2020年人教版七年级下册数学练习及答案

合集下载

2020-2021学年人教版七年级下册数学 8.3实际问题与二元一次方程组(含答案)

2020-2021学年人教版七年级下册数学 8.3实际问题与二元一次方程组(含答案)

8.3实际问题与二元一次方程组一、单选题1.小明问王老师的年龄时,王老师说:“我像你这么大时,你才3岁;等你到了我这么大时,我就45岁了.”设王老师今年x岁,小明今年y岁,根据题意列方程得()A.345x y yx y x-=-⎧⎨-=-⎩B.345x y yx y x-=+⎧⎨-=-⎩C.345x y yx y x-=-⎧⎨-=+⎩D.345x y yx y x-=+⎧⎨-=+⎩2.某校运动员按规定组数进行分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则可列出的方程组为()A.7385y xy x=+⎧⎨=-⎩B.7385y xy x=+⎧⎨=+⎩C.7385y xy x=-⎧⎨=-⎩D.7385y xy x=-⎧⎨=+⎩3.某校八(3)班40名同学为“希望工程”捐款,共捐款510元,捐款情况如下表:表格中捐款6元和8元的人数不小心被墨水污染已看不清楚.若设捐款6元的有x名同学,捐款8元的有y名同学,根据题意,可得方程组()A.x y406x8y510+=⎧⎨+=⎩B.x y406x8y416+=⎧⎨+=⎩C.x y276x8y416+=⎧⎨+=⎩D.x y2986320x y+=⎧⎨+=⎩4.《九章算术》第八卷方程第十问题:“今有甲、乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十,甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱,如果甲得到乙所有钱的一半,那么甲共有钱50元,如果乙得到甲所有钱的23,那么乙也共有钱50元,问甲、乙各自带了多少钱?设甲原有钱x元,乙原有钱y元,可列方程组为()A.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩B.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩C.502503x yx y+=⎧⎪⎨+=⎪⎩D.2502503x yx y+=⎧⎪⎨+=⎪⎩5.父子二人并排站立于游泳池中时,爸爸露出水面的高度是他自身身高的13,儿子露出水面的高度是他自身身高的17,父子二人的身高之和为3.2米.若设爸爸的身高为x米,儿子的身高为y米,则可列方程组为()A.3.2111173x yx y+=⎧⎪⎨⎛⎫⎛⎫+=+⎪ ⎪⎪⎝⎭⎝⎭⎩B.3.2111173x yx y+=⎧⎪⎨⎛⎫⎛⎫-=-⎪ ⎪⎪⎝⎭⎝⎭⎩C.3.21137x yx y+=⎧⎪⎨=⎪⎩D.3.2111137x yx y+=⎧⎪⎨⎛⎫⎛⎫-=-⎪ ⎪⎪⎝⎭⎝⎭⎩6.《九章算术》是我国古代数学的经典著作,书中记:今有上禾七乘,损实一斗,益之下禾两秉,而实一十斗;下禾八秉,益实一斗,于上禾二秉,而实一十斗.问上、下禾实一秉各几何?其意思为:现有七捆上等稻子和两捆下等稻子打成谷子,再减去一斗谷子,最后得到十斗谷子;八捆下等稻子和两捆上等稻子打成谷子,再加上一斗谷子,最后得到十斗谷子,问一捆上等稻子和一捆下等稻子各打谷子多少斗?设一捆上等稻子和一捆下等稻子分别打成谷子x斗,y斗,则可建立方程组为()A.72110 28110 x yx y-+=⎧⎨++=⎩B.7211028110x yx y+-=⎧⎨+-=⎩C.72(1)1028(1)10x yx y+-=⎧⎨++=⎩D.7211028110x yx y+-=⎧⎨++=⎩7.元代数学家朱世杰撰写的《四元玉鉴》中记载了一个问题,大意是:用九百九十九文钱共买了一千个甜果和苦果,其中四文钱可买苦果七个,十一文钱可买甜果九个,问甜果、苦果各几个?设买了甜果x个,苦果y个,根据题意可列方程组()A.100041199979x yx y+=⎧⎪⎨+=⎪⎩B.100011499997x yx y+=⎧⎪⎨+=⎪⎩C.100079999411x yx y+=⎧⎪⎨+=⎪⎩D.100097999114x yx y+=⎧⎪⎨+=⎪⎩8.《九章算术》是我国古代数学的经典著作,奠定了中国传统数学的基本框架,书中记载:“今有大器五、小器一容三斛;大器一、小器五容二斛,问大小器各容几何?”译文:“今有大容器5个、小容器1个,总容量为3斛;大容器1个、小容器5个,总容量为2斛.问大小容器的容积各是多少斛?”设1个大容器的容积为x斛,1个小容器的容积y斛,则根据题意可列方程组()A.5352x yx y+=⎧⎨+=⎩B.3552x yx y+=⎧⎨+=⎩C.5325x yx y+=⎧⎨=+⎩D.5235x yx y+=⎧⎨=+⎩9.某运输队接到给武汉运输物资的任务,该队有A型卡车和B型卡车,A型卡车每次可运输6t物资,每天可运输5次,B型卡车每次可运输8t物资,每天可运输4次,若每天派出20辆卡车,刚好运输620t物资,设该运输队每天派出A型卡车x辆,B型卡车y 辆,则所列方程组正确的是()A.542068620x yx y+=⎧⎨+=⎩B.2068620x yx y+=⎧⎨+=⎩C.205648620x yx y+=⎧⎨⨯+⨯=⎩D.54205648620x yx y+=⎧⎨⨯+⨯=⎩10.我国古代数学著作《九章算术》记载了一道“牛马问题”:“今有二马、一牛价过一万,如半马之价.一马、二牛价不满一万,如半牛之价.问牛、马价各几何.”其大意为:现有两匹马加一头牛价钱超过一万,超过的部分正好是半匹马的价钱;一匹马加上二头牛的价钱则不到一万,不足部分正好是半头牛的价钱,求一匹马、一头牛各多少钱?设一匹马价钱为x元,一头牛价钱为y元,则符合题意的方程组是()A.2+10000210000(2)2xx yyx y⎧-=⎪⎪⎨⎪-+=⎪⎩B.2+1000022100002xx yyx y⎧-=⎪⎪⎨⎪+-=⎪⎩C.2++1000022100002xx yyx y⎧=⎪⎪⎨⎪+-=⎪⎩D.210000210000(2)2xx yyx y⎧++=⎪⎪⎨⎪-+=⎪⎩二、填空题11.某班20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,可列方程组为___________.12.有大小两种笔记本,3本大笔记本和2本小笔记本的售价是14元,2本大笔记本和3本小笔记本的售价为11元.设大笔记本为x元/本,小笔记本为y元/本,根据题意,列方程组正确的是____.13.某果园现有桃树和杏树共500棵,计划一年后桃树增加3%,杏树增加4%,这样果园里这两种果树将增加3.6%,如果设该果园现有桃树和杏树分别为x棵,y棵,则可列方程组_________.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为______.15.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是__分钟.三、解答题16.某生产车间生产A,B两种零件,现有55名工人,每人每天生产A零件12个,每人每天生产B零件8个,若一个A需搭配3个B才能成一套产品.那么应该分配多少人做A零件,多少人做B零件,才能使每天做出的产品刚好配套?17.根据市场调查,某厂某种消毒液的大瓶装(500g) 和小瓶装(250g) 两种产品的销售数量(按瓶计算)比为2:5.该厂每天生产这种消毒液22.5吨,这些消毒液应分装大、小瓶两种产品各多少瓶?18.列方程解应用题:在庆祝深圳经济特区建立40周年的活动中,八年级组购买了“小红旗”装饰各班教室,家委会先后两次在同一家商店以相同的单价购买了两种材质的“小红旗”,第一次购买300个塑料材质的“小红旗”,200个涤纶材质的“小红旗”,共花费660元;第二次购买100个塑料材质的“小红旗”,300个涤纶材质的“小红旗”共花费570元,求这两种材质的“小红旗”单价各为多少元?参考答案1.A 2.D 3.C 4.B 5.D 6.D 7.B 8.A 9.C 10.A11.20 3252 x yx y+=⎧⎨+=⎩12.3214 2311 x yx y+=⎧⎨+=⎩13.500,3%4%500 3.6% x yx y+=⎧⎨+=⨯⎩14.4648 2538 x yx y+=⎧⎨+=⎩15.416.应该分配10人做A零件,45人做B零件,才能做出刚好配套的产品.17.这些消毒液应该分装20000大瓶,50000小瓶18.塑料材质的“小红旗”的单价为1.2元,涤纶材质的“小红旗”的单价为1.5元。

2020-2021学年人教版七年级下册数学 9.3一元一次不等式组(应用题)(含答案)

2020-2021学年人教版七年级下册数学 9.3一元一次不等式组(应用题)(含答案)

9.3一元一次不等式组(应用题篇)一、单选题1.把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人能分到笔记本但数量不足3本,则共有学生( )A .4人B .5人C .6人D .5人或6人 2.如图,天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m(g)的取值范围,在数轴上可表示为( )A .B .C .D . 3.在平面直角坐标系中,若点 ,(2P m m +)在第二象限,且m 为负整数,则点P 坐标为( ) A .()1,3- B .()1,1- C .()1,1- D .()2,0- 4.生物小组要在温箱里培养A 、B 两种菌苗,A 种菌苗的生长温度()x C ︒的范围是3538x ≤≤,B 种菌苗的生长温度()y C ︒的范围是3436x ≤≤,那么温箱里的温度()T C ︒应该设定的范围是( )A .3538T ≤≤B .3536T ≤≤C .3436T ≤≤D .3638T ≤≤ 5.用若干量载重量为6吨的火车运一批货物,若每辆货车只装4吨,则剩下18吨货物;若每辆货车装6吨,则最后一辆车装的货物不足5吨,若设有x 辆货车,则x 应满足的不等式组是( )A .()()6418064185x x x x ⎧-+⎪⎨-+≤⎪⎩>B .()()()()418610418615x x x x >⎧+--⎪⎨+--≤⎪⎩C .()()()()614180614185x x x x ⎧--+⎪⎨--+⎪⎩><D .()()()()418610418615x x x x ⎧+--⎪⎨+--⎪⎩>< 6.2015年4月份的尼泊尔强震曾经导致珠峰雪崩,在珠峰抢险时,需8组登山队员步行运送物资,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够90人,那么预定每组分配的人数是()A.10B.11C.12D.137.如图是某月的月历表,从表的竖列任取三个数相加,不可能得到的是()A.33B.42C.55D.548.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂,A B两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排,A B两种货厢的节数,有几种运输方案()A.1种B.2种C.3种D.4种9.某种出租车的收费标准是:起步价7元(即行驶距离不超过3千米都收7元车费),超过3千米以后,超过部分每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共支付19元,设此人从甲地到乙地经过的路程是x千米,那么x的取值范围是( )A.1<x≤11B.7<x≤8C.8<x≤9D.7<x<810.如图,这是王彬同学设计的一个计算机程序,规定从“输入一个值x”到判断“结果是否≥13”为一次运行过程.如果程序运行两次就停止,那么x的取值范围是()A.x≥4B.4≤x<7C.4<x≤7D.x≤7二、填空题11.某校计划组织七年级师生外出研学,若学校租用30座的客车x辆,则有15人无法乘坐;若租用45座的客车则可少租用2辆,且最后一辆车还没坐满.那么乘坐最后一辆45座客车的师生人数是_______人(用含x 的代数式表示),师生总人数可能为_________.12.某宾馆一楼房间比二楼房间少5间,一旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满.若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满.问宾馆一楼的房间有_______间.13.我校为组织八年级的234名同学去看电影,租用了某公交公司的几辆公共汽车.如果每辆车坐30人,则最后一辆车不空也不满.他们共租了___辆公共汽车.14.如图,用如图①中的a 张长方形和b 张正方形纸板作侧面和底面,做成如图①的竖式和横式两种无盖纸盒.若295305a b <+<,用完这些纸板做竖式纸盒比横式纸盒多30个,则a =_____,b =_____.15.在“新冠肺炎”这场没有硝烟的战争中,各行各业都涌现出了一批“最美逆行者”,其中抗疫最前沿的就是护士.某医院护安排护士若干名负责护理新冠病人,每名护士护理4名新冠病人,有20名新冠病人没人护理,如果每名护士护理8名新冠病人,有一名护士护理的新冠病人多于1人不足8人,这个医院安排了________名护士护理新冠病人.三、解答题16.2020年春节新冠肺炎疫情期间,小明妈妈手工制作了一些抗疫英雄的人偶,待小明开学后送给同班同学.如果每组分10个,那么余5个;如果前面的组每个组分13个,那么最后一个组虽然分有人偶,但不足4个.小明所在班级有多少个组?小明妈妈一共做了多少个人偶?17.安庆外国语为创建书香校园,去年购进一批图书,经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.(1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?18.列方程组或不等式解决实际问题某汽车专卖店销售A ,B 两种型号的新能源汽车,上周和本周的销售情况如下表:(1)每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共7辆,且A型号车不少于2辆,购车费不少于154万元,则有哪几种购车方案?参考答案1.C2.A3.B4.B5.D6.C7.C8.C9.B10.B11.-15x+150 255人或285人12.1013.814.225,75.15.616.小明所在班级有5个组,小明妈妈一共做了人偶55个.17.(1)文学书的单价为8元,科普书的单价为12元;(2)至多还能购进466本科普书18.(1)每辆A型车的售价为18万元,B型车的售价为26万元;(2)有两种购车方案:购进A 型车2辆,则购进B型车5辆;购进A型车3辆,则购进B型车4辆。

2020-2021学年人教版数学 七年级下册 5.1 相交线 垂线段 同步练习

2020-2021学年人教版数学 七年级下册  5.1 相交线  垂线段 同步练习

5.1 相交线垂线段基础训练知识点1 垂线段的定义1.下列说法正确的是()A.垂线段就是垂直于已知直线的线段B.垂线段就是垂直于已知直线并且与已知直线相交的线段C.垂线段是一条竖起来的线段D.过直线外一点向该直线作垂线,这一点到垂足之间的线段叫垂线段2.如图,下列说法不正确的是()A.点B到AC的垂线段是线段ABB.点C到AB的垂线段是线段ACC.线段AC是点A到BC的垂线段D.线段BD是点B到AD的垂线段知识点2 垂线段的性质3.如图,计划在河边建一水厂,过C点作CD⊥AB于D点.在D点建水厂,可使水厂到村庄C的路程最短,这样设计的依据是__________.4.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()A.A点B. B点C.C点D.D点5.如图,已知AC⊥BC,CD⊥AB,垂足分别是C,D,那么以下线段大小的比较必定成立的是()A.CD>ADB.AC<BCC.BC>BDD.CD<BD6.如图,AD⊥BD,BC⊥CD,AB=6 cm,BC=4 cm,则BD的长度的取值范围是()A.大于4 cmB.小于6 cmC.大于4 cm或小于6 cmD.大于4 cm且小于6 cm7.如图,在三角形ABC中,∠C=90°,AC=3,点P可以在直线BC上自由移动,则AP的长不可能是()A.2.5B.3C.4D.5知识点3 点到直线的距离8.如图所示的是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段的长度.9.下列图形中,线段PQ的长表示点P到直线MN的距离的是()10.如图,其长能表示点到直线(线段)的距离的线段的条数是()A.3B.4C.5D.611.如图,三角形ABC是锐角三角形,过点C作CD⊥AB,垂足为D,则点C到直线AB的距离是()A.线段CA的长B.线段CD的长C.线段AD的长D.线段AB的长12.点到直线的距离是指()A.直线外一点到这条直线的垂线的长度B.直线外一点到这条直线上的任意一点的距离C.直线外一点到这条直线的垂线段D.直线外一点到这条直线的垂线段的长度13.如图,AB⊥AC,AD⊥BC,如果AB=4 cm,AC=3 cm,AD=2.4 cm,那么点C到直线AB的距离为()A.3 cmB.4 cmC.2.4 cmD.无法确定易错点对垂线段的性质理解不透彻而致错14.点P为直线m外一点,点A,B,C为直线m上三点,PA=4 cm,PB=5 cm,PC=2 cm,则点P到直线m的距离()A.等于4 cmB.等于2 cmC.小于2 cmD.不大于2 cm提升训练考查角度1 利用点到直线的距离的定义进行识别15.如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有()A.2条B.3条C.4条D.5条考查角度2 利用作垂线法作图16.如图,已知钝角三角形ABC中,∠BAC为钝角.(1)画出点C到AB的垂线段;(2)过点A画BC的垂线;(3)画出点B到AC的垂线段,并量出其长度.考查角度3 利用垂线段的性质比较大小17.如图,直线AB,CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE;(2)过点P画CD的垂线,与AB相交于F点;(3)说明线段PE,PO,FO三者的大小关系,其依据是什么?考查角度4 利用垂线段的性质解实际应用题18.如图,一辆汽车在直线形的公路AB上由A向B行驶,M,N分别是位于公路AB两侧的村庄,设汽车行驶到点P位置时,离村庄M最近,行驶到点Q位置时,离村庄N最近,请你在AB上分别画出P,Q两点的位置.探究培优拔尖角度1 利用垂线段的性质进行方案设计(建模思想)19.如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H的位置,使它到四个村庄的距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短?并说明根据.拔尖角度2 利用垂线段的性质解决绝对值问题(数形结合思想)20.在如图所示的直角三角形ABC中,斜边为BC,两直角边分别为AB,AC,设BC=a,AC=b,AB=c.(1)试用所学知识说明斜边BC是最长的边;(2)试化简|a-b|+|c-a|+|b+c-a|.参考答案1.【答案】D2.【答案】C3.【答案】垂线段最短4.【答案】A5.【答案】C6.【答案】D解:根据“垂线段最短”可知BC<BD<AB,所以BD大于4 cm且小于6 cm.7.【答案】A8.【答案】BN或AM9.【答案】A解:对于选项A,PQ⊥MN,Q是垂足,故线段PQ的长为点P到直线MN 的距离.10.【答案】C解:线段AB的长度可表示点B到AC的距离,线段CA的长度可表示点C到AB的距离,线段AD的长度可表示点A到BC的距离,线段CD 的长度可表示点C到AD的距离,线段BD的长度可表示点B到AD的距离,所以共有5条.11.【答案】B12.【答案】D13.【答案】A解:因为AB⊥AC,所以点C到直线AB的距离是线段AC的长度,即3 cm.14.错解:B诊断:点到直线的距离是指这个点到直线的垂线段的长度.虽然垂线段最短,但是并没有说明PC是垂线段,所以垂线段的长度可能小于2 cm,也可能等于2 cm.正解:D15.【答案】D16.解:如图:(1)CD即为所求;(2)直线AE即为所求;(3)BF即为所求.长度略.17.解:(1)如图所示.(2)如图所示.(3)PE<PO<FO,其依据是垂线段最短.18.解:如图所示.19.解:(1)如图,连接AD,BC,交于点H,则H点为蓄水池的位置,它到四个村庄的距离之和最小.(2)如图,过点H作HG⊥EF,垂足为G,则沿HG开渠最短.根据:连接直线外一点与直线上各点的所有线段中,垂线段最短.分析:本题考查了垂线段的性质在实际生活中的运用.体现了建模思想的运用.20.解:(1)因为点C与直线AB上点A,B的连线中,CA是垂线段,所以AC<BC.因为点B与直线AC上点A,C的连线中,AB是垂线段,所以AB<BC.故AB,AC,BC中,斜边BC最长.(2)因为BC>AC,AB<BC,AC+AB>BC,所以原式=a-b-(c-a)+b+c-a=a.。

2020—2021学年人教版数学七年级下册 第5章 《相交线与平行线》 解答题专项练习(一)

2020—2021学年人教版数学七年级下册 第5章 《相交线与平行线》  解答题专项练习(一)

七年级下册第5章《相交线与平行线》解答题专项练习(一)1.如图,∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.在下列解答中,填空:证明:∵∠ABC+∠ECB=180°(已知),∴AB∥DE().∴∠ABC=∠BCD().∵∠P=∠Q(已知),∴PB∥()().∴∠PBC=()(两直线平行,内错角相等).∵∠1=∠ABC﹣(),∠2=∠BCD﹣(),∴∠1=∠2(等量代换).2.综合探究:已知,AB∥CD,点M、N分别是AB、CD上两点,点G在AB、CD之间,连接MG、NG.(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG =40°,求∠MGN+∠MPN的度数.3.在综合与实践课上,老师让同学们以“两条平行线AB,CD和一块含60°角的直角三角尺EFG(∠EFG=90°,∠EGF=60°)”为主题开展数学活动.(1)如图(1),若三角尺的60°角的顶点G放在CD上,若∠2=2∠1,求∠1的度数;(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∠AEF与∠FGC间的数量关系;(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEG=α,∠CFG=β,则∠AEG与∠CFG的数量关系是什么?用含α,β的式子表示(不写理由).4.取一副三角板按如图所示拼接,固定三角板ADC,将三角板ABC绕点A顺时针方向旋转,旋转角度为a(0°<α≤45°),得到△ABC'.BC'交CD于O.(1)当α=度时,AB∥DC;当旋转到图③所示位置时,α=度.(2)连接BD,当0°<α≤45°时,探求∠DBC'+∠CAC'+∠BDC值的大小变化情况,并说明理由.5.如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.6.已知:如图,DB⊥AF于点G,EC⊥AF于点H,∠C=∠D.求证:∠A=∠F.证明:∵DB⊥AF于点G,EC⊥AF于点H(已知),∴∠DGH=∠EHF=90°().∴DB∥EC().∴∠C=().∵∠C=∠D(已知),∴∠D=().∴DF∥AC().∴∠A=∠F().7.如图,在△ABC的三边上有D,E,F三点,点G在线段DF上,∠1与∠2互补,∠3=∠C.(1)若∠C=40°,求∠BFD的度数;(2)判断DE与BC的位置关系,并说明理由.8.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数.(2)若∠EOC:∠EOD=4:5,求∠BOD的度数.9.如图,直线AB、CD相交于点O,已知∠AOC=75°,∠BOE:∠DOE=2:3.(1)求∠BOE的度数;(2)若OF平分∠AOE,∠AOC与∠AOF相等吗?为什么?10.平面内两条直线EF、CD相交于点O,OA⊥OB,OC恰好平分∠AOF.(1)如图1,若∠AOE=40°,求∠BOD的度数;(2)在图1中,若∠AOE=x°,请求出∠BOD的度数(用含有x的式子表示),并写出∠AOE和∠BOD的数量关系;(3)如图2,当OA,OB在直线EF的同侧时,∠AOE和∠BOD的数量关系是否会发生改变?若不变,请直接写出它们之间的数量关系;若发生变化,请说明理由.11.如图,直线AB,CD交于点O,OE平分∠COB,OF是∠EOD的角平分线.(1)说明:∠AOD=2∠COE;(2)若∠AOC=50°,求∠EOF的度数;(3)若∠BOF=15°,求∠AOC的度数.12.如图1,AB∥CD,点E在AB上,点H在CD上,点F在直线AB,CD之间,连接EF,FH,∠AEF+∠CHF=∠EFH.(1)直接写出∠EFH的度数为;(2)如图2,HM平分∠CHF,交FE的延长线于点M,证明:∠FHD﹣2∠FMH=36°;(3)如图3,点P在FE的延长线上,点K在AB上,点N在∠PEB内,连NE,NK,NK∥FH,∠PEN=2∠NEB,则2∠FHD﹣3∠ENK的值为.13.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC 的度数.14.已知:直线GH分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,并且EM∥FN.(1)如图1,求证:AB∥CD;(2)如图2,∠AEF=2∠CFN,在不添加任何辅助线的情况下,请直接写出图2中四个角,使写出的每个角的度数都为135°.15.如图1,已知AB∥CD,∠B=30°,∠D=120°;(1)若∠E=60°,则∠F=;(2)请探索∠E与∠F之间满足的数量关系?说明理由;(3)如图2,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P 的度数.参考答案1.证明:∵∠ABC+∠ECB=180°(已知),∴AB∥DE(同旁内角互补,两直线平行).∴∠ABC=∠BCD(两直线平行,内错角相等).∵∠P=∠Q(已知),∴PB∥(CQ)(内错角相等,两直线平行).∴∠PBC=(∠BCQ)(两直线平行,内错角相等).∵∠1=∠ABC﹣(∠PBC),∠2=∠BCD﹣(∠BCQ),∴∠1=∠2(等量代换).故答案为:同旁内角互补,两直线平行;两直线平行,内错角相等;CQ,内错角相等,两直线平行;∠BCQ;∠PBC;∠BCQ.2.解:(1)如图1,过点G作GH∥AB,∵AB∥CD,∴GH∥AB∥CD,∴∠AMG=∠HGM,∠CNG=∠HGN,∵GM⊥GN,∴∠MGN=∠MGH+∠HGN=∠AMG+∠CNG=90°;答:∠AMG+∠CNG的度数为90°;(2)如图2,过过点G作GK∥AB,过点P作PQ∥AB,设∠GND=α,∵GK∥AB,AB∥CD,∴GK∥CD,∴∠KGN=∠GND=α,∵GK∥AB,∠BMG=40°,∴∠MGK=∠BMG=40°,∵MG平分∠BMP,∴∠GMP=∠BMG=40°,∴∠BMP=80°,∵ND平分∠GNP,∴∠DNP=∠GND=α,∵AB∥CD,∴PQ∥CD,∴∠QPN=∠DNP=α,∴∠MGN=40°+α,∠MPN=80°﹣α,∴∠MGN+∠MPN=40°+α+80°﹣α=120°.3.解:(1)∵AB∥CD,∴∠1=∠EGD.∵∠2+∠FGE+∠EGD=180°,∠2=2∠1,∴2∠1+60°+∠1=180°,解得∠1=40°;(2)如图,过点F作FP∥AB,∵CD∥AB,∴FP∥AB∥CD.∴∠AEF=∠EFP,∠FGC=∠GFP.∴∠AEF+∠FGC=∠EFP+∠GFP=∠EFG.∵∠EFG=90°,∴∠AEF+∠FGC=90°;(3)α+β=300°.理由如下:∵AB∥CD,∴∠AEF+∠CFE=180°.即α﹣30°+β﹣90°=180°,整理得α+β=180°+120°=300°.4.解:(1)∵AB∥CD,∴∠CAB=∠ACD=30°,∴∠CAC'=α=15°.当旋转到图③所示位置时,∠C'AB=45°,∴α=∠C'AB=45°;故答案为:15;45;(2)∠DBC'+∠CAC'+∠BDC值的大小不变,理由如下:设BC'与CD交于点H,如图②所示:∵∠EHC'=∠BDC+∠DBC',∠CEC'=∠CAC'+∠C,∴∠DBC′+∠CAC′+∠BDC=∠EHC'+∠CEC'﹣∠C,∵∠EHC'+∠CEC'+∠C'=180°,∴∠EHC'+∠CEC'=180°﹣45°=135°,∴∠DBC′+∠CAC′+∠BDC=135°﹣∠C=135°﹣30°=105°,即∠DBC'+∠CAC'+∠BDC值的大小不变.5.解:(1)DE∥BC,理由如下:∵∠1+∠4=180°,∠1+∠2=180°,∴∠2=∠4,∴AB∥EF,∴∠3=∠5,∵∠3=∠B,∴∠5=∠B,∴DE∥BC,(2)∵DE平分∠ADC,∴∠5=∠6,∵DE∥BC,∴∠5=∠B,∵∠2=3∠B,∴∠2+∠5+∠6=3∠B+∠B+∠B=180°,∴∠B=36°,∴∠2=108°,∵∠1+∠2=180°,∴∠1=72°.6.解:∵DB⊥AF于点G,EC⊥AF于点H(已知),∴∠DGH=∠EHF=90°(垂直的定义),∴DB∥EC(同位角相等,两直线平行),∴∠C=∠DBA(两直线平行,同位角相等),∵∠C=∠D(已知),∴∠D=∠DBA(等量代换),∴DF∥AC(内错角相等,两直线平行),∴∠A=∠F(两直线平行,内错角相等).故答案为:垂直的定义;同位角相等,两直线平行;∠DBA,两直线平行,同位角相等;∠DBA,等量代换;内错角相等,两直线平行;两直线平行,内错角相等.7.解:(1)∵∠1与∠2互补,∴AC∥DF,∴∠BFD=∠C=40°;(2)DE∥BC,理由如下:由(1)可知:∠BFD=∠C,∵∠C=∠3,∴∠BFD=∠3,∴DE∥BC.8.解:(1)∵∠EOC=70°,OA平分∠EOC,∴∠AOC=35°,∴∠BOD=∠AOC=35°;(2)设∠EOC=4x,则∠EOD=5x,∴5x+4x=180°,解得x=20°,则∠EOC=80°,又∵OA平分∠EOC,∴∠AOC=40°,∴∠BOD=∠AOC=40°.9.解:(1)设∠BOE=2x,则∠EOD=3x,∠BOD=∠AOC=75°,∴2x+3x=75°,解得x=15°,则2x=30°,3x=45°,∴∠BOE=30°;(2)∵∠BOE=30°,∴∠AOE=150°,∵OF平分∠AOE,∴∠AOF=75°,∴∠AOC=∠AOF.10.解:(1)∵∠AOE=40°,∴∠AOF=180°﹣∠AOE=140°,∵OC平分∠AOF,∴,∵OA⊥OB,∴∠AOB=90°,∴∠BOD=180°﹣∠AOB﹣∠AOC=20°;(2)∵∠AOE=x°,∴∠AOF=180°﹣∠AOE=(180﹣x)°,∵OC平分∠AOF,∴,∵OA⊥OB,∴∠AOB=90°,∴;∴∠AOE=2∠BOD;(3)不变,∠AOE=2∠BOD.11.解:(1)∵OE平分∠COB,∴∠COE=∠COB,∵∠AOD=∠COB,∴∠AOD=2∠COE;(2)∵∠AOC=50°,∴∠BOC=180°﹣50°=130°,∴∠EOC=∠BOC=65°,∴∠DOE=180°﹣∠EOC=180°﹣65°=115°,∵OF平分∠DOE,∴∠EOF=∠DOE=57.5°;(3)设∠AOC=∠BOD=α,则∠DOF=α+15°,∴∠EOF=∠DOF=α+15°,∴∠EOB=∠EOF+∠BOF=α+30°,∴∠COB=2∠EOB=2α+60°,而∠COB+∠BOD=180°,即,3α+60°=180°,解得,α=40°,即,∠AOC=40°.12.解:(1)过点F作MN∥AB,如图1所示:则∠BEF=∠EFM,∵AB∥CD,∴MN∥CD,∴∠DHF=∠HFM,∴∠AEF+∠CHF+∠EFH=360°,∵∠AEF+∠CHF=∠EFH,故∠EFH=108°,故答案为108°;(2)过点F作FF′∥AB,过点M作MM′∥AB.∵AB∥CD,∴FF′∥MM′∥AB∥CD,∴∠F′FH=∠FHD,∴∠3=∠EFH﹣∠F′FH=108°﹣∠FHD,∴∠M′MF=∠3=108°﹣∠FHD,∵∠1=∠2,∴∠1=,∵MM′∥CD,∴∠M′MH=∠1,∴∠FMH+108°﹣∠FHD=,∴∠FHD﹣2∠FMH=36°;(3)延长NK交CD于点R,∵∠AEF+∠CHF=∠EFH,即∠1+∠2=∠3,而∠1+∠2+∠3=360°,故∠1+∠2=252°,设∠NEB=α,则∠PEN=2∠NEB=2α,则∠1=∠PEB=3α,而∠2=180°﹣∠4,故3α﹣∠4=72°,则2∠FHD﹣3∠ENK=2∠4﹣3(∠NKB﹣∠NEB)=2∠4﹣3(∠4﹣α)=3α﹣∠4=72°,故答案为72°.13.解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.14.(1)证明:∵EM∥FN,∴∠EFN=∠FEM.∵EM平分∠BEF,FN平分∠CFE,∴∠CFE=2∠EFN,∠BEF=2∠FEM.∴∠CFE=∠BEF.∴AB∥CD.(2)∠AEM,∠GEM,∠DFN,∠HFN度数都为135°.理由如下:∵AB∥CD,∴∠AEF+∠CFE=180°,∵FN平分∠CFE,∴∠CFE=2∠CFN,∵∠AEF=2∠CFN,∴∠AEF=∠CFE=90°,∴∠CFN=∠EFN=45°,∴∠DFN=∠HFN=180°﹣45°=135°,同理:∠AEM=∠GEM=135°.∴∠AEM,∠GEM,∠DFN,∠HFN度数都为135°.15.解:(1)如图1,分别过点E,F作EM∥AB,FN∥AB,∴EM∥AB∥FN,∴∠B=∠BEM=30°,∠MEF=∠EFN,又∵AB∥CD,AB∥FN,∴CD∥FN,∴∠D+∠DFN=180°,又∵∠D=120°,∴∠DFN=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠MEF+60°∴∠EFD=∠BEF+30°=90°;故答案为:90°;(2)如图1,分别过点E,F作EM∥AB,FN∥AB,∴EM∥AB∥FN,∴∠B=∠BEM=30°,∠MEF=∠EFN,又∵AB∥CD,AB∥FN,∴CD∥FN,∴∠D+∠DFN=180°,又∵∠D=120°,∴∠DFN=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠MEF+60°,∴∠EFD=∠BEF+30°;(3)如图2,过点F作FH∥EP,由(2)知,∠EFD=∠BEF+30°,设∠BEF=2x°,则∠EFD=(2x+30)°,∵EP平分∠BEF,GF平分∠EFD,∴∠PEF=∠BEF=x°,∠EFG=∠EFD=(x+15)°,∵FH∥EP,∴∠PEF=∠EFH=x°,∠P=∠HFG,∵∠HFG=∠EFG﹣∠EFH=15°,∴∠P=15°.。

