高考数学卷文科试卷
2022年全国乙卷数学(文科)高考真题卷(含答案)
22.(1)
(2)
[选修4—5:不等式选讲]
23.【小问1详解】
证明:因为 , , ,则 , , ,
所以 ,
即 ,所以 ,当且仅当 ,即 时取等号.
【小问2详解】
证明:因为 , , ,
所以 , , ,
所以 , ,
当且仅当 时取等
15. 或 或 或 ;
16. ①. ;②. .
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
17.(1) ;
(2)由 可得,
,再由正弦定理可得,
,然后根据余弦定理可知,
,化简得:
,故原等式成立.
二、填空题:本题共4小题,每小题5分,共20分。
13.记 为等差数列 的前n项和.若 ,则公差 _______.
14.从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为________.
15.过四点 中的三点的一个圆的方程为______.
16.若 是奇函数,则 _____, ______.
2022年普通高等学校招生全国统一考试(全国乙卷)
文科数学
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号框涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号框。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
(1)求E 方程;
(2)设过点 的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足 .证明:直线HN过定点.
2022高考数学全国乙卷(文科)(解析版)
2022年普通高等学校招生全国统一考试(全国乙卷文科)注意事项:1.答卷前,考生务必将自己地,准考证号填写在答题卡上.2.回答选择题时,选出每小题结果后,用2B 铅笔把答题卡上对应题目地结果标号框涂黑.如需改动,用橡皮擦干净后,再选涂其它结果标号框,回答非选择题时,将结果写在答题卡上.写在本试题上无效.3.考试结束后,将本试题和答题卡一并交回.一,选择题:本题共12小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1. 集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N = ( )A. {2,4} B. {2,4,6}C. {2,4,6,8}D. {2,4,6,8,10}【结果】A 【思路】【思路】依据集合地交集运算即可解出.【详解】因为{}2,4,6,8,10M =,{}|16N x x =-<<,所以{}2,4M N = .故选:A.2. 设(12i)2i a b ++=,其中,a b 为实数,则( )A. 1,1a b ==- B. 1,1a b == C. 1,1a b =-= D. 1,1a b =-=-【结果】A 【思路】【思路】依据复数代数形式地运算法则以及复数相等地概念即可解出.【详解】因为,a b ÎR ,()2i 2i a b a ++=,所以0,22a b a +==,解得:1,1a b ==-.故选:A.3. 已知向量(2,1)(2,4)a b ==-,,则a b -r r ( )A. 2B. 3C. 4D. 5【结果】D 【思路】【思路】先求得a b -,然后求得a b -r r .【详解】因为()()()2,12,44,3a b -=--=- ,所以5-== a b .故选:D4. 分别统计了甲,乙两位同学16周地各周课外体育运动时长(单位:h ),得如下茎叶图:则下面结论中错误地是( )A. 甲同学周课外体育运动时长地样本中位数为7.4B. 乙同学周课外体育运动时长地样本平均数大于8C. 甲同学周课外体育运动时长大于8地概率地估计值大于0.4D. 乙同学周课外体育运动时长大于8地概率地估计值大于0.6【结果】C 【思路】【思路】结合茎叶图,中位数,平均数,古典概型等知识确定正确结果.【详解】对于A 选项,甲同学周课外体育运动时长地样本中位数为7.37.57.42+=,A 选项结论正确.对于B 选项,乙同学课外体育运动时长地样本平均数为:6.37.47.68.18.28.28.58.68.68.68.69.09.29.39.810.18.50625816+++++++++++++++=>,B 选项结论正确.对于C 选项,甲同学周课外体育运动时长大于8地概率地估计值60.3750.416=<,C 选项结论错误.对于D 选项,乙同学周课外体育运动时长大于8地概率地估计值130.81250.616=>,D 选项结论正确.故选:C5. 若x ,y 满足约束款件2,24,0,x y x y y +⎧⎪+⎨⎪⎩………则2z x y =-地最大值是( )A. 2-B. 4C. 8D. 12【结果】C【思路】【思路】作出可行域,数形结合即可得解.【详解】由题意作出可行域,如图阴影部分所示,转化目标函数2z x y =-为2y x z =-,上下平移直线2y x z =-,可得当直线过点()4,0时,直线截距最小,z 最大,所以max 2408z =⨯-=.故选:C.6. 设F 为抛物线2:4C y x =地焦点,点A 在C 上,点(3,0)B ,若AF BF =,则AB =( )A. 2B.C. 3D. 【结果】B 【思路】【思路】依据抛物线上地点到焦点和准线地距离相等,从而求得点A 地横坐标,进而求得点A 坐标,即可得到结果.【详解】由题意得,()1,0F ,则2AF BF ==,即点A 到准线1x =-地距离为2,所以点A 地横坐标为121-+=,不妨设点A 在x 轴上方,代入得,()1,2A ,所以AB ==.故选:B7. 执行下边地程序框图,输出地n =( )A. 3B. 4C. 5D. 6【结果】B 【思路】【思路】依据框图循环计算即可.【详解】执行第一次循环,2123b b a =+=+=,312,12a b a n n =-=-==+=,222231220.0124b a -=-=>。
2023年高考数学(全国甲卷)文科数学(含答案及详细解析)
2023年高考数学真题试卷(全国甲卷)文科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集,集合,则()A.B.C.D.2.()A.B.1C.D.3.已知向量,则()A.B.C.D.4.某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.B.C.D.5.记为等差数列的前项和.若,则()A.25B.22C.20D.156.执行下边的程序框图,则输出的()A.21B.34C.55D.897.设为椭圆的两个焦点,点在上,若,则()A.1B.2C.4D.58.曲线在点处的切线方程为()A.B.C.D.9.已知双曲线的离心率为,其中一条渐近线与圆交于A,B两点,则()A.B.C.D.10.在三棱锥中,是边长为2的等边三角形,,则该棱锥的体积为()A.1B.C.2D.311.已知函数.记,则()A.B.C.D.12.函数的图象由的图象向左平移个单位长度得到,则的图象与直线的交点个数为()A.1B.2C.3D.4二、填空题:本大题共4小题,每小题5分,共20分.13.记为等比数列的前项和.若,则的公比为.14.若为偶函数,则.15.若x,y满足约束条件,则的最大值为.16.在正方体中,为的中点,若该正方体的棱与球的球面有公共点,则球的半径的取值范围是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.