人工智能英文文献原文及译文

合集下载

人工智能作文模板英文版

人工智能作文模板英文版

人工智能作文模板英文版英文回答:Introduction。

Artificial Intelligence (AI) has emerged as a transformative technology that is revolutionizing various aspects of our lives. With its ability to process vast amounts of data, learn from complex patterns, and make intelligent decisions, AI has the potential to address significant challenges and unlock new opportunities across industries.Role of AI in Modern Society。

AI is playing a pivotal role in shaping modern society by:Automating Routine Tasks: AI-powered systems can automate repetitive and time-consuming tasks, freeing uphuman workers to focus on more strategic and creative endeavors.Enhancing Decision-Making: AI algorithms can analyze large volumes of data to identify patterns and correlations that are often invisible to humans. This enables businesses and individuals to make informed decisions and optimize outcomes.Improving Healthcare Outcomes: AI is transforming healthcare by enabling early disease detection, personalized treatment plans, and automated medical image analysis.Advancing Transportation: Self-driving cars, traffic management systems, and drone delivery services based on AI are revolutionizing the transportation industry, making it safer, more efficient, and accessible.Personalizing Experiences: AI algorithms are used to tailor content, products, and services to individual preferences, creating personalized experiences for users.Ethical Considerations。

人工智能开创未来的英语范文

人工智能开创未来的英语范文

人工智能开创未来的英语范文英文回答:Artificial Intelligence: Spearheading the Future.In the tapestry of human history, technological advancements have woven themselves into the fabric of our existence, transforming the way we live, work, and interact with the world around us. Among these transformative forces, artificial intelligence (AI) stands as a beacon of innovation, poised to shape the contours of our future.AI encompasses a broad spectrum of computational techniques that enable machines to perform tasks typically requiring human intelligence, such as learning, problem-solving, and decision-making. Its applications span a diverse array of industries, from healthcare and finance to transportation and manufacturing.As AI continues its relentless march forward, it holdsthe potential to revolutionize countless aspects of our lives. In the realm of healthcare, AI-powered diagnostic tools can assist medical professionals in detecting diseases with greater accuracy and efficiency, leading to improved patient outcomes. Within the financial sector, AI algorithms can analyze vast amounts of data to uncover patterns and trends, enabling investors to make more informed decisions.Moreover, AI has the capacity to transform the way we interact with our environment. Smart cities, powered by AI-driven infrastructure, can optimize traffic flow, reduce pollution, and enhance public safety. In the domain of transportation, self-driving vehicles have the potential to revolutionize commuting and freight transportation, making them safer, more efficient, and more accessible.Beyond its practical applications, AI also raises profound ethical and societal questions. As machines become increasingly capable of mimicking human intelligence, we must grapple with issues such as job displacement, privacy concerns, and the potential for AI to be used for maliciouspurposes.To harness the full potential of AI while mitigating potential risks, it is imperative that we establish clear guidelines and ethical frameworks for its development and deployment. International collaboration and cooperationwill be crucial in ensuring that AI benefits all of humanity, fostering progress and prosperity while safeguarding our values and fundamental rights.In the years to come, AI will undoubtedly continue to reshape our world in ways we can scarcely imagine. As we navigate the uncharted frontiers of this transformative technology, it is essential that we proceed with both ambition and prudence, embracing its potential while safeguarding the well-being of our societies and the planet we inhabit.中文回答:人工智能,开创未来。

人工智能 英文作文

人工智能 英文作文

人工智能英文作文Artificial intelligence, also known as AI, is revolutionizing the way we live and work. From self-driving cars to virtual assistants, AI is changing the way we interact with technology.The potential of AI is endless, with applications in healthcare, finance, and even creative fields like art and music. It has the ability to analyze vast amounts of data and make decisions faster and more accurately than humans.However, there are also concerns about the ethical implications of AI, such as privacy issues and job displacement. As AI continues to advance, it is important for us to consider the impact it will have on society as a whole.Despite the challenges, AI has the power to improve our lives in ways we never thought possible. It has the potential to solve complex problems and help us make betterdecisions in a rapidly changing world.In conclusion, artificial intelligence is a powerful tool that has the ability to transform the way we live and work. As we continue to explore its capabilities and limitations, it is important to approach AI with caution and consideration for its impact on society.。

人工智能(全英)-1-Introduction

人工智能(全英)-1-Introduction

Acting humanly: Turing Test
• Turing (1950) "Computing machinery and intelligence": • "Can machines think?" "Can machines behave intelligently?" • Operational test for intelligent behavior: the Imitation Game
Outline
• Course overview
• What is AI?
• A brief history
• The state of the art
What is AI?
• Artificial Intelligence (AI)
• Intelligent behavior in artifacts • “Design computer programs to make computers smarter” • “Study of how to make computers do things at which, at
1) Predicting and testing behavior of human subjects (topdown) or 2) Direct identification from neurological data (bottom-up)
• Both approaches (roughly, Cognitive Science and Cognitive Neuroscience), are now distinct from AI
• “Can”
• Can machines think now or someday? • Might machines be able to think theoretically or

英语人工智能作文

英语人工智能作文

英语人工智能作文Artificial Intelligence。

Artificial Intelligence (AI) is a rapidly growing field in the world of technology. It is the ability of machines to learn from experience, perform tasks that would normally require human intelligence, and make decisions based on data. AI has the potential to revolutionize the way we live and work, and is already being used in a variety of applications, from self-driving cars to medical diagnosis.One of the key benefits of AI is its ability to process vast amounts of data quickly and accurately. This makes it ideal for tasks such as analyzing financial data,predicting weather patterns, and identifying patterns in medical images. In addition, AI can be used to automate repetitive tasks, freeing up time for more complex work.Another benefit of AI is its ability to learn from experience. This means that as more data is fed into thesystem, it becomes better at performing its task. For example, a self-driving car can learn from its mistakes and improve its driving performance over time.However, there are also concerns about the impact of AI on society. One of the main concerns is the potential loss of jobs as machines replace human workers. This could lead to increased inequality and social unrest. In addition, there are concerns about the ethical implications of AI, such as the potential for bias in decision-making and the risk of unintended consequences.To address these concerns, it is important to ensure that AI is developed in an ethical and responsible manner. This includes ensuring that AI systems are transparent and explainable, so that humans can understand how they are making decisions. It also means ensuring that AI is used to enhance human capabilities, rather than replace them.In conclusion, AI has the potential to transform our world in many positive ways. However, it is important to address the potential risks and ensure that AI is developedin an ethical and responsible manner. By doing so, we can harness the power of AI to create a better future for all.。

人工智能英语作文四级

人工智能英语作文四级

人工智能英语作文四级Title: The Evolution and Impact of Artificial Intelligence.In today's rapidly advancing technological landscape, artificial intelligence (AI) has emerged as a transformative force,革命性的力量shaping the way we live, work, and interact with the world. AI, a field of computer science, aims to create machines capable of intelligent behavior, exhibiting characteristics such as learning, reasoning, and problem-solving. While the concept of AI has existed for decades, recent advancements in computing power and algorithms have allowed for significant breakthroughs, leading to its increasing integration into our daily lives.The evolution of AI can be traced back to its inception in the 1950s, when the term "artificial intelligence" was coined by John McCarthy. Since then, AI has undergone several waves of development, each marked by significant advancements and challenges. The first wave, known assymbolic AI, focused on creating rule-based systems that could perform logical reasoning and problem-solving. However, these systems were limited by their inability to handle uncertainty and complexity.The second wave of AI, known as statistical learning or machine learning, shifted the focus towards building systems that could learn from data. These systems, based on statistical models, were able to identify patterns and make predictions without explicit programming. While this approach led to significant improvements in areas like speech recognition and image classification, it still suffered from limitations, such as the need for large amounts of labeled data and the inability to generalize beyond the trained domain.The third wave of AI, known as deep learning, has been 革命性的革命性的,transforming the field with its ability to process and understand unstructured data. Deep learning algorithms, based on artificial neural networks, are able to learn hierarchical representations of data, enabling them to capture complex patterns and relationships. Thishas led to breakthroughs in areas like computer vision, natural language processing, and reinforcement learning, among others.The impact of AI on society has been profound and far-reaching. In the realm of healthcare, AI has revolutionized diagnosis and treatment, enabling doctors to make more accurate predictions and decisions based on vast amounts of patient data. In industries like manufacturing and logistics, AI-powered robots and autonomous systems have increased efficiency and productivity, while reducing human error and operational costs.In the realm of technology, AI has transformed the way we interact with devices and services. Virtual assistants like Siri and Alexa use natural language processing to understand and respond to our queries, while recommender systems like those found on Netflix and Amazon personalize content based on our preferences and behaviors. These advancements have not only made our lives more convenient but have also given rise to new business models and opportunities.However, the rise of AI also presents challenges and ethical considerations. One of the most significantconcerns is the potential displacement of human workers by machines. As AI systems become more capable and efficient, there is a risk of job losses in sectors like manufacturing, customer service, and even professions like law and medicine. This raises questions about the need for policies and frameworks to ensure that the benefits of AI are distributed fairly across society.Another concern is the privacy and securityimplications of AI. As more data is collected and used to train AI systems, there is an increased risk of privacy breaches and misuse of personal information. This requires robust data protection measures and ethical guidelines to ensure that AI is developed and deployed responsibly.Despite these challenges, the future of AI looks bright. With continued advancements in technology and increasing investment in research and development, we can expect tosee more innovations in areas like autonomous vehicles,smart cities, and personalized medicine. These advancements will not only improve our lives but will also drive economic growth and create new opportunities for society.In conclusion, artificial intelligence has emerged as a transformative force in our world,革命性的力量shaping the way we live, work, and interact with technology. Its evolution from symbolic AI to deep learning has led to significant breakthroughs in areas like healthcare, manufacturing, and technology. However, as we move forward, it is crucial that we address the ethical and societal challenges presented by AI to ensure that its benefits are distributed fairly and responsibly across society.。