2020年春人教版初中数学七年级下册8.3实际问题和二元一次方程组课后提升练习(共38张PPT)

2020年春人教版初中数学七年级下册8.3实际问题和二元一次方程组课后提升练习(共38张PPT)

母刚好配套.
8.3 实际问题与二元一次方程组
栏目索引
19.(2019江苏苏州中学月考)某书店在世界读书日举办“书香”图书展,已 知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150 元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的 60%出售,小明花80元买了这两本书,求这两本书的标价各是多少元.
母18个,若一个螺栓配两个螺母,则应分配多少名工人生产螺栓和多少名工
人生产螺母,才能使每天生产出来的螺栓和螺母刚好配套?
解析 设分配x人生产螺栓,分配y人生产螺母.
由题意,得 2x
y 12x
28, 18
y,
解得
x y
12, 16.
答:应分配12人生产螺栓,16人生产螺母,才能使每天生产出来的螺栓和螺
由题意,得 3xxy2y10,50-26,
解得
x y
4, 6.
答:应放入4个大球,6个小球.
8.3 实际问题与二元一次方程组
栏目索引
17.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:


进价(元/件)
15
35
售价(元/件)
20
45
若商店计划销售完这批商品后能获利1 100元,请利用二元一次方程组求 甲、乙两种商品应分别购进多少件.
8.3 实际问题与二元一次方程组
栏目索引
5.已知一个两位数,它的十位上的数字x比个位上的数字y大1,若对调个位
与十位上的数字,得到的新数比原数小9,求这个两位数,所列方程组正确的
是( )
A.(xx--yy)-1(y-x) 9
B.
x 10x
y
1 y

2020—2021年人教版初中数学七年级下册直方图课时练习及答案解析(精品提分试题).docx

2020—2021年人教版初中数学七年级下册直方图课时练习及答案解析(精品提分试题).docx

新人教版数学七年级下册第十章第二节直方图练习一、选择题1.为了绘出一批数据的频率分布直方图,首先计算出这批数据的变动范围是指数据的( )A.最大值B.最小值C.最大值与最小值的差D.个数答案:C知识点:频数(率)分布直方图解析:解答:根据频率直方图的是将数据将参量的数值范围等分为若干区间,统计该参量在各个区间上出现的频率,并用矩形条的长度表示频率的大小.即是按照数据的大小按序排列,故选C.分析:频率直方图是按照数据从小到大的顺序排列,包括所有的数据,即数据的变化范围是指数据的最大值和最小值的差.2.在统计中频率分布的主要作用是()A.可以反映一组数据的波动大小B.可以反映一组数据的平均水平C.可以反映一组数据的分布情况D.可以看出一组数据的最大值和最小值答案:A知识点:频数与频率解析:解答:频率是指每个对象出现的次数与总次数的比值(或者百分比),频率反映了各组频数的大小在总数中所占的分量.即可以反映总体的平均水平.故选A.分析:根据频率的定义,即可作出判断3.在频数分布直方图中,各小矩形的面积等于( ).A.相应各组的频数B.组数C.相应各组的频率D.组距答案:C知识点:频数(率)分布直方图解析:解答:根据频率分布直方图的意义,因为小矩形的面积之和等于1,频率之和也为1,所以有各小长方形的面积等于相应各组的频率;故选C.分析:根据频率分布直方图的意义,易得答案.4.已知一组数据有80个,其中最大值为143,最小值为50,取组距为10,则可分成( ).A.10组B.9组C.8组D.7组答案:A知识点:频数(率)分布直方图解析:解答:在样本数据中最大值为143,最小值为50,它们的差是143-50=93,已知组距为10,那么由于93÷10=9.3,故可以分成10组.故选A.分析:求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数5. 已知一个样本容量为50,在频数分布直方图中,各小长方形的高比为2:3:4:1,那么第四组的频数是( )A .5B .6C .7D .8 答案:A知识点:频数(率)分布直方图解析:解答:∵频数分布直方图中各个长方形的高之比依次为2:3:4:1,样本容量为50,∴第四小组的频数为50×14321+++=5. 故选A .分析:频数分布直方图中,各个长方形的高之比依次为2:3:4:1,则指各组频数之比为2:3:4:1,据此即可求出第四小组的频数. 6 .将50个数据分成3组,其中第一组和第三组的频率之和为0.7,则第二小组的频数是( ) A .0.3 B .30 C .15D .35答案:C知识点:频数与频率解析:解答:根据频率的性质,得 第二小组的频率等于1-0.7=0.3,则第二小组的频数是50×0.3=15.故选C分析:根据频率的性质,即各组的频率之和为1,求得第二组的频率;再根据频率=频数÷总数,进行计算.7. 对一组数据进行适当整理,下列结论正确的是( )A.众数所在的一组频数最大B.若极差等于24,取组距为4时,数据应分为6组C.绘频数分布直方图时,小长方形的高与频数成正比D.各组的频数之和等于1答案:C知识点:频数(率)分布直方图,众数,极差解析:解答:A、众数是该组数据出现次数最多的数值,而频数最大的一组表示该范围内的数据最多,所以,众数不一定在频数最大的一组,故本选项错误;B、若极差等于24,取组距为4时,∵24÷4=6,∴数据应分为7组,故本选项错误;C、∵绘制的是频数直方图,∴小长方形的高表示频数,∴小长方形的高与频数成正比,故本选项正确;D、各组的频数之和等于数据的总数,频率之和等于1,故本选项错误.故选C.分析:根据频数分布直方图的特点,众数,极差的定义对各选项分析判断后利用排除法求解.8.某班50名学生期末考试数学成绩(单位:分)的频率分布直方图如图所示,其中数据不在分点上,对图中提供的信息作出如下的判断:(1)成绩在49.5分~59.5分段的人数与89.5分~100分段的人数相等;(2)成绩在79.5~89.5分段的人数占30%;(3)成绩在79.5分以上的学生有20人;(4)本次考试成绩的中位数落在69.5~79.5分段内.其中正确的判断有()A.4个B.3个C.2个D.1个答案:A知识点:频数(率)分布直方图解析:解答:(1)从频率分布直方图上看成绩在49.5分~59.5分段的人数与89.5分~100分段的人数相等,故选项正确;(2)从频率分布直方图上看出:成绩在79.5~89.5分段的人数30%,故选项正确;(3)成绩在79.5分以上的学生有50×(30%+10%)=20人,故选项正确;(4)将该组数据按从小到大(或按从大到小)的顺序排列,本次考试成绩的中位数落在69.5~79.5分段内,故选项正确.故选A.分析:根据频数分布直方图的特点,以及中位数的定义进行解答.9.在样本频数分布直方图中,有11个小长方形.若中间的小长1,且样本容量为方形的面积等于其他10个小长方形面积之和的4160个,则中间的一组的频数为( ).A.0.2 B.32 C.0.25 D.40答案:B知识点:频数(率)分布直方图解析:解答:设中间的长方形面积为x,则其他的10个小长方形的面积为4x,所以可得x+4x=1,得x=0.2;又因为样本容量为160,所以中间一组的频数为160×0.2=32,故选B.分析:根据频率分布直方图的意义,因为小矩形的面积之和等于1,所以中间的小长方形的面积与其他10个小长方形面积之和等于1.从而求出中间一个小长方形的面积.又每个小长方形的面积也就是这组的频率,进而求出该组的频数.10.某个样本的频数分布直方图中一共有4组,从左至右的组中值依次为5,8,11,14,频数依次为5,4,6,5,则频率为0.2的一组为( )A .6.5~9.5B .9.5~12.5C .8~11D .5~8答案:A知识点:频数(率)分布直方图解析:解答:各组的频数是5,4,6,5则第一组的频率是:56455+++=0.25,则第四组的频率也是0.25,第二组的频率是:56454+++=0.2,则频率为0.2的一组为第二组;组距是8-5=3,第二组的组中值是8,则第二组的范围是:6.5-9.5. 故选A .分析:首先根据各组的频数即可确定频率是0.2的是哪一组,然后根据组中值的大小即可确定组距,则频率为0.2的一组的范围即可确定.11.某校为了了解九年级学生的体能情况,随机抽查了其中30名学生,测试了他们做1min 仰卧起坐的次数,并制成了如图所示的频数分布直方图,根据图示计算仰卧起坐次数在25~30次的频率是( ).A .0.1B .0.2C .0.3D .0.4答案:D知识点:频数(率)分布直方图.解析:解答:12÷30=0.4. 故选:D .分析:根据频数分布直方图的特点,求出这组的频数,再根据频率=频数÷总数,代入数计算即可12.超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间6分钟到7分钟表示大于或等于6分钟而小于7分钟,其它类同).这个时间段内顾客等待时间不少于6分钟的人数为( )A .5B .7C .16D .33答案:B知识点:频数(率)分布直方图. 0 1 2 3 4 5 6 7 8 等待时间/min 4 81216人数2 3 6 8 19 52解析:解答:由频数直方图可以看出: 顾客等待时间不少于6分钟的人数即最后两组的人数为:5+2=7人. 故答案为:B分析:分析频数直方图,找等待时间不少于6分钟的小组,读出人数再相加可得答案13.2000辆汽车通过某一段公路时的时速的频率分布直方图如下图所示,时速大于等于50且小于60的汽车大约有( )A .30辆B .60辆C .300辆D .600辆答案:D知识点:频数(率)分布直方图.解析:解答:由频数直方图可以看出:该组的03.0 组距频率,又组距=10所以该组的频率=0.3,因此该组的频数=0.3×2000=600 故选D分析:根据频数分布直方图的特点,求出这组的频率,再根据频率=频数÷总数,代入数计算即可14.某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106](即96≤净重≤106),样本数据分组为[96,98)(即96≤净重<98)以下类似,[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( ).A.90B.75C. 60D.45答案:A知识点:频数(率)分布直方图.解析:解答:∵由频率分布直方图的性质得各矩形面积和等于1, ∴样本中产品净重大于96克小于100克的频率为2×(0.050+0.100)=0.3, ∴样本容量=1203.036 又∵样本中净重大于或等于98克并且小于104克的产品的频率为2×(0.125+0.150+0.100)=0.75, 96 98 100 102 104 106 0.1500.1250.1000.075克 频率/组距∴样本中净重大于或等于98克并且小于104克的产品的个数是120×0.75=90,故选A分析:根据频率分布直方图,先求出样本容量,再计算出样本中净重大于或等于98克并且小于104克的产品的频率,从而求出频数.15.某篮球队队员年龄结构直方图如下图所示,根据图中信息,可知该队队员年龄的中位数为()A.18岁B.21岁C.23岁D.19.5岁答案:B知识点:条形统计图,中位数的意义及求解方法解析:解答:根据条形统计图可得所有队员的人数为1+2+3+2+2=10(人)因为10人中按照年龄从小到大排列,第5,6两人的岁数都是21岁,所以中位数是21岁故选B分析:根据中位数的定义进行解答.二、填空题16.已知样本容量是40,在样本的频数分布直方图中各小矩形的高之比依次为3:2:4:1,则第二小组的频数为________,第四小组的频率为________.答案:8,10%知识点:频数(率)分布直方图解析:解答:∵频数分布直方图中各个长方形的高之比依次为3:2:4:1,样本的数据个数是40,∴第二小组的频数为40×81024014232=⨯=+++; 第四小组的频率为14231+++=0.1=10%. 故答案为8,10%.分析:频数分布直方图中,各个长方形的高之比依次为3:2:4:1,则指各组频数之比为3:2:4:1,据此即可求出第二小组的频数第四小组的频率.17.为响应市教育局倡导的“阳光体育运动”的号召,全校学生积极参与体育运动.为了进一步了解学校九年级学生的身体素质情况,体育老师在九年级800名学生中随机抽取50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图,如下所示: 组别 次数x 频数(人数)第1组 80≤x <100 6第2组 100≤x <120 8第3组 120≤x <140a第4组140≤x<160 18第5组160≤x<180 6请结合图表完成下列问题:(1)表中的a=______;(2)请把频数分布直方图补充完整;(3)这个样本数据的中位数落在第______组;(4)若九年级学生一分钟跳绳次数(x)达标要求是:x<120为不合格;120≤x<140为合格;140≤x<160为良;x≥160为优.根据以上信息,请你估算学校九年级同学一分钟跳绳次数为优的人数为______.答案:(1)12;(3)3;(4)96.知识点:频数(率)分布直方图解析:解答:(1)由题意得:a=50-(6+8+18+6)=12;(2)由(1)得一分钟跳绳次数在120≤x<140范围中的人数为12,而一分钟跳绳次数在140≤x<160范围中的人数为18人,补全频率直方统计图即可.(3)∵a=12,∴6+8+12=26,则这个样本数据的中位数落在第3小组中;(4)由表格得:50人中一分钟跳绳次数在160≤x <180范围中的人数为6人,即优秀的人数为6人, 则样本中优秀人数所占的百分比为506=12%, 则800名学生中优秀的人数为800×12%=96人.分析:(1)由样本的容量为50,根据表格中各组的数据,即可求出a 的值;(2)由一分钟跳绳次数在120≤x <140范围中的人数为(1)求出的a ,一分钟跳绳次数在140≤x <160范围中的人数为18人,补全频率直方统计图即可;(3)由样本容量为50,得到第25名学生一分钟跳绳次数落在范围120≤x <140中,即可得到这个样本数据的中位数落在第3小组中;(4)由表格得:50人中一分钟跳绳次数在160≤x <180范围中的人数为6人,即优秀的人数为6人,求出优秀人数所占的百分比,即为总体中优秀人数所占的百分比,即可求出800名学生中优秀的人数.18.某单位职工的年龄(取正整数)的频数分布直方图如图所示,根据图中提供的信息,进行填空:(1)该单位职工共有________人;(2)不小于38岁但小于44岁的职工人数占职工总人数的百分率是________.答案:(1)50;(2)60﹪知识点:频数(率)分布直方图解析:解答:(1)由直方图可知:该单位职工共有4+7+9+11+10+6+3=50(人)故答案为50人(2)因为不小于38岁但小于44岁的职工人数=9+11+10=30(人) 所以占职工总人数的百分率=30÷50=60﹪故答案为60﹪分析:(1)根据各组的频数之和即该单位的所有职工的人数可得;(2)根据不小于38岁但小于44岁的职工人数÷职工总人数=占职工总人数的百分率进行计算.19.某市内有一条主干路段,为了使行车安全同时也能增加车流量,规定通过该路段的汽车时速不得低于40km/h,也不得超过70km/h,否则视为违规扣分.某天有1000辆汽车经过了该路段,经过雷达测速得到这些汽车行驶时速的频率分布直方图如图所示,则违规扣分的汽车大约为辆.答案:160知识点:频数(率)分布直方图解析:解答:如图,低于40km/h的频率为0.05,超过70km/h 的车辆的频率为0.11又某天,有1000辆汽车经过了该路段,故违规扣分的车辆大约为1000×(0.05+0.11)=160辆故答案为:160.分析:由频率分布直方图看出,时速低于40km/h,或超过70km/h 车辆的频率,从而可按此比例求出违规扣分的车辆数.20.某校为了了解某个年级的学习情况,在这个年级抽取了50名学生,对某学科进行测试,将所得成绩(成绩均为整数)整理后,列出表格:分组] 50~59分60~69分70~79分80~89分90~99分频率0.04 0.04 0.16 0.34 0.42(1)本次测试90分以上的人数有________人;(包括90分)(2)本次测试这50名学生成绩的及格率是________;(60分以上为及格,包括60分)(3)这个年级此学科的学习情况如何?请在下列三个选项中,选一个填在题后的横线上________.A.好B.一般C.不好答案:(1)21;(2) 96% ;(3)A知识点:频数(率)分布表解析:解答:(1)依题意得测试90分以上的人数(包括90分)有50×0.42=21(人);故选A(2)依题意得本次测试这50名学生成绩的及格率为0.04+0.16+0.34+0.42=96%;(3)由于及格率比较高,优秀人数比较多,所有应该选择好.分析:(1)根据总人数和测试90分以上的人数(包括90分)的频率即可求出这次测试90分以上的人数;(2)根据表格可以得到及格人数,然后除以总人数即可得到及格率;(3)由于及格率比较高,优秀人数比较多,所有应该选择好.21.江涛同学统计了他家10月份的长途电话明细清单,按通话时间画出频数分布直方图.(1)他家这个月一共打了次长途电话;(2)通话时间不足10分钟的次;(3)通话时间在分钟范围最多,通话时间在分钟范围最少.答案:(1)77;(2)43;(3)0~5,10~15知识点:频率(数)分布直方图解析:解答:(1)他家这月份的长途电话次数约为:25+18+8+10+16=77(次);(2)通话时间不足10分钟的次数为:25+18=43(次);(3)通话时间在 0~5 分钟范围最多,通话时间在10~15分钟范围最少.分析:(1)根据频率(数)分布直方图提供的数据,将各组的频数相加即可求解;(2)将第一组和第二组的频数相加,便可求出通话时间不足10分钟的的次数;(3)由频率(数)分布直方图可知通话时间在 0~5 分钟范围最多,通话时间在10~15分钟范围最少.22.某初一年级有500名同学,将他们的身高(单位:cm )数据绘制成频率分布直方图(如图),若要从身高在[)130,120, [)140,130, []150,140三组内的学生中,用分层抽样的方法选取30人参加一项活动,则从身高在[)130,140内的学生中选取的人数为 .051015510252025302015()频数通话次数/时间分()每组中只含最小分钟值,但不含最大分钟值258181016答案:10知识点:频数(率)分布直方图解析:解答:由已知中频率分布直方图的组距为10,身高在[120,130),[130,140),[140,150]的矩形高为(0.1﹣0.005+0.035+0.020+0.010)=0.030,0.020,0.010故身高在[120,130),[130,140),[140,150]的频率为0.30,0.20,0.10故分层抽样的方法选取30人参加一项活动,则从身高在[130,140)内的学生中选取的人数应为30×10.020.030.020.0++=10 故答案为:10分析:由已知中的频率分布直方图,根据各组矩形高之和×组距=1,结合已知中频率分布直方图的组距为10,我们易求出身高在[120,13),[130,140),[140,150]三组内学生的频率,根据分屋抽样中样本比例和总体比例一致的原则,我们易求出从身高在[130,140)内的学生中选取的人数.三、解答题23.为了解八年级学生的课外阅读情况,我校语文组从八年级随机抽取了若干名学生,对他们的读书时间进行了调查并将收集的数据绘成了两幅不完整的统计图,请你依据图中提供的信息,解答下列问题:(每组含最小值不含最大值)(1)从八年级抽取了多少名学生?(2)填空(直接把答案填到横线上)①“2-2.5小时”的部分对应的扇形圆心角为______度; ②课外阅读时间的中位数落在______(填时间段)内.(3)如果八年级共有800名学生,请估算八年级学生课外阅读时间不少于1.5小时的有多少人?答案:(1)120 (2)①72° ②1~1.5 (3)240 知识点:扇形统计图 频数(率)统计图 中位数的意义及求解方法解析:解答:(1)总人数=30÷25%=120人; (2)①a%=%1012012 ; ∴b%=1-10%-25%-45%=20%,∴对应的扇形圆心角为360°×20%=72°;②总共120名学生,中位数为60,61两数的平均数,∴落在1~1.5内.(3)不少于1.5小时所占的比例=10%+20%=30%,∴人数=800×30%=240人.分析:(1)根据0.5~1小时的人数及所占的比例可得出抽查的总人数.(2)①根据2至2.5的人数及总人数可求出a%的值,进而根据圆周为1可得出答案.②分别求出各组的人数即可作出判断.(3)首先确定课外阅读时间不少于1.5小时所占的比例,然后根据频数=总数×频率即可得出答案.24.为了了解学校开展“孝敬父母,从家务事做起”活动的实施情况,该校抽取八年级5名学生调查他们一周(按7天计算)做家务所用时间(单位:小时,调查结果保留一位小数),得到一组数据,并绘制成统计表,请根据表完成下列各题:分组划记频数频率0.55~1.05 正正…14 0.281.05~1.55 正正正15 0.301.55~2.05 正 (7)2.05~2.55 … 4 0.082.55~3.05 … 5 0.103.05~3.55 (3)3.55~4.05 T 0.04(1)填写频率分布表中末完成的部分.(2)由以上信息判断,•每周做家务的时间不超过1.55h•的学生所占的百分比是________.(3)针对以上情况,写一个20字以内倡导“孝敬父母,热爱劳动”的句子.答案:(1)2、0.14、0.06(2)58%(3) 让我们行动起来,在劳动中感恩父母吧!(答案不唯一)知识点:频率(数)分布直方图;频数分布表解析:解答:(1)7÷50=0.14,3÷50=0.06;故答案为:0.14,0.06(2)0.28+0.30=0.58=58%;故答案为:58%.(3)让我们行动起来,在劳动中感恩父母吧!分析:(1)因为总数是50,所以利用频率=频数÷总数即可求出答案;(2)由分布表可知该百分比应为0.28与0.30的和;(3)只要是倡导“孝敬父母,热爱劳动”的句子即可.25.在我市开展“阳光”活动中,为解中学生活动开展情况,随机抽查全市八年级部分同学1分钟,将抽查结果进行,并绘制两个不完整图.请根据图中提供信息,解答问题:(1)本次共抽查多少名学生?(2)请补全直方图空缺部分,直接写扇形图中范围135≤x<155所在扇形圆心角度数.(3)若本次抽查中,在125次以上(含125次)为优秀,请你估计全市8000名八年级学生中有多少名学生成绩为优秀?(4)请你根据以上信息,对我市开展学生活动谈谈自己看法或建议答案:(1)200;(2)81°;(3)4200;(4)全市达到优秀的人数有一半以上,反映了我市学生锻炼情况很好.答案不唯一知识点:频率(频数)分布直方图扇形统计图解析:解答:(1)抽查的总人数:(8+16)÷12%=200(人);(2)范围是115≤x<145的人数是:200-8-16-71-60-16=29(人),则跳绳次数范围135≤x ≤155所在扇形的圆心角度数是:360×2001629+=81°.; (3)优秀的比例是:200162960++×100%=52.5%, 则估计全市8000名八年级学生中有多少名学生的成绩为优秀人数是:8000×52.5%=4200(人);(4)全市达到优秀的人数有一半以上,反映了我市学生锻炼情况很好.分析:(1)利用95≤x <115的人数是8+16=24人,所占的比例是12%即可求解;(2)求得范围是115≤x <145的人数,扇形的圆心角度数是360度乘以对应的比例即可求解;(3)首先求得所占的比例,然后乘以总人数8000即可求解; (4)根据实际情况,提出自己的见解即可,答案不唯一. 26.某小区便民超市为了了解顾客的消费情况,在该小区居民中进行调查,询问每户人家每周到超市的次数,下图是根据调查结果绘制的,请问:(1)这种统计图通常被称为什么统计图?(2)此次调查共询问了多少户人家?(3)超过半数的居民每周去多少次超市?(4)请将这幅图改为扇形统计图.答案:(1)频数分布直方图;(2)1000;(3)1~2知识点:频数(率)分布直方图,扇形统计图解析:解答:(1)这种统计图通常被称为频数分布直方图;(2)此次调查共询问了户数是:50+300+250+100+100+100+50+50=1000(户);(3)超过半数的居民每周去1~2次超市.(4)根据频数直方图中各组的数据,算出每部分对应的圆心角的度数;表示去超市次数所占百分比圆心角度数A 5% 18°B 1 30% 108°C 2 25% 90°D 3 10% 36°E 4 10% 36°F 5 10% 36°G 6 5% 18°H 7 5% 18°扇形统计图如下:分析:(1)根据频数分布直方图的定义即可解决;(2)各组户数的和就是询问的总户数;(3)首先确定这组数据的中位数,即可确定;(4)计算出每组对应的扇形的圆心角,即可作出.27.某年级组织学生参加夏令营,分为甲、乙、丙三组进行活动.•下面两幅统计图反映了学生报名参加夏令营的情况.请你根据图中的信息回答下列问题:报名人数分布直方图报名人数扇形统计图(1)求该年级报名参加本次活动的总人数;(2)求该年级报名参加乙组的人数,并补全频数分布直方图;(3)根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,那么,应从甲组抽调多少名学生到丙组?答案:(1)50;(2)10;(3)5知识点:扇形统计图频率(频数)分布直方图解析:解答:(1)15÷30%=50(人),(2)乙组的人数:50×20%=10(人);(3)设应从甲组调x名学生到丙组,可得方程:25+x=3(15-x),解得:x=5.答:应从甲组调5名学生到丙组分析:(1)根据甲组有15人,所占的比例是30%,即可求得总数,总数乘以所占的比例即可求得这一组的人数;(2)根据乙组的人数即可补全条形统计图中乙组的空缺部分;(3)设应从甲组调x名学生到丙组,根据丙组人数是甲组人数的3倍,即可列方程求解。