记的内角的对边分别为,已知.(1)求;(2)若,求面积.18.如图,在三棱柱中,平面.(1)证明:平面平面;(2)设,求四棱锥的高.19.一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g).试验结果如下:对照组的小白鼠体重的增加量从小到大排序为15.218.820.221.322.523.225.826.527.530.132.634.334.835.635.635.836.237.340.543.2试验组的小白鼠体重的增加量从小到大排序为7.89.211.412.413.215.516.518.018.819.219.820.221.622.823.623.925.128.232.336.5(1)计算试验组的样本平均数;(2)(ⅰ)求40只小白鼠体重的增加量的中位数m,再分别统计两样本中小于m与不小于m的数据的个数,完成如下列联表对照组试验组(ⅱ)根据(i)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:,0.1000.0500.0102.7063.841 6.63520.已知函数.(1)当时,讨论的单调性;(2)若,求的取值范围.21.已知直线与抛物线交于两点,.(1)求;(2)设为的焦点,为上两点,且,求面积的最小值.22.已知点,直线(为参数),为的倾斜角,与轴正半轴、轴正半轴分别交于,且.(1)求;(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程.23.已知.(1)求不等式的解集;(2)若曲线与轴所围成的图形的面积为2,求.答案解析部分1.【答案】A【解析】【解答】,故选:A【分析】先计算补集,再求并集即得答案.2.【答案】C【解析】【解答】,故选:C【分析】利用复数乘法运算计算由得出答案。
2024年全国统一高考数学试卷(文科)(甲卷)[含答案]
2024年全国统一高考数学试卷(文科)(甲卷)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的.1.集合,2,3,4,5,,,则 {1A =9}{|1}B x x A =+∈(A B = )A .,2,3,B .,2,C .,D .,2,{14}{13}{34}{19}2.设,则 z =(z z ⋅=)A .B .1C .D .2i-1-3.若实数,满足约束条件则的最小值为 x y 4330,220,2690,x y x y x y --⎧⎪--⎨⎪+-⎩ 5z x y =-()A .5B .C .D .122-72-4.等差数列的前项和为,若, {}n a n n S 91S =37(a a +=)A .B .C .1D .2-73295.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是 ()A .B .C .D .141312236.已知双曲线的两个焦点分别为、,且经过点,则双曲线的离心率是 1(0,4)F 2(0,4)F -(6,4)P -C ()A .4B .3C .2D 7.曲线在处的切线与坐标轴围成的面积为 6()31f x x x =+-(0,1)-()A .BC .D .16128.函数的区间,的图像大致为 2()()sin xx f x x e ex -=-+-[ 2.8- 2.8]()A .B .C .D .9.已知 cos cos sin ααα=-tan()(4πα+=)A .B .CD.1+1-1-10.已知直线与圆交于,两点,则的最小值为 20ax y a ++-=22:410C x y y ++-=A B ||AB ()A .2B .3C .4D .611.已知、是两个平面,、是两条直线,.下列四个命题:αβm n m αβ= ①若,则或//m n //n α//n β②若,则,m n ⊥n α⊥n β⊥③若,且,则//n α//n β//m n ④若与和所成的角相等,则n αβm n ⊥其中,所有真命题的编号是 ()A .①③B .②③C .①②③D .①③④12.在中,内角,,所对边分别为,,,若,,则 ABC ∆A B C a b c 3B π=294b ac =sin sin (A C +=)A .BCD32二、填空题:本题共4小题,每小题5分,共20分.13.函数在,上的最大值是 ()sin f x x x =[0]π14.已知甲、乙两个圆台上下底面的半径均为和,母线长分别为和,则两个圆台的2r 1r 122()r r -123()r r -体积之比 .V V =甲乙15.已知,,则 .1a >8115log log 42a a -=-a =16.曲线与在上有两个不同的交点,则的取值范围为 .33y x x =-2(1)y x a =--+(0,)+∞a 三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)已知等比数列的前项和为,且.{}n a n n S 1233n n S a +=-(1)求的通项公式;{}n a (2)求数列的通项公式.{}n S 18.(12分)某工厂进行生产线智能化升级改造.升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有的把握认为甲、乙两车间产品的优级品率存在差异?能否有的把握认为甲、乙两车间产95%99%品的估级品率存在差异?(2)已知升级改造前该工厂产品的优级品率.设为升级改造后抽取的件产品的优级品率.如0.5p =p n 果,则认为该工厂产品的优级品率提高了.根据抽取的150件产品的数据,能否认p p >+12.247)≈附:,22()()()()()n ad bc K a b c d a c b d -=++++2()P K k 0.0500.0100.001k3.8416.63510.82819.(12分)如图,在以,,,,,为顶点的五面体中,四边形与四边形均A B C D E F ABCD CDEF 为等腰梯形,,,,,,,//AB CD //CD EF 2AB DE EF CF ====4CD =AD BC ==AE =为的中点.M CD (1)证明:平面;//EM BCF (2)求点到的距离.M ADE20.(12分)已知函数.()(1)1f x a x lnx =--+(1)求的单调区间;()f x (2)若时,证明:当时,恒成立.2a 1x >1()x f x e -<21.(12分)已知椭圆的右焦点为,点在椭圆上,且轴.2222:1(0)x y C a b a b +=>>F 3(1,2M C MF x ⊥(1)求椭圆的方程;C (2)过点的直线与椭圆交于,两点,为线段的中点,直线与交于,证明:(4,0)P C A B N FP NB MF Q 轴.AQ y ⊥(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线xOy O x 的极坐标方程为.C cos 1ρρθ=+(1)写出的直角坐标方程;C (2)直线为参数),若与交于、两点,,求的值.:(x tl t y t a =⎧⎨=+⎩C l A B ||2AB =a [选修4-5:不等式选讲]23.实数,满足.a b 3a b + (1)证明:;2222a b a b +>+(2)证明:.22|2||2|6a b b a -+-2024年全国统一高考数学试卷(文科)(甲卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的.1.集合,2,3,4,5,,,则 {1A =9}{|1}B x x A =+∈(A B = )A .,2,3,B .,2,C .,D .,2,{14}{13}{34}{19}【解析】:,2,3,4,5,,,1,2,3,4,,{1A =9}{|1}{0B x x A =+∈=8}则,2,3,.