人工智能与专家系统外文文献译文和原文

人工智能与专家系统外文文献译文和原文

人工智能与专家系统外文文献译文和原文AI研究仍在继续,但与MIS和DDS等计算机应用相比,研究热情的减弱使人工智能的研究相对落后。

然而,在研究方面的不断努力一定会推动计算机向人工智能化方向发展。

2.AI领域AI现在已经以知识系统的形式应用于商业领域,既利用人类知识来解决问题。

专家系统是最流行的基于知识的系统,他是应用计算机程序以启发方式替代专家知识。

Heuritic术语来自希腊eureka,意思是“探索”。

因此,启发方式是一种良好猜想的规则。

启发式方法并不能保证其结果如同DSS系统中传统的算法那样绝对化。

但是启发式方法提供的结果非常具体,以至于能适应于大部分情况启发式方法允许专家系统能像专家那样工作,建议用户如何解决问题。

因为专家系统被当作顾问,所以,应用专家系统就可以被称为咨询。

除了专家系统外,AI还包括以下领域:神经网络系统、感知系统、学习系统、机器人、AI硬件、自然语言处理。

注意这些领域有交叉,交叉部分也就意味着这个领域可以从另一个领域中收益。

3.专家系统的吸引力专家系统的概念是建立在专家知识能够存储在计算机中并能被其他人应用这一假设的基础上的。

专家系统作为一种决策支持系统提供了独无二的能力。

首先,专家系统为管理者提供了超出其能力的决策机会。

比如,一家新的银行投资公司可以应用先进的专家系统帮助他们进行选择、决策。

其次,专家系统在得到一个解决方案的同时给出一步步的推理。

在很多情况下,推理本身比决策的结果重要的多。

4.专家系统模型专家系统模型主要由4个部分组成:用户界面使得用户能与专家系统对话;推理引擎提供了解释知识库的能力;专家和工程师利用开发引擎建立专家系统。

1.用户界面用户界面能够方便管理者向专家系统中输入命令、信息,并接受专家系统的输出。

命令中有具体化的参数设置,引导专家系统的推理过程。

信息以参数形式赋予某些变量。

(1)专家系统输入现在流行的界面格式是图形化用户界面格式,这种界面与Window有些相同的特征。

人工智能英文文献原文及译文

人工智能英文文献原文及译文

人工智能英文文献原文及译文附件四英文文献原文Artificial Intelligence"Artificial intelligence" is a word was originally Dartmouth in 1956 to put forward. From then on, researchers have developed many theories and principles, the concept of artificial intelligence is also expands. Artificial intelligence is a challenging job of science, the person must know computer knowledge, psychology and philosophy. Artificial intelligence is included a wide range of science, it is composed of different fields, such as machine learning, computer vision, etc, on the whole, the research on artificial intelligence is one of the main goals of the machine can do some usually need to perform complex human intelligence. But in different times and different people in the "complex" understanding is different. Such as heavy science and engineering calculation was supposed to be the brain to undertake, now computer can not only complete this calculation, and faster than the human brain can more accurately, and thus the people no longer put this calculation is regarded as "the need to perform complex human intelligence, complex tasks" work is defined as the development of The Times and the progress of technology, artificial intelligence is the science of specific target and nature as The Times change and development. On the one hand it continues to gain new progress on the one hand, and turning to more meaningful, the more difficult the target. Current can be used to study the main material of artificial intelligence and artificial intelligence technology to realize the machine is a computer, the development history of artificial intelligence is computer science and technology and the development together. Besides the computer science and artificial intelligence also involves information, cybernetics, automation, bionics, biology, psychology, logic, linguistics, medicine and philosophy and multi-discipline. Artificial intelligence research include: knowledge representation, automatic reasoning and search method, machine learning and knowledge acquisition and processing of knowledge system, natural language processing, computer vision, intelligent robot, automatic program design, etc.Practical application of machine vision: fingerprint identification,face recognition, retina identification, iris identification, palm, expert system, intelligent identification, search, theorem proving game, automatic programming, and aerospace applications.Artificial intelligence is a subject categories, belong to the door edge discipline of natural science and social science.Involving scientific philosophy and cognitive science, mathematics, neurophysiological, psychology, computer science, information theory, cybernetics, not qualitative theory, bionics.The research category of natural language processing, knowledge representation, intelligent search, reasoning, planning, machine learning, knowledge acquisition, combined scheduling problem, perception, pattern recognition, logic design program, soft calculation, inaccurate and uncertainty, the management of artificial life, neural network, and complex system, human thinking mode of genetic algorithm.Applications of intelligent control, robotics, language and image understanding, genetic programming robot factory.Safety problemsArtificial intelligence is currently in the study, but some scholars think that letting computers have IQ is very dangerous, it may be against humanity. The hidden danger in many movie happened.The definition of artificial intelligenceDefinition of artificial intelligence can be divided into two parts, namely "artificial" or "intelligent". "Artificial" better understanding, also is controversial. Sometimes we will consider what people can make, or people have high degree of intelligence to create artificial intelligence, etc. But generally speaking, "artificial system" is usually significance of artificial system.What is the "smart", with many problems. This involves other such as consciousness, ego, thinking (including the unconscious thoughts etc. People only know of intelligence is one intelligent, this is the universal view of our own. But we are very limited understanding of the intelligence of the intelligent people constitute elements are necessary to find, so it is difficult to define what is "artificial" manufacturing "intelligent". So the artificial intelligence research often involved in the study of intelligent itself. Other about animal or other artificial intelligence system is widely considered to be related to the study of artificial intelligence.Artificial intelligence is currently in the computer field, the moreextensive attention. And in the robot, economic and political decisions, control system, simulation system application. In other areas, it also played an indispensable role.The famous American Stanford university professor nelson artificial intelligence research center of artificial intelligence under such a definition: "artificial intelligence about the knowledge of the subject is and how to represent knowledge -- how to gain knowledge and use of scientific knowledge. But another American MIT professor Winston thought: "artificial intelligence is how to make the computer to do what only can do intelligent work." These comments reflect the artificial intelligence discipline basic ideas and basic content. Namely artificial intelligence is the study of human intelligence activities, has certain law, research of artificial intelligence system, how to make the computer to complete before the intelligence needs to do work, also is to study how the application of computer hardware and software to simulate human some intelligent behavior of the basic theory, methods and techniques.Artificial intelligence is a branch of computer science, since the 1970s, known as one of the three technologies (space technology, energy technology, artificial intelligence). Also considered the 21st century (genetic engineering, nano science, artificial intelligence) is one of the three technologies. It is nearly three years it has been developed rapidly, and in many fields are widely applied, and have made great achievements, artificial intelligence has gradually become an independent branch, both in theory and practice are already becomes a system. Its research results are gradually integrated into people's lives, and create more happiness for mankind.Artificial intelligence is that the computer simulation research of some thinking process and intelligent behavior (such as study, reasoning, thinking, planning, etc.), including computer to realize intelligent principle, make similar to that of human intelligence, computer can achieve higher level of computer application. Artificial intelligence will involve the computer science, philosophy and linguistics, psychology, etc. That was almost natural science and social science disciplines, the scope of all already far beyond the scope of computer science and artificial intelligence and thinking science is the relationship between theory and practice, artificial intelligence is in the mode of thinking science technology application level, is one of its application. From the view of thinking, artificial intelligence is notlimited to logical thinking, want to consider the thinking in image, the inspiration of thought of artificial intelligence can promote the development of the breakthrough, mathematics are often thought of as a variety of basic science, mathematics and language, thought into fields, artificial intelligence subject also must not use mathematical tool, mathematical logic, the fuzzy mathematics in standard etc, mathematics into the scope of artificial intelligence discipline, they will promote each other and develop faster.A brief history of artificial intelligenceArtificial intelligence can be traced back to ancient Egypt's legend, but with 1941, since the development of computer technology has finally can create machine intelligence, "artificial intelligence" is a word in 1956 was first proposed, Dartmouth learned since then, researchers have developed many theories and principles, the concept of artificial intelligence, it expands and not in the long history of the development of artificial intelligence, the slower than expected, but has been in advance, from 40 years ago, now appears to have many AI programs, and they also affected the development of other technologies. The emergence of AI programs, creating immeasurable wealth for the community, promoting the development of human civilization.The computer era1941 an invention that information storage and handling all aspects of the revolution happened. This also appeared in the U.S. and Germany's invention is the first electronic computer. Take a few big pack of air conditioning room, the programmer's nightmare: just run a program for thousands of lines to set the 1949. After improvement can be stored procedure computer programs that make it easier to input, and the development of the theory of computer science, and ultimately computer ai. This in electronic computer processing methods of data, for the invention of artificial intelligence could provide a kind of media.The beginning of AIAlthough the computer AI provides necessary for technical basis, but until the early 1950s, people noticed between machine and human intelligence. Norbert Wiener is the study of the theory of American feedback. Most familiar feedback control example is the thermostat. It will be collected room temperature and hope, and reaction temperature compared to open or close small heater, thus controlling environmental temperature. The importance of the study lies in the feedback loop Wiener:all theoretically the intelligence activities are a result of feedback mechanism and feedback mechanism is. Can use machine. The findings of the simulation of early development of AI.1955, Simon and end Newell called "a logical experts" program. This program is considered by many to be the first AI programs. It will each problem is expressed as a tree, then choose the model may be correct conclusion that a problem to solve. "logic" to the public and the AI expert research field effect makes it AI developing an important milestone in 1956, is considered to be the father of artificial intelligence of John McCarthy organized a society, will be a lot of interest machine intelligence experts and scholars together for a month. He asked them to Vermont Dartmouth in "artificial intelligence research in summer." since then, this area was named "artificial intelligence" although Dartmouth learn not very successful, but it was the founder of the centralized and AI AI research for later laid a foundation.After the meeting of Dartmouth, AI research started seven years. Although the rapid development of field haven't define some of the ideas, meeting has been reconsidered and Carnegie Mellon university. And MIT began to build AI research center is confronted with new challenges. Research needs to establish the: more effective to solve the problem of the system, such as "logic" in reducing search; expert There is the establishment of the system can be self learning.In 1957, "a new program general problem-solving machine" first version was tested. This program is by the same logic "experts" group development. The GPS expanded Wiener feedback principle, can solve many common problem. Two years later, IBM has established a grind investigate group Herbert AI. Gelerneter spent three years to make a geometric theorem of solutions of the program. This achievement was a sensation.When more and more programs, McCarthy busy emerge in the history of an AI. 1958 McCarthy announced his new fruit: LISP until today still LISP language. In. "" mean" LISP list processing ", it quickly adopted for most AI developers.In 1963 MIT from the United States government got a pen is 22millions dollars funding for research funding. The machine auxiliary recognition from the defense advanced research program, have guaranteed in the technological progress on this plan ahead of the Soviet union. Attracted worldwide computer scientists, accelerate the pace of development of AI research.Large programAfter years of program. It appeared a famous called "SHRDLU." SHRDLU "is" the tiny part of the world "project, including the world (for example, only limited quantity of geometrical form of research and programming). In the MIT leadership of Minsky Marvin by researchers found, facing the object, the small computer programs can solve the problem space and logic. Other as in the late 1960's STUDENT", "can solve algebraic problems," SIR "can understand the simple English sentence. These procedures for handling the language understanding and logic.In the 1970s another expert system. An expert system is a intelligent computer program system, and its internal contains a lot of certain areas of experience and knowledge with expert level, can use the human experts' knowledge and methods to solve the problems to deal with this problem domain. That is, the expert system is a specialized knowledge and experience of the program system. Progress is the expert system could predict under certain conditions, the probability of a solution for the computer already has. Great capacity, expert systems possible from the data of expert system. It is widely used in the market. Ten years, expert system used in stock, advance help doctors diagnose diseases, and determine the position of mineral instructions miners. All of this because of expert system of law and information storage capacity and become possible.In the 1970s, a new method was used for many developing, famous as AI Minsky tectonic theory put forward David Marr. Another new theory of machine vision square, for example, how a pair of image by shadow, shape, color, texture and basic information border. Through the analysis of these images distinguish letter, can infer what might be the image in the same period. PROLOGE result is another language, in 1972. In the 1980s, the more rapid progress during the AI, and more to go into business. 1986, the AI related software and hardware sales $4.25 billion dollars. Expert system for its utility, especially by demand. Like digital electric company with such company XCON expert system for the VAX mainframe programming. Dupont, general motors and Boeing has lots of dependence of expert system for computer expert. Some production expert system of manufacture software auxiliary, such as Teknowledge and Intellicorp established. In order to find and correct the mistakes, existing expert system and some other experts system was designed,such as teach users learn TVC expert system of the operating system.From the lab to daily lifePeople began to feel the computer technique and artificial intelligence. No influence of computer technology belong to a group of researchers in the lab. Personal computers and computer technology to numerous technical magazine now before a people. Like the United States artificial intelligence association foundation. Because of the need to develop, AI had a private company researchers into the boom. More than 150 a DEC (it employs more than 700 employees engaged in AI research) that have spent 10 billion dollars in internal AI team.Some other AI areas in the 1980s to enter the market. One is the machine vision Marr and achievements of Minsky. Now use the camera and production, quality control computer. Although still very humble, these systems have been able to distinguish the objects and through the different shape. Until 1985 America has more than 100 companies producing machine vision systems, sales were us $8 million.But the 1980s to AI and industrial all is not a good year for years. 1986-87 AI system requirements, the loss of industry nearly five hundred million dollars. Teknowledge like Intellicorp and two loss of more than $6 million, about one-third of the profits of the huge losses forced many research funding cuts the guide led. Another disappointing is the defense advanced research programme support of so-called "intelligent" this project truck purpose is to develop a can finish the task in many battlefield robot. Since the defects and successful hopeless, Pentagon stopped project funding.Despite these setbacks, AI is still in development of new technology slowly. In Japan were developed in the United States, such as the fuzzy logic, it can never determine the conditions of decision making, And neural network, regarded as the possible approaches to realizing artificial intelligence. Anyhow, the eighties was introduced into the market, the AI and shows the practical value. Sure, it will be the key to the 21st century. "artificial intelligence technology acceptance inspection in desert storm" action of military intelligence test equipment through war. Artificial intelligence technology is used to display the missile system and warning and other advanced weapons. AI technology has also entered family. Intelligent computer increase attracting public interest. The emergence of network game, enriching people's life.Some of the main Macintosh and IBM for application software such as voice and character recognition has can buy, Using fuzzy logic,AI technology to simplify the camera equipment. The artificial intelligence technology related to promote greater demand for new progress appear constantly. In a word ,Artificial intelligence has and will continue to inevitably changed our life.附件三英文文献译文人工智能“人工智能”一词最初是在1956 年Dartmouth在学会上提出来的。