七年级数学下册第六章实数6.3实数练习卷含解析新版新人教版20200528323

七年级数学下册第六章实数6.3实数练习卷含解析新版新人教版20200528323

6.3 实数一.选择题(共20小题)1.比较两个实数与的大小,下列正确的是()A.>B.<C.=D.不确定2.若a=﹣,b=﹣|﹣|,c=﹣,则a、b、c的大小关系为()A.a>b>c B.c>a>b C.b>a>c D.c>b>a3.若n<+1<n+1,则整数n为()A.2 B.3 C.4 D.54.估算7﹣的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.设边长为a的正方形的面积为5.下列关于a的三种说法:①a是无理数;②a可以用数轴上的一个点来表示;⑧0<a<2.其中,所有正确的序号是()A.①②B.①③C.②③D.①②③6.已知m,n是连续的两个整数,且,则mn的值为()A.6 B.12 C.20 D..307.下列说法正确的是()A.的平方根是3B.(﹣1)2010是最小的自然数C.两个无理数的和一定是无理数D.实数与数轴上的点一一对应8.有下列说法:(1)有理数和数轴上的点一一对应;(2)不带根号的数一定是有理数;(3)负数没有立方根;(4)是17的平方根.(5)两个无理数的和一定是无理数.其中正确的说法有()A.0个B.1个C.2个D.3个9.下列说法中,不正确的个数有()①实数与数轴上的点一一对应;②|a|一定是正数;③近似数8.96×104精确到百分位;④(﹣2)8没有平方根;⑤绝对值等于本身的数是正数;⑥带根号的一定是无理数;⑦在1和3之间的无理数有且只有,,,这4个,⑧2﹣的相反数是﹣2.A.4个B.5个C.6个D.7个10.下列各式计算正确的是()A.B.C.D.2+11.阅读理解:我们知道,引进了无理数后,有理数集就扩展到实数集:同样,如果引进“虚数”实数集就扩展到“复数集”现在我们定义:“虚数单位”,其运算规则是:i l=i,i2=﹣1,i3=﹣i,i4=1,i5=i,i6=﹣1,i7=﹣i,则i2019=()A.1 B.﹣1 C.i D.﹣i12.已知实数a=2+,则与实数a互为倒数的是()A.B.C.D.13.在下列实数,3.14159,,0,,,0.131131113…,中,无理数有()个.A.3 B.4 C.5 D.614.下列数据:﹣,021212121,,,|﹣2|,,﹣π,2003003003…(相邻两个3之间有2个0),60.12345..(小数部分由相继的正整数组成),属于无理数的个数为()A.6个B.5个C.3个D.4个15.在实数,3.1415926,0.123123123…,,,,0.1010010001…(相邻两个1中间一次多1个0)中,无理数有()A.2个B.3个C.4个D.5个16.一个数的立方根正好与本身相等,这个数是()A.0 B.0或1 C.0或±1 D.非负数17.下列说法正确的个数()(1)无理数就是开方不尽的数(2)无理数包括正无理数、零、负无理数(3)一个数的平方根等于它本身的是0和1(4)和互为相反数A.1个B.2个C.3个D.4个18.下列说法不正确的是()A.实数包括正实数、零、负实数B.正整数和负整数统称为整数C.无理数一定是无限小数D.2是4的平方根19.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A点,则A 点表示的数是()A.﹣2π﹣1 B.﹣1+πC.﹣1+2πD.﹣π20.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是()A.﹣B.2﹣C.D.二.填空题(共9小题)21.写出一个满足<a<的整数a的值为.22.已知的小数部分是a,的整数部分是b,则a+b=.23.的小数部分是.24.=.25.化简﹣﹣得.26.计算﹣﹣||﹣=27.若和互为相反数,求的为.28.如图,正方形的边长是1个单位长度,则图中B点所表示的数是;若点C是数轴上一点,且点C到A点的距离与点C到原点的距离相等,则点C所表示的数是.29.已知数轴上A、B两点的距离是,点A在数轴上对应的数是2,那么点B在数轴上对应的数是.三.解答题(共1小题)30.计算:﹣.人教新版七年级下学期《6.3 实数》2020年同步练习卷参考答案与试题解析一.选择题(共20小题)1.比较两个实数与的大小,下列正确的是()A.>B.<C.=D.不确定【分析】先估算出的范围,再进行变形即可.【解答】解:∵2<<3,∴1<﹣1<2,∴<<1,即,故选:A.【点评】本题考查了实数的大小比较和估算无理数的大小,能估算出的范围是解此题的关键.2.若a=﹣,b=﹣|﹣|,c=﹣,则a、b、c的大小关系为()A.a>b>c B.c>a>b C.b>a>c D.c>b>a【分析】根据正数大于0,0大于负数,可得答案.【解答】解:∵,,∴,故选:D.【点评】本题考查了实数比较大小,正数大于0,0大于负数是解题关键.3.若n<+1<n+1,则整数n为()A.2 B.3 C.4 D.5【分析】先估算出的大小,再估算出+1的大小,从而得出整数n的值.【解答】解:∵2<<3,∴3<+1<4,∴整数n为3;故选:B.【点评】此题考查了估算无理数的大小,解题的关键是估算出的大小.4.估算7﹣的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】先估算出的范围,再估算出7﹣的范围即可.【解答】解:∵4<<5,∴7﹣的值在2和3之间;故选:A.【点评】此题主要考查了估计无理数,得出的取值范围是解题关键.5.设边长为a的正方形的面积为5.下列关于a的三种说法:①a是无理数;②a可以用数轴上的一个点来表示;⑧0<a<2.其中,所有正确的序号是()A.①②B.①③C.②③D.①②③【分析】利用正方形的面积公式得到a=,则可对①②进行判断,利用4<5<9可对③进行判断.【解答】解:∵边长为a的正方形的面积为5,∴a=,所以a为无理数,a可以用数轴上的一个点来表示;2<a<3.故选:A.【点评】本题考查了估算无理数的大小:用有理数逼近无理数,求无理数的近似值.6.已知m,n是连续的两个整数,且,则mn的值为()A.6 B.12 C.20 D..30【分析】先估算出的取值范围,得出m、n的值,进而可得出结论.【解答】解:∵9<10<16,∴3<<4,∴m=4,n=5,∴mn=4×5=20;故选:C.【点评】本题考查的是估算无理数的大小,先根据题意算出的取值范围是解答此题的关键.7.下列说法正确的是()A.的平方根是3B.(﹣1)2010是最小的自然数C.两个无理数的和一定是无理数D.实数与数轴上的点一一对应【分析】利用算术平方根定义,乘方的意义,以及实数、无理数的性质判断即可.【解答】解:A、=9,9的平方根为±3,不符合题意;B、(﹣1)2010=1,不是最小的自然数,不符合题意;C、两个无理数的和不一定是无理数,例如﹣+=0,不符合题意;D、实数与数轴上的点一一对应,符合题意,故选:D.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.8.有下列说法:(1)有理数和数轴上的点一一对应;(2)不带根号的数一定是有理数;(3)负数没有立方根;(4)是17的平方根.(5)两个无理数的和一定是无理数.其中正确的说法有()A.0个B.1个C.2个D.3个【分析】利用实数的性质及平方根定义判断即可.【解答】解:(1)实数和数轴上的点一一对应,不符合题意;(2)不带根号的数不一定是有理数,不符合题意;(3)负数有立方根,不符合题意;(4)﹣是17的平方根,符合题意;(5)两个无理数的和不一定是无理数,不符合题意,则正确的说法有1个,故选:B.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.9.下列说法中,不正确的个数有()①实数与数轴上的点一一对应;②|a|一定是正数;③近似数8.96×104精确到百分位;④(﹣2)8没有平方根;⑤绝对值等于本身的数是正数;⑥带根号的一定是无理数;⑦在1和3之间的无理数有且只有,,,这4个,⑧2﹣的相反数是﹣2.A.4个B.5个C.6个D.7个【分析】直接利用实数的性质结合无理数的定义以及相反数的定义分别分析得出答案.【解答】解:①实数与数轴上的点一一对应,正确,故此选项不合题意;②|a|一定是正数或0,错误,故此选项符合题意;③近似数8.96×104精确到百位,错误,故此选项符合题意;④(﹣2)8有平方根,错误,故此选项符合题意;⑤绝对值等于本身的数是正数或0,错误,故此选项符合题意;⑥带根号的一定是无理数,错误,例如,故此选项符合题意;⑦在1和3之间的无理数有,,,,1.4…等无数个,错误,故此选项符合题意,⑧2﹣的相反数是﹣2,正确,故此选项不合题意.故选:C.【点评】此题主要考查了实数的性质、无理数的定义以及相反数的定义,正确把握相关定义是解题关键.10.下列各式计算正确的是()A.B.C.D.2+【分析】根据同类二次根式的概念与合并法则及二次根式的性质和化简逐一计算可得.【解答】解:A.=2≠﹣2,此选项错误;B.与不能合并,即,此选项错误;C.=2,此选项正确;D.2与2不是同类二次根式,不能合并,此选项错误;故选:C.【点评】本题主要考查二次根式的化简和加减运算,解题的关键是掌握二次根式的运算性质和运算法则.11.阅读理解:我们知道,引进了无理数后,有理数集就扩展到实数集:同样,如果引进“虚数”实数集就扩展到“复数集”现在我们定义:“虚数单位”,其运算规则是:i l=i,i2=﹣1,i3=﹣i,i4=1,i5=i,i6=﹣1,i7=﹣i,则i2019=()A.1 B.﹣1 C.i D.﹣i【分析】根据已知得出变化规律进而求出答案.【解答】解:∵i l=i,i2=﹣1,i3=﹣i,i4=1,i5=i,i6=﹣1,i7=﹣i,∴每4个数据一循环,∵2019÷4=504…3,∴i2019=i3=﹣i.故选:D.【点评】此题主要考查了新定义,正确理解题意是解题关键.12.已知实数a=2+,则与实数a互为倒数的是()A.B.C.D.【分析】根据倒数的定义作答.【解答】解:实数a的倒数是==2﹣.故选:B.【点评】考查了实数的性质,乘积为1的两个实数互为倒数,即若a与b互为倒数,则ab=1;反之,若ab=1,则a与b互为倒数,这里应特别注意的是0没有倒数.13.在下列实数,3.14159,,0,,,0.131131113…,中,无理数有()个.A.3 B.4 C.5 D.6【分析】根据无理数的三种形式求解.【解答】解:=2,=8,无理数有:,,0.131131113…,,共4个.故选:B.【点评】本题考查了无理数.解题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.14.下列数据:﹣,021212121,,,|﹣2|,,﹣π,2003003003…(相邻两个3之间有2个0),60.12345..(小数部分由相继的正整数组成),属于无理数的个数为()A.6个B.5个C.3个D.4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:是分数,属于有理数;021212121,,是有限小数,属于有理数;|﹣2|=2,,是整数,属于有理数;2003003003…(相邻两个3之间有2个0)是循环小数,属于有理数.无理数有:,﹣π,60.12345..(小数部分由相继的正整数组成)共3个.故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.15.在实数,3.1415926,0.123123123…,,,,0.1010010001…(相邻两个1中间一次多1个0)中,无理数有()A.2个B.3个C.4个D.5个【分析】根据立方根、算术平方根进行计算,根据无理数的概念判断.【解答】解:,0.1010010001…(相邻两个1中间一次多1个0)是无理数,故选:A.【点评】本题考查的是无理数的概念、立方根、算术平方根,掌握无限不循环小数叫做无理数是解题的关键.16.一个数的立方根正好与本身相等,这个数是()A.0 B.0或1 C.0或±1 D.非负数【分析】根据立方根的定义即可求出答案.【解答】解:一个数的立方根正好与本身相等,这个数是0,±1,故选:C.【点评】本题考查立方根,解题的关键是熟练运用立方根的定义,本题属于基础题型.17.下列说法正确的个数()(1)无理数就是开方不尽的数(2)无理数包括正无理数、零、负无理数(3)一个数的平方根等于它本身的是0和1(4)和互为相反数A.1个B.2个C.3个D.4个【分析】根据无理数的定义,相反数的定义,平方根的定义,分析(1)(2)(3)(4),选出说法正确的即可.【解答】解:(1)无理数是无限不循环小数,π也属于无理数,即(1)不合题意,(2)零不属于无理数,即(2)不合题意,(3)1的平方根为±1,即(3)不合题意,(4)与相加得零,即(4)符合题意,说法正确的个数是1个,故选:A.【点评】本题考查了实数和相反数,正确掌握无理数的定义,相反数的定义,平方根的定义是解题的关键.18.下列说法不正确的是()A.实数包括正实数、零、负实数B.正整数和负整数统称为整数C.无理数一定是无限小数D.2是4的平方根【分析】根据实数的概念解答即可.【解答】解:A、实数包括正实数、零、负实数,正确;B、正整数、0和负整数统称为整数,错误;C、无理数一定是无限小数,正确;D、2是4的平方根,正确;故选:B.【点评】此题考查实数的问题,关键是根据实数的概念解答.19.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A点,则A 点表示的数是()A.﹣2π﹣1 B.﹣1+πC.﹣1+2πD.﹣π【分析】先求出圆的周长π,即得到OA的长,然后根据数轴上的点与实数一一对应的关系即可得到点A表示的数.【解答】解:∵直径为单位1的圆的周长=2π•=π,∴OA=π,∴点A表示的数为﹣π.故选:D.【点评】本题考查了实数与数轴:数轴上的点与实数一一对应.也考查了实数的估算.20.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是()A.﹣B.2﹣C.D.【分析】由于数轴上两点间的距离应让较大的数减去较小的数,所以根据数轴上两点间距离的公式便可解答.【解答】解:由勾股定理得:正方形的对角线为,设点A表示的数为x,则2﹣x=,解得x=2﹣.故选B.【点评】此题主要考查了实数与数轴之间的对应关系,解题时求数轴上两点间的距离应让较大的数减去较小的数即可.二.填空题(共9小题)21.写出一个满足<a<的整数a的值为答案不唯一,如:2 .【分析】根据算术平方根的概念得到1<<2,4<<5,根据题意解答.【解答】解:∵1<<2,4<<5,a为整数,∴2≤a<5,∴满足<a<的整数a的值可以为2,故答案为:2(答案不唯一).【点评】本题考查的是估算无理数的大小,掌握算术平方根的概念是解题的关键.22.已知的小数部分是a,的整数部分是b,则a+b=.【分析】先分别求出和的范围,得到a、b的值,再代入a+b计算即可.【解答】解:∵2<<3,2<<3,∴a=﹣2,b=2,a+b=﹣2+2=,故答案为.【点评】本题考查了估算无理数的大小,利用夹值法估算出和的范围是解此题的关键.23.的小数部分是﹣4 .【分析】先估算出的范围,即可得出答案.【解答】解:∵4<<5,∴的小数部分是﹣4,故答案为:﹣4.【点评】本题考查了估算无理数的大小,能估算出的范围是解此题的关键.24.=﹣4 .【分析】直接利用二次根式以及绝对值的性质分别化简得出答案.【解答】解:原式=﹣3﹣﹣﹣1+=﹣4.故答案为:﹣4.【点评】此题主要考查了实数运算,正确化简各数是解题关键.25.化简﹣﹣得8 .【分析】直接利用立方根的性质以及二次根式的性质分别化简得出答案.【解答】解:原式=10﹣﹣0.5=8.故答案为:8.【点评】此题主要考查了实数运算,正确化简各数是解题关键.26.计算﹣﹣||﹣=﹣+【分析】直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简得出答案.【解答】解:原式=3﹣3﹣(2﹣)﹣=3﹣3﹣2+﹣=﹣+故答案为:﹣ +.【点评】此题主要考查了实数运算,正确化简各数是解题关键.27.若和互为相反数,求的为.【分析】由立方根的性质可知,两个立方根互为相反数则被开方数互为相反数.【解答】解:∵和互为相反数,∴2a与b互为相反数,∴2a=﹣b,∴=﹣,故答案为﹣.【点评】本题考查立方根的性质和实数的性质;能够将立方根互为相反数转化为被开方数互为相反数是解题的关键.28.如图,正方形的边长是1个单位长度,则图中B点所表示的数是;若点C是数轴上一点,且点C到A点的距离与点C到原点的距离相等,则点C所表示的数是.【分析】根据勾股定理求出正方形的对角线的长,再根据旋转的性质求出A点的数,进而得出B点所表示的数;根据中点的定义可得点C所表示的数.【解答】解:对角线的长:,根据旋转前后线段的长分别相等,则A点表示的数=对角线的长=,B点所表示的数是,∵点C到A点的距离与点C到原点的距离相等,∴,即点C所表示的数是.故答案为:;.【点评】本题考查了实数与数轴,勾股定理和旋转的性质.旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改,要求学生了解常见的数学思想、方法.29.已知数轴上A、B两点的距离是,点A在数轴上对应的数是2,那么点B在数轴上对应的数是.【分析】根据数轴求出点A表示的数,再分别分两种情况讨论求解点B所对应的数即可.【解答】解:∵数轴上A、B两点的距离是,点A在数轴上对应的数是2,∴点B在数轴上对应的数是.故答案为:【点评】本题考查了数轴,主要利用了数轴上数的表示,难点在于分情况讨论.三.解答题(共1小题)30.计算:﹣.【分析】本题涉及立方根、二次根式化简2个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:﹣=2﹣=1.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握立方根、二次根式等考点的运算.。

2020-2021学年人教版数学七年级下册第5章 相交线与平行线 解答题练习(三)

2020-2021学年人教版数学七年级下册第5章 相交线与平行线 解答题练习(三)

人教版数学七年级下册第5章《相交线与平行线》解答题培优(三)1.如图,将△ABC沿直线AB向右平移后到达△BDE的位置.(1)若AC=6cm,则BE=cm;(2)若∠CAB=50°,∠BDE=100°,求∠CBE的度数.2.探究题已知:如图1,AB∥CD,CD∥EF.求证:∠B+∠BDF+∠F=360°.老师要求学生在完成这道教材上的题目证明后,尝试对图形进行变式,继续做拓展探究,看看有什么新发现?(1)小颖首先完成了对这道题的证明,在证明过程中她用到了平行线的一条性质,小额用到的平行线性质可能是.(2)接下来,小颖用《几何画板》对图形进行了变式,她先画了两条平行线AB、EF,然后在平行线间画了一点D,连接BD,DF后,用鼠标拖动点D,分别得到了图①②③,小颖发现图②正是上面题目的原型,于是她由上题的结论猜想到图①和③中的∠B、∠BDF与∠F之间也可能存在着某种数量关系.于是她利用《几何画板》的度量与计算功能,找到了这三个角之间的数量关系.请你在小颖操作探究的基础上,继续完成下面的问题:①猜想图①中∠B、∠BDF与∠F之间的数量关系并加以证明:②补全图③,直接写出∠B、∠BDF与∠F之间的数量关系:.(3)学以致用:一个小区大门栏杆的平面示意图如图2所示,BA垂直地面AE于A,CD 平行于地面AE,若∠BCD=150°,则∠ABC=.3.如图,在直角三角形ABC中,∠ACB=90°,∠A=33°,将三角形ABC沿AB方向向右平移得到三角形DEF.(1)试求出∠E的度数;(2)若AE=9cm,DB=2cm,求出BE的长度.4.如图,已知AB∥DE∥MN,AD平分∠CAB,CD⊥DE.(1)∠DAB=15°,求∠ACD的度数;(2)判断等式∠CDA=∠NCD+∠DAB是否成立,并说明理由.5.如图,直线AB与CD相交于点O,OE⊥CD,OF⊥AB,∠DOF=65°.求:(1)∠BOE的度数;(2)∠AOC的度数.6.如图1为北斗七星的位置图,如图2将北斗七星分别标为A,B,C,D,E,F,G,将A,B,C,D,E,F顺次首尾连接,若AF恰好经过点G,且AF∥DE,∠B=∠C+10°,∠D=∠E=105°.(1)求∠F的度数.(2)计算∠B﹣∠CGF的度数是.(直接写出结果)(3)连接AD,∠ADE与∠CGF满足怎样数量关系时,BC∥AD,并说明理由.7.如图,已知射线BM平分∠ABC,点D是BM上一点,且DE∥BC交AB于E,若∠EDB =28°,求∠AED的度数.8.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.9.如图,AB和CD相交于点O,∠DOE=90°,若∠BOE=∠AOC,(1)指出与∠BOD相等的角,并说明理由.(2)求∠BOD,∠AOD的度数.10.如图,AB∥CD,∠B=26°,∠D=39°,求∠BED的度数.完成以下解答过程中的空缺部分:解:过点E作EF∥AB.∴∠B=∠.()∵∠B=26°(已知),∴∠1=°().∵AB∥CD().∵EF∥AB(作辅助线),∴EF∥CD.∴∠D=∠.()∵∠D=39°(已知),∴∠2=°().∴∠BED=°(等式性质).11.如图1,直线AB、CD被直线EF截,分别交AB于点G,交CD于点H,∠AGE与∠EHC互补.(1)求证:AB∥CD;(2)如图2,点P在直线AB、CD内部直线EF上,点M、N分别在直线AB、CD上,连接PM、PN,点K在∠PMB的角平分线上,连接KN,若∠MKN=180°∠MPN,求证:∠PNK=∠CNK;(3)如图3,在(2)的条件下,点O为AB上一点,连接ON、MN,MN平分∠PNO,若∠MNK:∠PMK=2:7,2∠MKN﹣∠PNO=180°,求∠NOM的度数.12.如图,直线AB,CD相交于点O,∠DOE=∠BOD,OF平分∠AOE,若∠BOD=28°,求∠EOF的度数.13.已知:两直线l1,l2满足l1∥l2,点C,点D在直线l1上,点A,点B在直线l2上,点P是平面内一动点,连接CP,BP,(1)如图1,若点P在l1、l2外部,则∠DCP、∠CPB、∠ABP之间满足什么数量关系?请你证明的这个结论;(2)如图2,若点P在l1、l2外部,连AC,则∠CAB、∠ACP、∠CPB、∠ABP之间满足什么数量关系?请你证明的这个结论;(不能用三角形内角和为180°)(3)若点P在l1、l2内部,且在AC的右侧,则∠ACP、∠ABP、∠CAB、∠CPB之间满足什么数量关系?(不需证明)14.如图,已知FG⊥AB,CD⊥AB,垂足分别为G,D,∠1=∠2,求证:∠CED+∠ACB=180°,请你将小明的证明过程补充完整.证明:∵FG⊥AB,CD⊥AB,垂足分别为G,D(已知),∴∠FGB=∠CDB=90°().∴GF∥CD().∵GF∥CD(已证),∴∠2=∠BCD().又∵∠1=∠2(已知),∴∠1=∠BCD().∴().∴∠CED+∠ACB=180°().15.已知:直线AB∥CD,点M,N分别在直线AB,CD上,点E为平面内一点.(1)如图1,探究∠AME,∠E,∠ENC的数量关系;并加以证明.(2)如图2,∠AME=30°,EF平分∠MEN,NP平分∠ENC,EQ∥NP,求∠FEQ的度数.(3)如图3,点G为CD上一点,∠AMN=m∠EMN,∠GEK=m∠GEM,EH∥MN交AB于点H,直接写出∠GEK,∠BMN,∠GEH之间的数量关系(用含m的式子表示)参考答案1.解:(1)∵将△ABC沿直线AB向右平移得到△BDE,∴△ABC≌△BDE,∴BE=AC=6cm,故答案为:6;(2)由(1)知△ABC≌△BDE,∴∠DBE=∠CAB=50°、∠BDE=∠ABC=100°,∴∠CBE=180°﹣∠ABC﹣∠DBE=30°.2.(1)证明:如图1中,∵AB∥EF,CD∥EF,∴CD∥EF,∴∠B+∠CDB=180°,∠F+∠CDF=180°(两直线平行同旁内角互补),∴∠B+∠CDB+∠CDF+∠F=360°,∴∠B+∠BDF+∠F=360°,故答案为:两直线平行同旁内角互补.(2)解:①结论:∠BDF=∠B+∠F.理由:如图①中,作DK∥AB.∵AB∥DK,AB∥EF,∴∠B=∠BDK,∠F=∠FDK,∴∠BDF=∠BDK+∠FDK=∠B+∠F.②如图③中,结论:∠F=∠D+∠B.(答案不唯一).理由:∵AB∥EF,∴∠1=∠F,∵∠1=∠B+∠D,∴∠F=∠D+∠B.故答案为∠F=∠D+∠F.(3)解:如图2中,∵BA⊥AE,∴∠BAE=90°,∵∠ABC+∠BAE+∠BCD=360°,∠BCD=150°,∴∠ABC=360°﹣240°=120°,故答案为120°.3.解:(1)∵∠ACB=90°,∠A=33°∴∠ABC=90°﹣33°=57°,∵三角形ABC沿AB方向向右平移得到三角形DEF,∴∠E=∠ABC=57°;(2)∵三角形ABC沿AB方向向右平移得到三角形DEF,∴AB=DE,∴AD+BD+BE=AE,即BE+2+BE=9,∴BE=3.5(cm).4.解:(1)延长CD交AB于点F,∵AB∥DE∥MN,CD⊥DE,∴CF⊥AB.∵AD平分∠CAB,∠DAB=15°,∴∠CAF=30°,∴∠ACD=90°﹣30°=60°;(2)延长ED交AC于点G,∵AB∥DE∥MN,∴∠CDG=∠NCD,∠GDA=∠DAB,∴∠CDA=∠NCD+∠DAB.5.解:(1)OF⊥AB,则∠BOF=90°,∵∠DOF=65°,∴∠BOD=∠BOF﹣∠DOF=90°﹣65°=25°,∵OE⊥CD,∴∠DOE=90°,那么∠BOE=∠DOE﹣∠BOD=90°﹣25°=65°.(2)直线AB与CD相交于点O,∠AOC与∠BOD是对顶角,即∠AOC=∠BOD=25°.6.解:(1)∵AF∥DE,∴∠F=180°﹣105°=75°;(2)延长DC交AF于K,可得:∠B﹣∠CGF=∠C+10°﹣∠CGF=∠GKC+10°=∠D+10°=115°,故答案为:115°;(3)当∠ADE+∠CGF=180°时,BC∥AD,∵AF∥DE,∴∠GAD+∠ADE=180°,∠ADE+∠CGF=180°,∴∠GAD=∠CGF,∴BC∥AD.7.解:∵DE∥BC,∴∠EDB=∠CBD=28°,∠AED=∠ABC,又∵BM平分∠ABC,∴∠ABD=∠CBD=28°,∴∠ABC=∠AED=56°.8.解:∵∠A=∠F(已知)∴AC∥DF(内错角相等,两直线平行)∴∠D=∠ABD(两直线平行,内错角相等)∵∠C=∠D(已知)∴∠C=∠ABD(等量代换)∴BD∥CE(同位角相等,两直线平行)9.解:(1)∠AOC,对顶角相等;(2)∵∠BOD=∠AOC,又∵∠BOE=∠AOC,∴∠BOE=∠BOD,∴∠DOE=∠BOE+∠BOD=∠BOD+∠BOD=90°,解得:∠BOD=67.5°;∴∠AOD=180°﹣∠BOD=180°﹣67.5°=112.5°.10.解:过点E作EF∥AB.∴∠B=∠1.(两直线平行,内错角相等)∵∠B=26°(已知),∴∠1=26°(等量代换).∵AB∥CD(已知),∵EF∥AB(作辅助线),∴EF∥CD.∴∠D=∠2.(两直线平行,内错角相等)∵∠D=39°(已知),∴∠2=39°(等量代换).∴∠BED=65°(等式性质).故答案为:1,两直线平行,内错角相等,26,等量代换,已知,两直线平行,2,内错角相等,39,等量代换,65.11.解:(1)∵∠AGE与∠EHC互补,∴∠AGE+∠EHC=180°,∵∠AGE+∠EGB=180°,∴∠EGB=∠EHC,∴AB∥CD;(2)证明:过点P作PQ∥AB,∴∠AMP=∠MPQ,∵AB∥CD,∴PQ∥CD,∴∠DNP=∠NPQ,∴∠MPN=∠AMP+∠DNP,∵MK平分∠PMB,∴∠PMK=∠BMK,同理,过点K作KR∥AB,∴∠MKN=∠BMK+∠CNK,∵∠MKN=180°﹣∠MPN,∴∠BMK+∠CNK=180°﹣(∠AMP+∠DNP)=180°﹣(180°﹣∠BMK﹣∠PMK+180°﹣∠CNK﹣∠PNK)=(∠BMK+∠PMK)+(∠CNK+∠PNK)=∠BMK+∠CNK+∠PNK∴∠CNK=∠PNK,∴∠CNK=∠PNK.(3)∵∠MNK:∠PMK=2:7,∴设∠MNK=2α,∠PMK=7α,∠PNK=∠CNK∴∠PNM+2α=∠CNK∵MN平分∠PNO,∴∠PNM=∠MNO,∴∠CON=∠CNK﹣∠ONK=∠PNM+2α﹣(∠MNO﹣∠MNK)=4α,∵2∠MKN﹣∠PNO=180°,∠MKN=180°﹣∠MPN,∴2(180°﹣∠MPN)﹣∠PNO=180°,∴∠MPN+∠PNO=180°,∴PM∥NO,∴∠NOM=∠PMG,∵AB∥CD,∴∠NOM=∠CON=4α,∵∠PMK=∠OMK=7α,∠PMG+∠PMK+∠OMK=180°,∴4α+7α+7α=180°,∴α=10°,∴∠NOM=40°.12.解:∵∠DOE=∠BOD,∠BOD=28°,∴∠BOE=56°,∵∠AOB=∠AOE+∠BOE=180°,∴∠AOE=180°﹣∠BOE=180°﹣56°=124°,∵OF平分∠AOE,∴∠EOF=.13.解:(1)如图1,数量关系:∠DCP=∠CPB+∠ABP,理由:过P作PM∥AB,∴∠ABP=∠2,∠3=∠CPM,∵∠3=∠2+∠CPB,∴∠3=∠CPB+∠ABP,∵CD∥AB,∴∠1=∠3,∴∠DCP=∠CPB+∠ABP;(2)数量关系:∠CAB+∠ACP=∠CPB+∠ABP,理由:过A作AE∥PB,过C作CF∥BP,∴AE∥CF∥BP,∴∠1=∠2,∠3=∠P,∠ABP=∠1+∠4,∴∠CAB+∠ACP=∠4+∠2+∠3,∴∠CPB+∠ABP=∠3+∠1+∠4=∠3+∠2+∠4,∴∠CAB+∠ACP=∠CPB+∠ABP;(3)如图3,数量关系:∠CPB=∠CAB+∠ACP+∠ABP;理由:过P作PM∥CD,∵CD∥AB,∴CD∥PM∥AB,∴∠DCA=∠CAB,∠DCP=∠CPM,∠MPB=∠PBA,∴∠CPB=∠DCA+∠ACP=∠CAB+∠ACP,∵∠CPB=∠CPM+∠MPB,∴∠CPB=∠CAB+∠ACP+∠ABP;如图4,数量关系:∠CAB+∠ACP+∠CPB+∠ABP=360°,理由:过P作PM∥CD,∵CD∥AB,∴CD∥PM∥AB,∴∠CAB=∠DCA,∠DCP+∠CPM=180°,∠ABP+∠MPB=180°,∴∠CAB+∠ACP+∠CPB+∠ABP=∠DCA+∠ACP+∠CPM+∠MPB+∠ABP=360°.14.证明:∵FG⊥AB,CD⊥AB,垂足分别为G,D(已知)∴∠FGB=∠CDB=90°(垂直定义).∴GF∥CD(同位角相等,两直线平行),∵GF∥CD(已证),∴∠2=∠BCD(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠BCD(等量代换),∴DE∥BC(内错角相等,两直线平行)∴∠CED+∠ACB=180°(两直线平行,同旁内角互补),故答案为:垂直定义,同位角相等,两直线平行,两直线平行,同位角相等,等量代换,DE∥BC,内错角相等,两直线平行,两直线平行,同旁内角互补.15.解:(1)如图1,过点E作l∥AB,∵AB∥CD,∴l∥AB∥CD,∴∠1=∠AME,∠2=∠CNE,∵∠MEN=∠1+∠2,∴∠E=∠AME+∠ENC;(2)∵EF平分∠MEN,NP平分∠END,∴∠NEF=∠MEN,∠ENP=∠END,∵EQ∥NP,∴∠QEN=∠ENP=∠ENC,∵∠MEN=∠AME+∠ENC,∴∠MEN﹣∠ENC=∠AME=30°,∴∠FEQ=∠NEF﹣∠NEQ=∠MEN﹣∠ENC,=×30°=15°;(3)m∠GEH=∠GEK﹣∠AMN.∵∠AMN=m•∠EMN,∠GEK=m•∠GEM,∴∠EMN=∠AMN,∠GEN=∠GEK,∵EH∥MN,∴∠HEM=∠EMN=∠AMN,∵∠GEH=∠GEM﹣∠HEM,=∠GEK﹣∠AMN,∴m∠GEH=∠GEK﹣∠AMN,∵∠BMN=180°﹣∠AMN,∴∠BMN+∠KEG﹣m∠GEH=180°.。