故选:.{1A B = 4}A 2.设,则 z =(z z ⋅=)A .B .1C .D .2i-1-解法一:,则.故选:.z =z =()2z z ⋅=⋅=D 解法二:22z z z ⋅==3.若实数,满足约束条件则的最小值为 x y 4330,220,2690,x y x y x y --⎧⎪--⎨⎪+-⎩5z x y =-()A .5B .C .D .122-72-【解析】:作出不等式组所表示的平面区域,如图所示:4330,220,2690,x y x y x y --⎧⎪--⎨⎪+-⎩将约束条件两两联立可得3个交点:,,,(0,1)C -3(,1)2A 1(3,)2B 由得,则可看作直线在轴上的截距,5z x y =-1155y x z =-15z -1155y x z =-y 经检验可知,当直线经过点,时,最小,代入目标函数可得:.3(2A 1)z 72min z =-故选:.D 4.等差数列的前项和为,若, {}n a n n S 91S =37(a a +=)A .B .C .1D .2-7329解法一:,则,解得.故选:.91S =193799()9()122a a a a S ++===3729a a +=D 解法二:利用等差数列的基本量由,根据等差数列的求和公式,,91S =9119891,93612dS a a d ⨯=+=∴+=.()37111122262893699a a a d a d a d a d +=+++=+=+=解法三:特殊值法不妨取等差数列公差,则,则.故选:D0d =9111199S a a ==⇒=371229a a a +==解法四:【构造法】:设的公差为,利用结论是首项为,公差为的等差数列,{}n a d n S n ⎧⎫⎨⎬⎩⎭1a 2d 则,,()911118428922S d a a d a d =+=+=+371112628a a a d a d a d +=+++=+则,所以.故选:D ()()9111371118428==92229S d a a d a d a a =+=+=++3729a a +=解法五:根据题意,故选:D375922299a a a S +===5.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是 ()A .B .C .D .14131223【解析】:甲、乙、丙、丁四人排成一列共有种可能,4424A =丙不在排头,且甲或乙在排尾的情况有种可能,故.故选:.1122228C C A=81243P ==B 6.已知双曲线的两个焦点分别为、,且经过点,则双曲线的离心率是 1(0,4)F 2(0,4)F -(6,4)P -C ()A .4B .3C.2D 解法一:因为双曲线的两个焦点分别为、,且经过点,1(0,4)F 2(0,4)F -(6,4)P -所以,,,12||8F F =1||6PF =2||10PF ==则双曲线的离心率.故选:.C 2822106c e a ===-C 解法二:点纵坐标相同,所以是通径的一半即1P F 、1||PF 21||6b PF a ==则即,则双曲线的离心率.故选:.2166a a -=2a =C 224c e a ===C 解法三:双曲线的离心率C 121221086F F e PF PF ===--解法四 :根据焦点坐标可知4c =,根据焦点在y 轴上设双曲线方程为22221y xa b -=,则22221636116a b a b ⎧-=⎪⎨⎪+=⎩,则2a b =⎧⎪⎨=⎪⎩2c e a ==7.曲线在处的切线与坐标轴围成的面积为 6()31f x x x =+-(0,1)-()A .BC .D .1612【解析】:因为,所以,曲线在处的切线斜率,6()3f x x x =+5()63f x x '=+(0,1)-3k =故曲线在处的切线方程为,即,(0,1)-13y x +=31y x =-则其与坐标轴围成的面积.故选:.1111236S =⨯⨯=A 8.函数的区间,的图像大致为 2()()sin x x f x x ee x -=-+-[ 2.8-2.8]()A .B .C .D .解法一:,2()()sin x x f x x e e x -=-+-则,故为偶函数,故错误;22()()()sin()()sin ()x x x x f x x e e x x e e x f x ---=--+--=-+-=()f x AC (1),故错误,正确.f 1111111()sin11()sin 1062242e e e e e e eπ-=-+->-+-=-->->D B 故选:.B 解法二:函数为偶函数。
2022年全国统一高考数学试卷(文科)(全国一卷)
全国统一高考数学试卷(文科)(新课标)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个2.(5分)复数=()A.2﹣i B.1﹣2i C.﹣2+i D.﹣1+2i3.(5分)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=2x3B.y=|x|+1C.y=﹣x2+4D.y=2﹣|x|4.(5分)椭圆=1的离心率为()A.B.C.D.5.(5分)执行如图的程序框图,如果输入的N是6,那么输出的p是()A.120B.720C.1440D.50406.(5分)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.B.C.D.7.(5分)已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=()A.﹣B.﹣C.D.8.(5分)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A.B.C.D.9.(5分)已知直线l过抛物线C的焦点,且与C的对称轴垂直.l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为()A.18B.24C.36D.4810.(5分)在下列区间中,函数f(x)=e x+4x﹣3的零点所在的区间为()A.(,)B.(﹣,0)C.(0,)D.(,)11.(5分)设函数,则f(x)=sin(2x+)+cos(2x+),则()A.y=f(x)在(0,)单调递增,其图象关于直线x=对称B.y=f(x)在(0,)单调递增,其图象关于直线x=对称C.y=f(x)在(0,)单调递减,其图象关于直线x=对称D.y=f(x)在(0,)单调递减,其图象关于直线x=对称12.(5分)已知函数y=f(x)的周期为2,当x∈[﹣1,1]时f(x)=x2,那么函数y=f(x)的图象与函数y=|lgx|的图象的交点共有()A.10个B.9个C.8个D.1个二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知a与b为两个垂直的单位向量,k为实数,若向量+与向量k ﹣垂直,则k=.14.(5分)若变量x,y满足约束条件,则z=x+2y的最小值为.15.(5分)△ABC中,∠B=120°,AC=7,AB=5,则△ABC的面积为.16.(5分)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为.三、解答题(共8小题,满分70分)17.(12分)已知等比数列{a n}中,a1=,公比q=.(Ⅰ)S n为{a n}的前n项和,证明:S n=(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{b n}的通项公式.