人工智能应用英文作文

人工智能应用英文作文

人工智能应用英文作文In the contemporary era, the application of artificial intelligence (AI) has transcended beyond the realm of science fiction and has become an integral part of our daily lives. From the smartphones in our pockets to the complex algorithms that govern stock trading, AI has revolutionized the way we interact with technology.The advent of AI has brought about a paradigm shift in various sectors, including healthcare, education, and transportation. In healthcare, AI-powered diagnostics can analyze medical images to detect diseases with unprecedented accuracy, while in education, adaptive learning systemstailor educational content to individual students' needs, enhancing the learning experience. In the transportation sector, self-driving cars are becoming more common, with AI systems navigating the complex urban landscapes and ensuring safety on the roads.One of the most profound applications of AI is in the field of data analysis. Big data, a term that refers to the vast amounts of information generated daily, is now manageable thanks to AI. Machine learning algorithms can sift through terabytes of data to identify patterns and make predictions that were previously impossible. This has led to improvements in business intelligence, where companies can make informed decisions based on data-driven insights.However, the rise of AI also brings with it ethical considerations. As AI systems become more autonomous, questions about accountability and privacy arise. The potential for AI to be used in surveillance and thecollection of personal data without consent has raised concerns among privacy advocates. Additionally, the fear of job displacement due to automation has led to discussions about the need for reskilling and upskilling the workforce to adapt to an AI-driven economy.Despite these challenges, the potential benefits of AI are immense. It has the power to solve complex problems, from climate change to disease eradication. By augmenting human intelligence, AI can help us make better decisions and improve the quality of life for people around the world.In conclusion, the application of artificial intelligence is a double-edged sword, offering both great promise and potential peril. As we continue to develop and integrate AI into our lives, it is crucial to approach its application with a keen eye on ethical considerations and a commitment to using this powerful tool for the betterment of society.。

人工智能英文文献原文及译文

人工智能英文文献原文及译文

附件四英文文献原文Artificial Intelligence"Artificial intelligence" is a word was originally Dartmouth in 1956 to put forward. From then on, researchers have developed many theories and principles, the concept of artificial intelligence is also expands. Artificial intelligence is a challenging job of science, the person must know computer knowledge, psychology and philosophy. Artificial intelligence is included a wide range of science, it is composed of different fields, such as machine learning, computer vision, etc, on the whole, the research on artificial intelligence is one of the main goals of the machine can do some usually need to perform complex human intelligence. But in different times and different people in the "complex" understanding is different. Such as heavy science and engineering calculation was supposed to be the brain to undertake, now computer can not only complete this calculation, and faster than the human brain can more accurately, and thus the people no longer put this calculation is regarded as "the need to perform complex human intelligence, complex tasks" work is defined as the development of The Times and the progress of technology, artificial intelligence is the science of specific target and nature as The Times change and development. On the one hand it continues to gain new progress on the one hand, and turning to more meaningful, the more difficult the target. Current can be used to study the main material of artificial intelligence and artificial intelligence technology to realize the machine is a computer, the development history of artificial intelligence is computer science and technology and the development together. Besides the computer science and artificial intelligence also involves information, cybernetics, automation, bionics, biology, psychology, logic, linguistics, medicine and philosophy and multi-discipline. Artificial intelligence research include: knowledge representation, automatic reasoning and search method, machine learning and knowledge acquisition and processing of knowledge system, natural language processing, computer vision, intelligent robot, automatic program design, etc.Practical application of machine vision: fingerprint identification, face recognition, retina identification, iris identification, palm, expert system, intelligent identification, search, theorem proving game, automatic programming, and aerospace applications.Artificial intelligence is a subject categories, belong to the door edge discipline of natural science and social science.Involving scientific philosophy and cognitive science, mathematics, neurophysiological, psychology, computer science, information theory, cybernetics, not qualitative theory, bionics.The research category of natural language processing, knowledge representation, intelligent search, reasoning, planning, machine learning, knowledge acquisition, combined scheduling problem, perception, pattern recognition, logic design program, soft calculation, inaccurate and uncertainty, the management of artificial life, neural network, and complex system, human thinking mode of genetic algorithm.Applications of intelligent control, robotics, language and image understanding, genetic programming robot factory.Safety problemsArtificial intelligence is currently in the study, but some scholars think that letting computers have IQ is very dangerous, it may be against humanity. The hidden danger in many movie happened.The definition of artificial intelligenceDefinition of artificial intelligence can be divided into two parts, namely "artificial" or "intelligent". "Artificial" better understanding, also is controversial. Sometimes we will consider what people can make, or people have high degree of intelligence to create artificial intelligence, etc. But generally speaking, "artificial system" is usually significance of artificial system.What is the "smart", with many problems. This involves other such as consciousness, ego, thinking (including the unconscious thoughts etc. People only know of intelligence is one intelligent, this is the universal view of our own. But we are very limited understanding of the intelligence of the intelligent people constitute elements are necessary to find, so it is difficult to define what is "artificial" manufacturing "intelligent". So the artificial intelligence research often involved in the study of intelligent itself. Other about animal or other artificial intelligence system is widely considered to be related to the study of artificial intelligence.Artificial intelligence is currently in the computer field, the more extensive attention. And in the robot, economic and political decisions, control system, simulation system application. In other areas, it also played an indispensable role.The famous American Stanford university professor nelson artificial intelligence research center of artificial intelligence under such a definition: "artificial intelligence about the knowledge of the subject is and how to represent knowledge -- how to gain knowledge and use of scientific knowledge. But another American MIT professor Winston thought: "artificial intelligence is how to make the computer to do what only can do intelligent work." These comments reflect the artificial intelligence discipline basic ideas and basic content. Namely artificial intelligence is the study of human intelligence activities, has certain law, research of artificial intelligence system, how to make the computer to complete before the intelligence needs to do work, also is to study how the application of computer hardware and software to simulate human some intelligent behavior of the basic theory, methods and techniques.Artificial intelligence is a branch of computer science, since the 1970s, known as one of the three technologies (space technology, energy technology, artificial intelligence). Also considered the 21st century (genetic engineering, nano science, artificial intelligence) is one of the three technologies. It is nearly three years it has been developed rapidly, and in many fields are widely applied, and have made great achievements, artificial intelligence has gradually become an independent branch, both in theory and practice are already becomes a system. Its research results are gradually integrated into people's lives, and create more happiness for mankind.Artificial intelligence is that the computer simulation research of some thinking process and intelligent behavior (such as study, reasoning, thinking, planning, etc.), including computer to realize intelligent principle, make similar to that of human intelligence, computer can achieve higher level of computer application. Artificial intelligence will involve the computer science, philosophy and linguistics, psychology, etc. That was almost natural science and social science disciplines, the scope of all already far beyond the scope of computer science and artificial intelligence and thinking science is the relationship between theory and practice, artificial intelligence is in the mode of thinking science technology application level, is one of its application. From theview of thinking, artificial intelligence is not limited to logical thinking, want to consider the thinking in image, the inspiration of thought of artificial intelligence can promote the development of the breakthrough, mathematics are often thought of as a variety of basic science, mathematics and language, thought into fields, artificial intelligence subject also must not use mathematical tool, mathematical logic, the fuzzy mathematics in standard etc, mathematics into the scope of artificial intelligence discipline, they will promote each other and develop faster.A brief history of artificial intelligenceArtificial intelligence can be traced back to ancient Egypt's legend, but with 1941, since the development of computer technology has finally can create machine intelligence, "artificial intelligence" is a word in 1956 was first proposed, Dartmouth learned since then, researchers have developed many theories and principles, the concept of artificial intelligence, it expands and not in the long history of the development of artificial intelligence, the slower than expected, but has been in advance, from 40 years ago, now appears to have many AI programs, and they also affected the development of other technologies. The emergence of AI programs, creating immeasurable wealth for the community, promoting the development of human civilization.The computer era1941 an invention that information storage and handling all aspects of the revolution happened. This also appeared in the U.S. and Germany's invention is the first electronic computer. Take a few big pack of air conditioning room, the programmer's nightmare: just run a program for thousands of lines to set the 1949. After improvement can be stored procedure computer programs that make it easier to input, and the development of the theory of computer science, and ultimately computer ai. This in electronic computer processing methods of data, for the invention of artificial intelligence could provide a kind of media.The beginning of AIAlthough the computer AI provides necessary for technical basis, but until the early 1950s, people noticed between machine and human intelligence. Norbert Wiener is the study of the theory of American feedback. Most familiar feedback control example is the thermostat. It will be collected room temperature and hope, and reaction temperature compared to open or close small heater, thus controlling environmentaltemperature. The importance of the study lies in the feedback loop Wiener: all theoretically the intelligence activities are a result of feedback mechanism and feedback mechanism is. Can use machine. The findings of the simulation of early development of AI.1955, Simon and end Newell called "a logical experts" program. This program is considered by many to be the first AI programs. It will each problem is expressed as a tree, then choose the model may be correct conclusion that a problem to solve. "logic" to the public and the AI expert research field effect makes it AI developing an important milestone in 1956, is considered to be the father of artificial intelligence of John McCarthy organized a society, will be a lot of interest machine intelligence experts and scholars together for a month. He asked them to Vermont Dartmouth in "artificial intelligence research in summer." since then, this area was named "artificial intelligence" although Dartmouth learn not very successful, but it was the founder of the centralized and AI AI research for later laid a foundation.After the meeting of Dartmouth, AI research started seven years. Although the rapid development of field haven't define some of the ideas, meeting has been reconsidered and Carnegie Mellon university. And MIT began to build AI research center is confronted with new challenges. Research needs to establish the: more effective to solve the problem of the system, such as "logic" in reducing search; expert There is the establishment of the system can be self learning.In 1957, "a new program general problem-solving machine" first version was tested. This program is by the same logic "experts" group development. The GPS expanded Wiener feedback principle, can solve many common problem. Two years later, IBM has established a grind investigate group Herbert AI. Gelerneter spent three years to make a geometric theorem of solutions of the program. This achievement was a sensation.When more and more programs, McCarthy busy emerge in the history of an AI. 1958 McCarthy announced his new fruit: LISP until today still LISP language. In. "" mean" LISP list processing ", it quickly adopted for most AI developers.In 1963 MIT from the United States government got a pen is 22millions dollars funding for research funding. The machine auxiliary recognition from the defense advanced research program, have guaranteed in the technological progress on this plan ahead of the Soviet union. Attracted worldwide computer scientists, accelerate the pace of development of AIresearch.Large programAfter years of program. It appeared a famous called "SHRDLU." SHRDLU "is" the tiny part of the world "project, including the world (for example, only limited quantity of geometrical form of research and programming). In the MIT leadership of Minsky Marvin by researchers found, facing the object, the small computer programs can solve the problem space and logic. Other as in the late 1960's STUDENT", "can solve algebraic problems," SIR "can understand the simple English sentence. These procedures for handling the language understanding and logic.In the 1970s another expert system. An expert system is a intelligent computer program system, and its internal contains a lot of certain areas of experience and knowledge with expert level, can use the human experts' knowledge and methods to solve the problems to deal with this problem domain. That is, the expert system is a specialized knowledge and experience of the program system. Progress is the expert system could predict under certain conditions, the probability of a solution for the computer already has. Great capacity, expert systems possible from the data of expert system. It is widely used in the market. Ten years, expert system used in stock, advance help doctors diagnose diseases, and determine the position of mineral instructions miners. All of this because of expert system of law and information storage capacity and become possible.In the 1970s, a new method was used for many developing, famous as AI Minsky tectonic theory put forward David Marr. Another new theory of machine vision square, for example, how a pair of image by shadow, shape, color, texture and basic information border. Through the analysis of these images distinguish letter, can infer what might be the image in the same period. PROLOGE result is another language, in 1972. In the 1980s, the more rapid progress during the AI, and more to go into business. 1986, the AI related software and hardware sales $4.25 billion dollars. Expert system for its utility, especially by demand. Like digital electric company with such company XCON expert system for the VAX mainframe programming. Dupont, general motors and Boeing has lots of dependence of expert system for computer expert. Some production expert system of manufacture software auxiliary, such as Teknowledge and Intellicorp established. In order to find and correct the mistakes, existing expert system and some other experts system was designed,such as teach userslearn TVC expert system of the operating system.From the lab to daily lifePeople began to feel the computer technique and artificial intelligence. No influence of computer technology belong to a group of researchers in the lab. Personal computers and computer technology to numerous technical magazine now before a people. Like the United States artificial intelligence association foundation. Because of the need to develop, AI had a private company researchers into the boom. More than 150 a DEC (it employs more than 700 employees engaged in AI research) that have spent 10 billion dollars in internal AI team.Some other AI areas in the 1980s to enter the market. One is the machine vision Marr and achievements of Minsky. Now use the camera and production, quality control computer. Although still very humble, these systems have been able to distinguish the objects and through the different shape. Until 1985 America has more than 100 companies producing machine vision systems, sales were us $8 million.But the 1980s to AI and industrial all is not a good year for years. 1986-87 AI system requirements, the loss of industry nearly five hundred million dollars. Teknowledge like Intellicorp and two loss of more than $6 million, about one-third of the profits of the huge losses forced many research funding cuts the guide led. Another disappointing is the defense advanced research programme support of so-called "intelligent" this project truck purpose is to develop a can finish the task in many battlefield robot. Since the defects and successful hopeless, Pentagon stopped project funding.Despite these setbacks, AI is still in development of new technology slowly. In Japan were developed in the United States, such as the fuzzy logic, it can never determine the conditions of decision making, And neural network, regarded as the possible approaches to realizing artificial intelligence. Anyhow, the eighties was introduced into the market, the AI and shows the practical value. Sure, it will be the key to the 21st century. "artificial intelligence technology acceptance inspection in desert storm" action of military intelligence test equipment through war. Artificial intelligence technology is used to display the missile system and warning and other advanced weapons. AI technology has also entered family. Intelligent computer increase attracting public interest. The emergence of network game, enriching people's life.Some of the main Macintosh and IBM for application softwaresuch as voice and character recognition has can buy, Using fuzzy logic, AI technology to simplify the camera equipment. The artificial intelligence technology related to promote greater demand for new progress appear constantly. In a word ,Artificial intelligence has and will continue to inevitably changed our life.附件三英文文献译文人工智能“人工智能”一词最初是在1956 年Dartmouth在学会上提出来的。