2020版七年级数学下册第十章数据的收集、整理与描述试题(新人教版)及参考答案

2020版七年级数学下册第十章数据的收集、整理与描述试题(新人教版)及参考答案

第十章数据的收集、整理与描述1.全面调查与抽样调查(1)全面调查和抽样调查是按调查对象范围不同划分的调查方式.全面调查是对调查对象中的所有单位全部加以调查,抽样调查是一种非全面调查,它是从研究的总体中按随机原则抽取部分样本单位进行调查,并根据样本单位的调查结果来推断总体,以达到认识总体的一种统计调查方式.(2)抽样调查与全面调查有着相辅相成的关系:在实际运用中,没有必要进行全面调查和不可能进行全面调查时宜采用抽样调查.(3)抽样调查的优点:一是由于只从总体中抽取一部分样本进行调查,工作量小,所以比全面调查节省人力、物力、财力,比较经济;二是可以及时取得调查资料,提高数据的时效性;三是数据质量有保证,可以减少人为因素干扰,只要取样、推断方法科学,均有利于提高数据的质量;四是调查方法灵活,如实际工作中使用较多的问卷调查、入户调查、电话调查等,适应面广,特别适于对范围大的总体作调查.【例】电视剧《铁血将军》在我市拍摄,该剧展示了抗日民族英雄范筑先的光辉形象.某校为了了解学生对“民族英雄范筑先”的知晓情况,从全校2 400名学生中随机抽取了100名学生进行调查.在这次调查中,样本是( )A.2400名学生B.100名学生C.所抽取的100名学生对“民族英雄范筑先”的知晓情况D.每一名学生对“民族英雄范筑先”的知晓情况【标准解答】选C.根据总体、样本的含义,可得在这次调查中,总体是:2 400名学生对“民族英雄范筑先”的知晓情况,样本是:所抽取的100名学生对“民族英雄范筑先”的知晓情况.1.下列调查中,最适合用普查方式的是( )A.调查一批电视机的使用寿命情况B.调查某中学九年级一班学生视力情况C.调查重庆市初中学生锻炼所用的时间情况D.调查重庆市初中学生利用网络媒体自主学习的情况2.要估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞了50条鱼,在每条鱼身上做好记号后把这些鱼放归鱼塘,一段时间后,再从鱼塘中打捞出100条鱼,发现只有两条鱼是做了记号的鱼,假设鱼在鱼塘内均匀分布,那么估计这个鱼塘的鱼数约为( ) A.5 000条 B.2 500条C.1 750条D.1 250条3.在下列调查中,适宜采用全面调查的是( )A.了解我省中学生的视力情况B.了解九(1)班学生校服的尺码情况C.检测一批电灯泡的使用寿命D.调查台州《600全名新闻》栏目的收视率4.2016年我市有1.6万名初中毕业生参加升学考试,为了了解这1.6万名考生的数学成绩,从中抽取2 000名考生的数学成绩进行统计,在这个问题中样本是( )A.1.6万名考生B.2 000名考生C.1.6万名考生的数学成绩D.2 000名考生的数学成绩5.下列调查适合抽样调查的是( )A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查6.下列调查,样本具有代表性的是( )A.了解全校同学对课程的喜欢情况,对某班男同学进行调查B.了解某小区居民的防火意识,对你们班同学进行调查C.了解商场的平均日营业额,选在周末进行调查D.了解观众对所看电影的评价情况,对座号是奇数号的观众进行调查2.统计图的转化解决与统计有关的信息题转换的方法:解题的关键是根据统计图的信息求出所抽取的样本的总数.(1)结合各类统计图的特点,认真分析各个统计图之间的已知与未知.(2)综合考虑相同的元素在不同的统计图中的表示形式,找到它们之间的对应关系.(3)根据条形图、折线图所提供的部分元素的具体数据,结合扇形统计图所反映的百分比,求出样本总数,或根据频率与频数的关系求出样本总数.(4)根据样本总数求出相关数据及信息.【例】某市“希望”中学为了了解学生“大间操”的活动情况,在七、八、九年级的学生中,分别抽取相同数量的学生对“你最喜欢的运动项目”进行调查(每人只能选一项).调查结果的部分数据如表(图)所示,其中七年级最喜欢跳绳的人数比八年级多5人,九年级最喜欢排球的人数为10人.七年级学生最喜欢的运动项目人数统计表项目排球篮球跳绳踢毽其他人数(人) 7 8 14 6请根据统计表(图)解答下列问题:(1)本次调查抽取了多少名学生?(2)补全统计表和统计图,并求出“最喜欢跳绳”的学生占抽样总人数的百分比.(3)该校共有学生1 800人,学校想对“最喜欢踢毽”的学生每4人提供一个毽,那么学校在“大间操”时至少应提供多少个毽?【标准解答】(1)从九年级最喜欢运动的项目统计图中得知,九年级最喜欢排球的人数占总数的百分比为:1-30%-16%-24%-10%=20%,又知九年级最喜欢排球的人数为10人,所以九年级抽取的学生人数有10÷20%=50(人),所以本次调查抽取的学生数为:50×3=150(人).(2)根据(1)得七年级最喜欢跳绳的人数有50-7-8-6-14=15人,那么八年级最喜欢跳绳的人数有15-5=10人,最喜欢跳绳的学生有15+10+50×16%=33人,所以“最喜欢跳绳”的学生占抽样总人数的百分比为22%.七年级学生最喜欢的运动项目人数统计表项目排球篮球跳绳踢毽其他人数(人) 7 8 15 14 6(3)由图可知,八年级最喜欢踢毽的人数有13人,所以学校在“大间操”时至少应提供的毽数为×1 800÷4=126(个).学校为了解全校1 600名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查,问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选,将调查得到的结果绘制如图所示的频数分布直方图和扇形统计图(均不完整).(1)问:在这次调查中,一共抽取了多少名学生?(2)补全频数分布直方图.(3)估计全校所有学生中有多少人乘坐公交车上学.3.数据的整理与描述(1)扇形统计图直接反映部分占总体的百分比大小.用扇形统计图描述数据,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.【例】某校为鼓励学生课外阅读,制定了“阅读奖励方案”.方案公布后,随机征求了100名学生的意见,并对持“赞成”、“反对”、“弃权”三种意见的人数进行统计,绘制成如图所示的扇形统计图.若该校有1 000名学生,则赞成该方案的学生约有人.【标准解答】由扇形统计图可知赞成的百分比为:1-20%-10%=70%,∴1 000名学生中赞成该方案的学生约有1 000×70%=700人.答案:7001.如图是某校参加各兴趣小组的学生人数分布扇形统计图,则参加人数最多的兴趣小组是( )A.棋类B.书画C.球类D.演艺1题图2题图2.为了了解某校学生对篮球、足球、羽毛球、乒乓球、网球等五类球的喜爱,小李采用了抽样调查,在绘制扇形图时,由于时间仓促,还有足球、网球等信息还没有绘制完成,如图所示,根据图中的信息,这批被抽样调查的学生最喜欢足球的人数不可能是( )A.100人B.200人C.260人D.400人3.某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为人.3题图4题图5题图4.为了解学生课外阅读的喜好,某校从八年级1 200名学生中随机抽取50名学生进行问卷调查,整理数据后绘制如图所示的统计图.由此可估计该年级喜爱“科普常识”的学生约有人.5.某校对学生上学方式进行了一次抽样调查,并根据此次调查结果绘制了一个不完整的扇形统计图,其中“其他”部分所对应的圆心角是36°,则“步行”部分所占百分比是.(2)用条形图描述数据【例】下列材料来自2006年5月衢州有关媒体的真实报道:有关部门进行民众安全感满意度调查,方法是:在全市内采用等距抽样,抽取32个小区,共960户,每户抽一名年满16周岁并能清楚表达意见的人,同时,对比前一年的调查结果,得到统计图如下:写出2005年民众安全感满意度的众数选项是;该统计图存在一个明显的错误是.【标准解答】∵安全选项小组小长方形的高最高,∴众数为安全选项;统计图存在一个明显的错误是 2004年满意度统计选项总和不到100%.答案:安全2004年满意度统计选项总和不到100%.某学校计划开设A,B,C,D四门校本课程供学生选修,规定每个学生必须并且只能选修其中一门,为了了解学生的选修意向,现随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的条形统计图,已知该校学生人数为2 000人,由此估计选修A课程的学生有人.(3)用折线统计图描述数据【例】多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( )A.最大值与最小值的差是47B.众数是42C.中位数是58D.每月阅读数量超过40的有4个月【标准解答】选C.A.最大值与最小值的差为:83-28=55,故本选项错误;B.众数为:58,故本选项错误;C.中位数为:(58+58)÷2=58,故本选项正确;D.每月阅读数量超过40本的有2月,3月,4月,5月,7月,8月,共六个月,故本选项错误;故选C.1.下面的折线图描述了某地某日的气温变化情况,根据图中信息,下列说法错误的是( )A.4:00气温最低B.6:00气温为24 ℃C.14:00气温最高D.气温是30 ℃的为16:002.北京市2009~2014年轨道交通日均客运量统计如图所示.根据统计图中提供的信息,预估2015年北京市轨道交通日均客运量约万人次,你的预估理由是.(4)综合运用条形统计图和扇形统计图获取信息【例】漳州市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:(1)请将以上两幅统计图补充完整.(2)若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有人达标.(3)若该校学生有1 200人,请你估计此次测试中,全校达标的学生有多少人?【标准解答】(1)成绩一般的学生占的百分比=1-20%-50%=30%,测试的学生总数=24÷20%=120人,成绩优秀的人数=120×50%=60人,所补充图形如下所示:(2)该校被抽取的学生中达标的人数=36+60=96.(3)1 200×(50%+30%)=960(人).答:估计全校达标的学生有960人.1.夷昌中学开展“阳光体育活动”,九年级一班全体同学在2016年4月18日16时分别参加了巴山舞、乒乓球、篮球三个项目的活动,陈老师在此时统计了该班正在参加这三项活动的人数,并绘制了如图所示的频数分布直方图和扇形统计图.根据这两个统计图,可以知道此时该班正在参加乒乓球活动的人数是( )A.50B.25C.15D.102.为了了解2016年某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合2012年抽样结果,得到下列统计图.(1)本次检测抽取了大、中、小学生共名,其中小学生名.(2)根据抽样的结果,估计2016年该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为名.(3)比较2012年与2016年抽样学生50米跑成绩合格率情况,写出一条正确的结论.(5)综合运用折线统计图和条形统计图获取信息解题【例】以下是根据北京市国民经济和社会发展统计公报中的相关数据,绘制统计图的一部分.请根据以上信息解答下列问题:(1)2008年北京市私人轿车拥有量是多少万辆(结果保留三个有效数字)?(2)补全条形统计图.(3)汽车数量增多除造成交通拥堵外,还增加了碳排放量,为了了解汽车碳排放量的情况,小明同学通过网络了解到汽车的碳排放量与汽车排量有关.如:一辆排量为1.6 L的轿车,如果一年行驶1万千米,这一年,它碳排放量约为2.7吨.于是他调查了他所居住小区的150辆私人轿车,不同排量的轿车数量如下表所示.排量(L) 小于1.6 1.6 1.8 大于1.8数量(辆) 29 75 31 15如果按照小明的统计数据,请你通过计算估计,2010年北京市仅排量为1.6 L的这类私人轿车(假设每辆车平均一年行驶1万千米)的碳排放总量约为多少万吨?【标准解答】(1)146×(1+19%)=173.74≈174(万辆),所以2008年北京市私人轿车拥有量约是174万辆.(2)如图(3)276××2.7=372.6(万吨).所以估计2010年北京市仅排量为1.6 L的这类私人轿车的碳排放总量约为372.6万吨.1.为广泛开展阳光健身活动,2010年红星中学投入维修场地、安装设施、购置器材及其他项目的资金共38万元,图1、图2分别反映的是2010年投入资金分配和2008年以来购置器材投入资金的年增长率的具体数据.根据以上信息,下列判断:①在2010年总投入中购置器材的资金最多;②2009年购置器材投入资金比2010年购置器材投入资金多8%;③若2011年购置器材投入资金的年增长率与2010年购置器材投入资金的年增长率相同,则2011年购置器材的投入是38×38%×(1+32%)万元.其中正确判断的个数是( )A.0B.1C.2D.32.某市团委在2015年3月初组成了300个学雷锋小组,现从中随机抽取6个小组在3月份做好事件数的统计情况如图所示:(1)这6个学雷锋小组在2015年3月份共做好事多少件?(2)补全条形统计图.(3)请估计该市300个学雷锋小组在2015年3月份共做好事多少件?4.直方图直方图与条形图的区别:(1)条形图是用条形的高度表示频数的大小,而直方图实际上是用长方形的面积表示频数,当长方形的宽相等的时候,把组距看成“1”,用矩形的高表示频数.(2)条形图中,横轴上的数据是孤立的,是一个具体的数据,而直方图中,横轴上的数据是连续的,是一个范围.(3)条形图中,各长方形之间有空隙,而直方图中,各长方形是靠在一起的,中间无空隙.【例】4月23日是“世界读书日”,学校开展“让书香溢满校园”读书活动,以提升青少年的阅读兴趣,九年(1)班数学活动小组对本年级600名学生每天阅读时间进行了统计,根据所得数据绘制了两幅不完整统计图(每组包括最小值不包括最大值).九年(1)班每天阅读时间在0.5小时以内的学生占全班人数的8%.根据统计图解答下列问题:(1)九年(1)班有名学生.(2)补全直方图.(3)除九年(1)班外,九年级其他班级每天阅读时间在1~1.5小时的学生有165人,请你补全扇形统计图.(4)求该年级每天阅读时间不少于1小时的学生有多少人?【标准解答】(1)由题意可得:4÷8%=50(人).(2)由(1)得:0.5~1小时的为:50-4-18-8=20(人),如图所示:(3)∵除九年(1)班外,九年级其他班级每天阅读时间在1~1.5小时的学生有165人,∴1~1.5小时在扇形统计图中所占比例为:165÷(600-50)×100%=30%,故0.5~1小时在扇形统计图中所占比例为:1-30%-10%-12%=48%,如图所示:(4)该年级每天阅读时间不少于1小时的学生有:(600-50)×(30%+10%)+18+8=246(人).为了提高学生书写汉字的能力.增强保护汉字的意识,我区举办了“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图,如图表:组别成绩x分频数(人数)第1组25≤x<30 4第2组30≤x<35 6第3组35≤x<40 14第4组40≤x<45 a第5组45≤x<50 10请结合图表完成下列各题:(1)求表中a的值.(2)请把频数分布直方图补充完整.(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?答案解析1.全面调查与抽样调查【跟踪训练】1.【解析】选B.调查一批电视机的使用寿命情况、调查重庆市初中学生锻炼所用的时间情况、调查重庆市初中学生利用网络媒体自主学习的情况适合抽样调查;调查某中学九年级一班学生视力情况适合用普查.2.【解析】选B. 标记的鱼有50条,放入后捞起来有标记的鱼占捞出来鱼的比例为 ,则共有的鱼为:50÷=2 500(条).3.【解析】选B.A选项我省中学生样本容量过大,不适合全面调查;B选项样本容量适合全面调查,且不具有破坏性;C选项具有破坏性,不适宜全面调查;D选项台州范围较大,样本容量过大不适合全面调查.4.【解析】选D.根据样本的概念可知样本为2 000名考生的数学成绩.5.【解析】选D.A、审核书稿中的错别字,必须准确,故必须普查;B、此种情况数量不是很大,故必须普查;C、人数不多,容易调查,适合普查;D、中学生的人数比较多,适合采取抽样调查.6.【解析】选D.A、了解全校同学对课程的喜欢情况,对某班男同学进行调查,不具代表性、广泛性,故A错误;B、了解某小区居民的防火意识,对你们班同学进行调查,调查不具代表性、广泛性,故B错误;C、了解商场的平均日营业额,选在周末进行调查,调查不具有代表性,故C错误;D、了解观众对所看电影的评价情况,对座号是奇数号的观众进行调查,调查具有代表性、广泛性,故D正确.2.统计图的转化【跟踪训练】【解析】(1)被抽到的学生中,骑自行车上学的学生有24人,占整个被抽到学生总数的30%,∴抽取学生的总数为24÷30%=80(人).(2)被抽到的学生中,步行的人数为80×20%=16(人),直方图略.(3)被抽到的学生中,乘公交车的人数为80-(24+16+10+4)=26(人),∴全校所有学生中乘坐公交车上学的人数约为×1 600=520(人).3.数据的整理与描述【跟踪训练】1.【解析】选C.在各兴趣小组中,球类的学生占总人数的35%最大,所以球类兴趣小组的人数最多.2.【解析】选D.根据题意得:320÷32%=1 000(人),喜欢羽毛球的人数为1 000×15%=150(人),喜欢篮球的人数为1 000×25%=250(人),∴喜欢足球、网球的总人数为1 000-320-250-150=280(人),这批被抽样调查的学生最喜欢足球的人数不可能是400人.3.【解析】总人数为:6÷(40%-30%)=60(人).答案:604.【解析】喜爱科普常识的学生所占的百分比为:1-40%-20%-10%=30%,1 200×30%=360.答案:3605.【解析】∵“其他”部分所对应的圆心角是36°,∴“其他”部分所对应的百分比为:×100%=10%, ∴“步行”部分所占百分比为:100%-10%-15%-35%=40%.答案:40%【跟踪训练】【解析】选修A课程的学生所占的比例:=,选修A课程的学生有:2 000×=800(人),答案:800【跟踪训练】1.【解析】选D.A、由纵坐标看出4:00气温最低是22 ℃,故A正确;B、由纵坐标看出6:00气温为24 ℃,故B正确;C、由纵坐标看出14:00气温最高31 ℃;D、由横坐标看出气温是30 ℃的时刻是12:00,16:00,故D错误.2.【解析】预估2015年北京市轨道交通日均客运量约980万人次,根据2009~2011年呈直线上升,故2013~2015年也呈直线上升.答案:980 根据2009~2011年呈直线上升,故2013~2015年也呈直线上升【跟踪训练】1.【解析】选C.25÷50%=50(人),50-25-10=15(人).参加乒乓球的人数为15人.2.【解析】(1)100 000×10%=10 000(名),10 000×45%=4 500(名).(2)100 000×40%×90%=36 000(名).(3)例如:与2012年相比,2016年该市大学生50米跑成绩合格率下降了5%(答案不唯一).答案:(1)10 000 4 500(2)36 000(3)答案不唯一【跟踪训练】1.【解析】选C.①因为购置器材所占的面积最大,所以是资金最多的,故①正确.②2009年资金的增长是相对于2008年来说的,2010年的资金是相对于2009年来说的,故②是错误的.③若2011年购置器材投入资金的年增长率与2010年购置器材投入资金的年增长率相同也是增长了32%,所以2011年购置器材的投入是38×38%×(1+32%),故③正确.故选C.2.【解析】(1)13+16+25+22+20+18=114(件),这6个学雷锋小组在2015年3月份共做好事114件.(2)如图所示:(3)300×=5 700(件).估计该市300个学雷锋小组在2015年3月份共做好事5 700件.4.直方图【跟踪训练】【解析】(1)a=50-4-6-14-10=16.(2)如图所示:(3)本次测试的优秀率是:×100%=52%.。

2020--2021学年人教版七年级数学下册 第七章 平面直角坐标系 7.1.1 有序数对 课后练习

2020--2021学年人教版七年级数学下册 第七章 平面直角坐标系 7.1.1 有序数对 课后练习

人教版七年级数学下册第七章平面直角坐标系7.1.1 有序数对课后练习一、选择题1.下列数据中不能确定物体的位置的是()A.1单元201号B.北偏东60°C.清风路32号D.东经120°,北纬40°2.会议室2排3号记作(2,3),那么3排2号记作()A.(3,2)B.(2,3)C.(-3,-2)D.(-2,-3)3.如图,将正整数按下图所示规律排列下去,若用有序数对(n,m)表示n排从左到右第m个数.如(4,3)表示9,则(10,3)表示()A.46B.47C.48D.494.如图,小明从家到达学校要穿过一个居民小区,小区的道路均是正南或正东方向,则小明走下列线路不能到达学校的是()A.(0,4)→(0,0)→(4,0)B.(0,4)→(4,4)→(4,0)C.(0,4)→(3,4)→(4,2)→(4,0)D.(0,4)→(1,4)→(1,1)→(4,1)→(4,0)5.气象台为了预报台风,首先要确定它的位置,下列说法中,能确定台风具体位置的是()A.西太平洋B.距台湾30海里C.东经33°,北纬36°D.台湾岛附近6.课间操时,小聪、小慧、小敏的位置如图所示,小聪对小慧说,如果我的位置用(1,1)表示,小敏的位置用(7,7)表示,那么你的位置可以表示成()A.(5,4)B.(4,4)C.(3,4)D.(4,3)7.中国象棋具有悠久的历史,战国时期,就有了关于象棋的正式记载,如图是中国象棋棋局的一部分,如果用(2,﹣1)表示“炮”的位置,那么“将”的位置应表示为()A.(﹣2,3)B.(0,﹣5)C.(﹣3,1)D.(﹣4,2)8.如图是某电视塔周围的建筑群平面示意图,这个电视塔的位置用A表示.某人由点B出发到电视塔,他的路径表示错误的是(注:街在前,巷在后)( )A.(2,2)→(2,5)→(5,6)B.(2,2)→(2,5)→(6,5)C.(2,2)→(6,2)→(6,5)D.(2,2)→(2,3)→(6,3)→(6,5)9.如图是李明家附近区域的平面示意图,如果宠物店所在位置的坐标为(2,-4),儿童公园所在位置的坐标为(0,-3),则学校所在的位置是( )A .(4,-3)B .(4,3)C .(5,-1)D .(2,1)10.如图,将1(,)a b 表示第a 排第b 列的数,则()8,2与(100,100)表示的两个数的积是( )A .1B C D第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题11.如果将一张“9排5号”的电影票简记为(9,5),那么(5,9)表示的电影票表示的是_____排_____号.12.如下图,围棋盘的左下角呈现的是一局围棋比赛中的几手棋,为记录棋谱方便,横 线用数字表示,纵线用英文字母表示,这样白棋②的位置可记为(E ,3),则白棋⑥的位置 应记为________.13.把所有正整数从小到大排列,并按如下规律分组:(1)、(2,3)、(4,5,6)、(7,8,9,10)、……,若A n=(a,b)表示正整数n为第a组第b个数(从左往右数),如A7=(4,1),则A20=______________.14.教室里座位整齐摆放,若小华坐在第四排第6行,用有序数对(4,6)表示,则(2,4)表示的含义是________.15.将自然数按以下规律排列:表中数2在第二行,第一列,与有序数对(2,1)对应;数5与(1,3)对应;数14与(3,4)对应;根据这一规律,数2017对应的有序数对为________________.三、解答题16.如图,图中显示了10名同学平均每周用于阅读课外书的时间和用于看电视的时间(单位:h)(1)用有序实数对表示图中各点;(2)平均每周用于阅读课外书的时间和用于看电视的时间的总共10h的同学有多少名?(3)如果设平均每周用于阅读课外书的时间超过用于看电视的时间的同学为a名,设平均每周用于阅读课外书的时间少的值.于用于看电视的时间的同学为b名,求b a17.如图所示,A的位置为(2,6),小明从A出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距几个格?18.如图,甲处表示两条路的交叉口,乙处也是两条路的交叉口,如果用(1,3)表示甲处的位置,那么“(1,3)→(2,3)→(3,3)→(4,3)→(4,2)→(4,1)→(4,0)”表示甲处到乙处的一种路线,若图中一个单位长度表示5Km,请你用上述表示法写出甲处到乙处的另两种走法,最短距离是多少千米?19.如图是中国象棋一次对局时的部分示意图,若“帅”所在的位置用有序数对(5,1)表示.(1)请你用有序数对表示其他棋子的位置;(2)我们知道马行“日”字,如图中的“马”下一步可以走到(3,4)的位置,问还可以走的位置有几个?分别如何表示?20.如图1,将射线Ox按逆时针方向旋转β角,得到射线Oy,如果点P为射线Oy上的一点,且OP=a,那么我们规定用(a,β)表示点P在平面内的位置,并记为P(a,β).例如,图2中,如果OM=8,∠xOM=110°,那么点M在平面内的位置,记为M(8,110),根据图形,解答下列问题:(1)如图3中,如果点N 在平面内的位置记为N(6,30),那么ON= ,∠xON= ;(2)如果点A 、B 在平面内的位置分别记为A(4,30),B(4,90),试求A 、B 两点间的距离.21.如图,在5×5的方格(每小格边长为1)内有4只甲虫A 、B 、C 、D ,它们爬行规律总是先左右,再上下.规定:向右与向上为正,向左与向下为负.从A 到B 的爬行路线记为:A→B (+1,+4),从B 到A 的爬行路线为:B→A (-1,-4),其中第一个数表示左右爬行信息,第二个数表示上下爬行信息,那么图中(1) A→C ( , ),B→D ( , ),C→ (+1, );(2) 若甲虫A 的爬行路线为A→B→C→D ,请计算甲虫A 爬行的路程;(3) 若甲虫A 的爬行路线依次为(+2,+2),(+1,-1),(-2,+3),(-1,-2),最终到达甲虫P 处,请在图中标出甲虫A 的爬行路线示意图及最终甲虫P 的位置.22.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动,它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)A C →(________,________),B C →(________,________),C D →(________,________);(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P 的位置.23.如图,正方形网格中的交点,我们称之为格点,点A用有序数对(2,2)表示,其中第一个数表示排数,第2个数表示列数,在图中有一个格点C,使三角形ABC的面积为1,写出所有符合条件的表示点C的有序数对.【参考答案】1.B 2.A 3.C 4.C 5.C 6.B 7.C 8.A 9.B 10.C11.5 912.(G,5)13.(6,5)14.第二排第4行.15.(45,9).16.(1)(1,9)、(1,6)、(2,7)、(3,5)、(4,2),(5,5)(6,4)(7,2)(7,3)(9,1);(2)平均每周用于阅读课外书的时间和用于看电视的时间的总共10h的同学有5名;(3)b-a=117.3格18.答案不唯一,最短距离为30km19.(1)马(2,2),兵(2,4),车(6,5),炮(8,3)(2)“马”下一步可以走到的位置还有3个,表示为(1,4),(4,3),(4,1)20.(1)6,30°(2) 1321.(1)A→C(+3 ,+4 ),B→D(+3 ,-2 ),C→ D (+1,-2 );(2)10;(3)略.22.(1)+3,+4;+2,0;+1,-2;(2)略23.(1,3),(2,4),(3,5),(3,1),(4,2),(5,3)。