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形.∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD(Ⅱ)设PD=AD=1,求棱锥D﹣PBC的高.19.(12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A配方的频数分布表指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]频数82042228B配方的频数分布表指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]频数412423210(Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)20.(12分)在平面直角坐标系xOy中,曲线y=x2﹣6x+1与坐标轴的交点都在圆C上.(Ⅰ)求圆C的方程;(Ⅱ)若圆C与直线x﹣y+a=0交与A,B两点,且OA⊥OB,求a的值.21.(12分)已知函数f(x)=+,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y﹣3=0.(Ⅰ)求a、b的值;(Ⅱ)证明:当x>0,且x≠1时,f(x)>.22.(10分)如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根.(Ⅰ)证明:C,B,D,E四点共圆;(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数)M是C1上的动点,P点满足=2,P点的轨迹为曲线C2(Ⅰ)求C2的方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.24.设函数f(x)=|x﹣a|+3x,其中a>0.(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.。
2023年全国统一高考数学试卷(文科)(甲卷)(解析版)
2023年全国统一高考数学试卷(文科)(甲卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设全集U={1,2,3,4,5},集合M={1,4},N={2,5},则N∪∁U M=( )A.{2,3,5}B.{1,3,4}C.{1,2,4,5}D.{2,3,4,5}【答案】A【解答】解:因为U={1,2,3,4,5},集合M={1,4},N={2,5},所以∁U M={2,3,5},则N∪∁U M={2,3,5}.故选:A.2.(5分)=( )A.﹣1B.1C.1﹣i D.1+i【答案】C【解答】解:==1﹣i.故选:C.3.(5分)已知向量=(3,1),=(2,2),则cos〈+,﹣〉=( )A.B.C.D.【答案】B【解答】解:根据题意,向量=(3,1),=(2,2),则+=(5,3),﹣=(1,﹣1),则有|+|==,|﹣|==,(+)•(﹣)=2,故cos〈+,﹣〉==.故选:B.4.(5分)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A .B .C .D .【答案】D【解答】解:某校文艺部有4名学生,其中高一、高二年级各2名,从这4名学生中随机选2名组织校文艺汇演,基本事件总数n ==6,这2名学生来自不同年级包含的基本事件个数m ==4,则这2名学生来自不同年级的概率为P ===.故选:D .5.(5分)记S n 为等差数列{a n }的前n 项和.若a 2+a 6=10,a 4a 8=45,则S 5=( )A .25B .22C .20D .15【答案】C【解答】解:等差数列{a n }中,a 2+a 6=2a 4=10,所以a 4=5,a 4a 8=5a 8=45,故a 8=9,则d ==1,a 1=a 4﹣3d =5﹣3=2,则S 5=5a 1+=10+10=20.故选:C .6.(5分)执行下边的程序框图,则输出的B =( )A.21B.34C.55D.89【答案】B【解答】解:模拟执行程序框图,如下:n=3,A=1,B=2,k=1,k≤3,A=1+2=3,B=3+2=5,k=2,k≤3,A=3+5=8,B=8+5=13,k=3,k≤3,A=8+13=21,B=21+13=34,k=4,k>3,输出B=34.故选:B.A.1B.2C.4D.5【答案】B【解答】解:根据题意,点P在椭圆上,满足•=0,可得∠F1PF2=,又由椭圆C:+y2=1,其中c2=5﹣1=4,可得|PF1|•|PF2|=2,故选:B.8.(5分)曲线y=在点(1,)处的切线方程为( )A.y=x B.y=x C.y=x+D.y=x+【答案】C【解答】解:因为y=,y′==,故函数在点(1,)处的切线斜率k=,切线方程为y﹣=(x﹣1),即y=.故选:C.9.(5分)已知双曲线C:﹣=1(a>0,b>0)的离心率为,C的一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,则|AB|=( )A.B.C.D.【答案】D【解答】解:双曲线C:﹣=1(a>0,b>0)的离心率为,可得c=a,所以b=2a,所以双曲线的渐近线方程为:y=±2x,一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,圆的圆心(2,3),半径为1,圆的圆心到直线y=2x的距离为:=,所以|AB|=2=.故选:D.10.(5分)在三棱锥P﹣ABC中,△ABC是边长为2的等边三角形,PA=PB=2,PC=,则该棱锥的体积为( )A.1B.C.2D.3【答案】A【解答】解:如图,PA=PB=2,AB=BC=2,取AB的中点D,连接PD,CD,可得AB⊥PD,AB⊥CD,又PD∩CD=D,PD、CD⊂平面PCD,∴AB⊥平面PCD,在△PAB与△ABC中,求得PD=CD=,在△PCD中,由PD=CD=,PC=,得PD2+CD2=PC2,则PD⊥CD,∴,∴×AB=.故选:A.11.(5分)已知函数f(x)=.记a=f(),b=f(),c=f(),则( )A.b>c>a B.b>a>c C.c>b>a D.c>a>b【答案】A【解答】解:令g(x)=﹣(x﹣1)2,则g(x)的开口向下,对称轴为x=1,∵,而=,∴,∴,∴由一元二次函数的性质可知g()<g(),∵,而,∴,∴,综合可得,又y=e x为增函数,∴a<c<b,即b>c>a.故选:A.12.(5分)函数y=f(x)的图象由y=cos(2x+)的图象向左平移个单位长度得到,则y=f(x)的图象与直线y=x﹣的交点个数为( )A.1B.2C.3D.4【答案】C【解答】解:y=cos(2x+)的图象向左平移个单位长度得到f(x)=cos (2x+)=﹣sin2x,在同一个坐标系中画出两个函数的图象,如图:y=f(x)的图象与直线y=x﹣的交点个数为:3.故选:C.二、填空题:本大题共4小题,每小题5分,共20分。
2024全国高考真题 全国甲卷 文科数学+答案
三、解答题:共 70 分.解答应写出文字说明,证明过程或演算步骤.第 17 题第 21 题为必
考题,每个考题考生必须作答.第 22、23 题为选考题,考生根据要求作答.
(一)必考题:共 60 分.
15. 已知等比数列{ }的前项和为 ,且2 = 3+1 − 3.
(1)求{ }的通项公式;
【12 题答案】2
【13 题答案】64
【14 题答案】(−2,1)
三、解答题:
(一)必考题:共 60 分.