人工智能外文翻译文献

人工智能外文翻译文献

文献信息:文献标题:Research Priorities for Robust and Beneficial Artificial Intelligence(稳健和有益的人工智能的研究重点)国外作者:Stuart Russell, Daniel Dewey, Max Tegmark文献出处:《Association for the Advancement of Artificial Intelligence》,2015,36(4):105-114字数统计:英文2887单词,16400字符;中文5430汉字外文文献:Research Priorities for Robust and Beneficial Artificial Intelligence Abstract Success in the quest for artificial intelligence has the potential to bring unprecedented benefits to humanity, and it is therefore worthwhile to investigate how to maximize these benefits while avoiding potential pitfalls. This article gives numerous examples (which should by no means be construed as an exhaustive list) of such worthwhile research aimed at ensuring that AI remains robust and beneficial.Keywords:artificial intelligence, superintelligence, robust, beneficial, safety, societyArtificial intelligence (AI) research has explored a variety of problems and approaches since its inception, but for the last 20 years or so has been focused on the problems surrounding the construction of intelligent agents – systems that perceive and act in some environment. In this context, the criterion for intelligence is related to statistical and economic notions of rationality – colloquially, the ability to make good decisions, plans, or inferences. The adoption of probabilistic representations and statistical learning methods has led to a large degree of integration and cross-fertilization between AI, machine learning, statistics, control theory, neuroscience, and other fields. The establishment of shared theoretical frameworks, combined with the availability of data and processing power, has yielded remarkablesuccesses in various component tasks such as speech recognition, image classification, autonomous vehicles, machine translation, legged locomotion, and question-answering systems.As capabilities in these areas and others cross the threshold from laboratory research to economically valuable technologies, a virtuous cycle takes hold whereby even small improvements in performance are worth large sums of money, prompting greater investments in research. There is now a broad consensus that AI research is progressing steadily, and that its impact on society is likely to increase. The potential benefits are huge, since everything that civilization has to offer is a product of human intelligence; we cannot predict what we might achieve when this intelligence is magnified by the tools AI may provide, but the eradication of disease and poverty are not unfathomable. Because of the great potential of AI, it is valuable to investigate how to reap its benefits while avoiding potential pitfalls.Short-term Research PrioritiesOptimizing AI’s Economic ImpactThe successes of industrial applications of AI, from manufacturing to information services, demonstrate a growing impact on the economy, although there is disagreement about the exact nature of this impact and on how to distinguish between the effects of AI and those of other information technologies. Many economists and computer scientists agree that there is valuable research to be done on how to maximize the economic benefits of AI while mitigating adverse effects, which could include increased inequality and unemployment (Mokyr 2014; Brynjolfsson and McAfee 2014; Frey and Osborne 2013; Glaeser 2014; Shanahan 2015; Nilsson 1984; Manyika et al. 2013). Such considerations motivate a range of research directions, spanning areas from economics to psychology. Below are a few examples that should by no means be interpreted as an exhaustive list.Labor market forecasting:When and in what order should we expect various jobs to become automated (Frey and Osborne 2013)? How will this affect the wages of less skilled workers, the creative professions, and different kinds of informationworkers? Some have have argued that AI is likely to greatly increase the overall wealth of humanity as a whole (Brynjolfsson and McAfee 2014). However, increased automation may push income distribution further towards a power law (Brynjolfsson, McAfee, and Spence 2014), and the resulting disparity may fall disproportionately along lines of race, class, and gender; research anticipating the economic and societal impact of such disparity could be useful.Other market disruptions: Significant parts of the economy, including finance, insurance, actuarial, and many consumer markets, could be susceptible to disruption through the use of AI techniques to learn, model, and predict human and market behaviors. These markets might be identified by a combination of high complexity and high rewards for navigating that complexity (Manyika et al. 2013).Policy for managing adverse effects:What policies could help increasingly automated societies flourish? For example, Brynjolfsson and McAfee (Brynjolfsson and McAfee 2014) explore various policies for incentivizing development of labor-intensive sectors and for using AI-generated wealth to support underemployed populations. What are the pros and cons of interventions such as educational reform, apprenticeship programs, labor-demanding infrastructure projects, and changes to minimum wage law, tax structure, and the social safety net (Glaeser 2014)? History provides many examples of subpopulations not needing to work for economic security, ranging from aristocrats in antiquity to many present-day citizens of Qatar. What societal structures and other factors determine whether such populations flourish? Unemployment is not the same as leisure, and there are deep links between unemployment and unhappiness, self-doubt, and isolation (Hetschko, Knabe, and Scho¨ b 2014; Clark and Oswald 1994); understanding what policies and norms can break these links could significantly improve the median quality of life. Empirical and theoretical research on topics such as the basic income proposal could clarify our options (Van Parijs 1992; Widerquist et al. 2013).Economic measures: It is possible that economic measures such as real GDP per capita do not accurately capture the benefits and detriments of heavily AI-and-automation-based economies, making these metrics unsuitable for policypurposes (Mokyr 2014). Research on improved metrics could be useful for decision-making.Law and Ethics ResearchThe development of systems that embody significant amounts of intelligence and autonomy leads to important legal and ethical questions whose answers impact both producers and consumers of AI technology. These questions span law, public policy, professional ethics, and philosophical ethics, and will require expertise from computer scientists, legal experts, political scientists, and ethicists. For example: Liability and law for autonomous vehicles: If self-driving cars cut the roughly 40,000 annual US traffic fatalities in half, the car makers might get not 20,000 thank-you notes, but 20,000 lawsuits. In what legal framework can the safety benefits of autonomous vehicles such as drone aircraft and self-driving cars best be realized (Vladeck 2014)? Should legal questions about AI be handled by existing (software-and internet-focused) ‘‘cyberlaw’’, or should they be treated separately (Calo 2014b)? In both military and commercial applications, governments will need to decide how best to bring the relevant expertise to bear; for example, a panel or committee of professionals and academics could be created, and Calo has proposed the creation of a Federal Robotics Commission (Calo 2014a).Machine ethics: How should an autonomous vehicle trade off, say, a small probability of injury to a human against the near-certainty of a large material cost? How should lawyers, ethicists, and policymakers engage the public on these issues? Should such trade-offs be the subject of national standards?Autonomous weapons: Can lethal autonomous weapons be made to comply with humanitarian law (Churchill and Ulfstein 2000)? If, as some organizations have suggested, autonomous weapons should be banned (Docherty 2012), is it possible to develop a precise definition of autonomy for this purpose, and can such a ban practically be enforced? If it is permissible or legal to use lethal autonomous weapons, how should these weapons be integrated into the existing command-and-control structure so that responsibility and liability remain associated with specific human actors? What technical realities and forecasts should inform these questions, and howshould ‘‘meaningful human control’’ over weapons be defined (Roff 2013, 2014; Anderson, Reisner, and Waxman 2014)? Are autonomous weapons likely to reduce political aversion to conflict, or perhaps result in ‘‘accidental’’ battles or wars (Asaro 2008)? Would such weapons become the tool of choice for oppressors or terrorists? Finally, how can transparency and public discourse best be encouraged on these issues?Privacy: How should the ability of AI systems to interpret the data obtained from surveillance cameras, phone lines, emails, etc., interact with the right to privacy? How will privacy risks interact with cybersecurity and cyberwarfare (Singer and Friedman 2014)? Our ability to take full advantage of the synergy between AI and big data will depend in part on our ability to manage and preserve privacy (Manyika et al. 2011; Agrawal and Srikant 2000).Professional ethics:What role should computer scientists play in the law and ethics of AI development and use? Past and current projects to explore these questions include the AAAI 2008–09 Presidential Panel on Long-Term AI Futures (Horvitz and Selman 2009), the EPSRC Principles of Robotics (Boden et al. 2011), and recently announced programs such as Stanford’s One-Hundred Year Study of AI and the AAAI Committee on AI Impact and Ethical Issues.Long-term research prioritiesA