正交试验的设计与应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
HEBEI UNITED UNIVERSITY
题目: 正交试验的设计与应用
学生姓名:苏运波
学号: 2013203111
专业班级:机械工程研5班
学 院:研究生学院
指导教师:赵树忠教授
2014年06月11日
正交试验设计的实际应用
【摘要】:
正交试验设计(Orthogonal Design)是于二十世纪50年代初期,由日本质量管理专家田口玄一(Tachugi)博士在前人提出的多因素试验设计方法的基础上,进一步研究开发出来的一种试验设计技术。正交试验设计法使用一种规范化的表格(正交表)进行试验设计,可以用较
少的试验次数,取得较为准确、可靠的优选结论。正交试验设计主要可以完成:
①确定出各因素对试验指标的影响规律,得知哪些因素的影响是主要的、哪些因素的影响是次要的、哪些因素之间存在相互影响;
②选出各因素的一个水平组合来确定最佳生产条件。
【关键词】实验设计;数据处理;正交试验;
1.正交试验介绍
正交的概念
在数学上,两个向量 和 若满足
由于在构造正交表的过程中使用了上述原理,因此将相应的试验设计法称为正交试验设计。
2.正交表
正交表是一整套规则的设计表格,用 。L为正交表的代号,n为试验的次数,t为水平数,c为列数,也就是可能安排最多的因素个数。例如L9(34),它表示需作9次实验,最多可观察4个因素,每个因素均为3水平。一个正交表中也可以各列的水平数不相等,我们称它为混合型正交表,如L8(4×24) ,此表的5列中,有1列为4水平,4列为2水平。根据正交表的数据结构看出,正交表是一个t行c列的表,其中第j列由数码1,2,… Sj 组成,这些数码均各出现N/S 次,例如表11中,第二列的数码个数为3,S=3 ,即由1、2、3组成,各数码均出现1次。
正交表具有以下两项性质:
(1)每一列中,不同的数字出现的次数相等。例如在两水平正交表中,任何一列都有数码“1”与“2”,且任何一列中它们出现的次数是相等的;如在三水平正交表中,任何一列都有“1”、“2”、“3”,且在任一列的出现数均相等。
(2)任意两列中数字的排列方式齐全而且均衡。例如在两水平正交
表中,任何两列(同一横行内)有序对子共有4种:(1,1)、(1,2)、(2,1)、(2,2)。每种对数出现次数相等。在三水平情况下,任何两列(同一横行内)有序对共有9种,1.1、1.2、1.3、2.1、2.2、2.3、3.1、3.2、3.3,且每对出现数也均相等。
以上两点充分的体现了正交表的两大优越性,即“均匀分散性,整齐可比”。通俗的说,每个因素的每个水平与另一个因素各水平各碰一次,这就是正交性。
2. 交互作用表 每一张正交表后都附有相应的交互作用表,它是专门用来安排交互作用试验。表14就是L8(27)表的交互作用表。
安排交互作用的试验时,是将两个因素的交互作用当作一个新的因素,占用一列,为交互作用列,从表14中可查出L8(27)正交表中的任何两列的交互作用列。表中带( )的为主因素的列号,它与另一主因素的交互列为第一个列号从左向右,第二个列号顺次由下向上,二者相交的号为二者的交互作用列。例如将A因素排为第(1)列,B因素排为第(2)列,两数字相交为3,则第3列为A×B交互作用列。又如可以看到第4列与第6列的交互列是第2列,等等。
3.正交实验的表头设计 表头设计是正交设计的关键,它承担着将各因素及交互作用合理安排到正交表的各列中的重要任务,因此一个表头设计就是一个设计方案。
3.实际的应用
实验设计指科学研究的一般程序的知识,它包括从问题的提出、假说的形成、变量的选择等等一直到结果的分析、论文的写作一系列内容。它给研究者展示如何进行科学研究的概貌,试图解决研究的全过程。
研究者在实验前根据研究目的拟定的实验计划及方法策略。其主要内容是合理安排实验程序,并提出将如何对实验数据作统计分析、心理实验设计的主要步骤可归纳为:
①根据研究目的提出假设;
②拟定验证假设的方法、程序;
③选择适当的处理、分析实验数据的统计方法。
日本著名的统计学家田口玄一将正交试验选择的水平组合列成表格,称为正交表。例如作一个三因素三水平的实验,按全面实验要求,须进行33=27种组合的实验,且尚未考虑每一组合的重复数。若按L9(3)正交表安排实验,只需作9次,按L18(3)正交表进行18次实验,显然大大减少了工作量。因而正交实验设计在很多领域的研究中已经得到广泛应用。
正交表是一整套规则的设计表格,L为正交表用的代号,n为试验的次数,t为水平数,c为列数,也就是可能安排最多的因素个数。例如L9(34),它表示需作9次实验,最多可观察4个因素,每个因素均为3水平。一个正交表中也可以各列的水平数不相等,我们称它为混合型正交表。
正交试验设计的安排
正交试验设计的关键在与试验因素的安排。通常,在不考虑交互作用的情况下,可以自由的将各个因素安排在正交表的各列,只要不在同一列安排两个因素即可(否则会出现混杂)。但是当要考虑交互作用时,就会受到一定的限制,如果任意安排,将会导致交互效应与其它效应混杂的情况。
因素所在列是随意的,但是一旦安排完成,试验方案即确定,之后的试验以及后续分析将根据这以安排进行,不能再改变。
正交试验设计的极差分析
用极差法分析正交试验结果应引出以下几个结论:①在试验范围内,各列对试验指标的影响从大到小的排队。某列的极差最大,表示该列的数值在试验范围内变化时,使试验指标数值的变化最大。所以各列对试验指标的影响从大到小的排队,就是各列极差D的数值从大到小的排队。
②试验指标随各因素的变化趋势。③使试验指标最好的适宜的操作条件(适宜的因素水平搭配)。④对所得结论和进一步研究方向的讨论。较