【15 题答案】
−1
(1) = (5)
3ห้องสมุดไป่ตู้
3 5
3
(2) ( ) −
2 3
2
【16 题答案】
(1)证明见详解;
6√13
(2)
13
【17 题答案】
(1)见解析
(2)见解析
【18 题答案】
)
)
C.
D.
9. 已知
cos
= 3 ,则tan ( + 4 ) =(
cos − sin
A. 2√3 + 1
B. 2√3 − 1
)
C.
√3
2
D. 1 − √3
10. 设、是两个平面,、是两条直线,且 ∩ = .下列四个命题:
.
①若//,则//或//
②若 ⊥ ,则 ⊥ , ⊥
(2)求点到的距离.
17 已知函数() = ( − 1) − + 1.
(1)求() 单调区间;
(2)若 ≤ 2时,证明:当 > 1时, f ( x ) e
18. 设椭圆:
的的
2
2
2
2023年高考全国乙卷文科数学试题(含答案详解)
2023年普通高等学校招生全国统一考试(全国乙卷)文科数学一、选择题1. 232i 2i ++=( )A. 1B. 2C.D. 52. 设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则M ∪C U N ( ) A. {}0,2,4,6,8B. {}0,1,4,6,8C. {}1,2,4,6,8D. U3. 如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A. 24B. 26C. 28D. 304. 在ABC 中,内角,,A B C 的对边分别是,,a b c ,若cos cos a B b A c −=,且5C π=,则B ∠=( )A.10π B.5π C.310π D.25π 5. 已知e ()e 1xax x f x =−是偶函数,则=a ( )A. 2−B. 1−C. 1D. 26. 正方形ABCD 的边长是2,E 是AB 的中点,则EC ED ⋅=( )A.B. 3C. D. 57. 设O 为平面坐标系的坐标原点,在区域(){}22,14x y xy ≤+≤内随机取一点A ,则直线OA 的倾斜角不大于π4的概率为( ) A.18B.16C.14D.128. 函数()32f x x ax =++存在3个零点,则a 的取值范围是( )A. (),2−∞−B. (),3−∞−C. ()4,1−−D. ()3,0−9. 某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( )A.56B.23C.12D.1310. 已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫ ⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条对称轴,则5π12f ⎛⎫−= ⎪⎝⎭( )A. B. 12−C.12D.11. 已知实数,x y 满足224240x y x y +−−−=,则x y −的最大值是( )A. 1+B. 4C. 1+D. 712. 设A ,B 为双曲线2219y x −=上两点,下列四个点中,可为线段AB 中点的是( )A. ()1,1B. ()1,2-C. ()1,3D. ()1,4−−二、填空题13.已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______. 14. 若π10,,tan 22⎛⎫∈= ⎪⎝⎭θθ,则sin cos θθ−=________. 15. 若x ,y 满足约束条件312937x y x y x y −≤−⎧⎪+≤⎨⎪+≥⎩,则2z x y =−的最大值为______.16. 已知点,,,S A B C 均在半径为2的球面上,ABC 是边长为3的等边三角形,SA ⊥平面ABC ,则SA =________. 三、解答题17. 某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:记1,2,,10i i i z x y i =−=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s . (1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥为有显著提高)18.记n S 为等差数列{}n a 的前n 项和,已知21011,40a S ==. (1)求{}n a 的通项公式; (2)求数列{}n a 的前n 项和n T .19.如图,在三棱锥−P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==,,BP AP BC 的中点分别为,,D E O ,点F 在AC 上,BF AO ⊥.(1)求证:EF //平面ADO ;(2)若120POF ∠=︒,求三棱锥−P ABC 的体积. 20.已知函数()()1ln 1f x a x x ⎛⎫=++⎪⎝⎭. (1)当1a =−时,求曲线()y f x =在点()()1,f x 处的切线方程. (2)若函数()f x 在()0,∞+单调递增,求a 的取值范围.21.已知椭圆2222:1(0)C bb x a a y +>>=,点()2,0A −在C 上.(1)求C 的方程;(2)过点()2,3−的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.【选修4-4】(10分)22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2sin 42ππρθθ⎛⎫=≤≤⎪⎝⎭,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【选修4-5】(10分)23.已知()22f x x x =+− (1)求不等式()6x f x ≤−的解集;(2)在直角坐标系xOy 中,求不等式组()60f x yx y ⎧≤⎨+−≤⎩所确定的平面区域的面积.2023年普通高等学校招生全国统一考试(全国乙卷)答案详解文科数学(2023·全国乙卷·文·1·★)232i 2i ++=( )(A )1 (B )2 (C (D 答案:C解析:2322i 2i 212i i 212(1)i 12i ++=−+⨯⨯=−+⨯−⨯=−=.(2023·全国乙卷·文·2·★)设全集{0,1,2,4,6,8}U =,集合{0,4,6}M =,{0,1,6}N =,M ∪C U N 则( ) (A ){0,2,4,6,8} (B ){0,1,4,6,8} (C ){1,2,4,6,8} (D )U 答案:A解析:由题意,C U N ={2,4,8},所以M ∪C U N ={0,2,4,6,8}.(2023·全国乙卷·文·3·★) 如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A.24B.26C.28D.30答案:D解析:如图所示,在长方体1111ABCD A B C D −中,2AB BC ==,13AA =,点,,,H I J K 为所在棱上靠近点1111,,,B C D A 的三等分点,,,,O L M N 为所在棱的中点,则三视图所对应的几何体为长方体1111ABCD A B C D −去掉长方体11ONIC LMHB −之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形, 其表面积为:()()()22242321130⨯⨯+⨯⨯−⨯⨯=.