frequently discussed long-term goal of some AI researchers is to develop systems that can learn from experience with human-like breadth and surpass human performance in most cognitive tasks, thereby having a major impact on society. If there is a non-negligible probability that these efforts will succeed in the foreseeable future, then additional current research beyond that mentioned in the previous sections will be motivated as exemplified below, to help ensure that the resulting AI will be robust and beneficial.VerificationReprising the themes of short-term research, research enabling verifiable low-level software and hardware can eliminate large classes of bugs and problems ingeneral AI systems; if such systems become increasingly powerful and safety-critical, verifiable safety properties will become increasingly valuable. If the theory of extending verifiable properties from components to entire systems is well understood, then even very large systems can enjoy certain kinds of safety guarantees, potentially aided by techniques designed explicitly to handle learning agents and high-level properties. Theoretical research, especially if it is done explicitly with very general and capable AI systems in mind, could be particularly useful.A related verification research topic that is distinctive to long-term concerns is the verifiability of systems that modify, extend, or improve themselves, possibly many times in succession (Good 1965; Vinge 1993). Attempting to straightforwardly apply formal verification tools to this more general setting presents new difficulties, including the challenge that a formal system that is sufficiently powerful cannot use formal methods in the obvious way to gain assurance about the accuracy of functionally similar formal systems, on pain of inconsistency via Go¨ del’s incompleteness (Fallenstein and Soares 2014; Weaver 2013). It is not yet clear whether or how this problem can be overcome, or whether similar problems will arise with other verification methods of similar strength.Finally, it is often difficult to actually apply formal verification techniques to physical systems, especially systems that have not been designed with verification in mind. This motivates research pursuing a general theory that links functional specification to physical states of affairs. This type of theory would allow use of formal tools to anticipate and control behaviors of systems that approximate rational agents, alternate designs such as satisficing agents, and systems that cannot be easily described in the standard agent formalism (powerful prediction systems, theorem-provers, limited-purpose science or engineering systems, etc.). It may also be that such a theory could allow rigorous demonstrations that systems are constrained from taking certain kinds of actions or performing certain kinds of reasoning.ValidityAs in the short-term research priorities, validity is concerned with undesirable behaviors that can arise despite a system’s formal correctness. In the long term, AIsystems might become more powerful and autonomous, in which case failures of validity could carry correspondingly higher costs.Strong guarantees for machine learning methods, an area we highlighted for short-term validity research, will also be important for long-term safety. To maximize the long-term value of this work, machine learning research might focus on the types of unexpected generalization that would be most problematic for very general and capable AI systems. In particular, it might aim to understand theoretically and practically how learned representations of high-level human concepts could be expected to generalize (or fail to) in radically new contexts (Tegmark 2015). Additionally, if some concepts could be learned reliably, it might be possible to use them to define tasks and constraints that minimize the chances of unintended consequences even when autonomous AI systems become very general and capable. Little work has been done on this topic, which suggests that both theoretical and experimental research may be useful.Mathematical tools such as formal logic, probability, and decision theory have yielded significant insight into the foundations of reasoning and decision-making. However, there are still many open problems in the foundations of reasoning and decision. Solutions to these problems may make the behavior of very capable systems much more reliable and predictable. Example research topics in this area include reasoning and decision under bounded computational resources as Horvitz and Russell (Horvitz 1987; Russell and Subramanian 1995), how to take into account correlations between AI systems’ behaviors and those of their environments or of other agents (Tennenholtz 2004; LaVictoire et al. 2014; Hintze 2014; Halpern and Pass 2013; Soares and Fallenstein 2014c), how agents that are embedded in their environments should reason (Soares 2014a; Orseau and Ring 2012), and how to reason about uncertainty over logical consequences of beliefs or other deterministic computations (Soares and Fallenstein 2014b). These topics may benefit from being considered together, since they appear deeply linked (Halpern and Pass 2011; Halpern, Pass, and Seeman 2014).In the long term, it is plausible that we will want to make agents that actautonomously and powerfully across many domains. Explicitly specifying our preferences in broad domains in the style of near-future machine ethics may not be practical, making ‘‘aligning’’ the values of powerful AI systems with our own values and preferences difficult (Soares 2014b; Soares and Fallenstein 2014a).SecurityIt is unclear whether long-term progress in AI will make the overall problem of security easier or harder; on one hand, systems will become increasingly complex in construction and behavior and AI-based cyberattacks may be extremely effective, while on the other hand, the use of AI and machine learning techniques along with significant progress in low-level system reliability may render hardened systems much less vulnerable than today’s. From a cryptographic perspective, it appears that this conflict favors defenders over attackers; this may be a reason to pursue effective defense research wholeheartedly.Although the topics described in the near-term security research section above may become increasingly important in the long term, very general and capable systems will pose distinctive security problems. In particular, if the problems of validity and control are not solved, it may be useful to create ‘‘containers” for AI systems that could have undesirable behaviors and consequences in less controlled environments (Yampolskiy 2012). Both theoretical and practical sides of this question warrant investigation. If the general case of AI containment turns out to be prohibitively difficult, then it may be that designing an AI system and a container in parallel is more successful, allowing the weaknesses and strengths of the design to inform the containment strategy (Bostrom 2014). The design of anomaly detection systems and automated exploit-checkers could be of significant help. Overall, it seems reasonable to expect this additional perspective – defending against attacks from ‘‘within” a system as well as from external actors – will raise interesting and profitable questions in the field of computer security.ControlIt has been argued that very general and capable AI systems operating autonomously to accomplish some task will often be subject to effects that increasethe difficulty of maintaining meaningful human control (Omohundro 2007; Bostrom 2012, 2014; Shanahan 2015). Research on systems that are not subject to these effects, minimize their impact, or allow for reliable human control could be valuable in preventing undesired consequences, as could work on reliable and secure test-beds for AI systems at a variety of capability levels.If an AI system is selecting the actions that best allow it to complete a given task, then avoiding conditions that prevent the system from continuing to pursue the task is a natural subgoal (Omohundro 2007; Bostrom 2012) (and conversely, seeking unconstrained situations is sometimes a useful heuristic (Wissner-Gross and Freer 2013)). This could become problematic, however, if we wish to repurpose the system, to deactivate it, or to significantly alter its decision-making process; such a system would rationally avoid these changes. Systems that do not exhibit these behaviors have been termed corrigible systems (Soares et al. 2015), and both theoretical and practical work in this area appears tractable and useful. For example, it may be possible to design utility functions or decision processes so that a system will not try to avoid being shut down or repurposed (Soares et al. 2015), and theoretical frameworks could be developed to better understand the space of potential systems that avoid undesirable behaviors (Hibbard 2012, 2014, 2015).ConclusionIn summary, success in the quest for artificial intelligence has the potential to bring unprecedented benefits to humanity, and it is therefore worthwhile to research how to maximize these benefits while avoiding potential pitfalls. The research agenda outlined in this paper, and the concerns that motivate it, have been called ‘‘anti-AI”, but we vigorously contest this characterization. It seems self-evident that the growing capabilities of AI are leading to an increased potential for impact on human society. It is the duty of AI researchers to ensure that the future impact is beneficial. We believe that this is possible, and hope that this research agenda provides a helpful step in the right direction.中文译文:稳健和有益的人工智能的研究重点摘要寻求人工智能的成功有可能为人类带来前所未有的好处,因此值得研究如何最大限度地利用这些好处,同时避免潜在危险。

