BCQ,BC⊂平面BCQ,∴AM⊥BC.QB=,cosB=,BM=2=,QM==.26.【解答】解:(1)证明:在图1中,由题意知AE=1,AD=BE=2,在△ADE中,由余弦定理知:DE2=AE2+AD2﹣AE×AD=12+22﹣1×2=3,所以:AE2+DE2=AD2,所以:DE⊥AE,DE⊥BE,在△ADE沿直线DE折起的过程中,DE与AE,BE的垂直关系不变,故在图2中有DE⊥A'E,DE⊥BE,又A'E∩BE=E,所以DE⊥平面A'EB,所以DE⊥A'B.(2)如图2,因为平面A'DE⊥底面BCDE,由(1)知DE⊥A'E,且平面A'DE∩底面BCDE=DE,所以A'E⊥底面BCDE,所以A'E为三棱锥A'﹣EDC的高,且A'E=AE=1,又因为在图1中,S△ECD=S△ABC﹣S△AED﹣S△BEC=,所以:,故三棱锥D﹣A'CE的体积为.27.【解答】(1)证明:∵PA⊥AC,PA=2,AC=2,∴,又∵,BC=2,∴PB2+BC2=PC2,则BC⊥PB.又∵AB⊥BC,∴BC⊥平面PAB,则BC⊥PA,又PA⊥AC,AC∩BC=C,∴PA⊥平面ABC.又∵BD⊂平面PAC,∴PA⊥BD,在Rt△ABC中,由BC=2,AC=2,可得AB=2,又∵D为AC的中点,∴BD⊥AC,而PA∩AC=A,∴BD⊥平面PAC,则平面BDE⊥平面PAC;=V E﹣PBC=V B﹣APCE﹣V P﹣ABC.(2)解:V P﹣EBC由已知,DE∥AP,∴.∴=,.∴.28.【解答】解:(Ⅰ)证明:∵AD=2AB,E为线段AD的中点,∴AB=AE,取BE中点O,连接PO,则PO⊥BE,又平面PEB⊥平面BCDE,平面PEB∩平面BCDE=BE,∴PO⊥平面BCDE,则PO⊥EC,在矩形ABCD中,∴AD=2AB,E为AD的中点,∴BE⊥EC,则EC⊥平面PBE,∴EC⊥PB,又PB⊥PE,且PE∩EC=E,∴PB⊥平面PEC.(Ⅱ)以OB所在直线为x轴,以平行于EC所在直线为y轴,以OP所在直线为z轴建立空间直角坐标系,∵PB=PE=2,则B(,0,0),E(﹣,0,0),P(0,0,),D(﹣2,,0),C(﹣,2,0),∴=(﹣,0,﹣),=(﹣,2,﹣),∴cos∠EPC===,可得:sin∠EPC==,可得:S△EPC=||•||•sin∠EPC=2×2×=2,=V D﹣EPC,设三棱锥D﹣PEC的高为h,则可得:S△ECD•OP=S△EPC•h,可∵V P﹣ECD得:=2×h,∴解得:三棱锥D﹣PEC的高h=1.29.【解答】解:(Ⅰ)在Rt△BEB中,BE=1,AB=,所以∠BAE=30°……(1分)同理∠BDA=30°,从而∠AOD=90°,AF⊥BD……(2分)又因为AD∥EC,AD=EC,所以ADCE是平行四边形,∠CDO=∠AOD=90°,CD⊥DO……(3分)因为平面ABE⊥平面ADE,平面ABE∩平面ADE=AE,BO⊥AE,所以BO⊥平面ADE……(4分)又CD⊂平面ADE,所以BO⊥CD,BO∩DO=O,BO⊂平面BOD,OD平面BOD.所以CD⊥平面BOD……(6分)(Ⅱ)由(Ⅰ)可知,四边形AECD的面积S=CD•OD=3……(7分)连接AC,则△ACD的面积S1=,三棱锥B=ACD的体积V=……(9分)△BCD的面积S2=……(10分)设A到平面BCD的距离为h,则h=,h=……(11分)直线AB与面BCD所成角的正弦值为,余弦值为……(12分)30.【解答】证明:(1)取AB中点为R,连接PR,B1R∵点P是CD中点,Q是A1B1的中点,∴四边形AQB1R,PRB1C1都为平行四边形,∴AQ∥B1R,B1R∥PC1,∴AQ∥PC1.∵AQ⊄平面PBC1,PC1⊂平面PBC1,∴AQ∥平面PBC1.(Ⅱ)∵四棱柱ABCD﹣A1B1C1D1为长方体,BC=CC1,∴B1C⊥BC1.∵A1B1⊥平面BB1C1C,∴A1B1⊥BC1.∵A1B1∩B1C=B1,A1B1⊂平面A1B1C,B1C⊂平面A1B1C,∴BC1⊥平面A1B1C,BC1⊂平面PBC1,∴平面A1B1C⊥平面PBC1.31.【解答】(1)证明:由AD=6,DM=4可得AM=2,则BC=AM,又AD∥BC,则四边形ABCM是平行四边形,则CM∥AB,∵AD⊥AB,∴CM⊥AD.又PA⊥平面ABCD,CM⊂平面ABCD,∴PA⊥CM,∵PA∩AD=A,PA,AD⊂平面PAD,∴CM⊥平面PAD,又CM⊂平面PCM,∴平面PCM⊥平面PAD.(2)解:∵PA⊥平面ABCD,∴PA⊥AB,∵∠APB=45°,∴AP=AB=6.∵,∴.∴四棱锥P﹣ABCM的表面积为.32.【解答】(本小题满分12分)解:(1)直线DF与平面BCE'相交,理由如下:因为E'⊄平面ABCD,所以D⊄平面BCE'.若DF∥平面BCE',设平面DCE'∩平面BCE'=CM,则DF∥CM.CM与CB不重合.又因为AD∥BC,所以平面ADE'∥平面BCE',矛盾.所以直线DF与平面BCE'相交.…………………………(4分)证明:(2)取AB的中点O,连接E'O,BD,由等腰梯形ADCE中,AD∥EC,EC=2AD=2AE=4,,所以E'O⊥AB,DO⊥AB,…………………………(6分)分别以BA,OD所在的直线为x轴,y轴,过O垂直于平面ABCD的直线为z轴建立如图所示的空间直角坐标系,设二面角E'﹣AB﹣D的大小为α.则.过E'作E'G⊥OD于点G.因为E'O⊥AB,DO⊥AB,所以AO⊥平面E'OD,∠E'OD=α.所以E'G⊥AO.所以E'G⊥平面ABCD.…………………………(8分)所以.设平面E'AB的法向量为n=(x,y,z),则,即令y=1,得平面E'AB的一个法向量为n=(0,1,﹣cotα).…………………………(10分)同理可求平面E'DC的一个法向量为.所以.解得:.所以二面角E'﹣AB﹣D的大小为,即平面ABE'⊥平面ABCD.…………………………(12分)33.【解答】证明:(I)因为AD=4,AB=2,,所以AB2+BD2=AD2,AB⊥BD,且∠ADB=30°.又△BCD是等边三角形,所以∠ADC=90°,即CD⊥AD.…(3分)因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD.所以CD⊥PA.……(6分)解:(II)因为平面BEF∥平面PCD,所以BF∥CD,EF∥PD,且BF⊥AD.……(8分)又在直角三角形ABD中,DF=,所以AE=AF=1.所以.……(10分)由(I)知CD⊥平面PAD,故四棱锥C﹣PEFD的体积.…(12分)34.【解答】解:(1)四边形ABCD是平行四边形,AD=2,∴BC=AD=2,又AB=AC=2,∴AB2+AC2=BC2,∴AC⊥AB,又PB⊥AC,且AB∩PB=B,∴AC⊥平面PAB,∵AC⊂平面PAC,∴平面PAB⊥平面PAC;(2)由(1)知AC⊥AB,AC⊥平面PAB,分别以AB、AC所在直线为x轴、y轴,平面PAB内过点A且与直线AB垂直的直线为z轴,建立空间直角坐标系A﹣xyz,如图所示;则A(0,0,0),B(2,0,0),C(0,2,0),=(0,2,0),=(﹣2,2,0);由∠PBA=45°,PB=,可得P(1,0,1),∴=(1,0,1),=(﹣1,0,1);假设棱PA上存在点E,使得直线CE与平面PBC所成角的正弦值为,设=λ(0<λ<1),则=λ=(λ,0,λ),=﹣=(λ,﹣2,λ),设平面PBC的法向量为=(x,y,z),则,即,令z=1,可得x=y=1,∴平面PBC的一个法向量为=(1,1,1),设直线CE与平面PBC所成的角为θ,则sinθ=|cos<,>|===,解得λ=或λ=(不合题意,舍去),∴存在=,使得直线CE与平面PBC所成角的正弦值为.35.【解答】解:(1)以A为坐标原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,1),∵E、F、G分别为BC、PD、PC的中点,∴,F(0,1,),G(),∴=(﹣1,),=(),设EF与DG所成角为θ,则cosθ==.∴EF与DG所成角的余弦值为.(2)设平面PBC的法向量为=(x,y,z),∵=(0,1,0),=(1,0,﹣1),∴,取x=1,得=(1,0,1),M为EF上一点,N为DG上一点,若存在MN,使得MN⊥平面PBC,则∥,设M(),N(x2,y2,z2),则,①∵点M,N分别是线段EF与DG上的点,∴,∵=(),=(x2,y2﹣2,z2),∴,且,②把②代入①,得,解得,∴M(),N().36.【解答】解:(1)∵D,E分别是AC,AB的中点,∴DE∥BC,∵四边形BB1C1C为矩形,∴BC⊥CC1.∵AC=BC=4,AB=4,∴AC2+BC2=AB2,∴BC⊥AC,又AC∩CC1=C,∴BC⊥平面AA1C1C,∴DE⊥平面AA1C1C.。

【高三数学试题精选】2018届高三数学立体几何测试题(有答案)

【高三数学试题精选】2018届高三数学立体几何测试题(有答案)

2018届高三数学立体几何测试题(有答案)
5 c 2018届高三数学末综合测试题(14)立体几何
一、选择题本大题共12小题,每小题5分,共60分.
1 .建立坐标系用斜二测画法画正△ABc的直观图,其中直观图不是全等三角形的一组是( )
解析由直观图的画法知选项c中两三角形的直观图其长度已不相等
答案c
2.已知几何体的三视图(如下图),若图中圆的半径为1,等腰三角形的腰为3,则该几何体的表面积为( )
A.4π B. 3π c.5π D.6π
解析由三视图知,该几何体为一个圆锥与一个半球的组合体,而圆锥的侧面积为π×1×3=3π,半球的表面积为2π×12=2π,∴该几何体的表面积为3π+2π=5π
答案c
3.已知a,b,c,d是空间中的四条直线,若a⊥c,b⊥c,a⊥d,b⊥d,那么( )
A.a∥b,且c∥d
B.a,b,c,d中任意两条都有可能平行
c.a∥b或c∥d
D.a,b,c,d中至多有两条平行
解析如图,作一长方体,从长方体中观察知c选项正确
答案c
4.设α、β、γ为平面,、n、l为直线,则⊥β的一个充分条是( )
A.α⊥β,α∩β=l,⊥l B.α∩γ=,α⊥γ,β⊥γ
c.α⊥γ,β⊥γ,⊥α D.n⊥α,n⊥β,⊥α。

2018年高考数学专题08立体几何分项试题(含解析)理

2018年高考数学专题08立体几何分项试题(含解析)理

专题立体几何一、选择题1.【2018河南洛阳市尖子生联考】已知球与棱长为4的正四面体的各棱相切,则球的体积为()A. B. C. D.【答案】A点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.2.【2018浙江温州一模】某几何体的三视图如图所示,则该几何体的体积(单位:)是()A. B. C. D.【答案】A【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.3.【2018广西三校联考】若某几何体的三视图如图所示,则此几何体的外接球表面积等于()B. 30πC. 43πD. 15π【答案】C【解析】由题意可知该几何体的直观图如下图所示,故选C.4.【2018河南中原名校质检二】某几何体的三视图如图所示(单位:),则该几何体的体积等于().A. B. C. D.【答案】D点睛:根据几何体的三视图知该几何体是三棱柱与半圆柱体的组合体,结合图中数据计算它的体积即可.5.【2018湖南省两市九月调研】如图,网格纸上小正方形的边长为1,粗实线画出的是某三棱锥的三视图,则该三棱锥的体积为()D. 4【答案】B点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.6.【2018湖南永州市一模】已知某三棱锥的三视图如图所示,则在该三棱锥中,最长的棱长为()【答案】C【解析】【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状. 7.【2018广东珠海市九月摸底】如图,是某几何体的三视图,则该几何体的体积是A. 11B. 7C. 14D. 9 【答案】B【解析】该几何体为两个几何体拼接而成,上方为四棱锥,下方为四棱柱,故其体积为:故选:B点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.8.【2018湖北武汉市调研】设点M 是棱长为2的正方体1111ABCD A BC D -的棱AD 的中点,点P 在面11BCC B 所在的平面内,若平面1D PM 分别与平面ABCD 和平面11BCC B 所成的锐二面角相等,则点P 到点1C 的最短距离是( )【答案】A【方法点晴】本题主要考查的是正方体的性质、二面角的求法、空间直角坐标系和空间向量在立体几何中的应用,属于难题.解题时一定要注意二面角的平面角是锐角还是钝角,否则很容易出现错误,求二面角的常见方法有:1、利用定义找到二面角的平面角,根据平面几何知识求解;2,求出二面角的余弦,从而求得二面角的大小;3、利用空间相夹角余弦公式.9.【2018陕西西工大附中七模】在下列命题中,属于真命题的是( ) A. 直线,m n 都平行于平面α,则//m nB. 设l αβ--是直二面角,若直线m α⊥,则//m βC. 若直线,m n 在平面α内的射影依次是一个点和一条直线,(且m n ⊥),则n 在α内或n 与α平行D. 设,m n 是异面直线,若m 与平面α平行,则n 与α相交 【答案】C10.【2018广东茂名市五校联考】在长方体中,,,,点在平面内运动,则线段的最小值为( )A. B. C. D.【答案】C【解析】由题意问题转化为求点到平面的距离,由于,所以边上的高,故三角形的面积为,又三棱锥的体积,所以,应选答案C 。

2018年全国各地高考数学试题及解答分类汇编大全(13 立体几何 )

2018年全国各地高考数学试题及解答分类汇编大全(13 立体几何 )