(2023·全国乙卷·文·4·★★)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,若cos cos a B b A c −=,且5C π=则,在B =( ) (A )10π(B )5π (C )310π (D )25π 答案:C解法1:所给边角等式每一项都有齐次的边,要求的是角,故用正弦定理边化角分析, 因为cos cos a B b A c −=,所以sin cos sin cos sin A B B A C −=,故sin()sin A B C −= ①, 已知C ,先将C 代入,再利用A B C π++=将①中的A 换成B 消元, 因为5C π=,所以45A B C ππ+=−=,故45A B π=−,代入①得4sin(2)sin 55B ππ−= ②, 因为45A B π+=,所以405B π<<,故4442555B πππ−<−<,结合②可得4255B ππ−=,所以310B π=.解法2:按解法1得到sin cos sin cos sin A B B A C −=后,观察发现若将右侧sin C 拆开,也能出现左边的两项,故拆开来看,sin sin[()]sin()sin cos cos sin C A B A B A B A B π=−+=+=+,代入sin cos sin cos sin A B B A C −=得:sin cos sin cos sin cos sin cos A B B A A B B A −=+,化简得:sin cos 0B A =,因为0B π<<,所以sin 0B >,故cos 0A =,结合0A π<<可得2A π=,所以43510B A ππ=−=.(2023·全国乙卷·文·5·★★) 已知e ()e 1xax x f x =−是偶函数,则=a ( )A. 2−B. 1−C. 1D. 2答案:D解析:因为()e e 1x ax x f x =−为偶函数,则()()()()1e e e e 0e 1e 1e 1a x x x x ax ax ax x x x f x f x −−−⎡⎤−−⎣⎦−−=−==−−−, 又因为x 不恒为0,可得()1e e 0a x x −−=,即()1e e a x x −=,则()1x a x =−,即11a =−,解得2a =.(2023·全国乙卷·文·6·★)正方形ABCD 的边长是2,E 是AB 的中点,则EC ED ⋅=( ) (A(B )3 (C) (D )5 答案:B解析:如图,EC ,ED 共起点,且中线、底边长均已知,可用极化恒等式求数量积, 由极化恒等式,223EC ED EF CF ⋅=−=.A BCDE F(2023·全国乙卷·文·7·★★)设O 为平面坐标系的坐标原点,在区域(){}22,14x y xy ≤+≤内随机取一点A ,则直线OA 的倾斜角不大于π4的概率为( ) A.18B. 16C.14D.12答案:C 解析:因为区域(){}22,|14x y xy ≤+≤表示以()0,0O 圆心,外圆半径2R =,内圆半径1r =的圆环,则直线OA 的倾斜角不大于π4的部分如阴影所示,在第一象限部分对应的圆心角π4MON ∠=, 结合对称性可得所求概率π2142π4P ⨯==.(2023·全国乙卷·文·8·★★★)函数3()2f x x ax =++存在3个零点,则a 的取值范围是( ) (A )(,2)−∞− (B )(,3)−∞− (C )(4,1)−− (D )(3,0)− 答案:B解法1:观察发现由320x ax ++=容易分离出a ,故用全分离,先分析0x =是否为零点, 因为(0)20f =≠,所以0不是()f x 的零点;当0x ≠时,3322()0202f x x ax ax x a x x=⇔++=⇔=−−⇔=−−, 所以直线y a =与函数22(0)y x x x =−−≠的图象有3个交点,要画此函数的图象,需求导分析,令22()(0)g x x x x =−−≠,则3222222(1)2(1)(1)()2x x x x g x x x x x −−++'=−+==, 因为22131()024x x x ++=++>,所以()00g x x '>⇔<或01x <<,()01g x x '<⇔>,故()g x 在(,0)−∞上,在(0,1)上,在(1,)+∞上,又lim ()x g x →−∞=−∞,当x 分别从y 轴左、右两侧趋近于0时,()g x 分别趋于+∞,−∞,(1)3g =−,lim ()x g x →+∞=−∞,所以()g x 的大致图象如图1,由图可知要使y a =与()y g x =有3个交点,应有3a <−.解法2:如图2,三次函数有3个零点等价于两个极值异号,故也可直接求导分析极值,由题意,2()3f x x a '=+,要使()f x 有2个极值点,则()f x '有两个零点,所以120a ∆=−>,故0a <, 令()0f x '=可得x =322f =+=,3(((22f a =++=,故34(2)(2)4027a f f =+=+<,解得:3a <−.a=1图2图(2023·全国乙卷·文·9·★)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( ) A.56B.23C.12D.13答案:A解析:甲有6种选择,乙也有6种选择,故总数共有6636⨯=种, 若甲、乙抽到的主题不同,则共有26A 30=种, 则其概率为305366=,(2023·全国乙卷·文·10·★★★)已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条对称轴,则5π12f ⎛⎫−= ⎪⎝⎭() A. B. 12−C.12D.2答案:D解析:因为()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增, 所以2πππ2362T =−=,且0ω>,则πT =,2π2w T ==, 当π6x =时,()f x 取得最小值,则ππ22π62k ϕ⋅+=−,Z k ∈,则5π2π6k ϕ=−,Z k ∈,不妨取0k =,则()5πsin 26f x x ⎛⎫=− ⎪⎝⎭,则5π5πsin 1232f ⎛⎫⎛⎫−=−= ⎪ ⎪⎝⎭⎝⎭,(2023·全国乙卷·文·11·★★★)已知实数x ,y 满足224240x y x y +−−−=,则x y −的最大值是( )(A )1 (B )4 (C )1+ (D )7 答案:C解法1:所给等式可配方化为平方和结构,故考虑三角换元,22224240(2)(1)9x y x y x y +−−−=⇒−+−=,令23cos 13sin x y θθ=+⎧⎨=+⎩,则23cos 13sin 1)4x y πθθθ−=+−−=−−,θ∈R ,所以当sin()14πθ−=−时,x y −取得最大值1+解法2:所给方程表示圆,故要求x y −的最大值,也可设其为t ,看成直线,用直线与圆的位置关系处理,22224240(2)(1)9x y x y x y +−−−=⇒−+−= ①,设t x y =−,则0x y t −−=,因为x ,y 还满足①,所以直线0x y t −−=与该圆有交点,从而圆心(2,1)到直线的距离3d =≤,解得:11t −≤≤+max ()1x y −=+(2023·全国乙卷·文·12·★★★★)设A ,B 为双曲线2219y x −=上两点,下列四个点中,可为线段AB 中点的是( ) A. ()1,1 B. ()1,2-C. ()1,3D. ()1,4−−答案:D解析:设()()1122,,,A x y B x y ,则AB 的中点1212,22x x y y M ++⎛⎫⎪⎝⎭,可得1212121212122,2ABy y y y y y k k x x x x x x +−+===+−+,因为,A B 在双曲线上,则221122221919y x y x ⎧−=⎪⎪⎨⎪−=⎪⎩,两式相减得()2222121209y y x x −−−=, 所以221222129AB y y k k x x −⋅==−. 