人工智能 英文文献译文

人工智能  英文文献译文

人工智能英文文献译文在计算机科学里许多现代研究都致于两个方面:一是怎样制造智能计算机,二是怎样制造超高速计算机.硬件成本的降低,大规模集成电路技术(VLSI)不可思议的进步以及人工智能(AI)所取得的成绩使得设计面向AI应用的计算机结构极为可行,这使制造智能计算机成了近年来最”热门”的方向.AI 提供了一个崭新的方法,即用计算技术的概念和方法对智能进行研究,因此,它从根本上提供了一个全新的不同的理论基础.作为一门科学,特别是科学最重要的部分,AI的上的是了解使智能得以实现的原理.作为一种技术和科学的一部分,AI的最终目的是设计出能完全与人类智能相媲美的智能计算机系统.尽管科学家们目前尚未彀这个目的,但使计算机更加智能化已取得了很大的进展,计算机已可用来下出极高水平的象棋,用来诊断某种疾病,用来发现数学概念,实际上在许多领域已超出了高水平的人类技艺.许多AI计算机应用系统已成功地投入了实用领域.AI是一个正在发展的包括许多学科在内的领域,AI的分支领域包括:知识表达,学习,定理证明,搜索,问题的求解以及规划,专家系统,自然语言(文本或语音)理解,计算机视觉,机器人和一些其它方面/(例如自动编程,AI教育,游戏,等等).AI是使技术适应于人类的钥匙,将在下一代自动化系统中扮演极为关键的角色.据称AI应用已从实验室进入到实用领域,但是传统的冯·诺依曼计算机中,有更大的存储容量与处理能力之比,但最终效率也不是很高.无论使处理器的速度多快也无法解决这个问题,这是因为计算机所花费的时间主要取决于数据的处理器和存储器之间传送所需的时间,这被称之为冯·诺依曼瓶颈.制造的计算机越大,这个问题就越严重.解决的方法是为AI应用设计出不同于传统计算机的特殊结构.在未来AI结构的研究中,我们可以在计算机结构中许多已有的和刚刚出现的新要领的优势,比如数据流计算,栈式计算机,特征,流水线,收缩阵列,多处理器,分布式处理,数据库计算机和推理计算机.无需置疑,并行处理对于AI应用是至关重要的.根据AI中处理问题的特点,任何程序,哪怕只模拟智能的一小部分都将是非常复杂的.因此,AI仍然要面对科学技术的限制,并且继续需要更快更廉价的计算机.AI的发展能否成为主流在很大程度上取决于VLSI技术的发展.另一方面,并行提供了一个在更高性能的范围内使用廉价设备的方法.只要使简单的处理单元完全构成标准模式,构成一个大的并行处理系统就变得轻而易举,由此而产生的并行处理器应该是成本低廉的.在计算机领域和AI中,研究和设计人员已投入大量精力来考查和开发有效的并行AI结构,它也越来越成为吸引人的项目.目前,AI在表达和使用大量知识以及处理识别问题方面仍然没有取得大的进展,然而人脑在并行处理中用大量相对慢的(与目前的微电子器件比较)神经元却可十分出色地完成这些任务.这启发了人们或许需要某种并行结构来完成这些任务.将极大地影响我们进行编程的方法.也许,一旦有了正确的结构,用程序对感觉和知识表达进行处理将变得简单自然.研究人员因此投入大量努力来寻求并行结构.AI中的并行方法不仅在廉价和快速计算机方面,而且在新型计算方法方面充满希望.两种流行的AI语言是函数型编程语言,即基于λ算子的和逻辑编程语言,即基于逻辑的.此外,面向对象的编程正在引起人们的兴趣.新型计算机结构采用了这些语言并开始设计支持一种或多种编程形式的结构.一般认为结合了这三种编程方式可为AI应用提供更好的编程语言,在这方面人们已经作了大量的研究并取得了某些成就.人工智能的发展1 经典时期:游戏和定理证明人工智能比一般的计算机科学更年轻,二战后不久出现的游戏程序和解迷宫程序可以看作是人工智能的开始,游戏和解迷宫看起来距专家系统甚远,也不能为实际应用提供理论基础.但是,基于计算机的问题的最基本概念可以追溯到早期计算机完成这些任务的程序设计方法.(1)状态空间搜索早期研究提出的基本叫做状态空间搜索,实质非常简单.很多问题都可以用以下三个组成部分表述:1. 初始状态,如棋盘的初始态;2. 检查最终状态或问题解的终止测试;3. 可用于改变问题当前状态的一组操作,如象棋的合法下法.这种概念性状态空间的一种思路是图,图中节点表示状态, 弧表示操作.这种空间随着思路的发展而产生,例如,可以从棋盘的初始状态开始构成图的第一个节,白子每走一步都产生连向新状态的一条弧,黑子对白子每步棋的走法,可以认为是改变了棋盘状态的情况下连向这些新节点的操作,等等.(2)启发式搜索如果除小范围搜索空间以外,彻底的搜索不可能的话,就需要某些指导搜索的方法.用一个或多项域专门知识去遍历状态空间图的搜索叫做启发式搜索.启发是凭经验的想法,它不像算法或决策程序那样保证成功,它是一种算法或过程,但大多数情况下是有用的.2 现代时期:技术与应用所谓现代时期是从70年代半期延续到现在,其特征是日益发展的自意识和自批判能力以及对于技术和应用的更强的定位.与理解的心理学概念相联系似已不占据核心地位.人们也渐渐不再对一般问题方法(如启发式搜索)心存幻想,研究者们已经认识到,这种方法过高估计了”一般智能”的概念,这一概念一向为心理学家喜欢,其代价是未考虑人类专家所具有的某一领域内的能力.这种方法也过低地估计了人的简单常识,特别是人能够避免,认识和纠正错误的能力.解决问题的启发能力程序能够处理的相关知识的清晰表达,而非某些复杂的推理机制或某些复杂的求值函数,这一观点已被证实并接受.研究者已经研制出以模块形式对人的知识进行编码的技术,此种编码可用模式启动.这些模式可以代表原始的或处理过的数据,问题说明或问题的部分解.早期模拟人们解决问题的努力试图达到知识编码的一致性和推理机制的简单性.后来将该结果应用于万家系统的尝试主要是允许自身的多样性.INTRODCTION TO ARTIFICIALMuch modern research effort in computer science goes along two directions. One is how to make intelligent computers,the other how to make ultraly high-speed computers. The former has become the newest “hot ” direction in recent years because the decreasing hardware costs, the marvelous progress in VLSI technology,and the results achieved in Artificial Intelligence(AI) have made it feasible to design AI applications oriented computer architectures.AI,which offers a mew methodology, is the study of intelligence using the idead and methods of computation, thus offering a radically new and different basis for theory formation. As a science, essentially part of Cognitive Science, the goal of AI is to understand the principles thatmake intelligence possible. As a technology and as a part of computer science,the final goal of AI is to design intelligent computer systems that behave with the complete intelligence of human mind.although scientists are far from achieving this goal, great progress dose hae been made in making computers more intelligent . computers can be made to play excellint chess, to diagnose certain types of diseases, to discover mathematical comcepts, and if fact , to excel in many other areas requiring a high level of human expertise. Many Aiapplication computer systems have been successfully put into practical usages.AI is a growing field that covers many disciplines. Subareas of AI include knowledge representation ,learning, theorem proving,search,problem solving, and planning, expert systems, natural-language(text or speech)understanding,computer vision,robotics, and several others (such as automatic programming ,AI education,game playing, etc.) .AI is the key for making techmology adaptable to people. It will play a crucial role in the next generation of automated systems.It is a growing field that covers many disciplines.subbareas of AI include knowledge representation,learing,theorem proving,search,prroblem solving, and planning,expert systems,natural_language(text or speech ) understanding,computer vision,robotics , and severalothers (such as automatic programming, AI education, game playing,etc.).AI is the key for making technology adaptable to people. It will play a crucial role in the next generation of automated systems.It is claimed that AI applications have moved from laboratories to the real wortld. However ,conventional von Neumann computers are unsuitable for AI applications,because they are designed mainly for numerical processing. In a larger von Neumann computer, there is a larger tatio of memory to processing power and consequently it is even less efficient. This inefficiency remains no matter how fast we make the processor because the length of the computation becomes dominated by the time required to move data between processor and memory. This is called the von Neumann bottleneck. The bigger we build machines, the worse it gets. The way to solve the problem is to diverse from the traditional architectures and to design special ones for AI applications. In the research of future AI architectures, we can take advantages of many existing or currentlyemerging concepts in computer architecture, such as dataflow computation, stack machines, tagging,pipelining, systolic array,multiprocessing,distrbuted processing,database machines ,and inference machines.No doubt, parallel processing is of crucial importance for AI applications.due to the nature of problems dealt with in AI, any program that will successfully simulate even a small part of intelligence will be very complicated. Therefor,AI continuously confronts the limits of computer science technology,and there id an instatiable demand for fastert and cheaper computers.the movement of AI into mainstream is largely owned to the addevent of VLSI technology.parallel architectures,on the other han,provide a way of using the inexpensive device technology at much higher performance ranges.it ix becoming easier and cheaper to construc large parallel processing systems as long as they are made of fairly regular patterns of simpl processwing elements,and thus parallel processors should become cost effective.a great amount of effort has been devoted to inverstigating and developing effictive parallel AI architectures,ans this topic id becoming more and more attractive for reaseachers and designersin the areas of computers and AI.Currently, very little success has been achieved in AI in representing and using large bodies of knowledge and in dealing with recognition problems. Whereas human brain can perform these tasks temarkably well using a large number of relatively slow (in comparison with todays microelectronic devices) neurons in parallel. This suggests that for these tasks some kind of parllel architecture may be needed. Architectures can significantly influence the way we programming it for perception and knowledge representation would be easy and natural. This has led researchers to look into massively parallel architectures. Parallelism holds great promise for AI not only in terms of cheaper and faster computers. But also as a novel way of viewingcomputation.Two kinds of popular AI languages are functoional programming languages, which are lambda-based ,and logic programming is attracting a growing interest. Novel computer architects have considered these languages seriously and begun to design architectures supporting one or more of the programming styles. It has been recognized that a combination of the three programming styles mingt provide a better language for AI applications. There have already been a lot of research effort and achievements on this topic.Development of AI1 the classical period: game playing and theorem provingartificial inteligence is scarcely younger than conventional computer science;the bebinnings of AI can be seen in the first game-playing and puzzle-solving programs written shortly after World War Ⅱ. Gameplaying and puzzle-solving may seem somewhat remote from espert systems, and insufficiently serious to provide a theoretical basis for real applications. However, a rather basic notion about computer-based problem solving can be traced back to early attempts to program computers to perform shuch tasks.(1)state space searchThe fundamental idea that came out of early research is called state space search,and it is essentially very simple. Many kinds of problem can be formulated in terms of three important ingredients:(1)a starting state,such as the initial state of the chess board;(2)a termination test for detecing final states or sulutions to the problem,such as the simple rule for detecting checkmate in chess;(3)a set of operations that can be applied to change the current state of theproblem,such as the legal moves of chess.One way of thinking of this conceptual space of states is as a graph in which the states are nodes and the operations are arcs. Such spaces can be generated as you go . gor exampe, you coule gegin with the starting state of the chess board and make it the first node in the graph. Each of White’s possilbe first moves would then be an arc connecting this node to a new state of the board. Each of Black’s legal replies to each of these f irst moves could then be considered as operations which connect each of these new nodes to a changed statd of the board , and so on .(2)Heuristic searchHiven that exhaustive search is mot feasible for anything other than small search spaces, some means of guiding the search is required. A search that uses one or more items of domain-specific knowledge to traverse a state space graphy is called a heuristic search. Aheuristic is best thought of as a rule of thumb;it is not guaranteed to succeed,in the way that an algorithm or decision procedure is ,but it is useful in the majority of cases .2 the romantic period: computer understandingthe mid-1960s to the mid-1970s represents what I call the romantic period in artificial intelligence reserch. Atthis time, people were very concerned with making machines “understand”, by which they usually meant the understanding of natural language, especially stories and dialogue. Winograd’s (1972)SHRDLU system was arguably the climax of this epoch : a program which was capable of understanding a quite substantial subset of english by representing and reasoning about a very restricted domain ( a world consisting of children’s toy blocks).The program exhibited understanding by modifying its “blocksworld” represent ation in respinse to commands , and by responding to questions about both the configuration of blocks and its “actions” upon them. Thus is could answer questions like:What is the colour of the block supporting the red pyramid?And derive plans for obeying commands such as :Place the blue pyramid on the green block.Other researchers attempted to model human problem-solving behaviour on simple tasks ,such as puzzles, word games and memory tests. The aim war to make the knowledge and strategy used by the program resemble the knowledge and strategy of the human subject as closely as possible. Empirical studies compared the performance of progran and subject in an attempt to see how successful the simulation had been.。