2018 年全国各地高考数学试题及解答分类汇编大全(13立体几何 )一、选择题1.(2018北京文、理)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A .1B .2C .3D .4 1.【答案】C【解析】由三视图可得四棱锥P ABCD -, 在四棱锥P ABCD -中,2PD =,2AD =, 2CD =,1AB =,由勾股定理可知,PA =PC = 3PB =,BC ,则在四棱锥中,直角三角形有,PAD △,PCD △,PAB △共三个,故选C .2.(2018浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( )A .2B .4C .6D .8 3.答案:C解答:该几何体的立体图形为四棱柱,(12)2262V +⨯=⨯=.3 (2018上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA ₁是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点, 以AA ₁为底面矩形的一边,则这样的阳马 的个数是( )(A )4 (B )8 (C )12 (D )164.(2018浙江)已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则( ) A .θ1≤θ2≤θ3 B .θ3≤θ2≤θ1 C .θ1≤θ3≤θ2 D .θ2≤θ3≤θ14.答案:D解答:作SO 垂直于平面ABCD ,垂足为O ,取AB 的中点M ,连接SM .过O 作ON 垂直于直线SM ,可知2SEO θ=∠,3SMO θ=∠,过SO 固定下的二面角与线面角关系,得32θθ≥.易知,3θ也为BC 与平面SAB 的线面角,即OM 与平面SAB 的线面角, 根据最小角定理,OM 与直线SE 所成的线线角13θθ≥, 所以231θθθ≤≤.5.(2018全国新课标Ⅰ文)某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N在左视图上的对应点为B ,则在此圆柱侧面上, 从M 到N 的路径中,最短路径的长度为( )A .B .C .3D .25. 答案:B解答:三视图还原几何体为一圆柱,如图, 将侧面展开,最短路径为,M N 连线的距离, 所以MN ==,所以选B.6.(2018全国新课标Ⅰ文)在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为()A .8B .62C .82D .836. 答案: C 解答:连接1AC 和1BC ,∵1AC 与平面11BB C C 所成角为30,∴130AC B ∠=,∴11tan30,23ABBC BC ==,∴122CC =222282V =⨯⨯= C.7.(2018全国新课标Ⅰ理)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A 33B 23C 32D 37. 答案:A解答:由于截面与每条棱所成的角都相等,所以平 面α中存在平面与平面11AB D 平行(如图),而在与 平面11AB D 平行的所有平面中,面积最大的为由各 棱的中点构成的截面EFGHMN ,而平面EFGHMN的面积122333622224S =⨯⨯=.8.(2018全国新课标Ⅰ文)已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .122πB .12πC .82πD .10π8. 答案:B解答:截面面积为8,所以高2h =2r =22212Sπππ=⋅⋅+=.9.(2018全国新课标Ⅰ理)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.172B.52C.3 D.29. 答案:B解答:三视图还原几何体为一圆柱,如图,将侧面展开,最短路径为,M N连线的距离,所以MN==,所以选B.10.(2018全国新课标Ⅱ文)在正方体1111ABCD A B C D-中,E为棱1CC的中点,则异面直线AE与CD所成角的正切值为()A B C D10.【答案】C【解析】在正方体1111ABCD A B C D-中,CD AB∥,所以异面直线AE与CD所成角为EAB∠,设正方体边长为2a,则由E为棱1CC的中点,可得CE a=,所以BE=,则55tanBE aEABAB∠===.故选C.11.(2018全国新课标Ⅱ理)在长方体1111ABCD A B C D-中,1AB BC==,1AA1AD与1DB 所成角的余弦值为()A.15B C D11.【答案】C【解析】以D为坐标原点,DA,DC,1DD为x,y,z轴建立空间直角坐标系,则()0,0,0D,()1,0,0A,(1B,(1D,(1AD∴=-uuu r,(1DB=u u u r,111111cos<,>AD DBAD DBAD DB⋅==uuu ruuu ruuuuu ruuu rQ uuu ru r∴异面直线1AD与1DB,故选C.12.(2018全国新课标Ⅲ文、理)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()12.答案:A解答:根据题意,A 选项符号题意;13.(2018全国新课标Ⅲ文、理)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为,则三棱锥D ABC -体积的最大值为( )A .B .C .D .13.答案:B解答:如图,ABC ∆为等边三角形,点O 为A ,B ,C ,D 外接球的球心,G 为ABC ∆的重心,由ABC S ∆=6AB =,取BC 的中点H ,∴sin 60AH AB =⋅︒=23AG AH ==O 到面ABC 的距离为2d ==,∴三棱锥D ABC -体积最大值1(24)3D ABC V -=⨯+=二、填空1.(2018江苏)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ .1.【答案】43【解析】由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的,所以该多面体的体积为2142133⨯⨯⨯=.2.(2018天津文)如图,已知正方体ABCD –A 1B 1C 1D 1的棱长为1,则四棱柱A 1–BB 1D 1D 的体积为__________.2.【答案】13【解析】如图所示,连结11A C ,交11B D 于点O ,很明显11A C ⊥平面11BDD B ,则1A O 是四棱锥的高,且11112A O A C ==1111BDD B S BD DD =⨯=四边形,结合四棱锥体积公式可得其体积为111333V Sh ===.3. (2018天津理)已知正方体1111ABCD A B C D -的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M EFGH -的体积为 .3.【答案】112【解析】由题意可得,底面四边形EFGH 的正方形,其面积212EFGHS ==⎝⎭,顶点M 到底面四边形EFGH 的距离为12d =, 由四棱锥的体积公式可得111132212M EFGHV -=⨯⨯=. 4.(2018全国新课标Ⅱ文)已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30︒,若S A B △的面积为8,则该圆锥的体积为__________. 4.【答案】8π【解析】如下图所示,30SAO ∠=︒,90ASB ∠=︒,又211822SAB S SA SB SA =⋅==△,解得4SA =,所以122SO SA ==,AO =,所以该圆锥的体积为2183V OA SO =⋅π⋅⋅=π.5.(2018全国新课标Ⅱ理)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为515,则该圆锥的侧面积为__________. 5.【答案】402π【解析】因为母线SA ,SB 所成角的余弦值为78,所以母线SA ,SB,因为SAB △的面积为l,所以212l ⨯=,280l ∴=,因SA 与圆锥底面所成角为45︒,所以底面半径为cos 42l π=,因此圆锥的侧面积为22rl l π==.三、解答题1.(2018北京文)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E ,F 分别为AD ,PB 的中点. (1)求证:PE BC ⊥;(2)求证:平面PAB ⊥平面PCD ; (3)求证:EF ∥平面PCD .1.【答案】(1)见解析;(2)见解析;(3)见解析. 【解析】(1)PA PD =Q ,且E 为AD 的中点,PE AD ∴⊥,Q 底面ABCD 为矩形,BC AD ∴∥,PE BC ∴⊥. (2)Q 底面ABCD 为矩形,AB AD ∴⊥,Q 平面PAD ⊥平面ABCD ,AB ∴⊥平面PAD ,AB PD ∴⊥.又PA PD ⊥,PD ⊥Q 平面PAB ,∴平面PAB ⊥平面PCD .(3)如图,取PC 中点G ,连接FG ,GD .F Q ,G 分别为PB 和PC 的中点,FG BC ∴∥,且12FG BC =, Q 四边形ABCD 为矩形,且E 为AD 的中点,ED BC ∴∥,12DE BC =,ED FG ∴∥,且ED FG =,∴四边形EFGD 为平行四边形, EF GD ∴∥,又EF ⊄平面PCD ,GD ⊂平面PCD , EF ∴∥平面PCD .2. (2018北京理)如图,在三棱柱ABC −111A B C 中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11A C ,1BB 的中点,AB=BC,AC =1AA =2.(Ⅰ)求证:AC ⊥平面BEF ;(Ⅱ)求二面角B−CD −C 1的余弦值; (Ⅲ)证明:直线FG 与平面BCD 相交. 2.【答案】(1)证明见解析(2)1 B CD C --的余弦值为(3)证明过程见解析. 【解析】(1)在三棱柱111ABC A B C -中,1CC ⊥Q 平面ABC , ∴四边形11A ACC 为矩形.又E ,F 分别为AC ,11A C 的中点,AC EF ∴⊥,AB BC =Q ,AC BE ∴⊥, AC ∴⊥平面BEF .(2)由(1)知AC EF ⊥,AC BE ⊥,1EF CC ∥. 又1CC ⊥平面ABC ,EF ∴⊥平面ABC . BE ⊂Q 平面ABC ,EF BE ∴⊥. 如图建立空间直角坐称系E xyz -.由题意得()0,2,0B ,()1,0,0C -,()1,0,1D ,()0,0,2F ,()0,2,1G , ()=2,01CD ∴uu u r ,,()=1,2,0CB uu r ,设平面BCD 的法向量为(),a b c =,n ,00CD CB ⎧⋅=⎪∴⎨⋅=⎪⎩uu u r uu rn n ,20 20a c a b +=⎧∴⎨+=⎩, 令2a =,则1b =-,4c =-,∴平面BCD 的法向量()2,14=--,,n ,又Q 平面1CDC 的法向量为()=0,2,0EB uu r ,cos =EB EB EB ⋅∴<⋅>=uu ruu r uu r n n n . 由图可得二面角1B CD C --为钝角,所以二面角1B CD C --的余弦值为 (3)平面BCD 的法向量为()2,1,4=--n ,()0,2,1G Q ,()0,0,2F ,()=02,1GF ∴-uuu r ,,2GF ∴⋅=-uu u r n ,∴n 与GF uu u r不垂直,GF ∴与平面BCD 不平行且不在平面BCD 内,GF ∴与平面BCD 相交.3. (2018上海)已知圆锥的顶点为P ,底面圆心为O ,半径为2(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO =4,OA ,OB 是底面半径, 且∠AOB =90°,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.4.(2018江苏)在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)11AB A B C 平面∥;(2)111ABB A A BC ⊥平面平面.4.【答案】(1)见解析;(2)见解析. 【解析】(1)在平行六面体1111ABCD A B C D -中,11AB A B ∥.因为AB ⊄平面11A B C ,11A B ⊂平面11A B C ,所以AB ∥平面11A B C . (2)在平行六面体1111ABCD A B C D -中,四边形11ABB A 为平行四边形. 又因为1AA AB =,所以四边形11ABB A 为菱形,因此11AB A B ⊥.又因为111AB B C ⊥,11BC B C ∥,所以1AB BC ⊥. 又因为1A B BC B =,1A B ⊂平面1A BC ,BC ⊂平面1A BC , 所以1AB ⊥平面1A BC .因为1AB ⊂平面11ABB A , 所以平面11ABB A ⊥平面1A BC .5.(2018江苏)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值.5.【答案】(1)20;(2)5【解析】如图,在正三棱柱111ABC A B C -中,设AC ,11A C 的中点分别为O ,1O ,则OB OC ⊥,1OO OC ⊥,1OO OB⊥,以{}1,,OB OC OO为基底,建立空间直角坐标系O xyz-.因为12AB AA==,所以()01,0A-,,)B,()0,1,0C,()10,1,2A-,)12B,()10,1,2C.(1)因为P为11A B的中点,所以1,222P⎛⎫-⎪⎪⎝⎭,从而1,222BP⎛⎫=--⎪⎪⎝⎭,()10,2,2AC=,故111cos,205BP ACBP ACBP AC⋅-<>===⋅.因此,异面直线BP与1AC.(2)因为Q为BC的中点,所以1,02Q⎫⎪⎪⎝⎭,因此33,,022AQ⎛⎫= ⎪⎪⎝⎭,()10,2,2AC=,()10,0,2CC=.设(),,x y z=n为平面1AQC的一个法向量,则1AQAC⎧=⋅=⎨⎪⋅⎪⎩nn即322220x yy z+=+=⎪⎨⎪⎩,不妨取)3,1,1=-n,设直线1CC与平面1AQC所成角为θ,则111sin cos,CCCCCCθ⋅=<>===⋅nnn,所以直线1CC与平面1AQC6.(2018浙江)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.6.答案:(1)略;(2解答:(1)∵12AB B B==,且1B B⊥平面ABC,∴1B B AB⊥,∴1AB=同理,1AC===过点1C作1B B的垂线段交1B B于点G,则12C G BC==且11B G=,∴11B C=在11AB C∆中,2221111AB B C AC+=,∴111AB B C⊥,①过点1B 作1A A 的垂线段交1A A 于点H . 则12B H AB ==,12A H =,∴11A B =在11A B A ∆中,2221111AA AB A B =+,∴111AB A B ⊥,②综合①②,∵11111A B B C B ⋂=,11A B ⊂平面111A B C ,11B C ⊂平面111A B C , ∴1AB ⊥平面111A B C .(2)过点B 作AB 的垂线段交AC 于点I ,以B 为原点,以AB 所在直线为x 轴,以BI 所在直线为y 轴,以1B B 所在直线为z 轴,建立空间直角坐标系B xyz -.则(0,0,0)B ,(2,0,0)A -,1(0,0,2)B,1(1C , 设平面1ABB 的一个法向量(,,)n a b c =,则1020200n AB a c n BB ⎧⋅==⎧⎪⇒⎨⎨=⋅=⎩⎪⎩,令1b =,则(0,1,0)n =,又∵1AC =,1cos ,13n AC <>==. 由图形可知,直线1AC 与平面1ABB 所成角为锐角, 设1AC 与平面1ABB 夹角为α.∴sin 13α=.7.(2018天津文)如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD=,∠BAD =90°. (Ⅰ)求证:AD ⊥BC ;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.7.【答案】(1)证明见解析;(2(3.【解析】(1)由平面ABC ⊥平面ABD , 平面ABC 平面ABD AB =,AD AB ⊥, 可得AD ⊥平面ABC ,故AD BC ⊥.(2)取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,故MN BC ∥. 所以DMN ∠(或其补角)为异面直线BC 与MD 所成的角. 在Rt DAM △中,1AM =,故DM = 因为AD ⊥平面ABC ,故AD AC ⊥.在Rt DAN △中,1AN =,故DN =.在等腰三角形DMN 中,1MN =,可得12cos MNDMN DM ∠==.所以,异面直线BC 与MD(3)连接CM ,因为ABC △为等边三角形,M 为边AB 的中点,故CM AB ⊥,CM =ABC ⊥平面ABD ,而CM ⊂平面ABC ,故CM ⊥平面ABD . 所以,CDM ∠为直线CD 与平面ABD 所成的角.在Rt CAD △中,4CD =.在Rt CMD △中,sin CM CDM CD ∠==.所以,直线CD 与平面ABD.8.(2018天津理) 如图,AD BC ∥且AD =2BC ,AD CD ⊥,EG AD ∥且EG =AD ,CD FG ∥且CD =2FG ,DG ABCD ⊥平面,DA =DC =DG =2.(I )若M 为CF 的中点,N 为EG 的中点,求证:MN CDE ∥平面; (II )求二面角E BC F --的正弦值;(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.8.【答案】(1)证明见解析;(2;(3.【解析】依题意,可以建立以D 为原点,分别以DA ,DC ,DG 的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图), 可得()0,0,0D ,()2,0,0A ,()1,2,0B ,()0,2,0C , ()2,0,2E ,()0,1,2F ,()0,0,2G ,30,,12M ⎛⎫⎪⎝⎭,()1,0,2N .(1)依题意()0,2,0DC =,()2,0,2DE =.设()0,,x y z =n 为平面CDE 的法向量,则0000DC DE ⎧⋅=⎪⎨⋅=⎪⎩n n 即20220y x z =+=⎧⎨⎩,不妨令–1z =,可得()01,0,1=-n .又31,,12MN ⎛⎫= ⎪⎝⎭-,可得00MN ⋅=n ,又因为直线MN ⊄平面CDE ,所以MN ∥平面CDE .(2)依题意,可得()–1,0,0BC =,()1,2,2BE =-,()0,1,2CF =-. 设(),,x y z =n 为平面BCE 的法向量,则00BC BE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0220x x y z -=-+=⎧⎨⎩,不妨令1z =,可得()0,1,1=n .设(),,x y z =m 为平面BCF 的法向量,则00BC BF ⎧⋅=⎪⎨⋅=⎪⎩m m 即020x y z -=-+=⎧⎨⎩,不妨令1z =,可得()0,2,1=m .因此有cos ,⋅<>==m n m n m n,于是sin ,m n <>=. 所以,二面角––E BC F. (3)设线段DP 的长为[]()0,2h h ∈,则点P 的坐标为()0,0,h ,可得()1,2,BP h =--.易知,()0,2,0DC =为平面ADGE 的一个法向量, 故cos BP DC BP DC BP DCh ⋅<⋅>==sin 60=︒=,解得[]0,2h =. 所以线段DP . 9.(2018全国新课标Ⅰ文)如图,在平行四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC 为折痕将△ACM折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.9. 答案:(1)见解析(2)1 解答:(1)证明:∵ABCM 为平行四边形且90ACM ∠=,∴AB AC ⊥,又∵AB DA ⊥,∴AB ⊥平面ACD ,∵AB ⊂平面ABC ,∴平面ABC ⊥平面ACD . (2)过点Q 作QH AC ⊥,交AC 于点H ,∵AB ⊥平面ACD ,∴A B C D⊥,又∵CD AC ⊥,∴CD ⊥平面ABC ,∴13HQ AQ CD AD ==,∴1HQ =,∵BC BC AM AD ====∴BP =又∵ABC ∆为等腰直角三角形,∴13322ABP S ∆=⋅⋅=,∴1131133Q ABD ABD V S HQ -∆=⋅⋅=⨯⨯=.10.(2018全国新课标Ⅰ理)如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.10.答案:(1)略;(2)4. 解答:(1),E F 分别为,AD BC 的中点,则//EF AB ,∴EF BF ⊥, 又PF BF ⊥,EF PF F ⋂=,∴BF ⊥平面PEF , BE ⊂平面ABFD ,∴平面PEF ⊥平面ABFD . (2)PF BF ⊥,//BF ED ,∴PF ED ⊥,又PF PD ⊥,ED DP D ⋂=,∴PF ⊥平面PED ,∴PF PE ⊥, 设4AB =,则4EF =,2PF =,∴PE = 过P 作PH EF ⊥交EF 于H 点, 由平面PEF ⊥平面ABFD ,∴PH ⊥平面ABFD ,连结DH ,则PDH ∠即为直线DP 与平面ABFD 所成的角,由PE PF EF PH ⋅=⋅,∴24PH ==而4PD =,∴sin 4PH PDH PD ∠==, ∴DP 与平面ABFD 所成角的正弦值3.11.(2018全国新课标Ⅱ文) 如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点. (1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.11.【答案】(1)见解析;(2.【解析】(1)因为4AP CP AC ===,O 为AC 的中点, 所以OP AC ⊥,且OP =OB .因为2AB BC AC ==,所以ABC △为等腰直角三角形,且OB AC ⊥,122OB AC ==.由222OP OB PB +=知,OP OB ⊥.由OP OB ⊥,OP AC ⊥知PO ⊥平面ABC .(2)作CH OM ⊥,垂足为H .又由(1)可得OP CH ⊥,所以CH ⊥平面POM . 故CH 的长为点C 到平面POM 的距离.由题设可知122OC AC ==,23BC CM ==,45ACB ∠=︒.所以OM =,sin C OC MC A M H CB O ⋅⋅∠==.所以点C 到平面POM . 12.(2018全国新课标Ⅱ理)如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.12.【答案】(1)见解析;(2.【解析】(1)因为4AP CP AC ===,O 为AC 的中点, 所以OP AC ⊥,且23OP =, 连结OB .因为2AB BC AC ==,所以ABC △为等腰直角三角形,且OB AC ⊥,122OB AC ==,由222OP OB PB +=知PO OB ⊥,由,OP OB OP AC ⊥⊥知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB uu u r的方向为x 轴正方向,建立空间直角坐标系O xyz-.由已知得()0,0,0O,()2,0,0B ,()0,2,0A -,()0,2,0C ,(P ,(AP =uu u r,取平面PAC 的法向量()2,0,0OB =uu u r ,设()(),2,002M a a a -<≤,则(),4,0AM a a =-r,设平面PAM 的法向量为(),,x y z =n .由0AP ⋅=uu u r n ,0AM ⋅=uuu rn ,得()2040y ax a y ⎧+=⎪⎨+-=⎪⎩,可取))4,a a =--n ,4cos ,a OB -∴<>=uu u r n ,由已知得cos ,OB <>=uu u r n ,O=4a =-(舍去),43a=,43⎛⎫∴=- ⎪ ⎪⎝⎭n ,又(0,2,PC =-u u ur Q ,所以cos ,PC <>=uu u r n . 所以PC 与平面PAM .13.(2018全国新课标Ⅲ文)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ; (2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.13.答案:见解答 解答:(1)∵正方形ABCD ⊥半圆面CMD , ∴AD ⊥半圆面CMD ,∴AD ⊥平面MCD .∵CM 在平面MCD 内,∴AD CM ⊥,又∵M 是半圆弧CD 上异于,C D 的点,∴CM MD ⊥.又∵AD DM D =I ,∴CM ⊥平面ADM ,∵CM 在平面BCM 内,∴平面BCM ⊥平面ADM .(2)线段AM 上存在点P 且P 为AM 中点,证明如下:连接,BD AC 交于点O ,连接,,PD PB PO ;在矩形ABCD 中,O 是AC 中点,P 是AM 的中点; ∴//OP MC ,∵OP 在平面PDB 内,MC 不在平面PDB 内,∴//MC 平面PDB .14.(2018全国新课标Ⅲ理)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ; (2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.14.答案:见解答解答:(1)∵正方形ABCD ⊥半圆面CMD , ∴AD ⊥半圆面CMD ,∴AD ⊥平面MCD .∵CM 在平面MCD 内,∴AD CM ⊥,又∵M 是半圆弧CD 上异于,C D 的点,∴CM MD ⊥.又∵AD DM D =I ,∴CM ⊥平面ADM ,∵CM 在平面BCM 内,∴平面BCM ⊥平面ADM .(2)如图建立坐标系: ∵ABC S ∆面积恒定,∴MO CD ⊥,M ABC V -最大.(0,0,1)M ,(2,1,0)A -,(2,1,0)B ,(0,1,0)C ,(0,1,0)D -,设面MAB 的法向量为111(,,)m x y z =u r ,设面MCD 的法向量为222(,,)n x y z =r,(2,1,1)MA =--,(2,1,1)MB =-,(0,1,1)MC =-,(0,1,1)MD =--,11111120(1,0,2)20x y z m x y z --=⎧⇒=⎨+-=⎩, 同理(1,0,0)n =,,∴cos θ==,∴ sin θ=.。