2019-2020人教版新教材七年级数学下全册同步练习答案.doc

2019-2020人教版新教材七年级数学下全册同步练习答案.doc

同步练习参考答案第五章相交线与平行线11.公共,反向延长线.2.公共,反向延长线.3.对顶角相等.4.略.5.(1)∠BOC,∠AOD;(2)∠AOE;(3)∠AOC,∠BOD;(4)137°43′,90°,47°43′.6.A.7.D.8.B.9.D.10.×,11.×,12.×,13.√,14.√,15.×.16.∠2=60°.17.∠4=43°.18.120°.提示:设∠DOE=x°,由∠AOB=∠AOD+∠DOB=6x=180°,可得x=30°,∠AOF =4x=120°.19.只要延长BO(或AO)至C,测出∠AOB的邻补角∠AOC(或∠BOC)的大小后,就可知道∠AOB的度数.20.∠AOC与∠BOD是对顶角,说理提示:只要说明A,O,B三点共线.证明:∵射线OA的端点在直线CD上,∴∠AOC与∠AOD互为邻补角,即∠AOC+∠AOD=180°,又∵∠BOD=∠AOC,从而∠BOD+∠AOD=180°,∴∠AOB是平角,从而A,O,B三点共线.∴∠AOC与∠BOD是对顶角.21.(1)有6对对顶角,12对邻补角.(2)有12对对顶角,24对邻补角.(3)有m(m-1)对对顶角,2m(m-1)对邻补角.21.互相垂直,垂,垂足.2.有且只有一条直线,所有线段,垂线段.3.垂线段的长度.4.AB⊥CD;AB⊥CD,垂足是O(或简写成AB⊥CD于O);P;CD;线段MO的长度.5~8.略.9.√,10.√,11.×,12.√,13.√,14.√,15.×,16.√.17.B.18.B.19.D.20.C.21.D.22.30°或150°.23.55°.24.如图所示,不同的垂足为三个或两个或一个.这是因为:(1)当A,B,C三点中任何两点的连线都不与直线m垂直时,则分别过A,B,C三点作直线m的垂线时,有三个不同的垂足.(2)当A,B,C三点中有且只有两点的连线与直线m垂直时,则分别过A,B,C三点作直线m的垂线时,有两个不同的垂足.(3)当A,B,C三点共线,且该线与直线m垂直时,则只有一个垂足.25.以点M为圆心,以R=1.5cm长为半径画圆M,在圆M上任取四点A,B,C,D,依次连接AM,BM,CM,DM,再分别过A,B,C,D点作半径AM,BM,CM,DM的垂线l1,l2,l3,l4,则这四条直线为所求.26.相等或互补.27.提示:如图,,9073,9075 ⨯=∠⨯=∠FOC AOE.90710,9072 ⨯=∠⨯=∠∴BOC AOB .90712⨯=∠+∠∴BOC AOB∴是712倍. 31.(1)邻补角,(2)对顶角,(3)同位角,(4)内错角, (5)同旁内角,(6)同位角,(7)内错角,(8)同旁内角, (9)同位角,(10)同位角.2.同位角有:∠3与∠7、∠4与∠6、∠2与∠8;内错角有:∠1与∠4、∠3与∠5、∠2与∠6、∠4与∠8; 同旁内角有:∠2与∠4、∠2与∠5、∠4与∠5、∠3与∠6. 3.(1)BD ,同位. (2)AB ,CE ,AC ,内错.4.(1)ED ,BC ,AB ,同位;(2)ED ,BC ,BD ,内错;(3)ED ,BC ,AC ,同旁内. 5.C . 6.D . 7.B . 8.D .9.6对对顶角,12对邻补角,12对同位角,6对内错角,6对同旁内角.41.不相交,a ∥b . 2.相交、平行.3.经过直线外一点有且只有一条直线与这条直线平行. 4.第三条直线平行,互相平行,a ∥c . 5.略.6.(1)EF ∥DC ,内错角相等,两直线平行. (2)AB ∥EF ,同位角相等,两直线平行. (3)AD ∥BC ,同旁内角互补,两直线平行. (4)AB ∥DC ,内错角相等,两直线平行. (5)AB ∥DC ,同旁内角互补,两直线平行. (6)AD ∥BC ,同位角相等,两直线平行. 7.(1)AB ,EC ,同位角相等,两直线平行.(2)AC,ED,同位角相等,两直线平行.(3)AB,EC,内错角相等,两直线平行.(4)AB,EC,同旁内角互补,两直线平行.8.略.9.略.10.略.11.同位角相等,两直线平行.12.略.13.略.14.略.51.(1)两条平行线,相等,平行,相等.(2)被第三条直线所截,内错角,两直线平行,内错角相等.(3)两条平行线被第三条直线所截,互补.两直线平行,同旁内角互补.2.垂直于,线段的长度.3.(1)∠5,两直线平行,内错角相等.(2)∠1,两直线平行,同位角相等.(3)180°,两直线平行,同旁内角互补.(4)120°,两直线平行,同位角相等.4.(1)已知,∠5,两直线平行,内错角相等.(2)已知,∠B,两直线平行,同位角相等.(3)已知,∠2,两直线平行,同旁内角互补.5~12.略.13.30°.14.(1)(2)均是相等或互补.15.95°.16.提示:这是一道结论开放的探究性问题,由于E点位置的不确定性,可引起对E点不同位置的分类讨论.本题可分为AB,CD之间或之外.如:结论:①∠AEC=∠A+∠C②∠AEC+∠A+∠C=360°③∠AEC=∠C-∠A④∠AEC=∠A-∠C⑤∠AEC=∠A-∠C⑥∠AEC=∠C-∠A.61.判断、语句.2.题设,结论,已知事项,由已知事项推出的事项.3.题设,结论.4.一定成立,总是成立.5.题设是两条直线垂直于同一条直线;结论是这两条直线平行.6.题设是同位角相等;结论是两条直线平行.7.题设是两条直线平行;结论是同位角相等.8.题设是两个角是对顶角;结论是这两个角相等.9.如果一个角是90°,那么这个角是直角.10.如果一个整数的末位数字是零,那么这个整数能被5整除.11.如果有几个角相等,那么它们的余角相等.12.两直线被第三条直线截得的同旁内角互补,那么这两条直线平行.13.是,14.是,15.不是,16.不是,17.不是,18.是.19.√,20.√,21.×,22.×,23.√,24.√,25.×,26.×,27.√,28.√,29.×,30.×.31.正确的命题例如:(1)在四边形ABCD中,如果AB∥CD,BC∥AD,那么∠A=∠C.(2)在四边形ABCD中,如果AB∥CD,BC∥AD,那么AD=BC(3)在四边形ABCD中,如果AD∥BC,∠A=∠C,那么AB∥DC.32.已知:如图,AB∥CD,EF与AB、CD分别交于M,N,MQ平分∠AMN,NH平分∠END.求证:MQ∥NH.证明:略.71.LM,KJ,HI.2.(1)某一方向,相等,AB∥A1B1∥A2B2∥A3B3或在一条直线上,AB=A1B1=A2B2=A3B3.(2)平行或共线,相等.3.(1)某一方向,形状、大小.(2)相等,平行或共线.4~7.略.8.B9.利用图形平移的性质及连接两点的线中,线段最短,可知:AC+CD+DB=(ED+DB)+CD=EB+CD.而CD的长度又是平行线PQ与MN之间的距离,所以AC+CD+DB最短.10.提示:正方形③的面积=正方形①的面积+正方形②的面积.AB2=AC2+BC2.第六章实数6.11、算术平方根a根号a被开方数2、2.23613、0.54、0或15、B6、两个,互为相反数,0,没有平方根7、±0.6,平方根8、算术,负的 9、±2 10、C11、312、0.25 413、x=2.14、∵4=16,∴15 < 4∵25>22>1,∴215-=2125->1-0.5>0.5 , ∴215->0.5 15、22.361500071.750 2361.25 7071.05.0====(2)被开方数扩大或缩小100倍,算术平方根扩大或缩小10倍 16、90.424≈ 60.19490.4=⨯ 周长大约是19.60厘米 17、(1)12 (2)410 (3)6 (4)151118、B 19、计算;①=±=±91697134±②=-=--81404122-9 ③0.4220、解方程:① x=±43 ② x=217-± ③()25142=+x ④()()223324-=+x125251425)1(2-±=±=+=+x x x 3232233249)32(2-±=±=+=+x x x X=-3.5或1.5 2x=-1.5或-4.5 X=-0.75或-2.2521、解:x=±11,因为被开方数大于等于零,算术平方根大于等于零,所以y-2=0,y=2 故xy=±2222、解;因为一个数的两个平方根互为相反数,所以(2a-3)+(4-a )=0,得a=-1,即2a-3=-5故这个数的负的平方根是-523、解:由题意得⎩⎨⎧=-+=-1613912b a a ,解得⎩⎨⎧==25b a ,所以392252==⨯+=+b a24、①25x 052-≥≥+即x ②3-2x ≥0且2x-3≥0,解得x=1.5③5+x ≥0且x+2≠0,解得x ≥-5且x ≠-2 6.21.D 2.D 3.C 4.C1. B 6. B 7. B 8.D 9.C 10. A11.8± 4 12.27 9 13.3m 14.-6 -0.008 15.-3 133 16. ±517.-1. 518. ⑴ -2 ⑵ 0.4 ⑶ 25- ⑷ 9⑴0.01 0.1 1 10 100⑵被开方数小数点向左(或右)移动三位,它的立方根的小数点向左(或右)移动一位. ⑶ ① 14.42 0.144221、解析:正方体 113=, 球体1 4313433<⇒=⇒=R R R ππ,所以甲不符合要求,乙符合要求。

2020-2021学年人教版(五四制)七年级下册数学期末练习试题(有答案)

2020-2021学年人教版(五四制)七年级下册数学期末练习试题(有答案)

2020-2021学年人教五四版七年级下册数学期末练习试题一.选择题(共10小题,满分30分,每小题3分)1.下列x的值不是不等式﹣2x+4<0的解,答案是()A.﹣2B.3C.3.5D.102.小华在某月的日历中圈出几个数,算得这三个数的和为36,那么这几个数的形式可能是()A.B.C.D.3.如图是根据某班40名同学一周的体育锻炼情况绘制的统计图,该班40名同学一周参加体育锻炼时间的中位数,众数分别是()A.10.5,16B.8.5,16C.8.5,8D.9,84.如图,AC和BD相交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC还需()A.AB=DC B.OB=OC C.∠C=∠D D.∠AOB=∠DOC 5.关于x的不等式组只有3个整数解,则a的取值范围是()A.﹣3≤a≤﹣2B.﹣3≤a<﹣2C.﹣3<a≤﹣2D.﹣3<a<﹣2 6.如图所示,∠C=∠D=90°添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等.以下给出的条件适合的是( )A .AC =ADB .AB =ABC .∠ABC =∠ABD D .∠BAC =∠BAD7.不等式组的解集为( ) A .x ≥﹣2B .﹣2<x <3C .x >3D .﹣2≤x <38.为备战2008年北京奥运会,甲、乙两名运动员训练测验,两名运动员的平均分相同,且S 2甲=0.01,S 2乙=0.006,则成绩较稳定的是( )运动员. A .甲B .乙C .两运动员一样稳定D .无法确定9.下列说法正确的是 ) A .两条不相交的直线一定平行 B .三角形三条高线交于一点C .过一点有且只有一条直线与已知直线垂直D .直线外一点到这条直线的垂线段的长度叫做这个点到直线的距离10.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺.设木长为x 尺,绳子长为y 尺,则下列符合题意的方程组是( ) A .B .C .D .二.填空题(共10小题,满分30分,每小题3分)11.已知2a x +y b 3与﹣a 2b x ﹣y 是同类项,则(x +y )(x ﹣y )= .12.k 的值大于﹣1且不大于3,则用不等式表示 k 的取值范围是 .(使用形如a≤x≤b的类似式子填空.)13.不等式组无解,则a的取值范围是.14.已知:2,4,2x,4y四个数的平均数是5;5,7,4x,6y四个数的平均数是9,则x2+y3=.15.一个多边形的每一个外角为30°,那么这个多边形的边数为.16.如图,AD为△ABC的中线,AB=13cm,AC=10cm.若△ACD的周长28cm,则△ABD 的周长为.17.如图,∠ABC=∠DEF,AB=DE,要证明△ABC≌△DEF,需要添加一个条件为:(只添加一个条件即可).18.如图,在△ABC中,点D是∠ABC和∠ACB的角平分线的交点,∠A=80°,∠ABD =30°,则∠DCB为.19.如图,△ABC的面积是16,点D,E,F,G分别是BC,AD,BE,CE的中点,则△AFG的面积是.20.请写一个二元一次方程组,使它的解是.三.解答题(共6小题,满分38分)21.解方程组(1);(2);22.解下列不等式(组),并把它们的解集分别表示在数轴上;(1)解不等式:﹣<4;(2)解不等式组:.23.如图,点B,C,E,F在同一直线上,点A,D在BC的异侧,AB=CD,BF=CE,∠B=∠C.(1)求证:AE∥DF.(2)若∠A+∠D=144°,∠C=30°,求∠AEC的度数.24.某园林部门决定利用现有的349盆甲种花卉和295盆乙种花卉搭配A,B两种园艺造型共50个,摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉8盆,乙种花卉4盆;搭配一个B种造型需甲种花卉5盆,乙种花卉9盆.(1)某校九年级某班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;(2)若搭配一个A种造型的成本是200元,搭配一个B种造型的成本是360元,试说明哪种方案成本最低,最低成本是多少元?25.平价商场经销的甲,乙两种商品,甲种商品每件售价98元,利润率为40%;乙种商品每件进价80元,售价128元.(1)求甲种商品每件的进价;(利润率=×100%)(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为3800元,求购进甲、乙两种商品各多少件?(3)在“元旦”期间,该商场只对乙种商品进行如表的优惠促销活动:打折前一次性购物总金额优惠措施少于等于480元不优惠超过480元,但不超过680元其中480元不打折,超过480元的部分给予6折优惠超过680元按购物总额给予7.5折优惠按表的优惠条件,若小华一次性购买乙种商品实际付款576元,求小华在该商场购买乙种商品多少件?26.某校为了了解初中学生每天的睡眠时间(单位为小时),随机调查了该校的部分初中学生,根据调查结果,绘制出如图统计图.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为人,扇形统计图中的m=,条形统计图中的n=;(2)统计调查的初中学生每天睡眠时间的平均数和方差.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:不等式﹣2x+4<0,解得:x>2,则﹣2不是不等式的解.故选:A.2.解:第一个图中:设下面的数是x,则上面的数是x﹣7,右边的是x﹣6.根据题意得:x+(x﹣7)+(x﹣6)=36,解得x=不合题意.第二图中:设下面的数是x,则上面的数是x﹣7,左边的数是x﹣8.根据题意得:x+(x ﹣7)+(x﹣8)=36,解得x=17,符合题意.可能是这种形式.第三图中:设下面左边的数是x,则右边的数是:x+2,上面的数是x+1﹣7=x﹣6,根据题意得:x+(x+2)+(x﹣6)=36解得:x=,不合题意.第四图中:设下面左边的数是x,则上边左边的是:x﹣7﹣1=x﹣8右边的数是:x﹣7+1=x﹣6根据题意得:x+(x﹣8)+(x﹣6)=36解得:x=,不合题意.故选:B.3.解:将这组数据从小到大的顺序排列后,处于中间位置的那个数,由中位数的定义可知,这组数据的中位数是9;众数是一组数据中出现次数最多的数,即8;故选:D.4.解:A、AB=DC,不能根据SAS证两三角形全等,故本选项错误;B、∵在△AOB和△DOC中,∴△AOB≌△DOC(SAS),故本选项正确;C、两三角形相等的条件只有OA=OD和∠AOB=∠DOC,不能证两三角形全等,故本选项错误;D、根据∠AOB=∠DOC和OA=OD,不能证两三角形全等,故本选项错误;故选:B.5.解:,由①得:x>a,由②得:x<1,∴不等式组的解集为:a<x<1,∵只有3个整数解,∴整数解为:0,﹣1,﹣2,∴﹣3≤a<﹣2,故选:B.6.解:需要添加的条件为BC=BD或AC=AD,理由为:若添加的条件为BC=BD,在Rt△ABC与Rt△ABD中,∵,∴Rt△ABC≌Rt△ABD(HL);若添加的条件为AC=AD,在Rt△ABC与Rt△ABD中,∵,∴Rt△ABC≌Rt△ABD(HL).故选:A.7.解:,解①得:x>3,解②得:x≥﹣2,所以不等式组的解集为:x>3.故选:C.8.解:由于S甲2>S乙2,则成绩较稳定的同学是乙.故选:B.9.解:A、在同一平面内,两条不相交的直线一定平行,故不符合题意;B、三角形的三条高线所在的直线交于一点,故不符合题意;C、在同一平面内,过一点有且只有一条直线与已知直线垂直,故不符合题意;D、直线外一点到这条直线的垂线段的长度叫做这个点到直线的距离,故符合题意;故选:D.10.解:由题意可得,,故选:B.二.填空题(共10小题,满分30分,每小题3分)11.解:∵2a x+y b3与﹣a2b x﹣y是同类项,∴则(x+y)(x﹣y)=2×3=6.故答案为6.12.解:根据题意,得﹣1<k≤3.故填﹣1<k≤3.13.解:∵不等式组无解,∴a的取值范围是a≤2;故答案为a≤2.14.解:由题意知,(2+4+2x+4y)÷4=5,(5+7+4x+6y)÷4=9;∴2x+4y=14和4x+6y=24;解这两个方程组成的方程组得,x=3,y=2;∴x2+y3=9+8=17.故填17.﹣15.解:多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.16.解:∵AD为△ABC的中线,∴BD=DC,∵△ACD的周长28cm,∴AC+AD+CD=28(cm),∵AC=10cm,∴AD+CD=18(cm),即AD+BD=18(cm),∴△ABD的周长=AB+AD+BD=31(cm),故答案为:31cm.17.解:所添条件为:BC=EF.∵BC=EF,∠ABC=∠DEF,AB=DE∴△ABC≌△DEF(SAS).18.解:∵BD平分∠ABC,∴∠ABC=2∠ABD=60°.在△ABC中,∠ACB=180°﹣∠A﹣∠ABC=180°﹣80°﹣60°=40°.又∵CD平分∠ACB,∴∠DCB=∠ACB=×40°=20°.故答案为:20°.19.解:∵点D是BC的中点,∴AD是△ABC的中线,∴△ABD的面积=△ADC的面积=×△ABC的面积,同理得:△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积==2,△AEG的面积=2,△BCE的面积=×△ABC的面积=8,又∵FG是△BCE的中位线,∴△EFG的面积=×△BCE的面积==2,∴△AFG的面积是2×3=6,故答案为:6.20.解:二元一次方程组,使它的解是.故答案为:三.解答题(共6小题,满分38分)21.解:(1),①×2+②得:﹣9y=﹣9,解得:y=1,把y=1代入②得:x=1,则方程组的解为;(2)方程组整理得:,①×2+②得:11x=22,解得:x=2,把x=2代入①得:y=3,则方程组的解为.22.解:(1)原不等式变化为﹣(2x﹣2)<12,∴2x﹣2>﹣12,∴x>﹣5,在数轴上表示为:;(2)原不等式组转化为,化简为,∴不等式组的解集为:﹣1<x≤5.在数轴上表示为:.23.(1)证明:∵BF=CE,∴BF+EF=CE+EF,即BE=CF,在△ABE和△DF中,,∴△ABE≌△DCF(SAS),∴∠AEB=∠DFC,∴AE∥DF;(2)解:∵△ABE≌△DCF,∴∠A=∠D,∠B=∠C=30°,∵∠A+∠D=144°,∴∠A=72°,∴∠AEC=∠A+∠B=72°+30°=102°.24.解:(1)设搭配A种造型x个,则B种造型为(50﹣x)个,依题意得,解这个不等式组得:31≤x≤33,∵x是整数,∴x可取31,32,33,∴可设计三种搭配方案:①A种园艺造型31个,B种园艺造型19个;②A种园艺造型32个,B种园艺造型18个;③A种园艺造型33个,B种园艺造型17个.(2)设总成本为W元,则W=200x+360x(50﹣x)=﹣160x+18000,∵k=﹣160<0,∴W随x的增大而减小,则当x=33时,总成本W取得最小值,最小值为12720元.25.解:(1)设甲种商品的进价为a元,则98﹣a=40%a.解得a=70.答:甲种商品的进价为70元;(2)设该商场购进甲种商品x件,根据题意可得:70x+80(50﹣x)=3800,解得:x=20;乙种商品:50﹣20=30(件).答:该商场购进甲种商品20件,乙种商品30件.(3)设小华在该商场购买乙种商品b件,根据题意,得①当过480元,但不超过680元时,480+(128b﹣480)×0.6=576,解得b=5.②当超过680元时,128b×0.75=576,解得b=6.答:小华在该商场购买乙种商品5或6件.26.解:(1)本次接受调查的初中学生有:4÷10%=40(人),m%=10÷40×100%=25%,即m=25,n=40×37.5%=15,故答案为:40,25,15;(2)由条形统计图可得,=×(5×4+6×8+7×15+8×10+9×3)=7,s2=[(5﹣7)2×4+(6﹣7)2×8+(7﹣7)2×15+(8﹣7)2×10+(9﹣7)2×3]=1.15,。