谷歌人工智能文章中英文对照

谷歌人工智能文章中英文对照
在10 月12 日《自然》杂志中发表的一篇论文中,谷歌在伦敦的
子公司深度思维展示了他们通过结合外部存储创造了一个神经网络,来
进一步克服这些障碍。这种和外部存储的结合不仅允许神经网络学习,
还可以通过存储器来存储和回忆事件,并以此来像正常情况那样做推
断。这反过来能够让它解决难题,比如在没有任何经验的情况下操控伦
谷歌人工智能推导出环绕 伦敦地铁系统的路线
DeepMind’s latest technique uses external memory to solve tasks that require logic and reasoning—a step
toward more humanlike AI 深度思维最新技术使用了外部存储来解决需要逻辑思
神经网络通过加强虚拟神经元之间的联系来学习。如果没有存储
器,这样一个网络可能需要看一副特定的伦敦地铁地图数千次来学习最
佳路线。 DeepMind's new system—which they call a
'differentiable neural computer'—can make sense of a map it has never seen before. It first trains its neural network on randomly generated map-like structures (which could represent stations connected by lines, or other relationships), in the process learning how to store descriptions of these relationships in its external memory as well as answer questions about them. Confronted with a new map, the DeepMind system can write these new relationships—connections between Underground

人工智能(AI)的英语作文及译文精选五篇

人工智能(AI)的英语作文及译文精选五篇

人工智能(AI)的英语作文及译文(精选5篇)篇一:artificial intelligence can make our life more interesting. for example, if we have no company when playing games, artificial intelligence can accompany you.at the same time, artificial intelligence has the ability of self-learning and can be your little assistant in life.artificial intelligence must be the most popular and potential industry in the future. you can earn money to support your family without leaving home.you can completely release yourself, including st udents‘ learning, through artificial intelligence.译文:人工智能可以让我们在生活中更加有趣,比如说我们在玩游戏的时候没有人陪伴,那么人工智能可以陪你,同时人工智能有自我学习能力,可以做你的生活小助手。

篇二:future trends in computer science is one of the artificial intelligence,it is the research and artificial simulation of human thought and eventually be able to make a human like to think the same machine.for human services andto help people solve problems.after all, people thought it was unique, there are feelings, there are a variety of character, this will be very difficult to achieve in the machine.in fact, to do the same as the human thinking machine, the only one of the artificial intelligence, is by no means all. through the study of artificial intelligence, can resolve all kinds of scientific problems, and promote the development of other science, the artificial intelligence is the best!i believe that the science of artificial intelligence is waiting for humanity to explore it step by step the real connotation.译文:计算机科学的未来趋势是人工智能之一,它是对人类思维的研究和人工模拟,最终能够使人类喜欢思考的同一台机器。

人工智能英文作文

人工智能英文作文

人工智能英文作文Artificial Intelligence。

Artificial Intelligence (AI) has become a hot topic in recent years. With the rapid development of technology, AI has gradually been integrated into our daily lives, bringing about great changes and improvements in various fields. From virtual assistants like Siri and Alexa toself-driving cars and advanced medical diagnosis systems, AI has proven to be a powerful force in shaping the future.One of the most significant impacts of AI is in the field of healthcare. With the help of AI, doctors and medical professionals are able to diagnose diseases more accurately and efficiently. AI-powered medical imaging technology can detect early signs of diseases such as cancer, allowing for early intervention and treatment. In addition, AI can also analyze large amounts of medical data to identify patterns and trends, which can lead to better treatment options and improved patient care.AI has also revolutionized the way we interact with technology. Virtual assistants like Siri and Alexa have become an integral part of our daily lives, helping us with tasks such as setting reminders, making appointments, and answering questions. These virtual assistants are constantly learning and improving, becoming more personalized and intuitive over time. In addition, AI has also been integrated into smart home devices, allowing for greater automation and control over our living spaces.In the field of transportation, AI has the potential to greatly improve safety and efficiency. Self-driving cars, powered by AI technology, have the potential to reduce the number of accidents on the road by eliminating human error. These autonomous vehicles are equipped with advanced sensors and algorithms that allow them to navigate and react to their surroundings in real time. In addition, AI can also optimize traffic flow and reduce congestion, leading to a more efficient and sustainable transportation system.While AI has the potential to bring about great benefits, it also raises ethical and social concerns. As AI becomes more advanced, there is a growing concern about the impact it will have on the job market. Many fear that AI will replace human workers, leading to widespread unemployment and economic instability. In addition, there are also concerns about privacy and data security, as AI systems have the potential to collect and analyze vast amounts of personal information.Despite these concerns, it is clear that AI has the potential to bring about great positive changes in our society. As AI continues to develop and evolve, it is important for us to carefully consider the ethical and social implications of this technology. By working together to address these concerns, we can ensure that AI is used in a responsible and beneficial way.In conclusion, AI has the potential to revolutionize the way we live and work. From healthcare to transportation to everyday tasks, AI has the potential to bring about great improvements and advancements. However, it isimportant for us to carefully consider the ethical and social implications of AI, and work together to ensure that it is used in a responsible and beneficial way. Withcareful consideration and responsible use, AI has the potential to bring about a brighter and more prosperous future for all of us.。

人工智能英文作文两篇

人工智能英文作文两篇

人工智能英文作文两篇AI人工智能英语作文一Recently, Google' s AlphaGo have become the most famous artificial intelligence since it defeated Lee Sedol, the World Go Champion, 4 to 1 in a five-game match. Lee , a world champion, cannot win a "robot”, it seems like impossible,but in fact, facts speak louder than words.The machine' s sweeping victories have once again made AI a hot topic. Some people welcome the progress and the artificial intelligence is expected to benefit mankind in more fields;other people worry that artificial intelligence will eventually get out of control.Indeed, artificial intelligence can benefit mankind in many fields, such as treatment of diseases, industrial production and large data calculation. As for Google' s AlphaGo, it has achieved great progress and this progress could be revolutionary.At the same time, some people think we should not be carried away by convenience, we cannot ignore the risk of artificial intelligence. But actually, most of people come into contact with artificial intelligence in science fiction.Their panic root in survival contradiction of artificial intelligence and human inthe movies or novels. There is no denying that their concerns is reasonable. But in my point of view, it is not a computer beats the human, but human defeated the human.First of all, the development of artificial intelligence will lead to unemployment in a large fields. This is the most direct consequences. Artificial intelligence can work more efficiently, and nobody can deny that they can work as cheaper labour. Then, the most affected areas is areas of the economy. Many economic law can be modeled, society may be unstable. The last thing is people can be more and more lazy, people who is thinking would be only a few. It violates the original intention of social development.However, artificial intelligence also have the positive side, they won' t be tired and food and water become unnecessary, they work by electricity. But we should understand that the advantages should not be abused, if so,there will be an unpredictable ending.To make a long story short,artificial intelligence will become our "invisible assistant〃 rather than our competitors in within a period of time, we should cooperate fully with artificial intelligence, using it appropriately is the right way in my mind.AI人工智能英语作文二Don' t Rely Too Much on ComputersNowadays, a large number of people are becoming increasingly dependent on their PC. They might use such computer software as QQ or Fetion to stay in touch with their family and friends. They may surf the Internet to find useful information for them or to help their work done. Anyway, reasons for relying on computers are uncountable.However, relying excessively on computers can bring about lots of problems. First and for most, computers can make people lazy. Computers are faster than human in calculation, more capable in getting things done all at one time. Once a person has such an assistant, he or she can be addicted to getting helped. Thus, when they run into problems, instead of thinking by themselves and trying their best to figure things out, the lazy version of them may just turn to computer for convenience.In my opinion, we should strike a balance between asking for help from computers and working on our own. Nevertheless, computers are only tools devised by human who should not be taken place by them. Only in keeping our minds active and brains trained can we human invent smarter devices than computer and build a better world of intelligence.。

人工智能 英文 作文

人工智能 英文 作文

人工智能英文作文Artificial intelligence, also known as AI, is revolutionizing the way we live and work. It is a powerful tool that can analyze huge amounts of data and make predictions based on patterns it finds. AI is used in various industries, from healthcare to finance, to improve efficiency and accuracy.AI has the potential to transform our society in wayswe never thought possible. It can help us solve complex problems, automate tedious tasks, and even create new opportunities for innovation. With AI, we can unlock new possibilities and push the boundaries of what is achievable.However, there are also concerns about the impact of AI on jobs and privacy. As AI becomes more advanced, there isa fear that it could replace human workers, leading to unemployment and economic instability. Additionally, there are worries about the misuse of AI for surveillance and control, raising questions about the ethical implicationsof its widespread use.Despite these challenges, AI has the potential to improve our lives in countless ways. It can help us make better decisions, discover new insights, and even enhance our creativity. As we continue to develop and refine AI technology, it is important to consider its implications and ensure that it is used responsibly for the benefit of society.。