高考数学试题-立体几何选择填空含答案解析

高考数学试题-立体几何选择填空含答案解析

选填训练4答案一、单选题(本大题共8小题,共40.0分。

在每小题列出的选项中,选出符合题目的一项) 1. 如图,在四面体O −ABC 中,G 是底面△ABC 的重心,且OG ⃗⃗⃗⃗⃗⃗ =x OA ⃗⃗⃗⃗⃗ +y OB ⃗⃗⃗⃗⃗⃗ +z OC ⃗⃗⃗⃗⃗ ,则log 3|xyz|等于 ( )A. −3B. −1C. 1D. 3【答案】A 解:连结AG ,OG ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +AG ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +13(AC ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )=OA ⃗⃗⃗⃗⃗ +13(OC ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ )=13OA ⃗⃗⃗⃗⃗ +13OB ⃗⃗⃗⃗⃗⃗ +13OC ⃗⃗⃗⃗⃗ =x OA ⃗⃗⃗⃗⃗ +y OB ⃗⃗⃗⃗⃗⃗ +z OC ⃗⃗⃗⃗⃗ ,∴x =y =z =13, 则log 3|xyz|=log 3127=−3.2. 在△ABC 中A =30°,AC =4,BC =a ,若△ABC 仅一个解时,则a 的取值范围是( )A. a ≥4B. a =2C. a ≥4或a =2D. 无法确定【答案】C解:当a =ACsin30°=4×12=2时,以C 为圆心,以a =2为半径画弧,与射线AD 只有唯一交点, 此时符合条件的三角形只有一个,当a ⩾4时,以C 为圆心以a 为半径画弧时,在从垂足到A 点之间得不到交点,交点只能在垂足外侧,三角形也是唯一的, ∴a ≥4或a =2,故选C .3. 设两个向量e 1⃗⃗⃗ ,e 2⃗⃗⃗ 满足|e 1⃗⃗⃗ |=2,|e 2⃗⃗⃗ |=1,e 1⃗⃗⃗ ,e 2⃗⃗⃗ 之间的夹角为60°,若向量2t e 1⃗⃗⃗ +7e 2⃗⃗⃗ 与向量e 1⃗⃗⃗ +t e 2⃗⃗⃗ 的夹角为钝角,则实数t 的取值范围是( )A. (−7,−12)B. (−7,−√142)∪(−√142,−12) C. (−7,−√142)D. (−√142,−12)【答案】B解:由题意知(2t e 1⃗⃗⃗ +7e 2⃗⃗⃗ )·(e 1⃗⃗⃗ +t e 2⃗⃗⃗ )<0,即2t 2+15t +7<0,解得−7<t <−12.又由2t ·t −7≠0,得t ≠±√142,∴t ∈(−7,−√142)∪(−√142,−12). 故选B .4. 已知向量a ⃗ =(1,2),a ⃗ ·b ⃗ =10,|a ⃗ +b ⃗ |=5√2,b ⃗ 方向上的单位向量为e⃗ ,则向量a ⃗ 在 向量b ⃗ 上的投影向量为( ) A. 12e ⃗ B. 2e ⃗ C.125e⃗ D. 52e⃗ 【答案】B解:由a ⃗ =(1,2)可得:|a ⃗ |=√12+22=√5,由|a ⃗ +b|⃗⃗⃗ =5√2两边平方得:|a ⃗ |2+2a ⃗ ·b ⃗ +|b⃗ |2=(5√2)2=50,即:5+2×10+|b⃗ |2=50,解得:|b ⃗ |=5, 设a ⃗ 和b ⃗ 的夹角为θ,则cosθ=a⃗ ·b ⃗|a ⃗ |·|b⃗ |=10√5×5=2√55, 所以向量a ⃗ 在向量b ⃗ 上的投影向量为:|a ⃗ |cosθ·b⃗ |b ⃗ |=√5×2√55e ⃗ =2e ⃗ .故选B .5. 如图所示,在直三棱柱ABC −A 1B 1C 1中,AB ⊥AC ,AB =3,AC =AA 1=4,一只蚂蚁由顶点A 沿棱柱侧面经过棱BB 1爬到顶点C 1,蚂蚁爬行的最短距离为( )A. 4B. 4C.D.+【答案】B解:如图所示,把侧面展开,矩形对角线即为蚂蚁爬行的最短距离,∵AB ⊥AC ,AB =3,AC =AA 1=4,∴BC =√AB 2+AC 2=√32+42=5,由题已知AA 1=CC 1=4,∴蚂蚁爬行的最短距离=√(AB +BC )2+(CC 1)2=√(3+5)2+42=4√5,所以最小值为4√5,故选B .6.在四棱锥P−ABCD中,侧面PAD为正三角形,底面ABCD为正方形,侧面PAD⊥底面ABCD,M为底面ABCD内的一个动点,且满足MP=MC,则点M在正方形ABCD内的轨迹为( )A. B. C. D.【答案】A解:根据题意可知PD=DC,则点D符合“M为底面ABCD内的一个动点,且满足MP=MC”,设AB的中点为N,因为侧面PAD⊥底面ABCD,侧面PAD∩底面ABCD=AD,AB⊥AD,AB⊂底面ABCD,所以AB⊥侧面PAD,又PA⊂侧面PAD,所以AB⊥PA,根据题目条件可知△PAN≌△CBN,∴PN=CN,点N也符合“M为底面ABCD内的一个动点,且满足MP=MC”,故动点M的轨迹肯定过点D和点N,而到点P与到点C的距离相等的点为线段PC 的垂直平分面,线段PC的垂直平分面与平面ABCD的交线是一直线.故选A.7.如图,直角梯形ABCD,AB//CD,∠ABC=90°,CD=2,AB=BC=1,E是边CD中点,△ADE沿AE翻折成四棱锥D′−ABCE,则点C到平面ABD′距离的最大值为( )A. 12B. √3−1 C. √22D. √63【答案】C解:直角梯形ABCD ,AB//CD ,∠ABC =90°,CD =2,AB =BC =1,E 是边CD 中点,△ADE 沿AE 翻折成四棱锥D′−ABCE ,当D′E ⊥CE 时,点C 到平面ABD′距离取最大值,∵D′E ⊥AE ,CE ∩AE =E ,CE ,AE ⊂平面ABCE ,∴D′E ⊥平面ABCE , 以E 为原点,EC 为x 轴,EA 为y 轴,ED′为z 轴,建立空间直角坐标系,则A(0,1,0),C(1,0,0),D′(0,0,1),B(1,1,0), AB ⃗⃗⃗⃗⃗ =(1,0,0),AC ⃗⃗⃗⃗⃗ =(1,−1,0),AD′⃗⃗⃗⃗⃗⃗⃗ =(0,−1,1), 设平面ABD′的法向量n⃗ =(x,y,z),则{n ⃗ ⋅AB ⃗⃗⃗⃗⃗ =x =0n ⃗ ⋅AD′⃗⃗⃗⃗⃗⃗⃗ =−y +z =0,取y =1,得n ⃗ =(0,1,1),∴点C 到平面ABD′距离的最大值为d =|AC ⃗⃗⃗⃗⃗ ⋅n ⃗⃗ ||n ⃗⃗ |=1√2=√22.故选C .8. 在△ABC 中,有正弦定理:asinA =bsinB =csinC =定值,这个定值就是△ABC 的外接圆的直径.如图所示,△DEF 中,已知DE =DF ,点M 在直线EF 上从左到右运动(点M 不与E 、F 重合),对于M 的每一个位置,记△DEM 的外接圆面积与△DMF 的外接圆面积的比值为λ,那么( )A. λ先变小再变大B. 仅当M 为线段EF 的中点时,λ取得最大值C. λ先变大再变小D. λ是一个定值【答案】D解:设△DEM 的外接圆半径为R 1,△DMF 的外接圆半径为R 2,则由题意,πR 12πR 22=λ,点M 在直线EF 上从左到右运动(点M 不与E 、F 重合),对于M 的每一个位置,由正弦定理可得R 1=12×DE sin∠DME,R 2=12×DFsin∠DMF ,又DE =DF ,sin∠DME =sin∠DMF , 可得R 1=R 2,可得λ=1.故选D .二、多选题(本大题共4小题,共20.0分。

2018年全国各地高考数学分类汇编word版含答案11-立体几何

2018年全国各地高考数学分类汇编word版含答案11-立体几何

2018年全国各地高考数学分类汇编word版含答案11-立体几何一、选择题(共13小题;共65分)1. 某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A. B. C. D.2. 在正方体中,为棱的中点,则异面直线与所成角的正切值为A. B. C. D.3. 某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)是A. B. C. D.4. 中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A. B.C. D.5. 中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A. B.C. D.6. 某圆柱的高为,底面周长为,其三视图如图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B. C. D.7. 在长方体中,,,则异面直线与所成角的余弦值为A. B. C. D.8. 已知四棱锥的底面是正方形,侧棱长均相等,是线段上的点(不含端点),设与所成的角为,与平面所成的角为,二面角的平面角为,则A. B. C. D.9. 已知平面,直线,满足,,则“”是“”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件10. 在长方体中,,与平面所成的角为,则该长方体的体积为A. B. C. D.11. 已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为的正方形,则该圆柱的表面积为A. B. C. D.12. 已知正方体的棱长为,每条棱所在直线与平面所成的角相等,则截此正方体所得截面面积的最大值为A. B. C. D.13. 设,,,是同一个半径为的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A. B. C. D.二、填空题(共5小题;共25分)14. 如图,已知正方体的棱长为,则四棱柱的体积为.15. 已知正方体的棱长为,除面外,该正方体其余各面的中心分别为点,,,,(如图),则四棱锥的体积为.16. 如图所示,正方体的棱长为,以其所有面的中心为顶点的多面体的体积为.17. 已知圆锥的顶点为,母线,所成角的余弦值为,与圆锥底面所成角为,若的面积为,则该圆锥的侧面积为.18. 已知圆锥的顶点为,母线,互相垂直,与圆锥底面所成角为,若的面积为,则该圆锥的体积为.三、解答题(共14小题;共182分)19. 如图,在平行四边形中,,,以为折痕将折起,使点到达点的位置,且.(1)证明:平面平面;(2)为线段上一点,为线段上一点,且,求三棱锥的体积.20. 已知圆锥的顶点为,底面圆心为,半径为.(1)设圆锥的母线长为,求圆锥的体积;(2)设,,是底面半径,且,为线段的中点,如图,求异面直线与所成的角的大小.21. 如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且,求点到平面的距离.22. 如图,已知多面体,,,均垂直于平面,,,,.(1)证明:平面;(2)求直线与平面所成的角的正弦值.23. 如图,四边形为正方形,,分别为,的中点,以为折痕,把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求与平面所成角的正弦值.24. 如图,在四面体中,是等边三角形,平面平面,点为棱的中点,,,.(1)求证:;(2)求异面直线与所成角的余弦值;(3)求直线与平面所成角的正弦值.25. 如图,边长为的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)当三棱锥体积最大时,求面与面所成二面角的正弦值.26. 如图,且,,且,且,平面,.(1)若为的中点,为的中点,求证: 平面;(2)求二面角的正弦值;(3)若点在线段上,且直线与平面所成的角为,求线段的长.27. 如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角的正弦值.28. 如图,在正三棱柱中,,点,分别为,的中点.(1)求异面直线与所成角的余弦值;(2)求直线与平面所成角的正弦值.29. 如图,在三棱锥中,平面,,,,分别为,,,的中点,,.(1)求证:平面;(2)求二面角的余弦值;(3)证明:直线与平面相交.30. 如图,矩形所在平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)在线段上是否存在点,使得 平面?说明理由.31. 在平行六面体中,,.求证:(1) 平面;(2)平面平面.32. 如图,在四棱锥中,底面为矩形,平面平面,,,,分别为,的中点.(1)求证:;(2)求证:平面平面;(3)求证: 平面;答案第一部分1. C2. C3. C4. A5. A6. B7. C8. D9. A10. C11. B12. A13. B第二部分14.15.16.17.18.第三部分19. (1)由已知可得,,,又,所以平面,又平面,所以平面平面.(2)由已知可得,,,又,所以作,垂足为,则,,由已知及()可得平面,所以平面,.因此,三棱锥的体积为20. (1)由题意,高,所以体积.(2)取的中点,连接,,因为,分别是,的中点,所以,所以异面直线与所成的角即或其补角.在中,,因为,,所以,在中,,则在中,,因为,所以,所以,即,即异面直线与所成的角为.21. (1)因为,为的中点,所以,且.连接.因为,所以为等腰直角三角形,且,.由知,.由,知平面.(2)作,垂足为.又由()可得,所以平面.故的长为点到平面的距离.由题设可知,,.所以,.所以点到平面的距离为.22. (1)由,,,,得,所以.故.由,,,,得,由,得,由,得,所以,故.因此平面.方法二:如图,以的中点为原点,分别以射线,为,轴的正半轴,建立空间直角坐标系.由题意知各点坐标如下:,,,,,因此,,,由得.由得.所以平面.(2)如图,过点作,交直线于点,连接.由平面得平面平面,由得平面,所以是与平面所成的角.由,,得,,所以,故.因此,直线与平面所成的角的正弦值是.方法二:设直线与平面所成的角为.由()可知,,,设平面的法向量.由即可取.所以.因此,直线与平面所成的角的正弦值是.23. (1)由已知可得,,,所以平面,又平面,所以平面平面.(2)作,垂足为.由()得,平面.以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.由()可得,.又,,所以.又,,故.可得,.则,,,,为平面的法向量,设与平面所成角为,则.所以与平面所成角的正弦值为.24. (1)由平面平面,平面平面,,可得平面,故.(2)取棱的中点,连接,.又因为为棱的中点,故.所以(或其补角)为异面直线与所成的角.在中,,故.因为平面,故.在中,,故.在等腰三角形中,,可得.所以,异面直线与所成角的余弦值为.(3)连接.因为为等边三角形,为边的中点,故,.又因为平面平面,而平面,故平面.所以,为直线与平面所成的角.在中,.在中,.所以,直线与平面所成角的正弦值为.25. (1)由题设知,平面平面,交线为.因为,平面,所以平面,故.因为为上异于,的点,且为直径,所以.又,所以平面.而平面,故平面平面.(2)以为坐标原点,的方向为轴正方向,建立如图所示的空间直角坐标系.当三棱锥体积最大时,为的中点.由题设得,,,,,,,,设是平面的法向量,则即可取.是平面的法向量,因此,,所以面与面所成二面角的正弦值是.26. (1)依题意,可以建立以为原点,分别以,,的方向为轴,轴,轴的正方向的空间直角坐标系(如图),可得,,,,,,,,.依题意,.设为平面的法向量,则即不妨令,可得.又,可得,又因为直线平面,所以 平面.(2)依题意,可得,,.设为平面的法向量,则即不妨令,可得,设为平面的法向量,则即不妨令,可得.因此有,于是.所以,二面角的正弦值为.(3)设线段的长为,则点的坐标为,可得.易知,为平面的一个法向量,故,,解得.所以线段的长为.27. (1)因为,为的中点,所以,且.连接.因为,所以为等腰直角三角形,且,.由知.由,知平面.(2)如图,以为坐标原点,的方向为轴正方向,建立空间直角坐标系.由已知得,,,,,,取平面的法向量.设,则.设平面的法向量为.由,得可取,所以.由已知得..解得(舍去),.所以,又,所以.所以与平面所成角的正弦值为.28. (1)如图,在正三棱柱中,设,的中点分别为,,则,,,以为基底,建立空间直角坐标系.因为,所以,,,,,,因为为的中点,所以,从而,,故.因此,异面直线与所成角的余弦值为.(2)因为为的中点,所以,因此,,,设为平面的一个法向量,则即不妨取,设直线与平面所成角为,则,所以直线与平面所成角的正弦值为.29. (1)由题意可知:因为面,,分别为,的中点.所以,所以面,因为面,所以,又因为,为中点.所以,,所以面.(2)由题意可知,以为坐标原点,分别以,,为轴,轴,轴建立直角坐标系.,,,,,,,.易知面,所以设面的法向量为,设面的法向量为,,,令,.记二面角的平面角为,可知为钝角.,所以.(3),,,由()可知面的法向量为,所以记与面所成的角为,则,所以与面相交.30. (1)由题设知,平面平面,交线为.因为,平面,所以平面,故.因为为上异于,的点,且为直径,所以.又,所以平面.而平面,故平面平面.(2)当为的中点时, 平面.证明如下:连接交于.因为为矩形,所以为中点.连接,因为为中点,所以.平面,平面,所以 平面.31. (1)在平行六面体中,,因为平面,平面,所以 平面.(2)在平行六面体中,四边形为平行四边形,又因为,所以四边形为菱形,因此,又因为,,所以,又因为,平面,平面,所以平面,因为平面,所以平面平面.32. (1)因为平面平面,且平面平面,因为,为中点,所以.又平面,所以平面,又平面,所以.(2)因为平面平面,且平面平面,因为为矩形,所以,又平面,所以平面,所以,又,且,所以平面,又平面,所以平面平面.(3)取中点,连,,因为,分别为,的中点,所以为的中位线,所以,,又为的中点,四边形为矩形,所以,,所以,,所以四边形为平行四边形,所以,又平面,平面,所以 平面.。

【高三数学试题精选】2018高考理科数学立体几何总复习题(附答案)

【高三数学试题精选】2018高考理科数学立体几何总复习题(附答案)

2018高考理科数学立体几何总复习题(附答案)
5 c [A组基础演练能力提升]
一、选择题
1.(2018年临沂模拟 )如图是一个物体的三视图,则此三视图所描述物体的直观图是( )
解析由题意知应为D
答案D
2如图△A′B′c′是△ABc的直观图,那么△ABc是( )
A.等腰三角形
B.直角三角形
c.等腰直角三角形
D.钝角三角形
解析根据斜二测画法知△ABc为直角三角形,B正确.
答案 B
3.(2018年高考湖南卷)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于( )
A32 B.1 c2+12 D2
解析由题意可知该正方体的放置如图所示,侧视图的方向垂直于面BDD1B1,正视图的方向垂直于面A1c1cA,且正视图是长为2,宽为1的矩形,故正视图的面积为2,因此选D
答案D
4(2018年江西九校联考)如图,三棱锥V-ABc的底面为正三角形,侧面VAc与底面垂直且VA=Vc,已知其正视图的面积为23,则其俯视图的面积为( )
A32 B33
c34 D36。

专题05 立体几何(选择题、填空题)——三年(2018-2020)高考真题理科数学分项汇编(含解析)

专题05 立体几何(选择题、填空题)——三年(2018-2020)高考真题理科数学分项汇编(含解析)
15.
点).记直线 PB 与直线 AC 所成的角为α,直线 PB 与平面 ABC 所成的角为β,二面角 P–AC–B 的平面角
为γ,则
A.β<γ,α<γ
B.β<α,β<γ
C.β<α,γ<α
D.α<β,γ<β
16.【2018 年高考全国Ⅰ卷理数】某圆柱的高为 2,底面周长为 16,其三视图如图.圆柱表面上的点 M 在
9.