对于选项A : 可得1,9AB k k ==,则:98AB y x =−,联立方程229819y x y x =−⎧⎪⎨−=⎪⎩,消去y 得272272730x x −⨯+=,此时()2272472732880∆=−⨯−⨯⨯=−<, 所以直线AB 与双曲线没有交点,故A 错误; 对于选项B :可得92,2AB k k =−=−,则95:22AB y x =−−, 联立方程22952219y x y x ⎧=−−⎪⎪⎨⎪−=⎪⎩,消去y 得245245610x x +⨯+=, 此时()224544561445160∆=⨯−⨯⨯=−⨯⨯<, 所以直线AB 与双曲线没有交点,故B 错误; 对于选项C :可得3,3AB k k ==,则:3AB y x =由双曲线方程可得1,3a b ==,则:3AB y x =为双曲线的渐近线, 所以直线AB 与双曲线没有交点,故C 错误; 对于选项D :94,4AB k k ==,则97:44AB y x =−,联立方程22974419y x y x ⎧=−⎪⎪⎨⎪−=⎪⎩,消去y 得2631261930x x +−=, 此时21264631930∆=+⨯⨯>,故直线AB 与双曲线有交两个交点,故D 正确;(2023·全国乙卷·文·13·★)已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______. 答案:94解析:由题意可得:221p =⨯,则25p =,抛物线的方程为25y x =,准线方程为54x =−,点A 到C 的准线的距离为59144⎛⎫−−= ⎪⎝⎭.(2023·全国乙卷·文·14·★)若(0,)2πθ∈,1tan 3θ=,则sin cos θθ−=_____.答案: 解析:已知tan θ,可先求出sin θ和cos θ, 由题意,sin 1tan cos 3θθθ==,所以cos 3sin θθ=,代入22cos sin 1θθ+=可得210sin 1θ=, 又(0,)2πθ∈,所以sin θ=,cos θ=,故sin cos θθ−=(2023·全国乙卷·文·15·★★)若x ,y 满足约束条件312937x y x y x y −≤−⎧⎪+≤⎨⎪+≥⎩,则2z x y =−的最大值为______.答案:8解析:作出可行域如下图所示:z =2x −y ,移项得y =2x −z , 联立有3129x y x y −=−⎧⎨+=⎩,解得52x y =⎧⎨=⎩,设()5,2A ,显然平移直线2y x =使其经过点A ,此时截距−z 最小,则z 最大,代入得z =8,(2023·全国乙卷·文·16·★★★)已知点S ,A ,B ,C 均在半径为2的球面上,ABC ∆是边长为3的等边三角形,SA ⊥平面ABC ,则SA =_____. 答案:2解析:有线面垂直,且ABC ∆是等边三角形,属外接球的圆柱模型,核心方程是222()2hr R +=,如图,圆柱的高h SA =,底面半径r 即为ABC ∆的外接圆半径,所以233r ==, 由题意,球的半径2R =,因为222()2hr R +=,所以23()42h +=,解得:2h =,故2SA =.(2023·全国乙卷·文·17·★★★)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:记()1,2,,10i i i z x y i =−=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s . (1)求z ,s 2;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高) 答案:(1)11z =,261s =;(2)认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高. 解析:(1)545533551522575544541568596548552.310x +++++++++==,536527543530560533522550576536541.310y +++++++++==,552.3541.311z x y =−=−=,i i i z x y =− 的值分别为: 9,6,8,8,15,11,19,18,20,12−,故2222222222(911)(611)(811)(811)(1511)0(1911)(1811)(2011)(1211)6110s −+−+−+−−+−++−+−+−+−==(2)由(1)知:11z =,==z ≥ 所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.(2023·全国乙卷·文·18·★★★)记n S 为等差数列{}n a 的前n 项和,已知211a =,1040S =. (1)求{}n a 的通项公式; (2)求数列{}n a 的前n 项和n T .解:(1)(已知条件都容易代公式,故直接用公式翻译,求出1a 和d ) 设{}n a 的公差为d ,则2111a a d =+= ①, 101104540S a d =+= ②,联立①②解得:113a =,2d =−,所以1(1)13(1)(2)152n a a n d n n =+−=+−⨯−=−.(2)(通项含绝对值,要求和,先去绝对值,观察发现{}n a 前7项为正,从第8项起为负,故据此讨论) 当7n ≤时,0n a >,所以12n n T a a a =++⋅⋅⋅+ 2112()(13152)1422n n n a a n n a a a n n ++−=++⋅⋅⋅+===−; 当8n ≥时,12n n T a a a =++⋅⋅⋅+ 12789n a a a a a a =++⋅⋅⋅+−−−⋅⋅⋅− 127122()()n a a a a a a =++⋅⋅⋅+−++⋅⋅⋅+ 27(131)(13152)2149822n n n n ⨯++−=⨯−=−+; 综上所述,2214,71498,8n n n n T n n n ⎧−≤⎪=⎨−+≥⎪⎩.(2023·全国乙卷·文·19·★★★)如图,在三棱锥−P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==,,BP AP BC 的中点分别为,,D E O ,点F 在AC 上,BF AO ⊥.(1)求证:EF //平面ADO ;(2)若120POF ∠=︒,求三棱锥−P ABC 的体积.答案:(1)证明见解析 (2解析:(1)连接,DE OF ,设AF tAC =,则(1)BF BA AF t BA tBC =+=−+,12AO BA BC =−+,BF AO ⊥, 则2211[(1)]()(1)4(1)4022BF AO t BA tBC BA BC t BA tBC t t ⋅=−+⋅−+=−+=−+=, 解得12t =,则F 为AC 的中点,由,,,D E O F 分别为,,,PB PA BC AC 的中点,于是11//,,//,22DE AB DE AB OF AB OF AB ==,即,//DE OF DE OF =,则四边形ODEF 为平行四边形,//,EF DO EF DO =,又EF ⊄平面,ADO DO ⊂平面ADO ,所以//EF 平面ADO .