人工智能英语作文350

人工智能英语作文350

人工智能英语作文350Title: The Rise and Impact of Artificial Intelligence.In the dawn of the twenty-first century, a technological revolution is sweeping across the globe, transforming virtually every aspect of human life. At the forefront of this revolution stands artificial intelligence (AI), a branch of computer science that deals with the simulation of human intelligence processes by machines, especially computer systems. AI has become a pivotal force in reshaping the way we interact with technology, how we solve complex problems, and how we perceive the future.The concept of AI is not new, dating back to the 1950s when computers were first programmed to perform tasks that required human intelligence. However, it is the recent advancements in computing power, data storage, and algorithm development that have propelled AI to new heights of sophistication. From self-driving cars to voice-activated assistants, from medical diagnosis to financialforecasting, AI is increasingly becoming a ubiquitous presence in our daily lives.One of the most significant impacts of AI is itsability to automate tasks that were once performed by humans. This automation has led to improved efficiency, reduced costs, and enhanced productivity in various industries. For instance, in manufacturing, AI-powered robots can assemble products with greater speed and accuracy, reducing errors and waste. In healthcare, AI algorithms can assist doctors in diagnosing diseases by analyzing vast amounts of medical data, potentially leading to earlier detection and more effective treatments.However, the rise of AI has also raised concerns about its potential impact on jobs and the economy. As AI systems become more capable, they are replacing humans in many jobs that require repetitive or predictable tasks. This has led to job losses in some sectors, especially.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人工智能英文文献原文及译文附件四英文文献原文Artificial Intelligence"Artificial intelligence" is a word was originally Dartmouth in 1956 to put forward. From then on, researchers have developed many theories and principles, the concept of artificial intelligence is also expands. Artificial intelligence is a challenging job of science, the person must know computer knowledge, psychology and philosophy. Artificial intelligence is included a wide range of science, it is composed of different fields, such as machine learning, computer vision, etc, on the whole, the research on artificial intelligence is one of the main goals of the machine can do some usually need to perform complex human intelligence. But in different times and different people in the "complex" understanding is different. Such as heavy science and engineering calculation was supposed to be the brain to undertake, now computer can not only complete this calculation, and faster than the human brain can more accurately, and thus the people no longer put this calculation is regarded as "the need to perform complex human intelligence, complex tasks" work is defined as the development of The Times and the progress of technology, artificial intelligence is the science of specific target and nature as The Times change and development. On the one hand it continues to gain new progress on the one hand, and turning to more meaningful, the more difficult the target. Current can be used to study the main material of artificialintelligence and artificial intelligence technology to realize the machine is a computer, the development history of artificialintelligence is computer science and technology and the development together. Besides the computer science and artificial intelligence also involves information, cybernetics, automation, bionics, biology, psychology, logic, linguistics, medicine and philosophy and multi-discipline. Artificial intelligence research include: knowledge representation, automatic reasoning and search method, machine learning and knowledge acquisition and processing of knowledge system, natural language processing, computer vision, intelligent robot, automatic program design, etc.Practical application of machine vision: fingerprint identification, face recognition, retina identification, iris identification, palm, expert system, intelligent identification, search, theorem proving game, automatic programming, and aerospace applications.Artificial intelligence is a subject categories, belong to the door edge discipline of natural science and social science.Involving scientific philosophy and cognitive science, mathematics, neurophysiological, psychology, computer science, information theory, cybernetics, not qualitative theory, bionics.The research category of natural language processing, knowledge representation, intelligent search, reasoning, planning, machine learning, knowledge acquisition, combined scheduling problem, perception, pattern recognition, logic design program, soft calculation, inaccurate and uncertainty, the management of artificial life, neural network, and complex system, human thinking mode of genetic algorithm.Applications of intelligent control, robotics, language and image understanding, genetic programming robot factory.Safety problemsArtificial intelligence is currently in the study, but some scholars think that letting computers have IQ is very dangerous, it may be against humanity. The hidden danger in many movie happened.The definition of artificial intelligenceDefinition of artificial intelligence can be divided into two parts, namely "artificial" or "intelligent". "Artificial" better understanding, also is controversial. Sometimes we will consider what people can make, or people have high degree of intelligence to create artificial intelligence, etc. But generally speaking, "artificial system" isusually significance of artificial system.What is the "smart", with many problems. This involves other such as consciousness, ego, thinking (including the unconscious thoughts etc. People only know of intelligence is one intelligent, this is the universal view of our own. But we are very limited understanding of the intelligence of the intelligent people constitute elements are necessary to find, soit is difficult to define what is "artificial" manufacturing "intelligent". So the artificial intelligence research often involved in the study of intelligent itself. Other about animal or other artificial intelligence system is widely considered to be related to the study ofartificial intelligence.Artificial intelligence is currently in the computer field, the more extensive attention. And in the robot, economic and political decisions, control system, simulation system application. In other areas, it also played an indispensable role.The famous American Stanford university professor nelson artificial intelligence research center of artificial intelligence under such a definition: "artificial intelligence about the knowledge of the subject is and how to represent knowledge -- how to gain knowledge and use of scientific knowledge. But another American MIT professor Winston thought: "artificial intelligence is how to make the computer to do what only can do intelligent work." These comments reflect the artificial intelligence discipline basic ideas and basic content. Namely artificialintelligenceis the study of humani ntelligence activities, has certain law, research of artificial intelligence system, how to make the computer to complete before the intelligence needs to do work, also is to study how the application of computer hardware and software to simulate human some intelligent behavior of the basic theory, methods and techniques.Artificial intelligence is a branch of computer science, since the 1970s, known as one of the three technologies (space technology, energy technology, artificial intelligence). Also considered the 21st century (genetic engineering, nano science, artificial intelligence) is one of the three technologies. It is nearly three years it has been developed rapidly, and in many fields are widely applied, and have made great achievements, artificial intelligence has gradually become an independent branch, both in theory and practice are already becomes a system. Its research results are gradually integrated into people's lives, and create more happiness for mankind.Artificial intelligence is that the computer simulation research of somet hinking process and intelligent behavior (such as study, reasoning, thinking, planning, etc.), including computer to realize intelligent principle, make similar to that of human intelligence, computer can achieve higher level of computer application. Artificial intelligence will involve the computer science, philosophy and linguistics, psychology, etc. That was almost natural science and social science disciplines, the scope of all already far beyond the scope of computer science and artificial intelligence and thinking science is therelationship between theory and practice, artificial intelligence is in the mode of thinking science technology application level, is one of its application. From the view of thinking, artificial intelligence is not limited to logical thinking, want to consider the thinking in image, the inspiration of thought of artificial intelligence can promote the development of the breakthrough, mathematics are often thought of as a variety of basic science, mathematics and language, thought into fields, artificial intelligence subject also must not use mathematical tool, mathematical logic, the fuzzy mathematics in standard etc, mathematics into the scope of artificial intelligence discipline, they will promote each other and develop faster.A brief history of artificial intelligenceArtificial intelligence can be traced back to ancient Egypt's legend, but with 1941, since the development of computer technology has finallycan create machine intelligence, "artificial intelligence" is a word in 1956 was first proposed, Dartmouth learned since then, researchers have developed many theories and principles, the concept of artificial intelligence, it expands and not in the long history of the development of artificial intelligence, the slower than expected, but has been in advance, from 40 years ago, now appears to have many AI programs, and they also affected the development of other technologies. The emergence of AI programs, creating immeasurable wealth for the community, promoting the development of human civilization.The computer era1941 an invention that information storage and handling all aspects of the revolution happened. This also appeared in the U.S. and Germany's invention is the first electronic computer. Take a few big pack of air conditioning room, the programmer's nightmare: just run a program for thousands of lines to set the 1949. After improvement can be stored procedure computer programs that make it easier to input, and the development of the theory of computer science, and ultimately computer ai. This in electronic computer processing methods of data, for the invention of artificial intelligence could provide a kind of media.intelligence. Norbert Wiener is the study of the theory of Americanfeedback. Most familiar feedback control example is the thermostat. It will be collected room temperature and hope, and reaction temperature compared to open or close small heater, thus controlling environmental temperature. The importance of the study lies in the feedback loop Wiener: all theoretically the intelligence activities are a result of feedback mechanism and feedback mechanism is. Can use machine. The findings of the simulation of early development of AI.1955, Simon and end Newell called "a logical experts" program. This program is considered by many to be the first AI programs. It will each problem is expressed as a tree, then choose the model may be correct conclusion that a problem to solve. "logic" to the public and the AI expert research field effect makes it AI developing an important milestone in 1956, is considered to be the father of artificial intelligence of John McCarthy organized a society, will be a lot of interest machine intelligence experts and scholars together for a month. He asked them to Vermont Dartmouth in "artificial intelligence research in summer." since then, this area was named "artificial intelligence" although Dartmouth learn not very successful, but it was the founder of the centralized and AI AI research for later laid a foundation.After the meeting of Dartmouth, AI research started seven years. Although the rapid development of field haven't define some of the ideas, meeting has been reconsidered and Carnegie Mellon university. And MIT began to build AI research center is confronted with new challenges. Research needs to establish the: more effective to solve the problem of the system, such as "logic" in reducing search; expert There is the establishment of the system can be self learning.In 1957, "a new program general problem-solving machine" first version was tested. This program is by the same logic "experts" group development. The GPSe xpanded Wiener feedback principle, can solve many commonp roblem. Two years later, IBM has established a grind investigate group Herbert AI. Gelerneter spent three years to make a geometric theorem of solutions of the program. This achievement was a sensation.When more and more programs, McCarthy busy emerge in the history of an AI. 1958 McCarthy announced his new fruit: LISP until today still LISP language. In. "" mean" LISP list processing ", it quickly adopted for most AI developers.In 1963 MIT from the United States government got a pen is22millions dollars funding for research funding. The machine auxiliaryrecognition from the defense advanced research program, have guaranteed in the technological progress on this plan ahead of the Soviet union. Attracted worldwide computer scientists, accelerate the pace of development of AI research.Large programAfter years of program. It appeared a famous called "SHRDLU." SHRDLU "is" the tiny part of the world "project, including the world (for example, only limited quantity of geometrical form of research and programming). In the MIT leadership of Minsky Marvin by researchers found, facing the object, the small computer programs can solve the problem space and logic. Other as in the late 1960's STUDENT", "can solve algebraic problems," SIR "can understand the simple English sentence. These procedures for handling the language understanding and logic.In the 1970s another expert system. An expert system is aintelligent computer program system, and its internal contains a lot of certain areas of experience and knowledge with expert level, can use the humane xperts' knowledge and methods to solve the problems to deal with this problem domain. That is, the expert system is a specialized knowledge and experience of the program system. Progress is the expert system could predict under certain conditions, theprobability of a solution for the computer already has. Great capacity, expert systems possible from the data of expert system. It is widely used in the market. Ten years, expert system used in stock, advance help doctors diagnose diseases, and determine the position of mineral instructions miners. All of this because of expert system of law and information storage capacity and become possible.In the 1970s, a new method was used for many developing, famous as AI Minsky tectonic theory put forward David Marr. Another new theory of machine vision square, for example, how a pair of image by shadow, shape, color, texture and basic information border. Through the analysis of these images distinguish letter, can infer what might be the image in the same period. PROLOGrEe sult is another language, in 1972. In the 1980s, the more rapid progress during the AI, and more to go into business. 1986, the AI related software and hardware sales $4.25 billion dollars. Expert system for its utility, especially by demand. Likedigital electric company with such company XCON expert system for theVAX mainframe programming. Dupont, general motors and Boeing has lots of dependenceof expert system for computer expert. Some production expert system ofFrom the lab to daily lifePeople began to feel the computer technique and artificial intelligence. No influence of computer technology belong to a group of researchers in the lab. Personal computers and computer technology to numerous technical magazine now before a people. Like the United States artificial intelligence association foundation. Because of the need to develop, AI had a private company researchers into the boom. More than 150 a DEC (it employs more than 700 employees engaged in AI research) that have spent 10 billion dollars in internal AI team.Some other AI areas in the 1980s to enter the market. One is the machine vision Marr and achievements of Minsky. Now use the camera and production, quality control computer. Although still very humble, these systems have been able to distinguish the objects and through the different shape. Until 1985 America has more than 100 companies producing machine vision systems, sales were us $8 million.But the 1980s to AI and industrial all is not a good year for years. 1986-87 AI system requirements, the loss of industry nearly five hundred million dollars. Teknowledge like Intellicorp and two loss of more than $6 million, about one-third of the profits of the huge losses forced many research funding cuts the guide led. Another disappointing is the defense advanced research programme support of so-called "intelligent" this project truck purpose is to develop a can finish the task in many battlefield robot. Since the defects and successful hopeless, Pentagon stopped project funding.Despite these setbacks, AI is still in development of new technology slowly. In Japan were developed in the United States, such as the fuzzy logic, it can never determine the conditions of decision making, And neural network, regarded as the possible approaches to realizingartificial intelligence. Anyhow, the eighties was introduced into the market, the AI and shows the practical value. Sure, it will be the keyto the 21st century. "artificial intelligence technology acceptanceinspection in desert storm" action of military intelligence test equipment through war. Artificial intelligence technology is used to display the missile system and warning and other advanced weapons. AI technology has also entered family. Intelligent computer increase attracting public interest. The emergence of network game, enriching people's life . Someo f the main Macintosh and IBM for application software such as voice and character recognition has can buy, Usingfuzzy logic,AI technology to simplify the camera equipment. The artificial intelligence technology related to promote greater demand for new progress appear constantly. In a word ,Artificial intelligence has andwill continue to inevitably changed our life.附件三英文文献译文人工智能“人工智能” 一词最初是在1956 年Dartmouth 在学会上提出来的。

相关文档
最新文档