A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
10.
【2020 年新高考全国Ⅰ卷】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的
影子来测定时间.把地球看成一个球(球心记为 O),地球上一点 A 的纬度是指 OA 与地球赤道所在平面
所成角,点 A 处的水平面是指过点 A 且与 OA 垂直的平面.在点 A 处放置一个日晷,若晷面与赤道所在平
专题 05
立体几何(选择题、填空题)
1.【2020年高考全国Ⅰ卷理数】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.
以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高
与底面正方形的边长的比值为
A.
5 1
4
B.
5 1
2
C.
5 1
4
D.
5 1
19.【2018 年高考浙江卷】某几何体的三视图如图所示(单位:cm)
A.2
B.4
C.6
D.8
20.【2018 年高考全国Ⅲ卷理数】设 A ,B ,C ,D 是同一个半径为 4 的球的球面上四点, △ ABC 为等边三

2018年高考数学理科全程天天训练(27)空间几何体(含答案).doc

2018年高考数学理科全程天天训练(27)空间几何体(含答案).doc

天天练27 空间几何体一、选择题1.正棱锥的高缩小为原来的12,底面外接圆半径扩大为原来的3倍,则它的体积是原来体积的( )A.32B.92C.34D.942.(2017·大连一模)如图,在长方体ABCD -A 1B 1C 1D 1中,点P 是棱CD 上一点,则三棱锥P -A 1B 1A 的左视图是( )3.如图,网格纸是边长为1的小正方形,在其上用粗线画出了某多面体的三视图,则该多面体的体积为( )A .4B .8C .16D .203题图 4题图4.如图,正三棱柱ABC -A 1B 1C 1的正视图(又称主视图)是边长为4的正方形,则此正三棱柱的侧视图(又称左视图)的面积为( ) A .83 B .43 C .23 D .165.某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中面积最大的为( )A .22 B .4 C .23 D .265题图6题图(2016·山东卷一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )12标全国Ⅱ7题图9题图10题图11题图二、填空题9.(2016·浙江卷,11)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是________cm2,体积是________cm3.10.(2016·四川卷,13)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是________.11.某空间几何体的三视图如图所示,则该几何体的体积为___ _____.三、解答题12.(2016·江苏卷,17)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P—A1B1C1D1,下部的形状是正四棱柱ABCD—A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若AB=6 m,PO1=2 m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大?由三视图可知四棱锥为正四棱锥,底面正方形的边长为,球的直径为正四棱锥底面正方形的外接圆的直径,所以球的+3=,S圆柱底=4π,l=2,--=由几何体的三视图可得该几何体的直观图如图所示.何体由两个完全相同的长方体组合而成,其中,∴该几何体的体积V=2×2×4×236×2=72 cm2.由题意及正视图可知三棱锥的底面等腰三角形的底长为,则三棱锥的底面积为-3知O1O=4PO1=C1D1的体积=26(12-h2).或h=-23(舍。

2018年高考数学提分专练:第13题 立体几何(填空题)

2018年高考数学提分专练:第13题 立体几何(填空题)

2018年高考数学提分专练:第13题立体几何(填空题)一、真题演练(共4题;共20分)1.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径,若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,则球O的表面积为.2.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.3.(5分)长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.4.(5分)a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b 都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最小值为60°;其中正确的是(填写所有正确结论的编号)二、模拟实训(共16题;共80分)5.(5分)某几何体的三视图如图,则该几何体的体积为.6.(5分)如图所示(单位:cm),图中阴影部分绕AB旋转一周所形成的几何体的体积为.7.(5分)已知S,A,B,C是球O表面上的点,SA⊥平面ABC,AB⊥BC,AS=AB=1,BC=√3,则球O的表面积为.8.(5分)已知三棱锥A−BCD,CD⊥面ABC,RtΔABC中两直角边AB=5,BC= 3,该三棱锥的外接球的表面积为50π,则三棱锥的体积为.9.(5分)如图,三棱锥的所有顶点都在一个球面上,在△ABC中,AB= √3,∠ACB=60°,∠BCD=90°,AB⊥CD,CD= 2√2,则该球的体积为.10.(5分)下列四个结论中假命题的序号是.①垂直于同一直线的两条直线互相平行;②平行于同一直线的两直线平行;③若直线a,b,c满足a∥b,b⊥c,则a⊥c;④若直线a,b是异面直线,则与a,b都相交的两条直线是异面直线.11.(5分)已知关于空间两条不同直线m,n,两个不同平面α,β,有下列四个命题:①若m∥α且n∥α,则m∥n;②若m⊥β且m⊥n,则n∥β;③若m⊥α且m∥β,则α⊥β;④若n⊂α且m 不垂直于α,则m不垂直于n.其中正确命题的序号为.12.(5分)如图,在直三棱柱ABC﹣A1B1C1中,AB=1,BC=2,BB1=3,∠ABC=90°,点D为侧棱BB1上的动点,当AD+DC1最小时,三棱锥D﹣ABC1的体积为.13.(5分)已知边长为√3的正△ABC的三个顶点都在球O的表面上,且OA与平面ABC所成的角为60°,则球O的表面积为.14.(5分)如图是两个腰长均为10cm的等腰直角三角形拼成的一个四边形ABCD,现将四边形ABCD沿BD折成直二面角A﹣BD﹣C,则三棱锥A﹣BCD的外接球的体积为cm3.15.(5分)某几何体的三视图如图所示,该几何体的体积为.,则它的16.(5分)某三棱锥的三视图是三个边长相等的正方形及对角线,若该三棱锥的体积是13表面积是.17.(5分)半径为R的球放在房屋的墙角处,球与围成墙角的三个互相垂直的面都相切,若球心到墙角的距离是√3,则球的表面积是.18.(5分)若四面体ABCD的三组对棱分别相等,即AB=CD,AC=BD,AD=BC,则(写出所有正确结论编号)①四面体ABCD每组对棱相互垂直②四面体ABCD每个面的面积相等③从四面体ABCD每个顶点出发的三条棱两两夹角之和大于90°而小于180°④连接四面体ABCD每组对棱中点的线段互垂直平分⑤从四面体ABCD每个顶点出发的三条棱的长可作为一个三角形的三边长.19.(5分)已知圆锥底面半径与球的半径都是1cm,如果圆锥的体积与球的体积恰好也相等,那么这个圆锥的侧面积是cm2.20.(5分)某几何体的三视图如图所示,则该几何体的表面积为.答案解析部分1.【答案】36π【解析】【解答】解:三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径,若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,可知三角形SBC与三角形SAC都是等腰直角三角形,设球的半径为r,可得13×12×2r×r×r=9,解得r=3.球O的表面积为:4πr2=36π.故答案为:36π.【分析】判断三棱锥的形状,利用几何体的体积,求解球的半径,然后求解球的表面积.2.【答案】4 √15cm3【解析】【解答】解:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG= √36BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2 √3x,DG=5﹣x,三棱锥的高h= √DG2−OG2= √25−10x+x2−x= √25−10x,S△ABC=2√3×3x×12=3 √3x2,则V= 13S△ABC×ℎ= √3x2×√25−10x= √3⋅√25x4−10x3,令f(x)=25x4﹣10x5,x∈(0,52),f′(x)=100x3﹣50x4,令f′(x)≥0,即x4﹣2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤ √3×√80=4 √15cm3,∴体积最大值为4 √15cm3.故答案为:4 √15cm3.【分析】由题,连接OD,交BC于点G,由题意得OD⊥BC,OG= √36BC,设OG=x,则BC=2√3x,DG=5﹣x,三棱锥的高h= √25−10x,求出S△ABC=3 √3x2,V= 13S△ABC×ℎ= √3⋅√25x 4−10x 3 ,令f (x )=25x 4﹣10x 5,x ∈(0, 52),f′(x )=100x 3﹣50x 4,f (x )≤f (2)=80,由此能求出体积最大值.3.【答案】14 π【解析】【解答】解:长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,可知长方体的对角线的长就是球的直径,所以球的半径为: 12√32+22+12 = √142.则球O 的表面积为:4× (√142)2π=14π.故答案为:14π.【分析】求出球的半径,然后求解球的表面积.4.【答案】②③【解析】【解答】解:由题意知,a 、b 、AC 三条直线两两相互垂直,画出图形如图,不妨设图中所示正方体边长为1, 故|AC|=1,|AB|= √2 ,斜边AB 以直线AC 为旋转轴,则A 点保持不变, B 点的运动轨迹是以C 为圆心,1为半径的圆,以C 坐标原点,以CD 为x 轴,CB 为y 轴,CA 为z 轴,建立空间直角坐标系,则D (1,0,0),A (0,0,1),直线a 的方向单位向量 a ⃗ =(0,1,0),| a ⃗ |=1, 直线b 的方向单位向量 b ⃗ =(1,0,0),| b⃗ |=1, 设B 点在运动过程中的坐标中的坐标B′(cosθ,sinθ,0), 其中θ为B′C 与CD 的夹角,θ∈[0,2π),∴AB′在运动过程中的向量, AB ′⃗⃗⃗⃗⃗⃗⃗ =(﹣cosθ,﹣sinθ,1),| AB ′⃗⃗⃗⃗⃗⃗⃗ |= √2 , 设 AB ′⃗⃗⃗⃗⃗⃗⃗ 与 a⃗ 所成夹角为α∈[0, π2 ],则cosα=|(−cosθ,−sinθ,1)⋅(0,1,0)||a⃗⃗ |⋅|AB ′⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ | = √22 |sinθ|∈[0, √22 ], ∴α∈[ π4 , π2 ],∴③正确,④错误. 设 AB ′⃗⃗⃗⃗⃗⃗⃗ 与 b ⃗ 所成夹角为β∈[0, π2 ],cosβ=|AB ′⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⋅b⃗⃗ ||AB ′⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |⋅|b ⃗⃗|= |(−cosθ,sinθ,1)⋅(1,0,0)||b⃗⃗ |⋅|AB ′⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗| = √22 |cosθ|, 当 AB ′⃗⃗⃗⃗⃗⃗⃗ 与 a ⃗ 夹角为60°时,即α= π3 , |sinθ|= √2cosα = √2cos π3 = √22,∵cos 2θ+sin 2θ=1,∴cosβ= √22|cosθ|= 12 ,∵β∈[0, π2 ],∴β= π3 ,此时 AB ′⃗⃗⃗⃗⃗⃗⃗ 与 b⃗ 的夹角为60°, ∴②正确,①错误. 故答案为:②③.【分析】由题意知,a 、b 、AC 三条直线两两相互垂直,构建如图所示的边长为1的正方体,|AC|=1,|AB|= √2 ,斜边AB 以直线AC 为旋转轴,则A 点保持不变,B 点的运动轨迹是以C 为圆心,1为半径的圆,以C 坐标原点,以CD 为x 轴,CB 为y 轴,CA 为z 轴,建立空间直角坐标系,利用向量法能求出结果.5.【答案】56【解析】【解答】解:由题意作图如下,其由三棱柱截去三棱锥可得, 其中三棱柱的体积V= 12×1×1×2=1,被截去的三棱锥的体积V= 13 × 12 ×1×1×1= 16 ,故该几何体的体积为1﹣ 16 = 56,故答案为:56.【分析】由题意作图,从而可得其由三棱柱截去三棱锥得到,从而解得.6.【答案】1403πcm3【解析】【解答】解:几何体为圆台减去一个半球体,圆台的上下底面半径分别为2,5,高为4,半球体的半径为2,∴几何体的体积V= 13(4π+25π+10π)×4﹣12×43π×23= 1403π.故答案为1403πcm3.【分析】几何体为圆台减去一个半球体,分别求出圆台和半球的体积即可得出几何体的体积.7.【答案】5π【解析】【解答】将四面体S−ABC补成一个长方体,长宽高分别为1,1,√3,因此球心O为长方体对角线中点,直径为对角线长√1+1+3=√5, 从而球O的表面积为π(√5)2=5π.故答案为:5π【分析】将四面体S − A B C 补成一个长方体,则其外接球就是四面体的外接球,直径就是长方体的对角线,求出直径,再求表面积.8.【答案】10【解析】【解答】∵外接球的表面积为50π∴4πr2=50π,解得r=5√222r=5√2AB=5,BC=3,∴AC=√25+9=√34则DC=√50−34=4三棱锥的体积V=13×12×5×3×4=10【分析】该几何体是底面为直角三角形,一条侧棱垂直底面直角顶点的三棱锥;把它扩展为长方体,两者有相同的外接球,它的对角线的长为球的直径2R,由此求出该三棱锥的体积.9.【答案】4√3π【解析】【解答】以△ABC所在平面为球的截面,则由正弦定理得截面圆的半径为12⋅√3sin60°=1.依题意得CD⊥平面ABC,故球心到截面的距离为12CD=√2,则球的半径为√12+(√2)2=√3,所以球的体积为43⋅π⋅(√3)3=4√3π.答案:4√3π【分析】根据题意利用正弦定理求出截面圆的半径的值,再结合线面垂直的性质得出球心到截面的距离为CD,借助勾股定理即可求出半径的值,并把数值代入到球的体积公式求出结果即可。