七年级数学下册第八章二元一次方程组8.3实际问题与二元一次方程组练习卷含解析新版新人教版202005

七年级数学下册第八章二元一次方程组8.3实际问题与二元一次方程组练习卷含解析新版新人教版202005

8.3 实际问题与二元一次方程组一.选择题(共5小题)1.10年前,小明妈妈的年龄是小明的6倍,10年后,小明妈妈的年龄是小明的2倍,小明和他妈妈现在的年龄分别是多少岁?若设小明和他妈妈现在分别是x岁和y岁,根据题意可列方程组为()A.B.C.D.2.甲乙两人在一环形跑道上同时从A点匀速跑步,已知甲的速度比乙的速度快,若两人同向出发,则两人在6分钟时第1次相遇;若两人背向出发,两人在3分钟时第1次相遇,则甲的速度是乙的速度的()倍.A.2 B.3 C.4 D.53.成书早于《九章算术》的江陵张家山竹简《算术》记载,“方程”是“程禾”算法发展而来的.在《九章算法》的方程章,有一道题,原文是:“今有甲乙二人持钱不计其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有里有多少钱.若乙把一半的钱给甲,则甲的钱数为50;而甲把的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?若设甲有钱为x,乙有钱为y.依题意可列方程组为()A.B.C.D.4.用8块相同的长方形地砖拼成一块大长方形地面,地砖的拼放方式及相关数据如图所示,则每块地砖的长与宽分别是()A.25和20 B.30和20 C.40和35 D.45和155.一个班级,若分成12个小组,则余3人,若每组人数增加2人,则可分成8组,仍余3人,这个班的人数是()A.39 B.43 C.51 D.59二.填空题(共5小题)6.小明的爸爸开车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下:时刻12:00 13:00 14:30碑上的数是一个两位数,数字之和是6是一个两位数,十位与个位数字与12:00时所看到的正好颠倒了比12:00时看到的两位数中间多了个0则12:00时看到的两位数是多少?设12:00时看到的两位数的个位数为y,十位数为x,列出的二元一次方程组为.7.在某足球比赛的前11场比赛中,A队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,设A队胜了x场,由题意可列方程为.8.某电台组织知识竞赛,共设置20道选择题,各题分值相同,每题必答,下表记录了3个参赛者的得分情况.若参赛者D得82分,则他答对了道题.参赛者答对题数答错题数得分A20 0 100B19 1 94C14 6 649.某商店新进一批衬衣和数对暖瓶(一对为2件),暖瓶的对数正好是衬衣件数的一半,每件衬衣的进价是40元,每对暖瓶的进价是60元(暖瓶成对出售),商店将这批物品以高出进价10%的价格售出,最后留下了17件物品未卖出,这时,商店发现卖出物品的总售价等于所有货物总进价的90%,则最初购进这批暖瓶对.10.将一箱书分给若干同学,若每人分5本,还剩12本;若每人分8本,还缺6本.则这箱书一共有本.三.解答题(共10小题)11.列方程组解应用题某校组织“大手拉小手,义卖献爱心”活动,计划购买黑、白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花2400元购买了黑、白两种颜色的文化衫100件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫25 45白色文化衫20 35(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.12.如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x,y的值;(2)在备用图中完成此方阵图.13.(列二元一次方程组求解)一、二两班共有100名学生,他们的体育达标率(达到标准的百分率)为81%.如果一班学生的的体育达标率为87.5%,二班学生的体育达标率为75%,那么一、二两班各有多少名学生?14.某学校准备购进一批足球,从商场了解到:一个A型足球和三个B型足球共需275元;三个A型足球和两个B型足球共需300元.(1)列二元一次方程组解决问题:求一个A型足球和一个B型足球的售价各是多少元;(2)若该学校准备同时购进这两种型号的足球共80个,并且A型足球的数量小于等于60个,请设计出最省钱的购买方案,并说明理由.15.某校规划在一块长AD为18m.宽AB为13m的长方形场地ABCD上,设计分别与AD、AB 平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM:AN =8:9,问通道的宽是多少.16.某专卖店有A、B两种商品,已知在打折前,买60件A商品和30件B商品共用了1080元,买50件A商品和10件B商品共用了840元,A、B两种商品打相同折以后,某人买500件A商品和450件B商品一共花了7840元,请你计算A、B商品打了多少折?17.某花店计划购进一批新的花束以满足市场需求,三款不同品种的花束,进价分别是A 款180元/束,B款60元/束,C款120元/束.店铺在经销中,A款花束可赚20元/束,B 款花束可赚10元/束,C款花束可赚12元/束.(1)若商场用6000元同时购进两种不同款式的花束共40束,并恰好将钱用完,请你通过计算分析进货方案;(2)在(1)的条件下,求盈利最多的进货方案;(3)若该店铺同时购进三款花束共20束,共用去1800元,问这次店铺共有几种可能的方案?利润最大是多少元?18.某中学有库存1800套旧桌凳,修理后捐助贫困山区学校.现有甲,乙两个木工组都想承揽这项业务.经协商后得知:甲木工组每天修理的桌凳套数是乙木工组每天修理桌凳套数的,甲木工组单独修理这批桌凳的天数比乙木工组单独修理这批桌凳的天数多10天,甲木工组每天的修理费用是600元,乙木工组每天的修理费用是800元.(1)求甲,乙两木工组单独修理这批桌凳的天数;(2)现有三种修理方案供选择:方案一,由甲木工组单独修理这批桌凳;方案二,由乙木工组单独修理这批桌凳;方案三,由甲,乙两个木工组共同合作修理这批桌凳.请计算说明哪种方案学校付的修理费最少.19.甲、乙两人一起去检修300长的自来水管道,已知甲比乙每小时少修10m,两人从管道的两端同时开始检修,3小时后完成任务.问:甲、乙每小时各检修多少m?20.篝火晚会前夕,德强学校附近一超市从厂家购进了甲、乙两种发光道具,甲种道具的每件进价比乙种道具的每件进价少2元.若购进甲种道具7件,乙种道具2件,需要76元.(1)求甲、乙两种道具的每件进价分别是多少元?(2)若该超市从厂家购进了甲乙两种道具共50件,所用资金恰好为440元.在销售时,甲种道具的每件售价为10元,要使得这50件道具所获利润率为20%,乙道具的每件售价为多少元?人教新版七年级下学期《8.3 实际问题与二元一次方程组》2020年同步练习卷参考答案与试题解析一.选择题(共5小题)1.10年前,小明妈妈的年龄是小明的6倍,10年后,小明妈妈的年龄是小明的2倍,小明和他妈妈现在的年龄分别是多少岁?若设小明和他妈妈现在分别是x岁和y岁,根据题意可列方程组为()A.B.C.D.【分析】设小明和他妈妈现在分别是x岁和y岁,分别表示出十年前和十年后他们的年龄,根据题意列方程组即可.【解答】解:设小明和他妈妈现在分别是x岁和y岁.由题意得,,故选:B.【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.2.甲乙两人在一环形跑道上同时从A点匀速跑步,已知甲的速度比乙的速度快,若两人同向出发,则两人在6分钟时第1次相遇;若两人背向出发,两人在3分钟时第1次相遇,则甲的速度是乙的速度的()倍.A.2 B.3 C.4 D.5【分析】设乙的速度为x米/分钟,甲的速度为kx米/分钟,环形跑道的长为S米,根据路程=速度×时间,即可得出关于k,x的二元一次方程组(S和x是设而不求),解之即可得出k值.【解答】解:设乙的速度为x米/分钟,甲的速度为kx米/分钟,环形跑道的长为S米,依题意,得:,解得:k=3.故选:B.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.3.成书早于《九章算术》的江陵张家山竹简《算术》记载,“方程”是“程禾”算法发展而来的.在《九章算法》的方程章,有一道题,原文是:“今有甲乙二人持钱不计其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有里有多少钱.若乙把一半的钱给甲,则甲的钱数为50;而甲把的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?若设甲有钱为x,乙有钱为y.依题意可列方程组为()A.B.C.D.【分析】设甲有钱为x,乙有钱为y.根据“若乙把一半的钱给甲,则甲的钱数为50;而甲把的钱给乙,则乙的钱数也能为50”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设甲有钱为x,乙有钱为y.依题意,得:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.4.用8块相同的长方形地砖拼成一块大长方形地面,地砖的拼放方式及相关数据如图所示,则每块地砖的长与宽分别是()A.25和20 B.30和20 C.40和35 D.45和15【分析】设每块地砖的长为xcm,宽为ycm,根据图中关系可得x+y=60,x=3y,求两方程的解即可.【解答】解:设每块地砖的长为xcm,宽为ycm,根据题意得,解这个方程组,得,答:每块地砖的长为45cm,宽为15cm,故选:D.【点评】本题考查了二元一次方程的应用,正确理解图意并列出方程组是解题的关键.5.一个班级,若分成12个小组,则余3人,若每组人数增加2人,则可分成8组,仍余3人,这个班的人数是()A.39 B.43 C.51 D.59【分析】设这个班的人数是x,每组人数为y,根据题意列出方程解答即可.【解答】解:设这个班的人数是x,每组人数为y,可得:,解得:,故选:C.【点评】此题考查二元一次方程组的应用,关键是根据题意得出两个方程解答.二.填空题(共5小题)6.小明的爸爸开车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下:时刻12:00 13:00 14:30碑上的数是一个两位数,数字之和是一个两位数,十位与个位数字与12:00时所看比12:00时看到的两位数中间多了个0是6 到的正好颠倒了则12:00时看到的两位数是多少?设12:00时看到的两位数的个位数为y,十位数为x,列出的二元一次方程组为.【分析】设12:00时看到的两位数的个位数为y,十位数为x,根据车的速度不变及12:00时看到的两位数的数字之和为6,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设12:00时看到的两位数的个位数为y,十位数为x,依题意,得:.故答案为:.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.7.在某足球比赛的前11场比赛中,A队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,设A队胜了x场,由题意可列方程为3x+(11﹣x)=23 .【分析】直接设A队胜了x场,则平(11﹣x)场,再利用胜一场得3分,平一场得1分,得出等式求出答案.【解答】解:设A队胜了x场,由题意可列方程为:3x+(11﹣x)=23.故答案为:3x+(11﹣x)=23.【点评】此题主要考查了由实际问题抽象出二元一次方程,正确得出等式是解题关键.8.某电台组织知识竞赛,共设置20道选择题,各题分值相同,每题必答,下表记录了3个参赛者的得分情况.若参赛者D得82分,则他答对了17 道题.参赛者答对题数答错题数得分A20 0 100B19 1 94C14 6 64 【分析】设答对一题得a分,答错一题得b分,根据参赛者B,C的得分情况,可得出关于a,b的值,设参赛者D答对了x道题,则答错了(20﹣x)道题,根据参赛者D的得分=5×答对题目数﹣1×答错题目数,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设答对一题得a分,答错一题得b分,依题意,得:,解得:.设参赛者D答对了x道题,则答错了(20﹣x)道题,依题意,得:5x﹣(20﹣x)=82,解得:x=17.故答案为:17.【点评】本题考查了一元一次方程的应用以及二元一次方程组的应用,找准等量关系,正确列出一元一次方程(或二元一次方程组)是解题的关键.9.某商店新进一批衬衣和数对暖瓶(一对为2件),暖瓶的对数正好是衬衣件数的一半,每件衬衣的进价是40元,每对暖瓶的进价是60元(暖瓶成对出售),商店将这批物品以高出进价10%的价格售出,最后留下了17件物品未卖出,这时,商店发现卖出物品的总售价等于所有货物总进价的90%,则最初购进这批暖瓶22 对.【分析】卖出物品的总售价等于所有货物总进价的90%,可列出方程,根据x、a的取值范围分别讨论求适合题意的解即可.【解答】解:设购进暖瓶x对,则有2x只暖瓶,衬衫2x件,留下的17件物品中有a只暖瓶,(17﹣a)件衬衫,∵每件衬衣的进价是40元,每对暖瓶的进价是60元,商店将这批物品以高出进价10%的价格售出,∴暖瓶每只售价为30×(1+10%)=33(元),衬衫每件售价为40×(1+10%)=44(元),∴总售价为=33×(2x﹣a)+44(2x﹣17+a)=154x+11a﹣748(元),根据题意得:154x+11a﹣748=90%(40×2x+60x),整理得:28x+11a=748,∵a为偶数,且17﹣a≥0,∴a为2,4,6,8,10,12,14,16,当a=2,x的值为分数,不合题意;当a=4,x的值为分数,不合题意;当a=6,x的值为分数,不合题意;当a=8,x的值为分数,不合题意;当a=10,x的值为分数,不合题意;当a=12,x=22,当a=14,x的值为分数,不合题意;当a=16,x的值为分数,不合题意;∴即只有当a=12,x=22时符合题意.答:最初购进这批暖瓶22对,故答案为:22.【点评】本题考查了二元一次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再根据实际情况求解.10.将一箱书分给若干同学,若每人分5本,还剩12本;若每人分8本,还缺6本.则这箱书一共有42 本.【分析】设这箱书一共有x本,共y个同学参与分书,根据“若每人分5本,还剩12本;若每人分8本,还缺6本”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设这箱书一共有x本,共y个同学参与分书,依题意,得:,解得:.故答案为:42.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组解题的关键.三.解答题(共10小题)11.列方程组解应用题某校组织“大手拉小手,义卖献爱心”活动,计划购买黑、白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花2400元购买了黑、白两种颜色的文化衫100件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫25 45白色文化衫20 35(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.【分析】(1)设学校购进黑色文化衫x件,白色文化衫y件,根据购进黑、白两种颜色的文化衫100件共需2400元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总利润=每件的利润×数量,即可求出结论.【解答】解:(1)设学校购进黑色文化衫x件,白色文化衫y件,依题意,得:,解得:.答:学校购进黑色文化衫80件,白色文化衫20件.(2)(45﹣25)×80+(35﹣20)×20=1900(元).答:该校这次义卖活动所获利润为1900元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.12.如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x,y的值;(2)在备用图中完成此方阵图.【分析】(1)由方阵图中每行的3个数、每列的3个数、斜对角的3个数之和均相等,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据方阵图中每行的3个数、每列的3个数、斜对角的3个数之和均相等,求出空缺中的数字,补充完整方阵图即可得出结论.【解答】解:(1)根据题意得:,解得:.(2)∵x=﹣1,y=2,∴3+4+x=6,2y﹣x=5.∵每行的3个数、每列的3个数、斜对角的3个数之和均相等,∴6﹣(﹣2)﹣y=6;6﹣4﹣y=0;6﹣3﹣y=1.完成方阵图,如图所示.【点评】本题考查了二元一次方程组,根据方阵图中每行的3个数、每列的3个数、斜对角的3个数之和均相等,列出关于x、y的二元一次方程组是解题的关键.13.(列二元一次方程组求解)一、二两班共有100名学生,他们的体育达标率(达到标准的百分率)为81%.如果一班学生的的体育达标率为87.5%,二班学生的体育达标率为75%,那么一、二两班各有多少名学生?【分析】设一班有x名同学,二班有y名同学,根据两班共100名学生且体育达标的同学有100×81%名,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设一班有x名同学,二班有y名同学,依题意,得:,解得:.答:一班有48名同学,二班有52名同学.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.14.某学校准备购进一批足球,从商场了解到:一个A型足球和三个B型足球共需275元;三个A型足球和两个B型足球共需300元.(1)列二元一次方程组解决问题:求一个A型足球和一个B型足球的售价各是多少元;(2)若该学校准备同时购进这两种型号的足球共80个,并且A型足球的数量小于等于60个,请设计出最省钱的购买方案,并说明理由.【分析】(1)设一个A型足球x元,一个B型足球y元,根据“一个A型足球和三个B 型足球共需275元;三个A型足球和两个B型足球共需300元”列方程组求解即可;(2)设A型足球a个,总费用w元,可得w=6000﹣25a,由一次函数的性质可求解.【解答】解:(1)设一个A型足球x元,一个B型足球y元,根据题意可得:解得:答:一个A型足球50元,一个B型足球75元.(2)设A型足球a个,总费用w元,根据题意可得:w=50a+75(80﹣a)=6000﹣25a,且a≤60,∵﹣25<0,∴w随着z的增大而减小,∴当a=60时,w的最小值为4500元.【点评】此题主要考查了二元一次方程组的应用以及一次函数的应用等知识,根据题意得出正确的等量关系是解题关键,难度不大.15.某校规划在一块长AD为18m.宽AB为13m的长方形场地ABCD上,设计分别与AD、AB 平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM:AN =8:9,问通道的宽是多少.【分析】利用AM:AN=8:9,设通道的宽为xm,AM=8ym,则AN=9y,进而利用AD为18m,宽AB为13m得出等式求出即可.【解答】解:设通道的宽为xm,AM=8ym,∵AM:AN=8:9,∴AN=9y,∴.解得,答:通道的宽是1m.【点评】考查了二元一次方程组的应用,解题的关系是找到关键描述语,列出等量关系.16.某专卖店有A、B两种商品,已知在打折前,买60件A商品和30件B商品共用了1080元,买50件A商品和10件B商品共用了840元,A、B两种商品打相同折以后,某人买500件A商品和450件B商品一共花了7840元,请你计算A、B商品打了多少折?【分析】设打折前A商品的单价为x元/件,B商品的单价为y元/件,根据“在打折前,买60件A商品和30件B商品共用了1080元,买50件A商品和10件B商品共用了840元”,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,利用总价=单价×数量可求出打折前购买500件A商品和450件B商品所需费用,再利用所打折扣=打折后的总价÷打折前的总价,即可求出结论.【解答】解:设打折前A商品的单价为x元/件,B商品的单价为y元/件,依题意,得:,解得:,16×500+4×450=9800(元),=0.8.答:A、B商品打了八折.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程是解题的关键.17.某花店计划购进一批新的花束以满足市场需求,三款不同品种的花束,进价分别是A 款180元/束,B款60元/束,C款120元/束.店铺在经销中,A款花束可赚20元/束,B 款花束可赚10元/束,C款花束可赚12元/束.(1)若商场用6000元同时购进两种不同款式的花束共40束,并恰好将钱用完,请你通过计算分析进货方案;(2)在(1)的条件下,求盈利最多的进货方案;(3)若该店铺同时购进三款花束共20束,共用去1800元,问这次店铺共有几种可能的方案?利润最大是多少元?【分析】(1)设进货方案:A款a束,B款b束,C款c束,由题意列出方程组,解方程组即可;(2)求出两种进货方案的盈利,即可得出答案;(3)设购进三款花束A款x束,B款y束,C款z束,x、y、z为正整数,由题意列出方程组,解方程组即可.【解答】解:(1)设进货方案:A款a束,B款b束,C款c束,方案一:,解得:;方案二:,解得:;方案三:,解得:,不合题意舍去;∴进货方案为购进A款30束、B款10束或购进A款20束、C款20束;(2)购进A款30束、B款10束盈利:30×20+10×10=700(元),购进A款20束、C款20束盈利:20×20+20×12=640(元),∵700元>640元,∴盈利最多的进货方案为购进A款30束,B款10束;(3)设购进三款花束A款x束,B款y束,C款z束,x、y、z为正整数,则,当x=1时,y=11,z=8,利润:20+11×10+8×12=226;当x=2时,y=12,z=6,利润:2×20+12×10+6×12=232;当x=3时,y=13,z=4,利润:3×20+13×10+4×12=238;当x=4时,y=14,z=2,利润:4×20+14×10+2×12=224;当x≥5时,不合题意舍去;∴这次店铺共有4种可能的方案:方案1:购进三款花束A款1束,B款11束,C款8束;方案2:购进三款花束A款2束,B款12束,C款6束;方案3:购进三款花束A款3束,B款13束,C款4束;方案4:购进三款花束A款4束,B款14束,C款2束;利润最大为 238 元.【点评】本题考查了二元一次方程组的应用以及三元一次方程组的应用;由题意列出方程组是解题的关键.18.某中学有库存1800套旧桌凳,修理后捐助贫困山区学校.现有甲,乙两个木工组都想承揽这项业务.经协商后得知:甲木工组每天修理的桌凳套数是乙木工组每天修理桌凳套数的,甲木工组单独修理这批桌凳的天数比乙木工组单独修理这批桌凳的天数多10天,甲木工组每天的修理费用是600元,乙木工组每天的修理费用是800元.(1)求甲,乙两木工组单独修理这批桌凳的天数;(2)现有三种修理方案供选择:方案一,由甲木工组单独修理这批桌凳;方案二,由乙木工组单独修理这批桌凳;方案三,由甲,乙两个木工组共同合作修理这批桌凳.请计算说明哪种方案学校付的修理费最少.【分析】(1)关键描述语为:“甲小组单独修理这批桌凳比乙小组多用20天”;等量关系为:甲小组单独修理这批桌凳的时间=乙小组单独修理这批桌凳的时间+20.(2)必须每种情况都考虑到,求出每种情况下实际花费,进行比较.【解答】解:(1)设甲甲木工组单独修理这批桌凳的天数为x天,则乙木工组单独修理这批桌凳的天数为(x﹣10)天;根据题意得,=×,解得:x=30,经检验:x=30是原方程的解.∴x﹣10=20.答:甲,乙两木工组单独修理这批桌凳的天数分别为30天,20天;(2)方案一:甲木工组单独修理这批桌凳的总费用:600×30=18000(元).方案二,乙小组单独修理,则需总费用:800×20=16000(元).方案三,甲,乙两个木工组共同合作修理需12(天)总费用:(600+800)×12=16800(元)通过比较看出:选择第二种方案学校付的修理费最少.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,根据题目中关键语句找出等量关系,再列出分式方程即可,关键是在解分式方程后不要忘记检验.19.甲、乙两人一起去检修300长的自来水管道,已知甲比乙每小时少修10m,两人从管道的两端同时开始检修,3小时后完成任务.问:甲、乙每小时各检修多少m?【分析】设甲每小时检修x米,乙每小时检修y米,根据题意列出x和y的二元一次方程组,解出x和y的值即可.【解答】解:设甲每小时检修x米,乙每小时检修y米,根据题意得:,解得:.答:甲每小时检修45米,乙每小时检修55米.【点评】本题主要考查二元一次方程组的应用的知识点,解答本题的关键是读懂题意,由题干条件列出二元一次方程组,此题难度一般.20.篝火晚会前夕,德强学校附近一超市从厂家购进了甲、乙两种发光道具,甲种道具的每件进价比乙种道具的每件进价少2元.若购进甲种道具7件,乙种道具2件,需要76元.(1)求甲、乙两种道具的每件进价分别是多少元?(2)若该超市从厂家购进了甲乙两种道具共50件,所用资金恰好为440元.在销售时,甲种道具的每件售价为10元,要使得这50件道具所获利润率为20%,乙道具的每件售价为多少元?【分析】(1)设甲种道具的每件进价是x元,则乙种道具的每件进价是(x+2)元,根据购进甲种道具7件、乙种道具2件共需要76元,即可得出关于x的一元一次方程,解之即可得出结论;(2)设购进甲种道具m件,购进乙种道具n件,根据购进两种道具50件共花费440元,即可得出关于m,n的二元一次方程组,解之即可得出m,n的值,设乙道具的售价为y 元,根据总利润=单件利润×数量,即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设甲种道具的每件进价是x元,则乙种道具的每件进价是(x+2)元,依题意,得:7x+2(x+2)=76,解得:x=8,∴x+2=10.答:甲种道具的每件进价是8元,乙种道具的每件进价是10元.(2)设购进甲种道具m件,购进乙种道具n件,。

人教版2020七年级数学下册 第7章 《平面直角坐标系》单元练习试题【含答案】

人教版2020七年级数学下册 第7章 《平面直角坐标系》单元练习试题【含答案】

人教版2020七年级数学下册第7章《平面直角坐标系》单元练习试题一.选择题(共9小题)1.若点P(x,y)在第四象限,且|x|=2,|y|=3,则x+y=()A.﹣1B.1C.5D.﹣52.如图,一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点(0,0)运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第80秒时质点所在位置的坐标是()A.(0,9)B.(9,0)C.(0,8)D.(8,0)3.根据下列表述,能确定一点位置的是()A.奥斯卡影院1号厅3排B.银川市贺兰山东路C.北偏东60°D.东经118°,北纬40°4.如图,右边坐标系中四边形的面积是()A.4B.5.5C.4.5D.55.在平面直角坐标系中,点A'(2,﹣3)可以由点A(﹣2,3)通过两次平移得到,正确的是()A.先向左平移4个单位长度,再向上平移6个单位长度B.先向右平移4个单位长度,再向上平移6个单位长度C.先向左平移4个单位长度,再向下平移6个单位长度D.先向右平移4个单位长度,再向下平移6个单位长度6.在直角坐标系中,将点(2,﹣3)向左平移两个单位长度得到的点的坐标是()A.(4,﹣3)B.(﹣4,3)C.(0,﹣3)D.(0,3)7.在平面直角坐标系中,将点A(1,3)向右平移3个单位长度,得到的点A′的坐标为()A.(4,3)B.(﹣2,3)C.(1,6)D.(1,0)8.在平面直角坐标系中,点P(2,3)先向左平移3个单位,再向下平移4个单位,得到点的坐标为()A.(5,7)B.(﹣1,﹣1)C.(﹣1,1)D.(5,﹣1)9.在平面直角坐标系中,将点(﹣3,2)向左平移5个单位长度,再向上平移1个单位长度后的坐标是()A.(2,1)B.(﹣8,1)C.(2,3)D.(﹣8,3)二.填空题(共9小题)10.观察中国象棋的棋盘,以红“帅”(红方“5”的位置)为坐标原点建立平面直角坐标系后,发现红方“马”的位置可以用一个数对(2,4)来表示,则红“马”到达B点后,B 点的位置可以用数对表示为.11.某会场座位号将“7排4号”记作(7,4),那么“3排5号”记作.12.在平面直角坐标系中,线段AB=5且平行于y轴,点A(1,2),则点B坐标为.13.在直角坐标平面内,点A(﹣m,5)和点B(﹣m,﹣3)之间的距离为.14.已知点A(﹣3,5),将点A先向右平移4个单位长度,再向下平移6个单位长度,得到A′,则A′的坐标为.15.如图,圆A经过平移得到圆O.如果因A上一点P的坐标为(m,n),那么平移后的对应点P'的坐标为.16.如果将点A(1,3)先向下平移3个单位,再向右平移2个单位后,得到点B,那么点B的坐标是.17.如图,三角形ABC经过一定的平移变换得到三角形A'B'C',若三角形ABC上一点M的坐标为(m,n),那么M点的对应点M'的坐标为.18.在平面直角坐标系中,将点M(﹣1,5)先向右平移3个单位,之后又向下平移4个单位,得到点N,则点N的坐标为.三.解答题(共10小题)19.已知点M(3|a|﹣9,4﹣2a)在y轴的负半轴上.(1)求M点的坐标;(2)求(2﹣a)2019+1的值.20.如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,已知:A(1,3)、A1(2,3)、A2(4,3)、A3(8,3)、B(2,0)、B1(4,0)、B2(8,0)、B3(16,0).求:(1)A4、B4点的坐标;(2)A n、B n点的坐标.21.小李、小明、小刚、小强、小华、小亮是很要好的伙伴,他们家的位置如图所示.一天,小李说:“如果以我家为中心,你们各自家的位置在哪儿知道吗?”其余小伙伴说到:“当然知道了.”小李说:“这样吧,你们若回答出下列问题,就证明你们知道.”(1)南偏东60°的方向上有谁的家?怎样确定小刚家的位置?请你表示出来.(2)小明家在什么位置?(3)距小李家图上距离为0.9cm处的地方有谁的家?(4)想确定他们每个小伙伴的家的位置,各需要哪些数据?22.△ABC在直角坐标系中如图所示,请写出点A、B、C的坐标.23.先阅读下列一段文字,再解答问题:已知在平面内有两点P1(x1,y1),P2(x2,y2),其两点间的距离公式为;同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知点A(2,4),B(﹣2,1),则AB=;(2)已知点C,D在平行于y轴的直线上,点C的纵坐标为4,点D的纵坐标为﹣2,则CD=;(3)已知点P(3,1)和(1)中的点A,B,判断线段P A,PB,AB中哪两条线段的长是相等的?并说明理由.24.如图,三角形A'B'C'是由三角形ABC经过某种平移得到的,点A与点A',点B与点B',点C与点C'分别对应,观察点与点坐标之间的关系,解答下列问题.(1)分别写出点A、点B、点C、点A'、点B'、点C'的坐标,并说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(2)若点M(a+2,4﹣b)是点N(2a﹣3,2b﹣5)通过(1)中的平移变换得到的,求(b﹣a)2的值.25.如图,已知Q点的坐标为(﹣3,0),将点Q向上平移一个单位长度,再向右平移5个单位长度,得到点P.(1)写出点P的坐标;(2)若A是y轴上一点,当△OP A的面积为4时,求A的坐标.26.如图,四边形A'B'C'D'可以由四边形ABCD经过怎样的平移得到?对应点的坐标有什么关系?27.(1)把图(1)中的图形平移后,“顶点”A(4,4)的对应点是A'(4,0),写出另外6个“顶点”的对应点的坐标;(2)图(2)与图(1)对应“顶点”的坐标之间有什么样的关系?它可以由图(1)如何变化而来?(3)图(3)与图(1)对应“顶点”的坐标之间有什么样的关系?它可以由图(1)如何变化而来?28.三角形ABC与三角形A'B'C'在平面直角坐标系中的位置如图所示,三角形A'B'C'是由三角形ABC经过平移得到的(1)分别写出点A',B',C'的坐标;(2)说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的?(3)若点P(a,b)是三角形ABC内的一点,则平移后三角形A'B'C'内的对应点为P′,写出点P'的坐标.参考答案与试题解析一.选择题(共9小题)1.A.2.C.3.D.4.C.5.D.6.C.7.A.8.B.9.D.二.填空题(共9小题)10.(1,6).11.(3,5).12.(1,7)或(1,﹣3).13.814.(1,﹣1).15.(m+2,n﹣1)16.(3,0).17.(m+4,n+2).18.(2,1).三.解答题(共10小题)19.解:(1)由M(3|a|﹣9,4﹣2a)在y轴的负半轴上,得:,解得:a=3,故M点的坐标(0,﹣2);(2)(2﹣a)2019+1=(2﹣3)2019+1=﹣1+1=0.20.解:(1)∵A1(2,3)、A2(4,3)、A3(8,3).∴A4的横坐标为:24=16,纵坐标为:3.故点A4的坐标为:(16,3).又∵B1(4,0)、B2(8,0)、B3(16,0).∴B4的横坐标为:25=32,纵坐标为:0.故点B4的坐标为:(32,0).(2)由A1(2,3)、A2(4,3)、A3(8,3),可以发现它们各点坐标的关系为横坐标是2n,纵坐标都是3.故A n的坐标为:(2n,3).由B1(4,0)、B2(8,0)、B3(16,0),可以发现它们各点坐标的关系为横坐标是2n+1,纵坐标都是0.故B n的坐标为:(2n+1,0).21.解:(1)南偏东60°的方向上有小刚家和小亮家;要确定小刚家的位置,还需要知道小刚家与小华家的距离;(2)小明家在小李家的北偏东60°的方向;(3)距小李家图上距离为0.9cm处的地方有小华家、小刚家和小强家;(4)确定他们每个小伙伴的家的位置,需要各家相对于小李家的方向和与小李家的距离.22.解:如图所示:A(2,2),B(﹣1,1),C(﹣2,﹣2).23.解:(1)依题意,AB=,故答案为5;(2)∵CD平行于y轴∴CD=|4﹣(﹣2)|=6;(3)P A==∵点P与点B的纵坐标相同∴PB平行于x轴∴PB=|3﹣(﹣2)|=5由(1)知AB=5∴AB=PB∴线段PB,AB两条线段的长是相等的.24.解:(1)由图知,A(0,3),B(2,1),C(3,4),A′(﹣3,0),B′(﹣1,﹣2),C′(0,1),且△ABC向左平移3个单位,向下平移3个单位可以得到△A′B′C′;(2)由(1)中的平移变换的2a﹣3﹣3=a+2,2b﹣5﹣3=4﹣b,解得a=8,b=4,则(b﹣a)2=(4﹣8)2=(﹣4)2=16.25.解:(1)∵Q点的坐标为(﹣3,0),将点Q向上平移一个单位长度,再向右平移5个单位长度,得到点P,∴点P的坐标为(2,1);(2)设A点坐标为(0,y),∵△OP A的面积为4,∴×|y|×2=4,∴y=±4,∴A点坐标为(0,4)或(0,﹣4).26.解:四边形A'B'C'D'可以由四边形ABCD经过向右平移7个单位,向下平移6个单位得到.对应点的坐标关系为:四边形ABCD各点的横坐标加上7,纵坐标减去6,即为四边形A'B'C'D'的各点的坐标.27.解:(1)把图(1)中的图形平移后,“顶点”A(4,4)的对应点是A'(4,0),即图形向下平移4个单位,所以另外6个“顶点”的对应点的坐标分别为:(1,﹣2),(2,﹣2)(2,﹣4),(6,﹣4),(6,﹣2),(7,﹣2);(2)图(2)与图(1)对应“顶点”的坐标之间关系为:横坐标不变,纵坐标减少5,它可以由图(1)向下平移5个单位得到;(3)图(3)与图(1)对应“顶点”的坐标之间关系为:横坐标减去8,纵坐标不变,它可以由图(1)向左平移8个单位得到.28.解:(1)由图知A'(﹣3,1),B'(﹣2,﹣2),C'(﹣1,﹣1);(2)三角形A'B'C'是由三角形ABC先向左平移4个单位,再向下平移2个单位长度得到的;(3)平移后三角形A'B'C'内的对应点为P′坐标为(a﹣4,b﹣2).。