2018高考数学(理)热点题型:立体几何 全国通用 Word版含解析

2018高考数学(理)热点题型:立体几何 全国通用 Word版含解析

立体几何热点一空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】如图,在△ABC中,∠ABC=π4,O为AB边上一点,且3OB=3OC=2AB,已知PO⊥平面ABC,2DA=2AO=PO,且DA∥PO.(1)求证:平面PBD⊥平面COD;(2)求直线PD与平面BDC所成角的正弦值.(1)证明∵OB=OC,又∵∠ABC=π4,∴∠OCB=π4,∴∠BOC=π2.∴CO⊥AB.又PO⊥平面ABC,OC⊂平面ABC,∴PO⊥OC.又∵PO,AB⊂平面PAB,PO∩AB=O,∴CO⊥平面PAB,即CO⊥平面PDB.又CO⊂平面COD,∴平面PDB⊥平面COD.(2)解以OC,OB,OP所在射线分别为x,y,z轴,建立空间直角坐标系,如图所示.设OA =1,则PO =OB =OC =2,DA =1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴PD→=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1). 设平面BDC 的一个法向量为n =(x ,y ,z ), ∴⎩⎪⎨⎪⎧n ·BC →=0,n ·BD →=0,∴⎩⎨⎧2x -2y =0,-3y +z =0,令y =1,则x =1,z =3,∴n =(1,1,3). 设PD 与平面BDC 所成的角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪PD→·n |PD →||n | =⎪⎪⎪⎪⎪⎪1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=22211. 即直线PD 与平面BDC 所成角的正弦值为22211. 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.【对点训练】 如图所示,在多面体A 1B 1D 1­DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F . (1)证明:EF ∥B 1C .(2)求二面角E -A 1D ­B 1的余弦值.(1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ⊂面A 1DE ,B 1C ⊄面A 1DE ,于是B 1C ∥面A 1DE.又B 1C ⊂面B 1CD 1,面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C.(2)解 因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD .以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为⎝ ⎛⎭⎪⎫12,12,1.设平面A 1DE 的一个法向量n 1=(r 1,s 1,t 1),而该面上向量A 1E →=⎝ ⎛⎭⎪⎫12,12,0,A 1D →=(0,1,-1),由n 1⊥A 1E →,n 1⊥A 1D →得r 1,s 1,t 1应满足的方程组⎩⎪⎨⎪⎧12r 1+12s 1=0,s 1-t 1=0, (-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设平面A 1B 1CD 的一个法向量n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1). 所以结合图形知二面角E -A 1D ­B 1的余弦值为|n 1·n 2||n 1|·|n 2|=23×2=63.热点二 立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式: (1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在. 【例2】如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5. (1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.(1)证明 因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊥AD , 所以AB ⊥平面PAD ,所以AB ⊥PD.又PA ⊥PD ,AB ∩PA =A ,所以PD ⊥平面PAB. (2)解 取AD 的中点O ,连接PO ,CO. 因为PA =PD ,所以PO ⊥AD.因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD.因为CO ⊂平面ABCD ,所以PO ⊥CO. 因为AC =CD ,所以CO ⊥AD.如图,建立空间直角坐标系O -xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD 的一个法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0,令z =2,则x =1,y =-2. 所以n =(1,-2,2).又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n ||PB →|=-33.所以直线PB 与平面PCD 所成角的正弦值为33.(3)解 设M 是棱P A 上一点,则存在λ∈0,1],使得AM →=λAP →.因此点M (0,1-λ,λ),BM→=(-1,-λ,λ).因为BM ⊄平面PCD ,所以要使BM ∥平面PCD ,则BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14. 所以在棱P A 上存在点M ,使得BM ∥平面PCD ,此时AM AP =14.【类题通法】(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.【对点训练】如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,DC =6,AD =8,BC =10,∠P AD =45°,E 为P A 的中点. (1)求证:DE ∥平面BPC ;(2)线段AB 上是否存在一点F ,满足CF ⊥DB ?若存在,试求出二面角F -PC -D 的余弦值;若不存在,请说明理由.(1)证明 取PB 的中点M ,连接EM 和CM ,过点C 作CN ⊥AB ,垂足为点N .∵CN ⊥AB ,DA ⊥AB ,∴CN ∥DA ,又AB ∥CD ,∴四边形CDAN 为平行四边形, ∴CN =AD =8,DC =AN =6, 在Rt △BNC 中,BN =BC 2-CN 2=102-82=6,∴AB =12,而E ,M 分别为P A ,PB 的中点, ∴EM ∥AB 且EM =6,又DC ∥AB ,∴EM ∥CD 且EM =CD ,四边形CDEM 为平行四边形, ∴DE ∥CM.∵CM ⊂平面PBC ,DE ⊄平面PBC , ∴DE ∥平面BPC.(2)解 由题意可得DA ,DC ,DP 两两互相垂直,如图,以D 为原点,DA ,DC ,DP 分别为x ,y ,z 轴建立空间直角坐标系D -xyz , 则A (8,0,0),B (8,12,0),C (0,6,0),P (0,0,8). 假设AB 上存在一点F 使CF ⊥BD , 设点F 坐标为(8,t ,0),则CF→=(8,t -6,0),DB →=(8,12,0), 由CF→·DB →=0得t =23. 又平面DPC 的一个法向量为m =(1,0,0), 设平面FPC 的法向量为n =(x ,y ,z ). 又PC→=(0,6,-8),FC →=⎝ ⎛⎭⎪⎫-8,163,0.由⎩⎪⎨⎪⎧n ·PC→=0,n ·FC →=0,得⎩⎪⎨⎪⎧6y -8z =0,-8x +163y =0,即⎩⎪⎨⎪⎧z =34y ,x =23y , 不妨令y =12,有n =(8,12,9). 则cos 〈n ,m 〉=n ·m|n ||m |=81×82+122+92=817. 又由图可知,该二面角为锐二面角, 故二面角F -PC -D 的余弦值为817. 热点三 立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.【例3】如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10. (1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值.(1)证明 由已知得AC ⊥BD ,AD =CD . 又由AE =CF 得AE AD =CFCD ,故AC ∥EF . 因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 由EF ∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3. 于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H , 所以D ′H ⊥平面ABCD .(2)解 如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H-xyz .则H (0,0,0),A (-3,-1,0), B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3). 设m =(x 1,y 1,z 1)是平面ABD ′的一个法向量, 则⎩⎪⎨⎪⎧m ·AB →=0,m ·AD ′→=0,即⎩⎨⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的一个法向量, 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎨⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1). 于是cos 〈m ,n 〉=m ·n |m ||n |=-1450×10=-7525.sin 〈m ,n 〉=29525.因此二面角B -D ′A -C 的正弦值是29525.【类题通法】立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.【对点训练】如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.(1)证明 在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC .即在题图2中,BE ⊥OA 1,BE ⊥OC , 从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC . (2)解 由已知,平面A 1BE ⊥平面BCDE , 又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2.如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0,得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝⎛⎭⎪⎫0,22,-22,CD →=BE →=(-2,0,0). 设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧n 1·BC →=0,n 1·A 1C →=0,得⎩⎨⎧-x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1);⎩⎪⎨⎪⎧n 2·CD →=0,n 2·A 1C →=0,得⎩⎨⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1),从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为63.。

高中立体几何2018年高考题 精品推荐

高中立体几何2018年高考题 精品推荐

一、选择题 1.(重庆理9)高为4的四棱锥S-ABCD 的底面是边长为1的正方形,点S 、A 、B 、C 、D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S之间的距离为 A .4 B .2 C .1 D 2.(浙江理4)下列命题中错误的是A .如果平面αβ⊥平面,那么平面α内一定存在直线平行于平面βB .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC .如果平面αγ⊥平面,平面βγ⊥平面,=l αβ⋂,那么l γ⊥平面D .如果平面αβ⊥平面,那么平面α内所有直线都垂直于平面β 3.(四川理3)1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是 A .12l l ⊥,23l l ⊥13//l l ⇒ B .12l l ⊥,23//l l ⇒13l l ⊥C .233////l l l ⇒1l ,2l ,3l 共面D .1l ,2l ,3l 共点⇒1l ,2l ,3l 共面4.(陕西理5)某几何体的三视图如图所示,则它的体积是 A .283π-B .83π-C .82π-D .23π5.(浙江理3)若某几何体的三视图如图所示,则这个几何体的直观图可以是6.(山东理11)右图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如右图;③存在圆柱,其正(主)视图、俯视图如右图.其中真命题的个数是A .3 B .2 C .1 D .07(全国大纲理6)已知直二面角α− ι−β,点A ∈α,AC ⊥ι,C 为垂足,B ∈β,BD ⊥ι,D 为垂足.若AB=2,AC=BD=1,则D 到平面ABC 的距离等于A .3B .3C .3D .18.(全国大纲理11)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为A .7πB .9πC .11πD .13π9.(江西理8)已知1a ,2a ,3a 是三个相互平行的平面.平面1a ,2a 之间的距离为1d ,平面2a ,3a 之间的距离为2d .直线l 与1a ,2a ,3a 分别相交于1p ,2p ,3p ,那么“12PP=23P P ”是“12d d =”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件10.(辽宁理8)。

(完整word)2018年上海市高三数学一轮复习:立体几何练习题2

(完整word)2018年上海市高三数学一轮复习:立体几何练习题2

2018年上海市高三数学一轮复习:立体几何练习题一、选择题1.一个几何体的三视图及其尺寸(单位:cm)如图所示,则该几何体的体积为( )A .80cm3B .81cm3C .64cm3D .48cm3[答案] C[解析] 该几何体是一个正四棱锥,其高为h =3cm ,所以其体积为V =13×64×3=64(cm3).(理)已知四棱锥P -ABCD 的三视图如图,则四棱锥P -ABCD 的全面积为( )A .3+5B .2+ 5C .5D .4[答案] A[解析] 画出直观图如图.其中PD =2,底面正方形边长为1,∵BA ⊥AD ,PD ⊥平面ABCD ,∴BA ⊥PA ,在Rt △PAD 中,PA =5,∴四棱锥的全面积S =1×1+⎝⎛⎭⎫12×2×1×2+12×5×1×2=3+ 5. 2.已知正四棱锥S -ABCD 中,SA =23,那么当该棱锥的体积最大时,它的高为( )A .1B. 3 C .2D .3[答案] C[解析] 如图所示,设正四棱锥高为h ,底面边长为a ,则22a =12-h2,即a2=2(12-h2),∴V =13×a2×h =23h(12-h2)=-23(h3-12h),令f(h)=h3-12h ,则f ′(h)=3h2-12(0<h<23),由f ′(h)=0得,h =2,此时f(h)有最小值,V 有最大值.3.在棱长为1的正方体ABCD -A1B1C1D1内任取一点P ,则点P 到点A 的距离不大于1的概率为( )A.22B.22πC.16D.16π[答案] D[解析] 由条件知,点P 所在区域是以A 为球心,1为半径的球的18,故体积V =18×43π×13=π6,又正方体体积为1,∴所求概率P =π6.4若某空间几何体的三视图如图所示,则该几何体的体积是( )A .2B .1 C.23 D.13[答案] B[解析] 由几何体的三视图可知,该几何体是直三棱柱,其直观图如图所示,其体积为V =12×2×1×2=1.(理)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是(单位:cm3)( )A .9B .12C .18D .24[答案] C[解析] 观察三视图可知,该几何体是由下、下两个长方体构成直观图如图,上层长、宽、高分别为3cm,3cm,1cm ,下层长方体长、宽、高分别为1cm,3cm,3cm ,故其体积为3×3×1+1×3×3=18.5.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积为32π3,那么这个三棱柱的体积是( ) A .96 3 B .48 3 C .24 3D .16 3[答案] B[解析] 已知正三棱柱的高为球的直径,底面正三角形的内切圆是球的大圆.设底面正三角形的边长为a ,球的半径为R ,则a =23R ,又43πR3=32π3,∴R =2,a =43,于是V =34a2·2R =48 3.6.若圆锥与球的体积相等,且圆锥底面半径与球的直径相等,则圆锥侧面积与球面面积之比为( )A.2∶2B.3∶2C.5∶2D .3∶2 [答案] C[解析] 设圆锥底半径为r ,高为h ,则球半径R =r 2,由条件知,13πr2h =43π⎝⎛⎭⎫r 23,∴h =r 2, ∴圆锥侧面积S1=πr h2+r2=πr r24+r2=52πr2, 球面面积S2=4πR2=4π×⎝⎛⎭⎫r 22=πr2,∴S1S2=52. (理)如图是某几何体的三视图,其中正(主)视图是斜边长为2a 的直角三角形,侧(左)视图是半径为a 的半圆,则该几何体的体积是( )A.36πa3B.3πa3C.34πa3D .23πa3[答案] A [解析] 由侧(左)视图半圆可知,该几何体与圆柱、圆锥、球有关,结合正(主)视图是一个直角三角形知该几何体是沿中心轴线切开的半个圆锥将剖面放置在桌面上如图,由条件知,圆锥的母线长为2a ,底面半径为a ,故高h =2a 2-a2=3a ,体积V =12×⎝⎛⎭⎫13×πa2×3a =36πa3. 7.(文)已知某几何体由三个圆柱和大小相同的两个半球组成,它的三视图如图,根据图中标出的尺寸(单位:dm),可得这个几何体的表面积是( )A.25π2dm2B .9πdm2 C.192πdm2D .11πdm2[答案] A[解析] 由三视图可知该几何体左、右各是半球和两个圆柱,半球的直径为2,圆柱的高为1,底面直径为2,中间圆柱的高为3,底面直径为1,故几何体的表面积由一个球的面积,中间圆柱的侧面积,左右两个圆柱的侧面积和左右两个圆柱与中间圆柱形成的两个圆环面积. ∵S 球=4π×⎝⎛⎭⎫222=4π,中间圆柱侧面积S1=π×1×3=3π,左右两个圆柱的侧面积S2=2×(π×2×1)=4π,圆环面积S3=2×⎣⎡⎦⎤π×⎝⎛⎭⎫222-π×⎝⎛⎭⎫122=3π2,∴几何体的表面积S =4π+3π+4π+3π2=25π2dm2.[点评] 解决这类问题的关键是由三视图探求该几何体的形状.本题中的几何体两端是相同大小的半球,还有两个大小相同的圆柱,中间有一个圆柱.值得注意的是:通过观察三视图知道,三个圆柱的底面是和半球的圆面重合或平行的,并且中间圆柱的底面与两端圆柱的底面有一部分重合.只有了解了几何体的结构形状才能保证运算准确.(理)如图(1)所示,一只装了水的密封瓶子,其内部可以看成是由半径为1cm 和半径为3cm 的两个圆柱组成的简单几何体.当这个几何体如图(2)水平放置时,液面高度为20cm ,当这个几何体如图(3)水平放置时,液面高度为28cm ,则这个简单几何体的总高度为( )A .29cmB .30cmC .32cmD .48cm[答案] A[解析] 如图(2),设下面圆柱高度为H ,则上面小圆柱内液面高度20-H ,又设余下部分为h ,则图(3)中,下面圆柱高度为h +20-H ,故上面圆柱液面高度为28-(h +20-H)=H +8-h ,由两圆柱内液体体积相等得9πH +π(20-H)=π(h +20-H)+9π(H +8-h),∴h =9,几何体总高度为20+9=29cm.[点评] 抓住问题的关键环节可以有效的提高解题的速度,本题中若设几何体的总高度为H ,由几何体的总容积一定,内装液体的体积一定可得空闲部分的体积相等,∴π×32×(H -28)=π×12×(H -20),∴H =29(cm),解题过程就简捷多了.8.如图,正方体ABCD -A1B1C1D1的棱长为2.动点E ,F 在棱A1B1上,点Q 是棱CD 的中点,动点P 在棱AD 上.若EF =1,DP =x ,A1E =y(x ,y 大于零),则三棱锥P -EFQ 的体积.( )A .与x ,y 都有关B .与x ,y 都无关C .与x 有关,与y 无关D .与y 有关,与x 无关[答案] C[解析] 设P 到平面EFQ 的距离为h ,则VP -EFQ =13×S △EFQ·h ,由于Q 为CD 的中点,∴点Q 到直线EF 的距离为定值2,又EF =1,∴S △EFQ 为定值,而P 点到平面EFQ 的距离,即P 点到平面A1B1CD 的距离,显然与x 有关、与y 无关,故选C.(理)如图,正方体ABCD -A1B1C1D1的棱长为2,动点E ,F 在棱A1B1上,动点P ,Q 分别在棱AD 、CD 上,若EF =1,A1E =x ,DQ =y ,DP =z(x ,y ,z 大于零),则四面体PEFQ 的体积( )A .与x ,y ,z 都有关B .与x 有关,与y ,z 无关C .与y 有关,与x ,z 无关D .与z 有关,与x ,y 无关[答案] D[解析] 这道题目延续了北京近年高考的风格,即在变化中寻找不变,从图中可以分析出,△EFQ 的面积永远不变,为矩形A1B1CD 面积的14(与x ,y 的值无关),而当P 点变化(即z 变化)时,它到平面A1B1CD 的距离是变化的,因此会导致四面体体积的变化.二、填空题9.有一个底面半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为______.[答案] 23[解析] 到点O 的距离小于等于1的点组成以O 为球心的半球,V 半球=12×43π×12=2π3,V圆柱=π×12×2=2π,故所求概率p =2π-2π32π=23.10.(文)球O 与棱长为2的正方体ABCD -A1B1C1D1各面都相切,则球O 的体积为________.[答案] 4π3[解析] 球O 的直径等于正方体的棱长2,∴R =1,∴V =4π3R3=4π3.(理)如图所示,在△ABC 中,∠C =90°,∠A =30°,BC =1.在三角形内挖去半圆(圆心O 在边AC 上,半圆分别与BC 、AB 相切于点C 、M ,与AC 交于点N),则图中阴影部分绕直线AC 旋转一周所得旋转体的体积为________.[答案] 53π27[解析] 阴影部分绕AC 旋转一周所得旋转体为圆锥中挖去一个球,圆锥的体积V =13π×12×3=33π,球体积V1=4π3×⎝ ⎛⎭⎪⎫333=43π27, 故所求体积为3π3-43π27=53π27.11.一个几何体的三视图如图所示,其中俯视图为正三角形,则该几何体的表面积为________.[答案] 24+2 3[解析] 由三视图可知,该几何体是一个正三棱柱,底面边长为2,高为4,故其表面积S=2×34×22+2×3×4=24+2 3.12.已知一个空间几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积为________.[答案] 4cm3[解析] 由三视图可知,此几何体为底面是直角梯形的四棱锥P -ABCD ,其中侧棱PA 与底面ABCD 垂直,其直观图如图,底面的面积为6cm2,此四棱锥的高为h =2cm ,所以此四棱锥的体积为13×6×2=4cm3.(理)某几何体的三视图如图(尺寸的长度单位为m).则该几何体的体积为________m3.[答案] 4[解析]由三视图知,三棱锥的高为侧视图中直角三角形的竖直边,底面三角形一边上的高恰为左视图中直角三角形的水平边,其直观图如图所示.∴PF=2,CE=3,AB=4,∴V=13×2×12×3×4=4(m3).三、解答题13.(文)如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD的中点.求三棱锥C-ADE的体积.[解析]⎭⎬⎫⎭⎪⎬⎪⎫PA⊥平面ABCDCD⊂平面ABCD⇒CD⊥PACD⊥ADAD∩PA=A⇒CD⊥平面PAD.∴CD为三棱锥C-ADE的高,在Rt△PAD中,S △AED =12S △PAD =12×12×2×4=2.VC -ADE =13S △AED·CD =13×2×2=43.(理在如图所示的几何体中,四边形 ABCD 是正方形,MA ⊥平面ABCD ,PD ∥MA ,E 、G 、F 分别为MB 、PB 、PC 的中点,且AD =PD =2MA.(1)求证:平面EFG ⊥平面PDC ;(2)求三棱锥P -MAB 与四棱锥P -ABCD 的体积之比.[解析] (1)证明:∵MA ⊥平面ABCD ,PD ∥MA ,∴PD ⊥平面ABCD ,又BC ⊂平面ABCD ,∴PD ⊥BC ,∵ABCD 为正方形,∴BC ⊥DC.∵PD∩DC =D ,∴BC ⊥平面PDC.在△PBC 中,因为G 、F 分别为PB 、PC 的中点,∴GF ∥BC ,∴G F ⊥平面PDC.又GF ⊂平面EFG ,∴平面EFG ⊥平面PDC.(2)不妨设MA =1,∵ABCD 为正方形,∴PD =AD =2,又∵PD ⊥平面ABCD ,所以VP -ABCD =13S 正方形ABCD·PD =83.由于DA ⊥平面MAB ,且PD ∥MA ,所以DA 即为点P 到平面MAB 的距离,三棱锥VP -MAB =13×⎝⎛⎭⎫12×1×2×2=23. 所以VP -MAB ∶VP -ABCD =1∶4.14.如图,四棱锥S -ABCD 的底面是矩形,SA ⊥底面ABCD ,P 为BC 边的中点,AD =2,SA =AB =1.(1)求证:PD⊥平面SAP;(2)求三棱锥S-APD的体积.[解析](1)∵SA⊥平面ABCD,PD⊂平面ABCD,∴SA⊥PD,在矩形ABCD中,AD=2,AB=1,P为BC中点,∴AP⊥PD,∵SA∩AP=A,∴PD⊥平面SAP.(2)易求AP=2,PD=2,∴VS-APD=13S△APD·SA=13×12×2×2×1=13.(理)如图所示,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥平面BCE;(2)求三棱锥C-BGF的体积.[解析](1)∵AD⊥平面ABE,AD∥BC,∴BC⊥平面ABE,∴AE⊥BC,又∵BF⊥平面ACE,∴AE⊥BF,又∵BF∩BC=B,∴AE⊥平面BCE.(2)由题意可得,G是AC的中点,连接FG,∵BF⊥平面ACE,∴CE⊥BF,又∵BC=BE,∴F是EC的中点,∴在△AEC 中,FG ∥AE ,FG =12AE =1,∵AE ⊥平面BCE ,∴FG ⊥平面BCF在Rt △BEC 中,BF =12CE =CF =2,∴S △BCF =12×2×2=1,∴VC -BGF =VG -BCF =13·S △BCF·FG =13.15.已知P 在矩形ABCD 的边DC 上,AB =2,BC =1,F 在AB 上且DF ⊥AP ,垂足为E ,将△ADP 沿AP 折起,使点D 位于D′位置,连接D′B 、D′C 得四棱锥D ′-ABCP .(1)求证:D′F ⊥AP ;(2)若PD =1,且平面D′AP ⊥平面ABCP ,求四棱锥D′-ABCP 的体积.[解析] (1)∵AP ⊥D′E ,AP ⊥EF ,D′E∩EF =E ,∴AP ⊥平面D′EF ,∴AP ⊥D′F.(2)∵PD =1,∴四边形ADPF 是边长为1的正方形,∴D′E =DE =EF =22,∵平面D′AP ⊥平面ABCP ,D′E ⊥AP ,∴D′E ⊥平面ABCP ,∵S 梯形ABCP =12×(1+2)×1=32,∴VD′-ABCP =13×D′E×S 梯形ABCP =24.(理)如图(1),矩形ABCD 中,AB =2AD =2a ,E 为DC 的中点,现将△ADE 沿AE 折起,使平面ADE ⊥平面ABCE ,如(2).(1)求四棱锥D -ABCE 的体积;(2)求证:AD ⊥平面BDE. [解析] (1)取AE 的中点O ,由题意知,AB =2AD =2a ,ED =EC ,∴AD =DE ,∴DO ⊥AE ,又∵平面ADE ⊥平面ABCE ,∴DO ⊥平面ABCE.在等腰Rt △ADE 中,AD =DE =a ,DO =22a ,又S 梯形ABCE =12(a +2a)a =32a2,∴VD -ABCE =13S 梯形ABCE·DO =13·32a2·22a =24a3.(2)连结BE ,则BE =a2+a2=2a ,又AE =2a ,AB =2a ,∴AB2=AE2+EB2,∴AE ⊥EB ,由(1)知,DO ⊥平面ABCE ,∴DO ⊥BE ,又∵DO∩AE =O∴BE ⊥平面ADE ,∴BE ⊥AD ,又∵AD ⊥DE ,∴AD ⊥平面BDE.。

理科高考数学立体几何选择填空压轴题专练

理科高考数学立体几何选择填空压轴题专练

立体几何选择填空压轴题专练A 组一、选择题1.(2018全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为 ABCD【答案】A【解析】记该正方体为''''-ABCD A B C D ,正方体的每条棱所在直线与平面α所成的角都相等,即共点的三条棱'A A ,''A B ,''A D 与平面α所成的角都相等,如图,连接'AB ,'AD ,''B D ,因为三棱锥'''-A AB D 是正三棱锥,所以'A A ,''A B ,''A D 与平面''AB D 所成的角都相等,分别取''C D ,''B C ,'BB ,AB ,AD ,'DD 的中点E ,F ,G ,H ,I ,J ,连接EF ,FG .GH ,IH ,IJ ,IE ,易得E ,F ,G ,H ,I ,J 六点共面,平面EFGHIJ 与平面''AB D 平行,且截正方体所得截面的面积最大,又2======EF FG GH IH IJ JE ,所以该正六边形的面积为26434⨯⨯=,所以α截此正方体所得截面面积的最大值为4,故选A . 2.如图,矩形ABCD 中, 2AB AD =, E 为边AB 的中点,将ADE ∆沿直线DE 翻转成1A DE ∆(1A ∉平面ABCD ).若M 、O 分别为线段1A C 、DE 的中点,则在ADE ∆翻转过程中,下列说法错误的是( )A. 与平面1A DE 垂直的直线必与直线BM 垂直B. 异面直线BM 与1A E 所成角是定值C. 一定存在某个位置,使DE MO ⊥D. 三棱锥1A ADE -外接球半径与棱AD 的长之比为定值【答案】C【解析】取CD 的中点F ,连BF,MF,如下图:可知面MBF// 1A DE ,所以A 对。

立体几何练习题(含答案)精选全文完整版

立体几何练习题(含答案)精选全文完整版

可编辑修改精选全文完整版《立体几何 》练习题一、 选择题1、一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是( )A 、垂直B 、平行C 、相交不垂直D 、不确定2. 在正方体1111ABCD A B C D -中, 与1A C 垂直的是( )A. BDB. CDC. BCD. 1CC3、线n m ,和平面βα、,能得出βα⊥的一个条件是( )A.βα//n ,//m ,n m ⊥B.m ⊥n ,α∩β=m ,n ⊂αC.αβ⊆⊥m n n m ,,//D.βα⊥⊥n m n m ,,//4、平面α与平面β平行的条件可以是( )A.α内有无穷多条直线与β平行;B.直线a//α,a//βC.直线a α⊂,直线b β⊂,且a//β,b//αD.α内的任何直线都与β平行5、设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题:①若m ⊥α,n //α,则m n ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则//αβ其中正确命题的序号是( )A.①和②B.②和③C.③和④D.①和④6.点P 为ΔABC 所在平面外一点,PO ⊥平面ABC ,垂足为O,若PA=PB=PC ,则点O 是ΔABC 的( )A.内心B.外心C.重心D.垂心7. 若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面,则下列命题中为真命题的是( )A .若//,,l n αβαβ⊂⊂,则//l nB .若,l αβα⊥⊂,则l β⊥C. 若,//l l αβ⊥,则αβ⊥ D .若,l n m n ⊥⊥,则//l m8. 已知两个平面垂直,下列命题中正确的个数是( )①一个平面内的已知直线必垂直于另一个平面的任意一条直线;②一个平面内的已知直线必垂直于另一个平面的无数条直线;③一个平面内的任一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则垂线必垂直于另一个平面.A.3B.2C.1D.09. 设m.n 是两条不同的直线,α.β是两个不同的平面,( ) A .若m ∥α,n ∥α,则m ∥n B .若m ∥α,m ∥β,则α∥βC .若m ∥n,m ⊥α,则n ⊥αD .若m ∥α,α⊥β,则m ⊥β10. 设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( )A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥ 二、填空题11、在棱长为2的正方体ABCD —A 1B 1C 1D 1中,E ,F 分别是棱AB ,BC 中点,则三棱锥B —B 1EF 的体积为 .12.对于空间四边形ABCD ,给出下列四个命题:①若AB=AC ,BD=CD 则BC ⊥AD ;②若AB=CD ,AC=BD 则BC ⊥AD ;③若AB ⊥AC ,BD ⊥CD 则BC ⊥AD ;④若AB ⊥CD , BD ⊥AC 则BC ⊥AD ;其中真命题序号是 .13. 已知直线b//平面α,平面α//平面β,则直线b 与β的位置关系为 .14. 如图,△ABC 是直角三角形,∠ACB=︒90,PA ⊥平面ABC ,此图形中有 个直角三角形参考答案 选择题:AACDA,BCCCB填空题:11、1312、①④ 13、//b b ββ⊂或 14、4A B C P欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。

2018高考数学立体几何含答案(最新整理)

2018高考数学立体几何含答案(最新整理)

2018高考数学立体几何答案1.(本小题14分)如图,在三棱柱ABC −中,平面ABC ,D ,E ,F ,G 分别为111A B C 1CC ⊥,AC ,,的中点,AB=BC,AC ==2.1AA 11A C 1BB 1AA(Ⅰ)求证:AC ⊥平面BEF ;(Ⅱ)求二面角B−CD −C 1的余弦值;(Ⅲ)证明:直线FG 与平面BCD 相交.【解析】(1)在三棱柱111ABC A B C -中,1CC ⊥Q 平面ABC ,∴四边形11A ACC 为矩形.又E ,F 分别为AC ,11A C 的中点,AC EF ∴⊥,AB BC =Q ,AC BE ∴⊥,AC ∴⊥平面BEF .(2)由(1)知AC EF ⊥,AC BE ⊥,1EF CC ∥.又1CC ⊥平面ABC ,EF ∴⊥平面ABC .BE ⊂Q 平面ABC ,EF BE ∴⊥.如图建立空间直角坐称系E xyz -.由题意得()0,2,0B ,()1,0,0C -,()1,0,1D ,()0,0,2F ,()0,2,1G ,()=2,01CD ∴u u u r ,,()=1,2,0CB u u r ,设平面BCD 的法向量为(),a b c =,n ,00CD CB ⎧⋅=⎪∴⎨⋅=⎪⎩u u u r u u r n n ,2020a c a b +=⎧∴⎨+=⎩,令2a =,则1b =-,4c =-,∴平面BCD 的法向量()2,14=--,,n ,又Q 平面1CDC 的法向量为()=0,2,0EB u u r ,cos =EB EB EB⋅∴<⋅>=-u u r u u r u u r n n n .由图可得二面角1B CD C --为钝角,所以二面角1B CD C --的余弦值为.(3)平面BCD 的法向量为()2,1,4=--n ,()0,2,1G Q ,()0,0,2F ,()=02,1GF ∴-u u u r ,,2GF ∴⋅=-u u u r n ,∴n 与GF u u u r 不垂直,GF ∴与平面BCD 不平行且不在平面BCD 内,GF ∴与平面BCD 相交2.(本小题14分)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E ,F 分别为AD ,PB 的中点.(1)求证:PE BC ⊥;(2)求证:平面PAB ⊥平面PCD ;(3)求证:EF ∥平面PCD .【解析】(1)PA PD =Q ,且E 为AD 的中点,PE AD ∴⊥,Q 底面ABCD 为矩形,BC AD ∴∥,PE BC ∴⊥.(2)Q 底面ABCD 为矩形,AB AD ∴⊥,Q 平面PAD ⊥平面ABCD ,AB ∴⊥平面PAD ,AB PD ∴⊥.又PA PD ⊥,PD ⊥Q 平面PAB ,∴平面PAB ⊥平面PCD .(3)如图,取PC 中点G ,连接FG ,GD .F Q ,G 分别为PB 和PC 的中点,FG BC ∴∥,且12FG BC =,Q 四边形ABCD 为矩形,且E 为AD 的中点,ED BC ∴∥,12DE BC =,ED FG ∴∥,且ED FG =,∴四边形EFGD 为平行四边形,EF GD ∴∥,又EF ⊄平面PCD ,GD ⊂平面PCD ,EF ∴∥平面PCD .3.(12分)如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.解答:(1),E F 分别为,AD BC 的中点,则//EF AB ,∴EF BF ⊥,又PF BF ⊥,EF PF F ⋂=,∴BF ⊥平面PEF ,BE ⊂平面ABFD ,∴平面PEF ⊥平面ABFD .(2)PF BF ⊥,//BF ED ,∴PF ED ⊥,又PF PD ⊥,ED DP D ⋂=,∴PF ⊥平面PED ,∴PF PE ⊥,设4AB =,则4EF =,2PF =,∴PE =,过P 作PH EF ⊥交EF 于H 点,由平面PEF ⊥平面ABFD ,∴PH ⊥平面ABFD ,连结DH ,则PDH ∠即为直线DP 与平面ABFD 所成的角,由PE PF EF PH ⋅=⋅,∴PH ==,而4PD =,∴sin PH PDH PD ∠==,∴DP 与平面ABFD .4.(12分)如图,在三棱锥P ABC -中,AB BC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.C【解析】(1)因为4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP =,连结OB.因为AB BC ==,所以ABC △为等腰直角三角形,且OB AC ⊥,122OB AC ==,由222OP OB PB +=知PO OB ⊥,由,OP OB OP AC ⊥⊥知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB u u u r 的方向为x 轴正方向,建立空间直角坐标系O xyz -.由已知得()0,0,0O ,()2,0,0B ,()0,2,0A -,()0,2,0C,(P,(AP =u u u r ,取平面PAC 的法向量()2,0,0OB =u u u r ,设()(),2,002M a a a -<≤,则(),4,0AM a a =-u u u r ,设平面PAM 的法向量为(),,x y z =n .由0AP ⋅=u u u r n ,0AM ⋅=u u u r n ,得()2040y ax a y ⎧+=⎪⎨+-=⎪⎩,可取))4,a a =--n ,cos ,OB ∴<>=u u u rn ,由已知得cos ,OB <>=u u u r n,,解得4a =-(舍去),43a =,43⎛⎫∴=- ⎪⎪⎝⎭n ,又(0,2,PC =-u uu r Q ,所以cos ,PC <>=u u u r n .所以PC 与平面PAM .5.(12分)如图,边长为2的正方形ABCD 所在的平面与半圆弧A CD所在平面垂直,M 是A CD上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M ABC-体积最大时,求面MAB与面MCD所成二面角的正弦值.解答:(1)∵正方形半圆面,ABCD⊥CMD∴半圆面,∴平面.AD⊥CMD AD⊥MCD∵在平面内,∴,又∵是半圆弧上异于的点,∴CM MCD AD CM⊥M CD,C D .又∵,∴平面,∵在平面内,∴平面CM MD⊥AD DM D=I CM⊥ADM CM BCM平面.BCM⊥ADM(2)如图建立坐标系:∵面积恒定,ABCS∆∴,最大.MO CD⊥M ABCV-,,,,,(0,0,1)M(2,1,0)A-(2,1,0)B(0,1,0)C(0,1,0)D-设面的法向量为,设面的法向量为,MAB111(,,)m x y z=u rMCD222(,,)n x y z=r,,(2,1,1)MA=--(2,1,1)MB=-,,(0,1,1)MC=-(0,1,1)MD=--,11111120(1,0,2)20x y zmx y z--=⎧⇒=⎨+-=⎩同理,,(1,0,0)n=∴,∴.cosθ==sinθ=6.(本题满分14分,第1小题满分6分,第2小题满分8分)已知圆锥的顶点为P,底面圆心为O,半径为2(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO =4,OA ,OB 是底面半径,且∠AOB =90°,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.7.(本小题满分13分)如图,且AD =2BC ,,且EG =AD ,且AD BC ∥AD CD ⊥EG AD ∥CD FG ∥CD =2FG ,,DA =DC =DG =2.DG ABCD ⊥平面(I )若M 为CF 的中点,N 为EG 的中点,求证:;MN CDE ∥平面(II )求二面角的正弦值;E BCF --(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【解析】依题意,可以建立以D 为原点,分别以DA ,DC ,DG 的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得()0,0,0D ,()2,0,0A ,()1,2,0B ,()0,2,0C ,()2,0,2E ,()0,1,2F ,()0,0,2G ,30,,12M ⎛⎫ ⎪⎝⎭,()1,0,2N .(1)依题意()0,2,0DC = ,()2,0,2DE = .设()0,,x y z =n 为平面CDE 的法向量,则0000DC DE ⎧⋅=⎪⎨⋅=⎪⎩ n n 即20220y x z =+=⎧⎨⎩,不妨令–1z =,可得()01,0,1=-n .又31,,12MN ⎛⎫= ⎪⎝⎭-,可得00MN ⋅= n ,又因为直线MN ⊄平面CDE ,所以MN ∥平面CDE .(2)依题意,可得()–1,0,0BC = ,()1,2,2BE =- ,()0,1,2CF =- .设(),,x y z =n 为平面BCE 的法向量,则00BC BE ⎧⋅=⎪⎨⋅=⎪⎩ n n 即0220x x y z -=-+=⎧⎨⎩,不妨令1z =,可得()0,1,1=n .设(),,x y z =m 为平面BCF 的法向量,则00BC BF ⎧⋅=⎪⎨⋅=⎪⎩m m 即020x y z -=-+=⎧⎨⎩,不妨令1z =,可得()0,2,1=m .因此有cos ,⋅<>==m n m n m n,于是sin ,m n <>=.所以,二面角––E BC F.(3)设线段DP 的长为[]()0,2h h ∈,则点P 的坐标为()0,0,h ,可得()1,2,BP h =-- .易知,()0,2,0DC = 为平面ADGE 的一个法向量,故cos BP DC BP DC BP DC ⋅<⋅>== ,sin 60=︒=,解得[]0,2h =.所以线段DP.8.(本题满分15分)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(Ⅰ)证明:AB 1⊥平面A 1B 1C 1;(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值.解答:(1)∵,且平面,12AB B B ==1B B ⊥ABC∴,∴.1B B AB ⊥1AB =同理,1AC ===过点作的垂线段交于点,则且,∴.1C 1B B 1B B G 12C G BC ==11B G =11B C =在中,,11AB C ∆2221111AB B C AC +=∴,①111AB B C ⊥过点作的垂线段交于点.1B 1A A 1A A H则,,∴.12B H AB ==12A H =11A B =在中,,11A B A ∆2221111AA AB A B =+∴,②111AB A B ⊥综合①②,∵,平面,平面,11111A B B C B ⋂=11A B ⊂111A B C 11B C ⊂111A B C ∴平面.1AB ⊥111A B C (2)过点作的垂线段交于点,以为原点,以所在直线为轴,B AB AC I B AB x 以所在直线为轴,以所在直线为轴,建立空间直角坐标系.BI y 1B B z B xyz -则,,,,(0,0,0)B (2,0,0)A -1(0,0,2)B 1C 设平面的一个法向量,1ABB (,,)n a b c = 则,令,则,1020200n AB a c n BB ⎧⋅==⎧⎪⇒⎨⎨=⋅=⎩⎪⎩ 1b =(0,1,0)n = 又∵,.1AC =1cos ,n AC <>== 由图形可知,直线与平面所成角为锐角,设与平面夹角为.1AC 1ABB 1AC 1ABB α∴.sin α=9.(本小题满分14分)在平行六面体中,.1111ABCD A B C D -1111,AA AB AB B C =⊥求证:(1);11AB A B C 平面∥(2).111ABB A A BC ⊥平面平面【解析】(1)在平行六面体1111ABCD A B C D -中,11AB A B ∥.因为AB ⊄平面11A B C ,11A B ⊂平面11A B C ,所以AB ∥平面11A B C .(2)在平行六面体1111ABCD A B C D -中,四边形11ABB A 为平行四边形.又因为1AA AB =,所以四边形11ABB A 为菱形,因此11AB A B ⊥.又因为111AB B C ⊥,11BC B C ∥,所以1AB BC ⊥.又因为1A B BC B = ,1A B ⊂平面1A BC ,BC ⊂平面1A BC ,所以1AB ⊥平面1A BC .因为1AB ⊂平面11ABB A ,所以平面11ABB A ⊥平面1A BC .。