2020--2021学年人教版七年级数学下册 5.1 ---5.4 期末分节同步检测题 含答案

2020--2021学年人教版七年级数学下册 5.1 ---5.4 期末分节同步检测题 含答案

5.1 相交线-点到直线的距离班级:__________ 姓名:__________分数:__________一、选择题1. 点到直线的距离是指( )A.从直线外一点到这条直线的垂线B.从直线外一点到这条直线的垂线段C.从直线外一点到这条直线的垂线的长D.从直线外一点到这条直线的垂线段的长2. 下列说法正确的是( )A.若线段,则点是线段的中点B.相等的角是对顶角C.过一点有且只有一条直线与已知直线垂直D.从直线外一点到这条直线的垂线段,叫做点到直线的距离3. 为直线外一点,,,为直线上三点,,则点到直线的距离为()A. B. C. D.不大于4. 如图,在三角形中,于点,则下列说法错误的是()A.点到直线的距离为线段的长度B.点到直线的距离为线段的长度C.点到直线的距离为线段的长度D.点到直线的距离为线段的长度5. 如图,为直线外一点,点,,在直线上,且,垂足为,,则下列说法中错误的是()A.线段的长度叫点到直线的距离B.,,三条线段中,最短试卷第2页,总39页C.线段的长度叫点到直线的距离D.线段的长度等于点到直线的距离6. 下列说法正确的是()A.过,两点的直线的长度是,两点之间的距离B.线段就是,两点之间的距离C.在连接,两点的所有线中,最短线的长度是,两点之间的距离D.乘火车从上海到北京要走千米,这就是说上海站与北京站之间的距离是千米7. 如图,点在直线外,在过点的四条线段中表示点到直线距离的是线段()A. B. C. D.8. 如图所示,右,,,则下列说法正确个数为()①到的距离为;②到的距离为;③到的距离为;④到的距离为.A. B. C. D.9. 如图所示,,垂足为,连接,下列说法正确的是()①线段是,两点间的距离②线段的长度是,两点间的距离③线段是点到直线的距离④线段的长度是点到直线的距离.A.①③B.②④C.②③D.①④试卷第4页,总39页10. 如图,于,于,于,下列说法错误的是()A.点到的距离是的长度B.点到的距离是的长度C.点到的距离是的长度D.点到的距离是的长度11. 如图所示,,于,则下列结论中,正确的个数为()①;②与互相垂直;③点到的垂线段是线段;④点到的距离是线段的长度;⑤线段的长度是点到的距离;⑥线段是点到的距离;⑦.A.个B.个C.个D.个12. 如图,直线外一点,点、、、都在直线上,则点到直线的距离是A.线段的长度B.线段的长度C.线段的长度D.线段的长度二、填空题13. 如图,点,,在直线上,,则点到直线的距离是________.14. 如图,,,,,则点到的距试卷第6页,总39页离为________.15. 如图,,,能表示点到直线(或线段)的距离的线段有________条.16. 如图,,为垂足,,为垂足,,,,,,那么点到的距离是________,点到的距离是________,点到的距离是________,,两点间的距离是________.三、解答题17.(10分) 如图,,,,.(1)试说出点到直线的距离;点到直线的距离;(2)点到直线的距离是多少?你是怎样求得的?试卷第8页,总39页参考答案5.1 相交线-点到直线的距离一、选择题1.【答案】D2.【答案】C3.【答案】D4.【答案】C5.【答案】D6.【答案】C7.【答案】D8.【答案】A9.【答案】B10.【答案】C11.【答案】A12.【答案】C二、填空题13.【答案】14.试卷第10页,总39页【答案】15.【答案】16.【答案】,,,三、解答题(本题共计 1 小题,共计10分)17.【答案】解:(1)∵,,,∴点到直线的距离,点到直线的距离分别是:,.(2)设点到直线的距离为,的面积,∴ ,∴ .∴ 点到直线的距离为.5.2 平行线及其判定1.下列表示方法正确的是( )A.a∥A B.AB∥cd C.A∥B D.a∥c2.有下列生活实例:①交通道口斑马线;②天上的彩虹;③体操的纵队;④百米跑道线;⑤火车铁轨线.其中属于平行线的有( )A.1个 B.2个 C.3个 D.4个3. 在同一平面内的两条不重合的直线的位置关系是( ) A.垂直或相交 B.平行、垂直或相交 C.平行或相交D.平行或垂直4. 下列说法:①一条直线的平行线只有一条;②过一点有且只有一条直线与已知直线平行;③同一平面内,若一直线与两平行线中的一条相交,那么它也和另一条相交.其中错误的个数是( )A.0 B.1 C.2 D.35. 下列说法错误的是( )A.过一点有且只有一条直线与已知直线平行B.平行于同一条直线的两条直线平行C.若a∥b,b∥c,c∥d,则a∥dD.同一平面内,若一条直线与两平行线中的一条相交,那么它也和另一条相交6.下列推理正确的是()A.因为a∥b,b∥c,所以c∥d B.因为a∥c,b∥d,所以c ∥dC.因为a∥b,a∥c,所以b∥c D.因为a∥b,c∥d,所以a ∥c试卷第12页,总39页7.a、b、c为同一平面内任意三条直线,交点可能有() A.1个或2个 B.1个或2个或3个C.0个或1个或2个或3个D.都不对8. 在同一个平面内,的两条直线叫做平行线.直线a 平行于b,记作 .9. 经过直线外一点,有且条直线与这条直线平行.如果两条直线都与第三条直线,那么这两条直线也互相.10. 直线l同侧有A、B、C三点,如果A、B两点确定的直线l1与B、C两点确定的直线l2都与l平行,则A、B、C三点的位置关系是,其理论依据是.11. 观察如图所示的长方体后,用符号表示下列两棱的位置关系:A1B1 AB,AA1 AB,A1D1 C1D1,AD BC(⊥;∥).12.如图所示,能相交的是 (填序号),平行的是 (填序号).13. 如图,在下面的方格纸中,找出互相平行的线段,并用符号表示出来: .14. 如图,若AB∥CD,经过点E可画EF∥AB,则EF与CD的关系是,理由是.15. 如图,完成下列各题:(1)用直尺在网格中完成:①画出直线AB的一条平行线,②经过C点画直线垂直于CD;(2)用符号表示上面①、②中的平行、垂直关系.16. 如图,取一张长方形的硬纸片ABCD对折,MN是折痕,把平面ABNM平摊在桌面上,另一个面CDMN可任意改变位置,试判断AB与CD之间的关系,并说明理由.分别是直线EF外两点.17. 如图,P、Q试卷第14页,总39页(1)过P画直线AB∥EF,过Q画直线CD∥EF;(2)AB与CD有怎样的位置关系?为什么?18. [实践]①画∠AOB=60°,在∠AOB内任取一点P,过P作直线CD∥AO,又过点P作直线EF∥OB;②测量:∠CPE、∠EPD、∠DPF、∠CPF的度数.[探究]①这些角的边与∠AOB的边有何关系?②这些角的度数与∠AOB的度数之间存在什么关系?[发现]把你的发现用一句话概括出来.答案;1---7 DDCCA CC8. 不相交a∥b9. 只有一平行平行10. 在同一条直线上过直线外一点,有且只有一条直线与已知直线平行11. ∥ ⊥ ⊥∥12. ③⑤13. CD∥MN,GH∥PN14. 平行如果两条直线都与第三条直线平行,那么这两条直线也互相平行15. 解:(1)如图;(2)EF∥AB,MC⊥CD.16. 解:AB与CD平行.理由:∵AB∥MN,CD∥MN,∴AB∥CD.17. 解:(1)如图:(2)AB∥CD.理由:因为AB∥EF,CD∥EF,所以AB∥CD.试卷第16页,总39页18. 解:实践:①画图②∠CPE=120°,∠EPD=60°,∠DPF=120°,∠CPF=60°;探究:①平行,②相等或互补;发现:如果两个角的两边分别平行,那么这两个角相等或互补.5.3《平行线的性质》1. 如图,在中,,则的度数为()A. B. C. D.2. 如图,已知,,,是某公园内的四个凉亭,图中的连线是甬道,且,,若米,则下列判断中不正确的是()A.甬道可能为米B.甬道可能为米C.甬道可能为米D.甬道可能为米3. 如图,直线,将含有角的三角板的直角顶点放在直线上,若,则的度数为()A. B. C. D.4. 如图,,平分,则等于()A. B. C. D.5. 将一直角三角尺与两边平行的硬纸条如图所示放置,下列结论();();();().其中错误的个数是()试卷第18页,总39页A. B. C. D.6. 如图,下列说法错误的是()A.若,则B.若,则C.若,则D.若,则7. 下列命题中,正确的是()A.和互为相反数B.和互为绝对值C.绝对值为的数是D.的绝对值是8. 下列命题中的真命题是( )A.锐角大于它的余角B.锐角大于它的补角C.钝角大于它的补角D.锐角与钝角之和等于平角9. 甲、乙、丙、丁四个小朋友在院里玩球,忽听“砰”的一声,球击中了李大爷家的窗户.李大爷跑出来查看,发现一块窗户玻璃被打裂了.李大爷问:“是谁闯的祸?”甲说:“是乙不小心闯的祸.”乙说:“是丙闯的祸.”丙说:“乙说的不是实话.”丁说:“反正不是我闯的祸.”如果这四个小朋友中只有一个人说了实话,请你帮李大爷判断一下,究竟是谁闯的祸()A.甲B.乙C.丙D.丁10. 下列句子中,属于命题的是A.直线和垂直吗B.作线段的垂直平分线C.同位角相等,两直线平行D.画11. 如图,,平分,且,则________.12. 如图,已知,平分,平分,则________.试卷第20页,总39页13. 把命题“邻补角互补”改写成“如果…,那么…”的形式________.14. 下列说法:①两条不相交的直线叫平行线;②两条不相交的线段,在同一平面内必平行;③经过直线外一点有且只有一条直线与这条直线平行;④若直线,那么.其中错误的是________.(填序号)15. 如图,是的角平分线,,,问是否是的平分线?为什么?16. 如图,在三角形中,,且是的角平分线,那么与有什么关系?并说明理由.17. 如图,直线,平分.求的度数.18. 如图,已知.试探索:试卷第22页,总39页与之间的关系;与之间的关系.参考答案人教版七年级下册数学同步练习5.3《平行线的性质》一、选择题1.【答案】B【解答】解:因为,,所以.因为,所以.故选.2.【答案】A【解答】解:由,若米,得,,,故不符合题意;故选.3.【答案】A【解答】解:过点作,如图:试卷第24页,总39页则,∵,∴,∵,∴,∴,故选.4.【答案】B【解答】解:∵平分,∴,∵,∴,故选.5.【答案】A【解答】解:∵纸条的两边平行,∴()(同位角);(2)(内错角);(4)(同旁内角)均正确;又∵直角三角板与纸条下线相交的角为,∴(),正确.故选:.6.【答案】C【解答】解:.若,则,利用了平行公理,正确;.若,则,利用了内错角相等,两直线平行,正确;.,不能判断,错误;.若,则,利用同旁内角互补,两直线平行,正确.故选:.7.【答案】D【解答】、∵和互为相反数,∴选项不符合题意;、∵和的绝对值为,∴选项不符合题意;、∵绝对值为的数是和,∴选项不符合题意;、∵的绝对值是,试卷第26页,总39页∴选项符合题意;8.【答案】C【解答】解:,锐角大于它的余角,不一定成立,故本选项错误;,锐角小于它的补角,故本选项错误;,钝角大于它的补角,本选项正确;,锐角与钝角之和等于平角,不一定成立,故本选项错误.故选.9.【答案】D【解答】解:本题可分三种情况进行讨论:①若甲真,则乙假,丙真,丁真;这种情况下,三人说了实话,显然与条件不符;②若甲假,乙真,则丙假,丁真;这种情况下,两人说了实话,显然与条件不符;③若甲假,乙假,则丙真,丁假;这种情况下,只有丙说了实话,符合题目给出的条件.由于丁说了假话,因此闯祸的人一定是丁.故选.10.【答案】C【解答】、直线和垂直吗?这是疑问句,不是命题,所以选项错误;、作线段的垂直平分线,这是描叙性语言,不是命题,所以选项错误;.同位角相等,两直线平行是命题,所以选项正确;、画,这是描叙性语言,不是命题,所以选项错误.故选二、填空题11.【答案】【解答】解:因为,,所以.因为平分,所以.又,所以.故答案为:.【答案】【解答】解:如图,过作,过作,∵,∴,∴,∴,又∵平分,平分,∴,∴,∵,试卷第28页,总39页∴,∴,故答案为:.13.【答案】如果两个角是邻补角,那么它们互补.【解答】解:表示为:如果两个角是邻补角,那么它们互补.14.【答案】①②【解答】解:①在同一平面内,两条不相交的直线叫平行线;故错误;②两条不相交的线段,在同一平面内不一定平行;故错误;③经过直线外一点有且只有一条直线与这条直线平行;故正确;④若直线那么,故正确;其中错误的是①②,故答案为:①②.三、解答题15.【答案】解:是.∵是的角平分线,∴.∵,∴,.∴,∴是的平分线.【解答】解:是.∵是的角平分线,∴.∵,∴,.∴,∴是的平分线.16.【答案】解:,理由如下:∵是的平分线,∴,∵,∴,∴.17.【答案】解:【解答】解:因为,试卷第30页,总39页所以,因为平分,所以,所以,所以.18.【答案】解:解:【解答】解:(1)如图,过点作,则:,,∴,∴,∴,即:∴.(2)过点作,则:,∵ ,∴ ,∴ ,∴ ,即:.5.4《平移》一.选择题1.下列各组图形可以通过平移互相得到的是()A .B .C .D .2.下列情形中,哪个物体的运动是平移运动()A.行驶的汽车B.开启中的推拉窗C.飞翔的大雁D.打地基时的桩子3.在下列图案中,不能用平移得到的图案是()A .B .C .D .4.把△ABC沿BC方向平移,得到△A'B'C',随着平移距离的不断增大,△A'B'C'的面积大小变化情况是()A.增大B.减小C.不变D.不确定5.把长度为10cm的线段向下平移8cm所得的线段长度是()A.10cm B.8cm C.6cm D.18cm 6.下列选项中,平移三角形A能与三角形B重合的选项是()A .B .C .D .7.如图,△DEF经过怎样的平移得到△ABC()A.把△DEF向左平移4个单位,再向下平移2个单位试卷第32页,总39页B.把△DEF向右平移4个单位,再向下平移2个单位C.把△DEF向右平移4个单位,再向上平移2个单位D.把△DEF向左平移4个单位,再向上平移2个单位8.如图,△ABC沿AC方向平移得到△DEF,已知DF=7,DC=3,那么平移的距离为()A.3B.4C.5D.7二.填空题9.下列几种运动中,(1)水平运输带上砖的运动;(2)笔直的高速公路上行使的汽车的运动(忽略车轮的转动);(3)升降机上下做机械运动;(4)足球场上足球的运动.属于平移的有(填上所有你认为正确的序号).10.如图,将直线l1沿着AB的方向平移得到直线l2,若∠1=50°,则∠2的度数是.11.如图,多边形的相邻两边均互相垂直,则这个多边形的周长为.12.如图是一个会场的台阶的截面图,要在上面铺上地毯,则所需地毯的长度是.13.如图,将△ABC沿着某一方向平移一定的距离得到△DEF,则下列结论:①AD∥CF;②AC=DF;③∠ABC=∠DFE;④∠DAE=∠AEB.正确有(填序号即可).14.如图,△DEF是由△ABC沿直线BC向右平移得到,若BC=6,当点E刚好移动到BC的中点时,则CF=.15.如图,在△ABC中,BC=10cm,D是BC的中点,将△ABC沿BC向右平移得△A′DC′,则点A平移的距离AA′=cm.16.如图是用三角尺和直尺画平行线的示意图,将三角尺ABC沿着直尺PQ平移到三角尺A′B′C′的位置,就可以画出AB的平行线A′B′.若AC′=9cm,A′C =2cm,则直线AB平移的距离为cm.三.解答题17.把△ABC向右平移3格,再向上平移2格,画出所得到的△A′B′C,并说出线段AB与A′B′的大小及位置关系.试卷第34页,总39页18.如图所示,平移△ABC,使点A移动到点A',画出平移后的△A'B'C'(保留作图痕迹),并写出作法.19.如图,将△ABC,向右平移4个格子,再向下平移2个格子.(1)请你画出经过两次平移后的△DEF(A与D、B与E、C与F对应);(2)若每个小正方形的边长为1个单位长度,连接BE和CE,请你求出△BCE的面积.20.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.(1)现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.请画出平移后的△A′B′C′;(2)线段BC与B′C′的关系是;(3)△A′B′C′的面积为.参考答案一.选择题1.【解答】解:观察图形可知图案C通过平移后可以得到.故选:C.2.【解答】解:A、行驶的汽车,不属于平移,故本选项不合题意;B、开启中的推拉窗,属于旋转,故本选项不合题意;C、飞翔的大雁,不属于平移,故本选项不合题意;D、打地基时的桩子,属于平移,故本选项符合题意误.故选:D.3.【解答】解:A、两个图形的阴影部分不同,不能用平移得到,符合题意;B、可由一个或2个简单图形平移得到,不符合题意;C、可由一个或2个简单图形平移得到,不符合题意;D、可由上下两个图形向右平移得到,不符合题意;故选:A.4.【解答】解:∵△ABC沿BC方向平移,得到△A'B'C',∴AA′∥BC,∴S△A′B'C'=S△ABC.故选:C.5.【解答】解:平移前后的线段的长度不变,∴平移后的线段的长为10cm,故选:A.6.【解答】解:平移三角形能与三角形重合的选项是B选项.故选:B.7.【解答】解:根据图形,△DEF向左平移4个单位,向下平移2个单位,即可得到△ABC.试卷第36页,总39页故选:A.8.【解答】解:由题意平移的距离为CF=DF﹣DC=4,故选:B.二.填空题9.【解答】解:(1)水平运输带上砖的运动,是平移变换;(2)笔直的高速公路上行使的汽车的运动(忽略车轮的转动),是平移变换;(3)升降机上下做机械运动,是平移变换;(4)足球场上足球的运动,是旋转运动.所以属于平移的有(1)(2)(3)共3种.故答案是:(1)(2)(3).10.【解答】解:∵将直线l1沿着AB的方向平移得到直线l2,∴l1∥l2,∵∠1=50°,∴∠2的度数是50°.故答案为:50°.11.【解答】解:多边形周长为:(5+16)×2=21×2=42,故答案为:42.12.【解答】解:楼梯的长为5m,高为2.5m,则所需地毯的长度是5+2.5=7.5(m).故答案为:7.5m.13.【解答】解:∵△ABC沿着某一方向平移一定的距离得到△DEF,∴①AD∥CF,正确;②AC=DF,正确;③∠ABC=∠DEF,故原命题错误;④∠DAE=∠AEB,正确.所以,正确的有①②④.故答案为:①②④.14.【解答】解:由平移的性质可得:BC=EF,BE=CF,∵BC=6,点E刚好移动到BC的中点,∴BE=EC=CF=3,故答案为:3.15.【解答】解:观察图象可知平移的距离=AA′=BD=BC=5(cm),故答案为5.16.【解答】解:AC+A′C′=AC′﹣A′C=9﹣2=7(cm),A′C′=7÷2=3.5(cm),CC′=A′C+A′C′=2+3.5=5.5(cm).故直线AB平移的距离为5.5cm.故答案为:5.5.三.解答题17.【解答】解:如图,△A′B′C为所作,线段AB与A′B′平行且相等.18.【解答】解:如图,△A′B′C′即为所求.19.【解答】解:(1)如图,△DEF即为所求.(2)S△BCE =×2×2=2.20.【解答】解:(1)如图,△A′B′C′为所作;(2)线段BC与B′C′的关系是平行且相等;试卷第38页,总39页(3)△A′B′C′的面积=3×3﹣×1×2﹣×2×3﹣×3×1=.故答案平行且相等;.。

2020-2021学年人教版七年级数学下册第六章实数6.1.1算术平方根同步练习含答案

2020-2021学年人教版七年级数学下册第六章实数6.1.1算术平方根同步练习含答案

第六章 实数 6.1.1 算术平方根1. 9的算术平方根是( )A .-3B .±3C .3D . 3 2.下列各数没有算术平方根的是( ) A .0 B .-1 C .10 D .0.013.计算36的结果为( )A .6B .-6C .18D .-184.“916的算术平方根是34”可表示为( ) A.916=34 B .916=±34 C.916=-34 D .916=345. 估计30的值( )A .在3到4之间B .在4到5之间C .在5到6之间D .在6到7之间6. 下列说法正确的是( )A .6是36的算术平方根B .±5是25的算术平方根C .-6是(-6)2的算术平方根D .0.01是0.1的算术平方根7.计算-32的结果是( )A .-3B .3C .-9D .98. 下列各式中,计算正确的是( )A.122=14 B .214=112 C.4+916=2+34D .132-72=13-7=6 9.下列说法:①一个数的算术平方根一定是正数;②100的算术平方根是10,记作100=10;③3是(-3)2的算术平方根;④(π-3.14)2的算术平方根是π-3.14;⑤a 2的算术平方根是a.其中正确的个数有( )A .6个B .5个C .4个D .3个10. 已知a 、b 为两个连续整数,且a <7<b ,则a +b = .11. 已知a 、b 、c 为有理数,若|a -1|+b -2+(c +4)2=0,则(a +b +c)2019= 12. (-5)2的算术平方根是 ,16的算术平方根是 .13.64的算术平方根是 ,214的算术平方根是 ,1.21的算术平方根是 .14.49的算术平方根是23,用式子表示为 . 15.若一个数的算术平方根等于它本身,则这个数为 .16.观察:已知 5.217=2.284,521.7=22.84,填空:(1)0.05217= ,52170= ;(2)若x =0.02284,则x = .17. 求下列各数的算术平方根:(1)36;(2)0.09;(3)1625; (4)(-9)2;(5)0.(6) (-4)2(7) 1018. 求下列各式的值.(1)0.81;(2)11125; (3)172-82;(4)-19162.19. 求下列各式的值: (1)4-42+-22;(2)0.81-0.04; (3)2014-130.36-15400. 20. 已知a +3+b -4=0,求a 2+b 2的值.21. 已知2a +1的算术平方根是0,b -a 的算术平方根是12,求12ab 的算术平方根.22. 国际比赛的足球场长在100m 到110m 之间,宽在64m 到75m 之间,为了迎接某次奥运会,某地建设了一个长方形的足球场,其长是宽的1.5倍,面积是7560m 2,请你判断这个足球场能用作国际比赛吗?并说明理由.答案:1---9 CBAAC ABBD10. 511. -112. 5 213. 8 321.1 14. 49=2315. 1或016. (1) 0.2284 228.4(2) 0.000521717. (1) 6(2) 0.3 (3)1625=45(4) 9(5) 0 (6) 4(7) 1018. 解:(1)原式=0.9(2)原式=65(3)原式=15(4)原式=251619. 解:(1)原式=0(2)原式=0.7(3)原式=310. 20. 解:∵a +3≥0,b -4≥0,且a +3+b -4=0,∵a+3=0,b -4=0,∴a=-3,b =4.∴a 2+b 2=9+16=5.21. 解:∵2a+1=0,∴a=-12.又∵b-a = 14,∴b=-14. ∵12ab =12×(-12)×(-14)=116. ∴12ab 的算术平方根是14. 22. 解:这个足球场能用作国际比赛.理由如下:设足球场的宽为xm.则足球场的长为1.5xm.由题意,得1.5x 2=7560.∴x 2=5040,∵x >0,∴x =5040, 又∵70<5040<71,∴70<x <71,∴105<1.5x <106.5,∴符合要求, ∴这个足球场能用作国际比赛.。

2020年人教版七年级数学下册5.2平行线及其判定平行线及其判定同步练习解析版

2020年人教版七年级数学下册5.2平行线及其判定平行线及其判定同步练习解析版

2020年人教版七年级数学下册5.2平行线及其判定平行线及其判定同步练习1. (2019·河北初一期末)下列说法正确的是()A.经过一点有无数条直线与已知直线平行B.在同一平面内,有且只有一条直线与已知直线平行C.经过直线外一点,有且只有一条直线与已知直线平行D.以上说法都不正确2. (2019·全国初一课时练习)若直线a∥b,b∥c,则a∥c的依据是( )A.平行公理B.等量代换C.等式的性质D.平行于同一条直线的两条直线平行3. (2019·全国初一课时练习)如图,若AB∥CD,CD∥EF,那么AB和EF的位置关系是( )A.平行B.相交C.垂直D.不能确定4. (2019·黑龙江初二期中)某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A.第一次左拐30°,第二次右拐30°B.第一次右拐50°,第二次左拐130°C.第一次右拐50°,第二次右拐130°D.第一次向左拐50°,第二次向左拐120°5. (2018·贵州初一月考)如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4 C.∠5=∠B D.∠B +∠BDC=180°6. (2019·福建省永春第二中学初一期末)如图,点E在BC的延长线上,则下列条件中,能判定的是()7. (2018·四川初一期末)如图,下列条件中不能使a∥b的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°8. (2019·山东初二期末)如图,点C是直线AB,DE之间的一点,∠ACD=90°,下列条件能使得AB∥DE的是()A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠αD.∠α+∠β=90°9. (2019·北京八中乌兰察布分校初一)如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠B=∠DCE;④AD∥BC 且∠B=∠D.其中,能推出AB∥DC的是( )A.①④B.②③C.①③D.①③④10. (2019·山东初一期末)我们可以用图示所示方法过直线a外的一点P折出直线a的平行线b,下列判定不能作为这种方法依据的是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.平行于同一条直线的两条直线互相平行11. (2019·北京初一期末)在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线的位置关系是_____.12. (2018·全国初一课时练习)观察如图所示的正方体,用符号“∥”或“⊥”填空:AB _________CD ;AB__________BB 1;DD 1_________CC 1;DD 1_________A 1D 1.13. (2019·陕西初二期末)如图:请你添加一个条件_____可以得到//DE AB14. (2019·长沙市开福区青竹湖湘一外国语学校初一月考)如图,下列条件①14∠=∠,②23∠∠=,③180A ABD ∠+∠=o ,④180A ACD ∠+∠=o ,⑤A D ∠=∠,能判断//AB CD 的是____.15. (2019·上海市香山中学初一期中)如图,直线a 、b 都与直线c 相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠1=∠8;④∠5+∠8=180°,其中能判断a ∥b 的条件是:____________(把你认为正确的序号填在空格内).16. (2018·四川初一期末)如图,直线CD 与直线AB 相交于C ,根据下列语句画图、解答.(1)过点P 作PQ ∥CD ,交AB 于点Q ;17. (2019·肇庆市端州区南国中英文学校初一月考)如图,直线a,点B,点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与过点B的平行线平行吗?18. (2020·北京初三专题练习)下面是小明设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线BC及直线BC外一点P.求作:直线PE,使得PE∥BC.作法:如图2.①在直线BC上取一点A,连接P A;②作∠P AC的平分线AD;④作直线PE.所以直线PE就是所求作的直线.根据小明设计的尺规作图过程.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵AD平分∠P AC,∴∠P AD=∠CAD.∵P A=PE,∴∠P AD=,∴∠PEA=,∴PE∥BC.()(填推理依据).答案1. (2019·河北初一期末)下列说法正确的是()A.经过一点有无数条直线与已知直线平行B.在同一平面内,有且只有一条直线与已知直线平行C.经过直线外一点,有且只有一条直线与已知直线平行D.以上说法都不正确【答案】C【解析】解:A. 经过直线外一点有且只有一条直线与已知直线平行,所以错误,B. 在同一平面内,(经过直线外一点)有且只有一条直线与已知直线平行,所以错误,C. 经过直线外一点,有且只有一条直线与已知直线平行,正确.故选C.【点睛】本题考查了平面内平行线的性质,属于简单题,熟悉概念是解题关键.2. (2019·全国初一课时练习)若直线a∥b,b∥c,则a∥c的依据是( )A.平行公理B.等量代换C.等式的性质D.平行于同一条直线的两条直线平行【答案】D【解析】因为直线a∥b,b∥c,所以a∥c的依据是平行于同一条直线的两条直线互相平行,故选D.3. (2019·全国初一课时练习)如图,若AB∥CD,CD∥EF,那么AB和EF的位置关系是( )A.平行B.相交C.垂直D.不能确定【答案】A【解析】解:∵AB∥CD,CD∥EF,【点睛】本题考查了平行线的传递性,属于简单题,熟悉平行线的性质是解题关键.4. (2019·黑龙江初二期中)某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A.第一次左拐30°,第二次右拐30°B.第一次右拐50°,第二次左拐130°C.第一次右拐50°,第二次右拐130°D.第一次向左拐50°,第二次向左拐120°【答案】A【解析】如图所示(实线为行驶路线):A符合“同位角相等,两直线平行”的判定,其余均不符合平行线的判定.故选A.【点睛】本题考查平行线的判定,熟记定理是解决问题的关键.5. (2018·贵州初一月考)如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4 C.∠5=∠B D.∠B +∠BDC=180°【答案】A【解析】解:选项A中,∠1=∠2,只可以判定AC//BD(内错角相等,两直线平行),所以A错误;选项B中,∠3=∠4,可以判定AB//CD(内错角相等,两直线平行),所以正确;选项C中,∠5=∠B,AB//CD(内错角相等,两直线平行),所以正确;选项D中,∠B +∠BDC=180°,可以判定AB//CD(同旁内角互补,两直线平行),所以正确;故答案为A.本题考查平行的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.6. (2019·福建省永春第二中学初一期末)如图,点E在BC的延长线上,则下列条件中,能判定的是()A.B.C.D.【答案】C【解析】解:A选项中,可判定,不符合题意;B选项中,可判定,不符合题意;C选项中,可判定,符合题意;D选项中,可判定,不符合题意;故答案为C.【点睛】此题主要考查平行线的判定方法,熟练掌握,即可解题.7. (2018·四川初一期末)如图,下列条件中不能使a∥b的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°【答案】C【解析】A. ∠1=∠3,同位角相等,可判定a∥b;B. ∠2=∠3,内错角相等,可判定a∥b;C. ∠4=∠5,互为邻补角,不能判定a∥b;D. ∠2+∠4=180°,同旁内角互补,可判定a∥b;【点睛】此题主要考查平行线的判定方法,解题的关键是熟知平行线的判定定理.8. (2019·山东初二期末)如图,点C是直线AB,DE之间的一点,∠ACD=90°,下列条件能使得AB∥DE的是()A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠αD.∠α+∠β=90°【答案】B【解析】延长AC交DE于点F.A. ∵∠α+∠β=180°,∠β=∠1+90°,∴∠α=90°-∠1,即∠α≠∠1,∴不能使得AB∥DE;B. ∵∠β﹣∠α=90°,∠β=∠1+90°,∴∠α=∠1,∴能使得AB∥DE;C.∵∠β=3∠α,∠β=∠1+90°,∴3∠α=90°+∠1,即∠α≠∠1,∴不能使得AB∥DE;D.∵∠α+∠β=90°,∠β=∠1+90°,∴∠α=-∠1,即∠α≠∠1,∴不能使得AB∥DE;故选B.【点睛】本题考查了平行线的判定方法:①两同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行于同一直线的两条直线互相平行;同一平面内,垂直于同一直线的两条直线互相平行.A .①④B .②③C .①③D .①③④【答案】D【解析】 12∠∠=Q ①,//AB DC ∴;34//AD CB ∠∠=∴Q ②,;B DCE ∠∠=Q ③,//AB CD ∴; //AD BE Q ④,180BAD B ∠∠∴+=o ,B D Q ∠∠=,180BAD D ∠∠∴+=o ,//AB CD ∴, 则符合题意的有①③④,故选D .10. (2019·山东初一期末)我们可以用图示所示方法过直线a 外的一点P 折出直线a 的平行线b ,下列判定不能作为这种方法依据的是( )A .同位角相等,两直线平行B .内错角相等,两直线平行C .同旁内角互补,两直线平行D .平行于同一条直线的两条直线互相平行【答案】D【解析】解:如图,由折叠可得,∵∠BPC =∠ADP =90°,∴a ∥b ,故A 选项能作为这种方法的依据;∵∠EPD =∠ADP =90°,∴a ∥b ,故B 选项能作为这种方法的依据;∵∠BPD+∠ADP =180°,∴a ∥b ,故C 选项能作为这种方法的依据;而D 选项不能作为这种方法的依据;故选:D .【点睛】11. (2019·北京初一期末)在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线的位置关系是_____.【答案】b//c【解析】解:∵b⊥a, c⊥a,∴b//c.【点睛】本题考查了平行线的性质,属于简单题,熟悉性质是解题关键.12. (2018·全国初一课时练习)观察如图所示的正方体,用符号“∥”或“⊥”填空:AB _________CD;AB__________BB1;DD1_________CC1;DD1_________A1D1.【答案】∥;⊥;∥;⊥.【解析】解:因为正方体每个面都是正方形,正方形对边平行,相邻边垂直,故分别填(1). ∥(2). ⊥(3). ∥ (4). ⊥.【点睛】掌握正方体的性质是解答本题的关键.DE AB13. (2019·陕西初二期末)如图:请你添加一个条件_____可以得到//【答案】答案不唯一,当添加条件∠EDC=∠C或∠E=∠EBC或∠E+∠EBA=180°或∠A+∠ADE=180°时,都可以得到DE∥AB.【解析】由图可知,要使DE ∥AB ,可以添加以下条件:(1)当∠EDC=∠C 时,由“内错角相等,两直线平行”可得DE ∥AB ;(2)当∠E=∠EBC 时,由“内错角相等,两直线平行”可得DE ∥AB ;(3)当∠E+∠EBA=180°时,由“同旁内角互补,两直线平行”可得DE ∥AB ;(4)当∠A+∠ADE=180°时,由“同旁内角互补,两直线平行”可得DE ∥AB.故本题答案不唯一,当添加条件∠EDC=∠C 或∠E=∠EBC 或∠E+∠EBA=180°或∠A+∠ADE=180°时,都可以得到DE ∥AB.【点睛】熟悉“平行线的判定方法”是解答本题的关键.14. (2019·长沙市开福区青竹湖湘一外国语学校初一月考)如图,下列条件①14∠=∠,②23∠∠=,③180A ABD ∠+∠=o ,④180A ACD ∠+∠=o ,⑤A D ∠=∠,能判断//AB CD 的是____.【答案】①④【解析】解:①14∠=∠,根据内错角相等可以判断//AB CD .②23∠∠=,得到的是AC ∥BD,③180A ABD ∠+∠=o ,得到的是AC ∥BD,④180A ACD ∠+∠=o ,可以判断//AB CD .⑤A D ∠=∠,判断不出平行,所以答案是①④【点睛】本题考查了平行线的判定,属于简单题,熟悉平行线的判定定理,找到对应的内错角和同旁内角是解题关键. 15. (2019·上海市香山中学初一期中)如图,直线a 、b 都与直线c 相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠1=∠8;④∠5+∠8=180°,其中能判断a ∥b 的条件是:____________(把你认为正确的序号填在空格内).【答案】①②④【解析】①∠1=∠2可根据同位角相等,两直线平行得到a∥b;②∠3=∠6可根据内错角相等,两直线平行得到a∥b;③∠1=∠4不能得到a∥b;④∠3+∠2=180°,可根据同旁内角互补,两直线平行得到a∥b;故答案为①②④.【点睛】本题考查平行线的判定,记住同位角相等两直线平行,内错角相等两直线平行,同旁内角互补两直线平行,解题的关键是搞清楚同位角、内错角、同旁内角的概念16. (2018·四川初一期末)如图,直线CD与直线AB相交于C,根据下列语句画图、解答.(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由【答案】(1)见解析;(2)见解析;(3)∠PQC=60°,理由见解析【解析】解:如图所示:(1)画出如图直线PQ(2)画出如图直线PR(3)∠PQC=60°理由是:因为PQ∥CD所以∠DCB+∠PQC=180°又因为∠DCB=120°所以∠PQC=180°-120°=60°17. (2019·肇庆市端州区南国中英文学校初一月考)如图,直线a,点B,点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与过点B的平行线平行吗?【答案】(1)详见解析;(2)详见解析.【解析】(1)一条,如图,过直线a外的一点画直线a的平行线,有且只有一条直线与直线a平行;(2)过点C画直线a的平行线,它与过点B的平行线平行.理由如下:如图,∵b∥a,c∥a,∴c∥b.【点睛】此题重点考察学生对平行线的画法和性质的理解,掌握平行线的画法和性质是解题的关键.18. (2020·北京初三专题练习)下面是小明设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线BC及直线BC外一点P.求作:直线PE,使得PE∥BC.作法:如图2.①在直线BC上取一点A,连接P A;②作∠P AC的平分线AD;③以点P为圆心,P A长为半径画弧,交射线AD于点E;④作直线PE.所以直线PE就是所求作的直线.根据小明设计的尺规作图过程.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵AD平分∠P AC,∴∠P AD=∠CAD.∵P A=PE,∴∠P AD=,∴∠PEA=,∴PE∥BC.()(填推理依据).【答案】(1)详见解析;(2)∠PEA,∠CAD,内错角相等两直线平行.【解析】(1)如图所示:直线PE即为所求.(2)证明:∵AD平分∠P AC,∴∠P AD=∠CAD.∵P A=PE,∴∠P AD=∠PEA,∴∠PEA=∠CAD,∴PE∥BC.(内错角相等两直线平行).故答案为:∠PEA,∠CAD,内错角相等两直线平行.【点睛】本题主要考查作图﹣复杂作图,解题的关键是掌握等腰三角形的性质和平行线的判定及角平分线的定义.。