2018-江苏高考立体几何(含解析)

2018-江苏高考立体几何(含解析)

2018年-2008年江苏高考立体几何解答题(共11题)说明:三角向量解答题考在15题或16题,是解答题的前两题之一,要求学生必须做对,而且书写规范,条理清楚 1.在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥. 求证:(1)11AB A B C 平面∥; (2)111ABB A A BC ⊥平面平面.2.如图,在三棱锥A-BCD 中,AB ⊥AD , BC ⊥BD , 平面ABD ⊥平面BCD , 点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .,3. 如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥.求证:(1)直线DE ∥平面A 1C 1F ; (2)平面B 1DE ⊥平面A 1C 1F .4.如图,在直三棱柱111C B A ABC -中,已知BC AC ⊥,1CC BC =,设1AB 的中点为D ,E BC C B =11 .求证:(1)C C AA DE 11//平面; (2)11AB BC ⊥.5.如图在三棱锥中,分别为棱的中点,已知,\求证(1)直线平面; (2)平面平面。

6.如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.7. 如图,在直三棱柱111ABC A B C -中,1111A B AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点.求证:(1)平面ADE ⊥平面11BCC B ; (2)直线1//A F 平面ADE .~8、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点 求证:(1)直线E F ‖平面PCD ;(2)平面BEF ⊥平面PAD-P ABC ,,D E F ,,PC AC AB ,6,8,5PA AC PA BC DF ⊥===PA DEF BDE ⊥ABC9、如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,PD=DC=BC=1,AB=2,AB ∥DC ,∠BCD=900。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何小题难题训练一.选择题1.已知正方体ABCD﹣A1B1C1D1,则过点A与AB、BC、CC1所成角均相等的直线有()A.1条 B.2条 C.4条 D.无数条2.如图,平面PAB⊥平面α,AB?α,且△PAB为正三角形,点D是平面α内的动点,ABCD是菱形,点O为AB中点,AC与OD交于点Q,I?α,且l⊥AB,则PQ与I所成角的正切值的最小值为()A.B.C.D.33.如图,点E为正方形ABCD边CD上异于点C,D的动点,将△ADE沿AE翻折成△SAE,使得平面SAE⊥平面ABCE,则下列说法中正确的有()①存在点E使得直线SA⊥平面SBC;②平面SBC内存在直线与SA平行③平面ABCE内存在直线与平面SAE平行;④存在点E使得SE⊥BA.A.1个 B.2个 C.3个 D.4个4.设三棱柱ABC﹣A1B1C1的侧棱与底面垂直,∠BCA=90°,BC=CA=2,若该棱柱的所有顶点都在体积为的球面上,则直线B1C与直线AC1所成角的余弦值为()A. B.C.D.5.已知异面直线a与b所成的角为50°,P为空间一点,则过点P与a、b所成的角都是30°的直线有且仅有()A.1条 B.2条 C.3条 D.4条6.已知矩形ABCD,AB=1,BC=.将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中()A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直7.在正方体ABCD﹣A1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线()A.不存在B.有且只有两条C.有且只有三条D.有无数条8.正方体ABCD﹣A1B1C1D1中,M,N,Q分别是棱D1C1,A1D1,BC的中点,点P在对角线BD1上,给出以下命题:①当P在BD1上运动时,恒有MN∥面APC;②若A,P,M三点共线,则=;③若=,则C1Q∥面APC;④若过点P且与正方体的十二条棱所成的角都相等的直线有m条;过点P且与直线AB1和A1C1所成的角都为60°的直线有n条,则m+n=7.其中正确命题的个数为()A.1 B.2 C.3 D.49.如图,四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,D 为四面体OABC外一点.给出下列命题.①不存在点D,使四面体ABCD有三个面是直角三角形②不存在点D,使四面体ABCD是正三棱锥③存在点D,使CD与AB垂直并且相等④存在无数个点D,使点O在四面体ABCD的外接球面上其中真命题的序号是()A.①②B.②③C.③D.③④10.如图,在平行四边形ABCD中,AB=a,BC=1,∠BAD=60°,E为线段CD(端点C、D除外)上一动点,将△ADE沿直线AE翻折,在翻折过程中,若存在某个位置使得直线AD与BC垂直,则a的取值范围是()A.(,+∞)B.(,+∞)C.(+1,+∞)D.(+1,+∞)11.如图,在矩形ABCD中,AB=2,AD=4,点E在线段AD上且AE=3,现分别沿BE,CE将△ABE,△DCE翻折,使得点D落在线段AE上,则此时二面角D﹣EC﹣B的余弦值为()A.B.C.D.12.如图,已知平面α⊥平面β,A、B是平面α与平面β的交线上的两个定点,DA?β,CB?β,且DA⊥α,CB⊥α,AD=4,BC=8,AB=6,在平面α内有一个动点P,使得∠APD=∠BPC,则△PAB的面积的最大值是()A.12 B.24 C.32 D.4813.在四面体S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,二面角S﹣AC﹣B的余弦值是﹣,则该四面体外接球的表面积是()A.B.C.6πD.14.过空间中一定点,作一直线,使其与某正方体六个面所成的角都相等,这样的直线有几条()A.1 B.2 C.4 D.无数条15.如图,边长为3正方形ABCD,动点M,N在AD,BC上,且MN∥CD,沿MN将正方形折成直二面角,设AM=x,则点M到平面ABC的距离的最大值为()A.B.C.D.16.正三棱锥P﹣ABC内接于半球O,底面ABC在大圆面上,则它相邻的两个侧面所成二面角的余弦值为()A.B.C.D.17.在长方形ABCD中,AD=2,AB=4,点E是边CD上的一动点,将△ADE沿直线AE翻折到△AD1E,使得二面角D1﹣AE﹣B为直二面角,则cos∠D1AB的最大值为()A.B.C.D.18.如图,已知正方体ABCD﹣A1B1C1D1棱长为8,点H在棱AA1上,且HA1=2,在侧面BCC1B1内作边长为2的正方形EFGC1,P是侧面BCC1B1内一动点且点P到平面CDD1C1距离等于线段PF的长,则当点P运动时,|HP|2的最小值是()A.87 B.88 C.89 D.9019.在如图所示的空间直角坐标系O﹣xyz中,一个四面体的顶点坐标分别为(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出的编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②20.三棱锥P﹣ABC中,顶点P在平面ABC上的射影为O,且满足,A点在侧面PBC上的射影H是△PBC的垂心,PA=6,则此三棱锥体积最大值是()A.12 B.36 C.48 D.2421.已知四面体ABCD中,AB=2,CD=1,AB与CD间的距离与夹角分别为3与30°,则四面体ABCD的体积为()A.B.1 C.2 D.二.填空题(共9小题)22.如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=,∠ADC=90°,沿直线AC将△ACD翻折成△ACD′,直线AC与BD′所成角的余弦的最大值是.23.三棱柱ABC﹣A1B1C1中,底面边长和侧棱长都相等,∠BAA1=∠CAA1=60°,则异面直线AB1与BC1所成角的余弦值为.24.如图,正方体ABCD﹣A1B1C1D1,则下列四个命题:①P在直线BC1上运动时,三棱锥A﹣D1PC的体积不变;②P在直线BC1上运动时,直线AP与平面ACD1所成角的大小不变;③P在直线BC1上运动时,二面角P﹣AD1﹣C的大小不变;④M是平面A1B1C1D1上到点D和C1距离相等的点,则M点的轨迹是过D1点的直线,其中真命题的编号是.(写出所有真命题的编号)25.如图,正方形ABCD的边长为3,点E,F分别在边AB,BC上,且==2,将此正方形沿DE,DF折起,使点A,C重合于点P,若O为线段EF任一点,DO 与平面PEF所成的角为θ,则tanθ的最大值是.26.如图,在四棱锥P﹣ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,侧面PAD同时垂直侧面PAB与侧面PDC.若PA=AB=AD=PB,则=,直线PC与底面ABCD所成角的正切值为.27.如图,棱长为3的正方体的顶点A在平面α上,三条棱AB,AC,AD都在平面α的同侧,若顶点B,C到平面α的距离分别为1,,则顶点D到平面α的距离是.28.如图,平面ABC⊥平面α,D为线段AB的中点,,∠CDB=45°,点P为面α内的动点,且P到直线CD的距离为,则∠APB的最大值为.29.如图,在二面角A﹣CD﹣B中,BC⊥CD,BC=CD=2,点A在直线AD上运动,满足AD⊥CD,AB=3.现将平面ADC沿着CD进行翻折,在翻折的过程中,线段AD长的取值范围是.30.如图,将菱形ABCD沿对角线BD折起,使得C点至C′,E点在线段AC′上,若二面角A﹣BD﹣E与二面角E﹣BD﹣C′的大小分别为15°和30°,则=.立体几何难题参考答案与试题解析一.选择题(共21小题)1.已知正方体ABCD﹣A1B1C1D1,则过点A与AB、BC、CC1所成角均相等的直线有()A.1条 B.2条 C.4条 D.无数条【解答】解:若直线和AB,BC所成角相等,得直线在对角面BDD1B1,内或者和对角面平行,同时和CC1所成角相等,此时在对角面内只有体对角线BD1满足条件.此时过A的直线和BD1,平行即可,同理体对角线A1C,AC1,DB1,也满足条件.,则过点A与AB、BC、CC1所成角均相等的直线只要和四条体对角线平行即可,共有4条.故选:C.2.如图,平面PAB⊥平面α,AB?α,且△PAB为正三角形,点D是平面α内的动点,ABCD是菱形,点O为AB中点,AC与OD交于点Q,I?α,且l⊥AB,则PQ与I所成角的正切值的最小值为()A.B.C.D.3【解答】解:如图,不妨以CD在AB前侧为例.以O为原点,分别以OB、OP所在直线为y、z轴建立空间直角坐标系,设AB=2,∠OAD=θ(0<θ<π),则P(0,0,),D(2sinθ,﹣1+2cosθ,0),∴Q(,,0),∴,设α与AB垂直的向量,则PQ与l所成角为α.则|cosα|=||=||==.令t=cosθ(﹣1<t<1),则s=,s′=,令s′=0,得t=8﹣,∴当t=8﹣时,s有最大值为16﹣6.则cosα有最大值为,此时sinα最小值最小为.∴正切值的最小值为=.故选:B.3.如图,点E为正方形ABCD边CD上异于点C,D的动点,将△ADE沿AE翻折成△SAE,使得平面SAE⊥平面ABCE,则下列说法中正确的有()①存在点E使得直线SA⊥平面SBC;②平面SBC内存在直线与SA平行③平面ABCE内存在直线与平面SAE平行;④存在点E使得SE⊥BA.A.1个 B.2个 C.3个 D.4个【解答】解:①若直线SA⊥平面SBC,则直线SA与平面SBC均垂直,则SA⊥BC,又由AD∥BC,则SA⊥AD,这与∠SAD为锐角矛盾,故①错误;②∵平面SBC∩直线SA=S,故平面SBC内的直线与SA相交或异面,故②错误;③取AB的中点F,则CF∥AE,由线面平行的判定定理,可得CF∥SAE平行,故③正确;④若SE⊥BA,由EC∥AB,可得SE⊥EC,这与∠SEC为钝角矛盾,故④错误;故选:A.4.设三棱柱ABC﹣A1B1C1的侧棱与底面垂直,∠BCA=90°,BC=CA=2,若该棱柱的所有顶点都在体积为的球面上,则直线B1C与直线AC1所成角的余弦值为()A. B.C.D.【解答】解:∵∠BCA=90°,BC=CA=2,∴AB=2,且为截面圆的直径;又三棱柱外接球的体积为,∴π?R3=,解得外接球的半径为R=2;△ABC1中,AB⊥BC1,AB=2,AC1=2R=4,∴BC1==2;又=+,=+=﹣﹣,∴?=?(﹣)﹣?﹣﹣?=0﹣0﹣﹣0=﹣8,||=||==;∴异面直线B1C与AC1所成的角θ的余弦值为:||=||=.cosθ=故选:B.5.已知异面直线a与b所成的角为50°,P为空间一点,则过点P与a、b所成的角都是30°的直线有且仅有()A.1条 B.2条 C.3条 D.4条【解答】解:把异面直线a,b平移到相交,使交点为P,此时∠APB=50°,过P点作直线c平分∠APB,这时c与a,b所成角为25°,过P点作直线d垂直a和b,这时d与a,b所成角为90°,直线从c向两边转到d时与a,b所成角单调递增,必有经过30°,因为两边,所以有2条.故选:B.6.已知矩形ABCD,AB=1,BC=.将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中()A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直【解答】解:如图,AE⊥BD,CF⊥BD,依题意,AB=1,BC=,AE=CF=,BE=EF=FD=,A,若存在某个位置,使得直线AC与直线BD垂直,则∵BD⊥AE,∴BD⊥平面AEC,从而BD⊥EC,这与已知矛盾,排除A;B,若存在某个位置,使得直线AB与直线CD垂直,则CD⊥平面ABC,平面ABC ⊥平面BCD取BC中点M,连接ME,则ME⊥BD,∴∠AEM就是二面角A﹣BD﹣C的平面角,此角显然存在,即当A在底面上的射影位于BC的中点时,直线AB与直线CD垂直,故B正确;C,若存在某个位置,使得直线AD与直线BC垂直,则BC⊥平面ACD,从而平面ACD⊥平面BCD,即A在底面BCD上的射影应位于线段CD上,这是不可能的,排除CD,由上所述,可排除D故选:B.7.在正方体ABCD﹣A1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线()A.不存在B.有且只有两条C.有且只有三条D.有无数条【解答】解:在EF上任意取一点M,直线A1D1与M确定一个平面,这个平面与CD有且仅有1个交点N,当M取不同的位置就确定不同的平面,从而与CD有不同的交点N,而直线MN与这3条异面直线都有交点.如图:故选:D.8.正方体ABCD﹣A1B1C1D1中,M,N,Q分别是棱D1C1,A1D1,BC的中点,点P在对角线BD1上,给出以下命题:①当P在BD1上运动时,恒有MN∥面APC;②若A,P,M三点共线,则=;③若=,则C1Q∥面APC;④若过点P且与正方体的十二条棱所成的角都相等的直线有m条;过点P且与直线AB1和A1C1所成的角都为60°的直线有n条,则m+n=7.其中正确命题的个数为()A.1 B.2 C.3 D.4【解答】解:①MN中点R,AC的中点S,设BD1与RS的交点是Q,若P与Q 重合时,此时MN在平面PAC内,故1错误②若A,P,M三点共线,②若A,P,M三点共线,由D1M∥AB,∴==,则=,正确;③若=,由②可得:A,P,M三点共线,设对角线BD∩AC=O,连接OM,OQ,则四边形OQC1M是平行四边形,∴C1Q∥OM,而M点在平面APC内,∴C1Q∥平面APC,因此正确;④若过点P且与正方体的十二条棱所成的角都相等的直线有A1C,D1B,AC1,DB1,4条.连接B1C,A1C1∥AC,由正方体的性质可得△AB1C是等边三角形,则点P取点D1,则直线AD1,CD1、D1B1满足条件,∴过点P且与直线AB1和A1C1所成的角都为60°的直线有且只有3条,则m+n=7条,因此正确.其中正确命题为②③④,其个数为3.故选:C.9.如图,四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,D 为四面体OABC外一点.给出下列命题.①不存在点D,使四面体ABCD有三个面是直角三角形②不存在点D,使四面体ABCD是正三棱锥③存在点D,使CD与AB垂直并且相等④存在无数个点D,使点O在四面体ABCD的外接球面上其中真命题的序号是()A.①②B.②③C.③D.③④【解答】解:∵四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,∴AC=BC=,AB=当四棱锥CABD与四面体OABC一样时,即取CD=3,AD=BD=2此时点D,使四面体ABCD有三个面是直角三角形,故①不正确使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥,故②不正确;取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD与AB垂直并且相等,故③正确;先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r即可∴存在无数个点D,使点O在四面体ABCD的外接球面上,故④正确故选:D.10.如图,在平行四边形ABCD中,AB=a,BC=1,∠BAD=60°,E为线段CD(端点C、D除外)上一动点,将△ADE沿直线AE翻折,在翻折过程中,若存在某个位置使得直线AD与BC垂直,则a的取值范围是()A.(,+∞)B.(,+∞)C.(+1,+∞)D.(+1,+∞)【解答】解:设翻折前的D记为D′,∵AD⊥BC,BC∥AD′,则在翻折过程中,存在某个位置使得直线AD与BC垂直,只需保证∠DAD′=900,∵∠D′AE=∠DAE,由极限位置知,只需保证∠D′AE≥45°即可.,则∠D′EA=15°,,∠AD′E=120°在△D′AE中,AD′=1,∠D′AE=45°由正弦定理知,,则D′E=.因为E为线段CD(端点C,D除外)上的一动点,则a>,故选:D.11.如图,在矩形ABCD中,AB=2,AD=4,点E在线段AD上且AE=3,现分别沿BE,CE将△ABE,△DCE翻折,使得点D落在线段AE上,则此时二面角D﹣EC﹣B的余弦值为()A.B.C.D.【解答】解:在折叠前的矩形中连接BD交EC于O,∵BC=4,CD=2,CD=2,DE=1,∴,即△BCD∽△CDE,∴∠DBC=∠ECD,∴∠DBC=∠ECD,∴∠ECD+∠ODC=90°,即BD⊥CE,折起后,∵BO⊥CE,DO⊥CE,∴∠BOD是二面角D﹣EC﹣B的平面角,在△BOD中,OD=,OB=BD﹣OD=2﹣=,BD==2,由余弦定理得cos∠BOD==,故选:D.12.如图,已知平面α⊥平面β,A、B是平面α与平面β的交线上的两个定点,DA?β,CB?β,且DA⊥α,CB⊥α,AD=4,BC=8,AB=6,在平面α内有一个动点P,使得∠APD=∠BPC,则△PAB的面积的最大值是()A.12 B.24 C.32 D.48【解答】解:由题意平面α⊥平面β,A、B是平面α与平面β的交线上的两个定点,DA?β,CB?β,且DA⊥α,CB⊥α,∴△PAD与△PBC是直角三角形,又∠APD=∠BPC,∴△PAD∽△PBC,又AD=4,BC=8,∴PB=2PA作PM⊥AB,垂足为M,令AM=t∈R,在两个Rt△PAM与Rt△PBM中,PM是公共边及PB=2PA∴PA2﹣t2=4PA2﹣(6﹣t)2解得PA2=12﹣4t∴PM=∴S=×AB×PM=×6×=3=3≤12即三角形面积的最大值为12故选:A.13.在四面体S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,二面角S﹣AC﹣B的余弦值是﹣,则该四面体外接球的表面积是()A.B.C.6πD.【解答】解:取AC中点D,连接SD,BD,因为,所以BD⊥AC,因为SA=SC=2,所以SD⊥AC,AC⊥平面SDB.所以∠SDB为二面角S﹣AC﹣B.在△,所以AC=2.取等边△SAC的中心E,作EO⊥平面SAC,过D作DO⊥平面ABC,O为外接球球心,所以ED=,二面角S﹣AC﹣B的余弦值是,所以,OD=,所以BO===OA=OS=OC所以O点为四面体的外接球球心,其半径为,表面积为6π.故选:C.14.过空间中一定点,作一直线,使其与某正方体六个面所成的角都相等,这样的直线有几条()A.1 B.2 C.4 D.无数条【解答】解:正方体六个面中,相对的面互相平行.中,如图,在正方体ABCD﹣A′B′C′D′研究体对角线BD′与下底面、前面,右面所成的角的关系.由正方体的结构特征,可知D′D⊥面ABCD,∴BD是BD′在面ABCD上的射影.∴∠D′BD是BD′与面ABCD所成的角.所成的角是BD′与面A′B′BA同理∠D′BA′是BD′与面B′C′CB所成的角.∠D′BC′,由直角三角形全等的HL判定定理,可知△D′BD≌△D′BA′≌△D′BC′.∠D′BC′∴∠D′BD=∠D′BA′=所以对角线BD′与下底面、前面,右面所成的角相等,从而对角线BD′与正方体六个面所成的角都相等.同样证明得出其余三条体对角线也与正方体六个面所成的角都相等.所以过空间一点且与体对角线平行的直线与正方体六个面成等角.共有4条.故选:C.15.如图,边长为3正方形ABCD,动点M,N在AD,BC上,且MN∥CD,沿MN将正方形折成直二面角,设AM=x,则点M到平面ABC的距离的最大值为()A.B.C.D.【解答】解:由题意,过M作ME⊥AC,垂足为E,则ME⊥平面ABC,在△AMC中,==当且仅当,x=3﹣x,即时,ME的最大值为故选:B.16.正三棱锥P﹣ABC内接于半球O,底面ABC在大圆面上,则它相邻的两个侧面所成二面角的余弦值为()A.B.C.D.【解答】解:由题意,设半球的半径为单位1,则正三角形ABC的边长为;三棱锥的高为1,所以侧边PA=PB=PC=;在侧面上以任一个底角为顶点做高,它的长度等于根据余弦定理,三角形的两边长为,底边为,从而余弦值就是即相邻的两个侧面所成二面角的余弦值为故选:D.17.在长方形ABCD中,AD=2,AB=4,点E是边CD上的一动点,将△ADE沿直线AE翻折到△AD1E,使得二面角D1﹣AE﹣B为直二面角,则cos∠D1AB的最大值为()A.B.C.D.【解答】解:在长方形ABCD中,过D作DO⊥AE于O,设∠DAE=θ,则0<θ<,则折叠后使得二面角D1﹣AE﹣B为直二面角,则D1A⊥面AEB,则△D1OB是直角三角形,∵DO=2sinθ,AO=2cosθ,∴OB2=4cos2θ+16﹣2×2cosθ×4×cos(﹣θ)=4cos2θ+16﹣2×2cosθ×4×sinθ=4cos2θ﹣8sin2θ+16,则BD12=OD12+OB2=4sin2θ+16+4cos2θ﹣8sin2θ=20﹣8sin2θ,∵BD12=4+16﹣2×4×2cos∠D1AB=20﹣16cos∠D1AB,∴要使2cos∠D1AB最大,则只需要BD12最小即可,∵0<θ<,∴0<2θ<π,即当sin2θ=1时,BD12最小,此时BD12=20﹣8=12,由20﹣16cos∠D1AB=12得cos∠D1AB=,故选:B.18.如图,已知正方体ABCD﹣A1B1C1D1棱长为8,点H在棱AA1上,且HA1=2,在侧面BCC1B1内作边长为2的正方形EFGC1,P是侧面BCC1B1内一动点且点P到平面CDD1C1距离等于线段PF的长,则当点P运动时,|HP|2的最小值是()A.87 B.88 C.89 D.90【解答】解:建立空间直角坐标系,如图所示,过点H作HM⊥BB′,垂足为M,连接MP,则HM⊥PM,∴HP2=HM2+MP2;当MP最小时,HP2最小,过P作PN⊥CC′,垂足为N,设P(x,8,z),则F(2,8,6),M(8,8,6),N(0,8,z),且0≤x≤8,0≤z≤8,∵PN=PF,∴=x,化简得4x﹣4=(z﹣6)2,∴MP2=(x﹣8)2+(z﹣6)2=(x﹣8)2+4x﹣4=x2﹣12x+60=(x﹣6)2+24≥24,当x=6时,MP2取得最小值,此时HP2=HM2+MP2=82+24=88为最小值.故选:B.19.在如图所示的空间直角坐标系O﹣xyz中,一个四面体的顶点坐标分别为(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出的编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②【解答】解:在坐标系中,标出已知的四个点,根据三视图的画图规则,可得三棱锥的正视图和俯视图分别为④②,故选:D.20.三棱锥P﹣ABC中,顶点P在平面ABC上的射影为O,且满足,A点在侧面PBC上的射影H是△PBC的垂心,PA=6,则此三棱锥体积最大值是()A.12 B.36 C.48 D.24【解答】解:如图,∵O是P在平面ABC内的射影,且满足,∴O为三角形ABC的重心,连接AO并延长交BC于D,连接BO并延长交AC于F,则D、F分别为BC和AC的中点,∵AH⊥平面PBC,BC?平面PBC,∴AH⊥BC,∵H为三角形PBC的垂心,∴PH⊥BC,又∵PH∩AH=H,∴BC⊥平面PAH,∴BC⊥PA,∵PO⊥平面ABC,BC?平面ABC,∴PO⊥BC,又∵PA∩PO=P,∴BC⊥平面PAO,∴BC⊥AO,BC⊥AD.D为BC的中点,AD⊥BC,∴AB=AC.∵CH⊥PB,AH⊥PB,AH∩CH=H,∴PB⊥面AHC,∴PB⊥AC,又∵PO⊥AC,PO∩PB=P,∴AC⊥平面PBO,∴AC⊥BO,AC⊥BF,又∵F为AC的中点,∴AB=BC,∴三角形ABC为等边三角形.设三角形ABC的边长为x,则AD=,AO=,又PA=6,∴PO=∴==≤=36.当且仅当,即x=时“=”成立.故选:B.21.已知四面体ABCD中,AB=2,CD=1,AB与CD间的距离与夹角分别为3与30°,则四面体ABCD的体积为()A.B.1 C.2 D.【解答】解:过CD与公垂线的平面三角形面积是,AB与CD间的夹角为30°,所以棱锥的高是2sin30°=1,所以棱锥的体积是:,故选:A.二.填空题(共9小题)22.如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=,∠ADC=90°,沿直线AC将△ACD翻折成△ACD′,直线AC与BD′所成角的余弦的最大值是.【解答】解:如图所示,取AC的中点O,∵AB=BC=3,∴BO⊥AC,在Rt△ACD′中,=.作D′E⊥AC,垂足为E,D′E==.CO=,CE===,∴EO=CO﹣CE=.过点B作BF∥AC,作FE∥BO交BF于点F,则EF⊥AC.连接D′F.∠FBD′为直线AC与BD′所成的角.则四边形BOEF为矩形,∴BF=EO=.EF=BO==.则∠FED′为二面角D′﹣CA﹣B的平面角,设为θ.则D′F2=+﹣2×cosθ=﹣5cosθ≥,cosθ=1时取等号.∴D′B的最小值==2.∴直线AC与BD′所成角的余弦的最大值===.也可以考虑利用向量法求解.故答案为:.23.三棱柱ABC﹣A1B1C1中,底面边长和侧棱长都相等,∠BAA1=∠CAA1=60°,则异面直线AB1与BC1所成角的余弦值为.【解答】解:如图,设=,,,棱长均为1,则=,=,=∵,∴=()?()=﹣++﹣+=﹣++=﹣1++1=1||===||===∴cos<,>===∴异面直线AB1与BC1所成角的余弦值为24.如图,正方体ABCD﹣A1B1C1D1,则下列四个命题:①P在直线BC1上运动时,三棱锥A﹣D1PC的体积不变;②P在直线BC1上运动时,直线AP与平面ACD1所成角的大小不变;③P在直线BC1上运动时,二面角P﹣AD1﹣C的大小不变;④M是平面A1B1C1D1上到点D和C1距离相等的点,则M点的轨迹是过D1点的直线,其中真命题的编号是①③④.(写出所有真命题的编号)【解答】解:①∵BC1∥平面ACD1,∴BC1∥上任意一点到平面AD1C的距离相等,所以体积不变,正确.②P在直线BC1上运动时,直线AB与平面ACD1所成角和直线AC1与平面ACD1所成角不相等,所以不正确.③当P在直线BC1上运动时,AP的轨迹是平面PAD1,即二面角P﹣AD1﹣C的大小不受影响,所以正确.④∵空间中到点D和C1距离相等的点的轨迹是线段DC1的中垂面,又点M在面A1B1C1D1内,则点M的轨迹是面A1B1C1D1与线段DC1的中垂面的交线,即AD1,所以正确.故答案为:①③④25.如图,正方形ABCD的边长为3,点E,F分别在边AB,BC上,且==2,将此正方形沿DE,DF折起,使点A,C重合于点P,若O为线段EF任一点,DO 与平面PEF所成的角为θ,则tanθ的最大值是.【解答】解:∵正方形ABCD的边长为3,==2,∴AE=CF=2,BE=BF=1,则EF=,折叠后对应的图形如图,则此时EP=FP=AE=2,∵CD⊥CF,DA⊥AE,∴折叠后,PD⊥PF,DP⊥PE,即PD⊥平面EFP,则∠DOP是OD与底面EFP所成的角,且DP=3,则tanθ=tan∠DOP==,则要使tanθ最大,则只要OP最小即可,此时OP⊥EF,即O是EF的中点,则OE=EF=,OP====,则tanθ的最小值为tanθ===,故答案为:26.如图,在四棱锥P﹣ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,侧面PAD同时垂直侧面PAB与侧面PDC.若PA=AB=AD=PB,则=,直线PC与底面ABCD所成角的正切值为.【解答】解:延长BA,CD交于H,连接PH,可得平面PAB∩平面PCD=PH,由侧面PAD同时垂直侧面PAB与侧面PDC,运用面面垂直的性质定理,可得PH⊥平面PAD,即有HP⊥PA,设PB=,由PA=AB=AD=PB,可得PA=AB=AD=1,在△PAB中,由余弦定理可得,cos∠PAB==﹣,即有∠PAB=120°,在直角三角形HPA中,∠HAP=60°,可得AH===2,在三角形HBC中,由三角形的相似知识可得,==;在△HPA中,HP=APtan60°=,在直角三角形AHD中,HD===,在直角三角形HPD中,PD===,PA2+AD2=PD2,可得AD⊥PA,又AD⊥AB,AB∩PA=A,即有AD⊥平面PAB,由BC∥AD,可得BC⊥平面PAB,设P到平面ABCD的距离为d,由V P﹣ABC=V C﹣PAB,可得d?S△ABC=BC?S△PAB,即d??1?=???1?1?sin120°,解得d=,在直角三角形BCP中,PC===,可得PC和平面ABCD所成角的正弦值为=,余弦值为=,则直线PC与底面ABCD所成角的正切值为=.故答案为:,.27.如图,棱长为3的正方体的顶点A在平面α上,三条棱AB,AC,AD都在平面α的同侧,若顶点B,C到平面α的距离分别为1,,则顶点D到平面α的距离是.【解答】解:如图,连结BC、CD、BD,则四面体A﹣BCD为直角四面体.作平面M的法线AH,再作,BB1⊥平面M于B1,CC1⊥平面M于C1,DD1⊥平面M 于D1.连结AB1,AC1,AD1,令AH=h,DA=a,DB=b,DC=c,由等体积可得=++,∴++=1令∠BAB1=α,∠CAC1=β,∠DAD1=γ,可得sin2α+sin2β+sin2γ=1,设DD1=m,∵BB1=1,CC1=,∴=1解得m=.即所求点D到平面α的距离为.故答案为:.28.如图,平面ABC⊥平面α,D为线段AB的中点,,∠CDB=45°,点P为面α内的动点,且P到直线CD的距离为,则∠APB的最大值为90°.【解答】解:空间中到直线CD的距离为的点构成一个圆柱面,它和面α相交得一椭圆,所以P在α内的轨迹为一个椭圆,D为椭圆的中心,c=,b=,a=2,于是A,B为椭圆的焦点,椭圆上点关于两焦点的张角在短轴的端点取得最大,∴∠APB=2∠APD=90°.故答案为:90°.29.如图,在二面角A﹣CD﹣B中,BC⊥CD,BC=CD=2,点A在直线AD上运动,满足AD⊥CD,AB=3.现将平面ADC沿着CD进行翻折,在翻折的过程中,线段AD长的取值范围是.【解答】解:由题意得⊥,⊥,设平面ADC沿着CD进行翻折过程中,二面角A﹣CD﹣B的夹角为θ,则<,>=θ,∵=++,∴平方得2=2+2+2+2?+2?+2?,设AD=x,∵BC=CD=2,AB=3∴9=x2+4+4﹣4cosθx,即x2﹣4cosθx﹣1=0,即cosθ=∵﹣1≤cosθ≤1,∴﹣1≤≤1,即,即,则.∵x>0,∴﹣2≤x≤+2,即AD的取值范围是,故答案为:30.如图,将菱形ABCD沿对角线BD折起,使得C点至C′,E点在线段AC′上,若二面角A﹣BD﹣E与二面角E﹣BD﹣C′的大小分别为15°和30°,则=.【解答】解:取BD的中点O,连接AO,EO,C′O,∵菱形ABCD沿对角线BD折起,使得C点至C′,E点在线段AC′上,∴C′O⊥BD,AO⊥BD,OC′=OA,∴BD⊥平面AOC′,∴EO⊥BD,∵二面角A﹣BD﹣E与二面角E﹣BD﹣C′的大小分别为15°和30°,∴∠AOE=15°,∠EOC′=30°,∵OC′=OA,∴∠OC′E=∠OAE,由正弦定理得,,∴,∴===.故答案为:.。

相关文档
最新文档