2020—2021年新人教版初中数学七年级下册《用坐标表示平移》试题及答案解析.docx

2020—2021年新人教版初中数学七年级下册《用坐标表示平移》试题及答案解析.docx

新人教版数学七年级下册第七章平面直角坐标系7.2.2《用坐标表示平移》(解析版)一、选择题1、如图1所示,为了得到点B需将点A向右平移( )A、3个单位长度B、4个单位长度C、5个单位长度D、6个单位长度2、如图1所示,将点A向下平移5个单位长度后,将重合于图中的( )A、点CB、点FC、点DD、点E3、如图1所示,将点A行向右平移3个单位长度,再向下平移5个单位长度,得到;将点B先向下平移5个单位长度,再向右平移3个单位长度,得到;则与相距( )A、4个单位长度B、5个单位长度C、6个单位长度D、7个单位长度4、如图1所示,点G(-2,-2),将点G先向右平移6个单位长度,再向上平移5 个单位长度,得到G′,则G′的坐标为( )A、(6,5)B、(4,5)C、(6,3)D、(4,3)5、点P(8,3)向上平移6个单位长度,下列说法正确的是()A、点P的横坐标加6,纵坐标不变B、点P的纵坐标加6,横坐标不变C、点P的横坐标减6,纵坐标不变D、点P的纵坐标减6,横坐标不变6、把点A(0,0)先向右平移1个单位长度,再向下平移2个单位长度后,得到的点B位于()A、第一象限B、第二象限C、第三象限D、第四象限7、将点A(a ,-3)先向右平移2个单位长度,再向上平移4个单位长度得到点B(4,b),则a和b的值分别为()A、(1,4)B、(4,1)C、(2,1)D、(1,2)8、在平面直角坐标系中,将点P(-2,3)沿x轴方向向右平移3个单位得到点Q,则点Q的坐标是()A、(-2,6)B、(-2,0)C、(1,3)D、(-5,3)9、将某图形的横坐标都减去2,纵坐标不变,则该图形()A、向右平移2个单位B、向左平移2个单位C、向上平移2个单位D、向下平移2个单位10、线段CD是由线段AB平移得到的,点A(﹣1,5)的对应点为C(4,8),则点B(﹣4,﹣2)的对应点D的坐标为()A、(﹣9,﹣5)B、(﹣9,1)C、(1,﹣5)D、(1,1)11、已知三角形ABC平移后得到三角形A1B1C1,且A(-2,3),B(-4,-1),C1(m ,n),C(m+5,n+3),则A1,B1两点的坐标为()A、(3,6),(1,2)B、(-7,0),(-9,-4)C、(1,8),(-1,4)D、(-7,-2),(0,-9)12、如图,一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动:即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是()A、(4,0)B、(5,0)C、(0,5)D、(5,5)13、已知点A(-4,-6),将点A先向右平移4个单位长度,再向上平移6个单位长度,得到A′,则A′的坐标为()A、(0,0)B、(1,1)C、(2,2)D、(5,5)14、已知平面内两点M、N,如果它们平移的方式相同,那么平移后它们之间的相对位置是()A、不能确定B、发生变化C、不发生变化D、需分情况说明15、已知△ABC,A(-3,2),B(1,1),C(-1,-2),现将△ABC平移,使点A到点(1,-2) 的位置上,则点B,C平移后对应点的坐标分别为()A、(-3,5),(-6,3)B、(5,-3),(3,-6)C、(-6,3),(-3,5)D、(3,-6),(5,-3)二、填空题16、将点P(-3,4)向下平移3个单位,向左平移2个单位后得到点Q,则点Q的坐标为________.17、三角形ABC的三个顶点A(1,2),B(-1,-2),C(-2,3),将其平移到点A′(-1,-2)处,且使A与A′重合,则B、C两点对应点的坐标分别为________,________.18、如图,已知A(0,1),B(2,0),把线段AB平移后得到线段CD,其中C(1,a),D(b ,1)则a+b =________.19、在平面直角坐标系中,若点M(1,3)与点N(x ,3)之间的距离是5,则x的值是________.20、如图,在直角坐标系中,右边的蝴蝶是由左边的蝴蝶飞过去以后得到的,左图案中左右翅尖的坐标分别是(-4,2)、(-2,2),右图案中左翅尖的坐标是(3,4),则右图案中右翅尖的坐标是________.三、解答题21、如图,在平面网格中每个小正方形的边长为1.(1)线段CD是线段AB经过怎样的平移后得到的?(2)线段AC是线段BD经过怎样的平移后得到的?22、如图,四边形ABCD各个顶点的坐标分别为(-2,8),(-11,6),(-14,0),(0,0).(1)确定这个四边形的面积,你是怎么做的?(2)如果四边形ABCD各个顶点的纵坐标保持不变,横坐标增加2,所得的新四边形的面积是多少?23、与在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:________,________,________;(2)说明由经过怎样的平移得到:________;(3)若点(,)是内部一点,则平移后内的对应点的坐标为________;(4)求的面积.答案解析部分一、选择题1、【答案】B【考点】坐标与图形变化-平移【解析】【解答】结合图形可以得知A向右平移4个单位长度可得到点B.【分析】坐标系中的点的平移规律是从观察坐标系中点的变化规律总结得到的.2、【答案】D【考点】坐标与图形变化-平移【解析】【解答】将点A向下平移5个单位长度后,将重合于图中的点E.【分析】坐标系中的点的平移规律是从观察坐标系中点的变化规律总结得到的.3、【答案】A【考点】坐标与图形变化-平移【解析】解答:根据平移的特点可以知道,点A、B经过相同的平移得到分别得到点与,所以点与间的距离与点A、B之间的距离相等,均为4个单位长度.分析:先左右平移还是先上下平移坐标系内的点不影响平移后点的位置.4、【答案】D【考点】坐标与图形变化-平移【解析】【解答】点G(-2,-2),将点G先向右平移6个单位长度,再向上平移5个单位长度,得到G′的坐标为(4,3).【分析】按要求在坐标系内平移点G,即可得知点G′的坐标.5、【答案】B【考点】坐标与图形变化-平移【解析】【解答】向上平移6个单位长度,即纵坐标加6,横坐标不变.【分析】坐标系中的点上下平移时:横坐标不变,向正方向平移几个单位长度,纵坐标就加几,向负方向平移几个单位长度,纵坐标就减几.6、【答案】D【考点】坐标与图形变化-平移【解析】【解答】由平移规律得点B为(1,-2),又横坐标为正,纵坐标为负是第四象限内的点的特征,所以选择D【分析】坐标系中的点的平移规律为:左右移横变,上下移纵变;正方向移加,负方向移减.7、【答案】C【考点】解一元一次方程,坐标与图形变化-平移【解析】【解答】由平移规律可知,由点A平移后得到的点B坐标为(a+2,1),又∵点B为(4,b),∴a+2=4,b=1,∴a=-2,b=1.【分析】根据平移规律得到点B的坐标,再与所给的点B的坐标对比得到关于a与b 的一元一次方程,解该方程即可.8、【答案】C【考点】坐标与图形变化-平移【解析】【解答】将点P(-2,3)向右平移3个单位得到点Q,即点Q 的横坐标加3,纵坐标不变,则点Q的坐标是(1,3),故选C.【分析】根据坐标系内点的坐标的平移规律解题.9、【答案】B【考点】坐标与图形变化-平移【解析】【解答】由平移规律可知横坐标左减右加,故选B.【分析】图形和图形上任何一点发生平移变换时,其坐标变化是一致的,所以可以应用相同的平移规律.10、【答案】D【考点】坐标与图形变化-平移【解析】【解答】由于点A(﹣1,5)的对应点为C(4,8),即点A向右平移5个单位,再向上平移3个单位得到点C,因此点B(﹣4,﹣2)向右平移5个单位,再向上平移3个单位得到点D,那么点D的坐标为(1,1).【分析】先根据点A和对应点C的坐标得到平移的规律为向右平移5个单位,再向上平移3个单位,然后根据此规律把点B进行平移,再写出平移后的对应点D的坐标.11、【答案】B【考点】坐标与图形变化-平移【解析】【解答】∵C1(m ,n),C(m+5,n+3),又∵三角形ABC 平移后得到三角形A1B1C1,∴根据平移规律可知三角形ABC平移向左平移5个单位长度,再向下平移3个单位长度后得到三角形A1B1C1又∵点A为(-2,3),点B为(-4,-1),∴A1,B1两点的坐标为(-7,0),(-9,-4).【分析】平面直角坐标系中点的坐标的平移规律:横坐标左减右加,纵坐标上加下减.12、【答案】B【考点】坐标与图形变化-平移【解析】【解答】跳蚤运动的速度是每秒运动一个单位长度,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒,2秒,3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依此类推,到(5,0)用35秒.故第35秒时跳蚤所在位置的坐标是(5,0).【分析】本题只能根据所给规律逐次计算,特别要注意跳蚤每秒跳动一个单位.13、【答案】A【考点】坐标与图形变化-平移【解析】【解答】将点A(-4,-6)先向右平移4个单位长度,再向上平移6个单位长度,即横坐标加4,纵坐标加6,所以A′的坐标为(0,0).【分析】本题根据平移规律:横坐标左加右减,纵坐标上加下减,来解题.14、【答案】C【考点】坐标与图形变化-平移【解析】【解答】因为平移方式相同,所以平移前后两点之间的相对位置不发生变化.【分析】平移的方式相同,两个点及两个图像的相对位置都不发生变化,但是两个点与图形的位置发生来变化.15、【答案】B【考点】坐标与图形变化-平移【解析】【解答】因为使点A到点(1,-2) ,所以△ABC是先向右平移4个单位长度,再向下平移4个单位长度,所以点B,C的横坐标分别加4,纵坐标分别减4,即点B,C平移后对应点的坐标分别为(5,-3),(3,-6).【分析】本题先根据点A的平移确定平移方式,再求出点B,C平移后对应点的坐标.二、填空题16、【答案】(-5,1)【考点】坐标与图形变化-平移【解析】【解答】将点P(-3,4)向下平移3个单位,向左平移2个单位,即点P的纵坐标减3,横坐标减2,所以得到点Q的坐标为(-5,1).【分析】本题根据平移规律:横坐标左减右加,纵坐标下减上加.17、【答案】(-3,-6);(-4,-1)【考点】坐标与图形变化-平移【解析】【解答】根据题意可知使点A到点A′,所以△ABC是先向左平移2个单位长度,再向下平移4个单位长度,所以点B,C的横坐标分别减2,纵坐标分别减4,即点B、C平移后对应点的坐标分别为(-3,-6),(-4,-1).【分析】本题先根据点A的平移确定平移方式,再求出点B,C平移后对应点的坐标.18、【答案】1或2【考点】坐标与图形变化-平移【解析】【解答】①当点A平移到点C时,可以判断线段AB向右平移1个单位,由点B就平移到点D可以判断线段AB向下平移1个单位,那么可知a=0,b=2,即a+b=2;②当点A平移到点D时,可以判断线段AB没有向下平移,由点B就平移到点C可以判断线段AB向右平移1个单位,那么可知a=0,b=1,即a+b=1;综上所述a+b=1或2.【分析】本题分两种情况:点A平移到点C或点D.19、【答案】-4或6【考点】坐标与图形变化-平移【解析】【解答】当点N在点M左边时,那么点M向左平移5个单位得到点N(-4,3);当点N在点M右边时,那么点M向右平移5个单位得到点N(6,3);综上所述x的值为-4或6.【分析】分点N在点M左边或右边.20、【答案】(5,4)【考点】坐标与图形变化-平移【解析】【解答】因为左图案中左翅尖的坐标是(-4,2),右图案中左翅尖的坐标是(3,4),所以蝴蝶先向右飞7个单位,再向上平移2个单位,所以右图案中右翅尖的坐标是(5,4).【分析】本题先根据左翅尖的平移确定平移方式,再求出右翅尖平移后对应点的坐标.三、解答题21、【答案】(1)将线段AB向右平移3个小格(向下平移4 个小格),再向下平移4个小格(向右平移3个小格),得线段CD.(2)将线段BD向左平移3个小格(向下平移1个小格),再向下平移1个小格(向左平移3个小格),得到线段AC.【考点】坐标与图形变化-平移【解析】【解答】(1)将线段AB向右平移3个小格(向下平移4 个小格),再向下平移4个小格(向右平移3个小格),得线段CD.(2)将线段BD向左平移3个小格(向下平移1个小格),再向下平移1个小格(向左平移3个小格),得到线段AC.【分析】先左右平移还是先上下平移不影响平移后图形与点的位置.23、【答案】(1)解:可将这个四边形切割成三个三角形和一个长方形,S=×3×6+×9×2+×2×8+9×6=9+9+8+54=80.(2)横坐标增加2,纵坐标不变,则四边形向右平移2个单位长度,形状和大小都不变,其面积仍是80.【考点】三角形的面积,平移的性质,坐标与图形变化-平移【解析】【分析】本题(2)中,实际是将图形进行了平移,根据平移的性质:平移只改变图形的位置,不改变图形的形状与大小,所以新得到的图形面积仍为80.25、【答案】(1)解:(-3,1);(-2,-2);(-1,-1)(2)先向左平移4个单位,再向下平移2个单位或先向下平移2个单位,再向左平移4个单位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下册数学练习(时间:120分钟 满分:100分)一、细心填一填(每题2分,共24分)1、 在同一平面内,两条直线有 种位置关系,它们就是 ;2.若直线a//b,b//c,则 ,其理由就是 ;3、如图1直线AB,CD,EF 相交与点O,图中AOE ∠得对顶角就是 ,COF ∠得邻补角就是 。

图3 4.如图2,要把池中得水引到D 处,可过C 点引CD ⊥AB 于D,然后沿CD 开渠,可使所开渠道最短,试说明设计得依据: ;5.点P(-2,3)关于X 轴对称点得坐标就是 。

关于原点对称点得坐标就是 。

6.把“对顶角相等”写成“如果……那么……”得形式为 。

7、一个等腰三角形得两边长分别就是3cm 与6cm,则它得周长就是 cm 、 8、若点M(a+5,a-3)在y 轴上,则点M 得坐标为 。

9.若P(X,Y)得坐标满足XY >0,且X+Y<0,则点P 在第 象限 。

10、一个多边形得每一个外角等于30o,则这个多边形就是 边形,其内角与就是 。

11.直角三角形两个锐角得平分线所构成得钝角等于 度。

12.如图3,四边形ABCD 中,12∠∠与满足 关系时AB//CD,当 时AD//BC(只要写出一个您认为成立得条件)。

二、精心选一选(下列各小题得四个选项中,有且只有一个就是符合题意得,把您认为符合题意得答案代号填题 号 1 2 3 4 5 6答 案2.以下列各组线段为边,能组成三角形得就是( )A 、2cm, 3cm, 5cmB 、5cm, 6cm, 10cmC 、1cm, 1cm, 3cmD 、3cm, 4m, 9cm3.某人到瓷砖商店去买一种多边形形状得瓷砖用来铺设无缝地板,她购买得瓷砖形状不可以就是( ) A.正三角形 B.长方形 C.正八边形 D.正六边形4.在直角坐标系中,点P(-2,3)向右平移3个单位长度后得坐标为( )A.(3,6) B 、(1,3) C 、(1,6) D 、(3,3) 5、 如图4,下列条件中,不能判断直线a//b 得就是( )A 、∠1=∠3B 、∠2=∠3C 、∠4=∠5D 、∠2+∠4=180° 6、下列图形中有稳定性得就是( )A.正方形 B 、长方形 C 、直角三角形 D 、平行四边形三.作图题。

(每小题4分,共12分1.作出钝角ABC ∆得三条高线。

2.在下面所示得方格纸中,画出将图中△ABC 向右平移4格后得△A 、B 、C 、,然后再画出△A 、B 、C 、向下平移3格后得△A"B"C"cba5 43 2 1 CB AAB DC 1 2 A BC D 图2 A F C E BD 图1O AB C 图43、写出图中A 、B 、C 、D 、E 、F 各点得坐标:四、学着说点理。

(每小题3分,共6分) 1、如图四(1):∠1=∠2=∠3,完成说理过程并注明理由:(1)因为∠1=∠2所以____∥____ ( ) (2)因为 ∠1=∠3所以____∥____ ( )2、已知:如图,∠1=∠2、求证:∠3+∠4=180° 证明:∵∠1=∠2∴ a ∥b ( )∴∠3+∠5=180°( ) 又∵∠4=∠5 ( ) ∴∠3+∠4=180°五.用心解一解:(每小题5分,共20分)1、如图五(1):∠1=∠2,∠3=108°、求∠4得度数2、如图五(2),直线DE 交△ABC 得边AB 、AC 于D 、E,交BC 延长线于F,若∠B =67°,∠ACB =74°,∠AED =48°,求∠BDF 得度数3.一个多边形得内角与就是它外角与得2倍,求这个多边形得边数。

4.如图B 点在A 处得南偏西45°方向,C 处在A 处得南偏东15°方向,C 处在B 北偏东80°方向,求∠ACB 。

六.简单推理。

(1、2、每小题5分,第3题6分,共16分)1.如图,一个零件ABCD 需要AB 边与CD 边平行,现只有一个量角器,测得拐角∠ABC=120°,∠BCD=60°,这个零件合格吗?为什么?2.如图,如果AB//CD,∠B=37°,∠D=37°,那么BC 与DE 平行吗? 为什么?3.已知如图BC 交DE 于O,给出下面三个论断:①∠B=∠E;②AB//DE;③BC//EF 。

请以其中得两个论断为条件,填入“题设”栏中,以一个论断为结论,填入“结论”栏中,使之成为一个正确得命题,并加以证明。

题设:已知如图,BC 交DE 于O, 。

(填题号) 结论:那么 (填题号)ABC北 南DE 图四(2)图五(1)七、细观察,找规律(本题10分)1、下列各图中得MA1与NA n平行。

32MA3543A2NM……(1)图①中得∠A1+∠A2=____度,图②中得∠A1+∠A2+∠A3=____度,图③中得∠A1+∠A2+∠A3+∠A4=____度,图④中得∠A1+∠A2+∠A3+∠A4+∠A5=____度,……, 第⑩个图中得∠A1+∠A2+∠A3+…+∠A10=____度(2)第n个图中得∠A1+∠A2+∠A3+…+∠A n=___________。

七年级下册数学试卷一答案参考答案一、细心填一填1.两;相交与平行。

2.a//c;平行于同一条直线得两条直线互相平行。

3.∠BOF;∠COE与∠DOF。

4.垂线段最短。

5.(-2,-3);(2,-3)6.如果两个角就是对顶角,那么这两个角相等。

7.15。

8.(0,-8)9.三;10°十二;1800°11.135;12.相等;∠DAC=∠BCA(或∠DAB+∠B=180°;∠D+∠DCB=180°)1、略2、略;3、A(2,3);B(3,2);C(-3,1);D(-2,-2);E(1,0);F(0,-3)四、学着说点理。

1.EF//BD;同位角相等,两直线平行。

AB//CD;内错角相等,两直线平行。

2.同位角相等,两直线平行;两直线平行,同旁内角互补。

对顶角相等五.用心解一解:1.解:12//CD3+4=1803108418010872AB∠=∠∴∴∠∠∠=∴∠=-=ooo o oQQ2、解:在△ABC中18067,74180677439394887A B ACBB ACBABDF ADEBDF A AED∠+∠+∠=∠=∠=∴∠=--=∠∆∴∠=∠+∠=+=oo oo o o oo o oQQ是的一个外角3.解设这个多边形得边数为n,依题意得:()21802360n-=⨯o o解得:n=6答这个多边形得边数就是6边。

4.,15.801560//AEDBA=8035180603585CAEDBCBACDBABCACB∠∠=∠=∴∠=+=∴∠∠∴∠=-=∴∠=--=ooooooo oo oo o o oQ解由题意得:BAE=4545BAE=4545六.简单推理。

1.答:这个零件合格。

理由就是:120,60180//CDABC BCDABC BCDAB∠=∠=∴∠+∠=∴o ooQ2.答:BC// DEABDOCEF理由就是://CDC=B=373737//DEAB D C D BC ∴∠∠∠=∴∠=∠=∴ooo Q Q3. 题设:①,②;结论:③。

(或题设:①,③;结论:②。

或题设:,②③;结论:①。

)以题设:①,②;结论:③。

进行证明如下://DE //EFAB B DOCB E E DOC BC ∴∠=∠∠=∠∴∠=∠∴Q Q七、细观察,找规律(1)图①中得∠A 1+∠A 2=180度, 图②中得∠A 1+∠A 2+∠A 3=360度,图③中得∠A 1+∠A 2+∠A 3+∠A 4=540度,图④中得∠A 1+∠A 2+∠A 3+∠A 4+∠A 5=720度,……,第⑩个图中得∠A 1+∠A 2+∠A 3+…+∠A 10=1620度 (2)第n 个图中得∠A 1+∠A 2+∠A 3+…+∠A n =(n-1)180o设计意图:一、 细心填一填侧重于考察学生对同一平面内两条直线得位置关系得理解,平行公理得推论,对于对顶角及邻补角得辩认,垂线得性质得应用,对称点坐标得求法,命题得构成,平面直角坐标系中坐标轴上点得特征及各象限得符号,三角形边得不等关系得应用,多边形得外角与及内角与得求法,对平行线判定得应用等。

二、 精心选一选侧重于考察学生利用三角形边得不等关系来判断三条线段能否组成一个三角形,平面镶嵌得条件,平移得方法,三角形得稳定性等。

三.作图题。

侧重于考察学生对三角形得三种重要线段得理解,坐标平移,平面上点得坐标得确定。

四、学着说点理。

侧重于让学生认识到对于证明得每一步都要就是有根据得。

五.用心解一解:1.侧重于考察学生对平行线判定及性质得综合应用。

2.侧重于考察学生对三角形内角与定理及外角得性质得应用。

3.侧重于考察学生对于多边形得内角与及外角与得掌握。

4.侧重于考察学生对方向坐标得瞧法。

六.简单推理。

让学生进行简单得推理。

培养学生得开放性与探索性能力。

七、细观察,找规律培养学生细心观察能力与总结规律得能力图3七年级下册数学试卷二一、选择题(每小题3分,满分24分) 1、如图,下列推理正确得就是( )A. ∵ ∠1=∠2,∴ AD ∥BCB. ∵ ∠3=∠4,∴ AB ∥CDC. ∵ ∠3=∠5,∴ AB ∥DCD. ∵ ∠3=∠5,∴ AD ∥BC2、如果两条直线被第三条直线所截,那么必定有 ( )A 、内错角相等B 、同位角相等C 、同旁内角互补D 、以上都不对3、如果点P(5,y)在第四象限,则y 得取值范围就是( ) A.y <0 B.y >0 C.y ≤0 D.y ≥04、已知三角形得两边长分别为4cm 与9cm,则下列长度得四条线段中能作为第三边得就是( )A.13cmB.6cmC.5cmD.4cm 5、已知a<b,则下列式子正确得就是( )A 、a+5>b+5B 、3a>3b;C 、-5a>-5bD 、3a >3b6、某多边形得外角与等于内角与得一半,那么这个多边形就是( ) A 、五边形 B 、六边形 C 、七边形 D 、八边形7、下列图形中,不能镶嵌成平面图案得就是( )A 、 正三角形B 、 正四边形C 、 正五边形D 、 正六边形 8、某商场对顾客实行如下优惠方式:⑴一次性购买金额不超过1万元,不予优惠; ⑵一次性购买金额超过1万元,超过部分9折优惠,某人第一次在该商场付款8000元,第二次又在该商场付款19000元,如果她一次性购买得话可以节省( )。

A 、600元B 、800元C 、1000元D 、2700元 二、填空题(每小题3分,满分21分) 9、“如果n 就是整数,那么2n 就是偶数”其中题设就是 ,结论就是 ,这就是 命题(填真或假).10、如图2,∠ACD=1550,∠B=350,则∠A= 度。

相关文档
最新文档