(2)过P 作PM 垂直FO 的延长线交于点M , 因为,PB PC O =是BC 中点,所以PO BC ⊥,在Rt PBO △中,12PB BO BC ===2PO ===, 因为,//AB BC OF AB ⊥,所以OF BC ⊥,又PO OF O ⋂=,,PO OF ⊂平面POF , 所以BC⊥平面POF ,又PM ⊂平面POF ,所以BC PM ⊥,又BC FM O =,,BC FM ⊂平面ABC ,所以PM ⊥平面ABC ,即三棱锥−P ABC 的高为PM ,因为120POF ∠=︒,所以60POM ∠=︒,所以sin 6022PM PO =︒=⨯=,又11222ABC S AB BC =⋅=⨯⨯=△所以11333P ABC ABC V S PM −=⋅=⨯=△.(2023·全国乙卷·文·20·★)已知函数1()()ln(1)f x a x x=++.(1)当1a =−时,求曲线()y f x =在点(1,(1))f 处的切线方程; (2)若函数()f x 在(0,)+∞上单调递增,求a 的取值范围. 答案:(1)()ln 2ln 20x y +−=; (2)1|2a a ⎧⎫≥⎨⎬⎩⎭. 解析:(1)当1a =−时,()()()11ln 11f x x x x ⎛⎫=−+>−⎪⎝⎭, 则()()2111ln 111x f x x x x ⎛⎫'=−⨯++−⨯ ⎪+⎝⎭, 据此可得()()10,1ln 2f f '==−,所以函数在()()1,1f 处的切线方程为()0ln 21y x −=−−,即()ln 2ln 20x y +−=. (2)由函数的解析式可得()()()2111=ln 111f x x a x x x x ⎛⎫⎛⎫'−+++⨯>− ⎪ ⎪+⎝⎭⎝⎭, 满足题意时()0f x '≥在区间()0,∞+上恒成立. 令()2111ln 101x a x x x ⎛⎫⎛⎫−+++≥ ⎪ ⎪+⎝⎭⎝⎭,则()()()21ln 10x x x ax −++++≥, 令()()()2=1ln 1g x ax x x x +−++,原问题等价于()0g x ≥在区间()0,∞+上恒成立, 则()()2ln 1g x ax x '=−+,当0a ≤时,由于()20,ln 10ax x ≤+>,故()0g x '<,()g x 在区间()0,∞+上单调递减,此时()()00g x g <=,不合题意;令()()()2ln 1h x g x ax x '==−+,则()121h x a x −'=+, 当12a ≥,21a ≥时,由于111x <+,所以()()0,h x h x '>在区间()0,∞+上单调递增, 即()g x '在区间()0,∞+上单调递增,所以()()>00g x g ''=,()g x 在区间()0,∞+上单调递增,()()00g x g >=,满足题意. 当102a <<时,由()1201h x a x =−=+'可得1=12x a−, 当10,12x a ⎛⎫∈− ⎪⎝⎭时,()()0,h x h x '<在区间10,12a ⎛⎫− ⎪⎝⎭上单调递减,即()g x '单调递减,注意到()00g '=,故当10,12x a ⎛⎫∈− ⎪⎝⎭时,()()00g x g ''<=,()g x 单调递减, 由于()00g =,故当10,12x a ⎛⎫∈− ⎪⎝⎭时,()()00g x g <=,不合题意. 综上可知:实数a 得取值范围是1|2a a ⎧⎫≥⎨⎬⎩⎭.(2023·全国乙卷·文·21·★★★)已知椭圆2222:1(0)C b b x a a y +>>=,点()2,0A −在C 上.(1)求C 的方程; (2)过点()2,3−的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.答案:(1)22194y x += (2)证明见详解解析:(1)由题意可得22223b a b c c e a ⎧⎪=⎪⎪=+⎨⎪⎪==⎪⎩,解得32a b c ⎧=⎪=⎨⎪=⎩,所以椭圆方程为22194y x +=.(2)由题意可知:直线PQ 的斜率存在,设()()()1122:23,,,,PQ y k x P x y Q x y =++,联立方程()2223194y k x y x ⎧=++⎪⎨+=⎪⎩,消去y 得:()()()222498231630k x k k x k k +++++=,则()()()2222Δ64236449317280kk k k k k =+−++=−>,解得0k <,可得()()2121222163823,4949k k k k x x x x k k +++=−=++, 因为()2,0A −,则直线()11:22y AP y x x =++, 令0x =,解得1122y y x =+,即1120,2y M x ⎛⎫⎪+⎝⎭,同理可得2220,2y N x ⎛⎫ ⎪+⎝⎭,则()()1212121222232322222y y k x k x x x x x +++++⎡⎤⎡⎤++⎣⎦⎣⎦=+++()()()()()()12211223223222kx k x kx k x x x +++++++⎡⎤⎡⎤⎣⎦⎣⎦=++()()()()1212121224342324kx x k x x k x x x x +++++=+++()()()()()()222222323843234231084949336163162344949k k k k k k k k k k k k k k k +++−++++===++−+++,所以线段PQ 的中点是定点()0,3.【选修4-4】(10分)(2023·全国乙卷·文·22·★★★)在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2sin 42ππρθθ⎛⎫=≤≤ ⎪⎝⎭,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围. 答案:(1)()[][]2211,0,1,1,2x y x y +−=∈∈ (2)()(),022,−∞+∞解析:(1)因为2sin ρθ=,即22sin ρρθ=,可得222x y y +=, 整理得()2211x y +−=,表示以()0,1为圆心,半径为1的圆,又因为2cos 2sin cos sin 2,sin 2sin 1cos 2x y ======−ρθθθθρθθθ, 且ππ42θ≤≤,则π2π2≤≤θ,则[][]sin 20,1,1cos 21,2x y =∈=−∈θθ, 故()[][]221:11,0,1,1,2C x y x y +−=∈∈.(2)因为22cos :2sin x C y αα=⎧⎨=⎩(α为参数,ππ2α<<),整理得224x y +=,表示圆心为()0,0O ,半径为2,且位于第二象限的圆弧, 如图所示,若直线y x m =+过()1,1,则11m =+,解得0m =;若直线y x m =+,即0x y m −+=与2C相切,则20m =>⎩,解得m =,若直线y x m =+与12,C C均没有公共点,则m >或0m <, 即实数m 的取值范围()(),022,−∞+∞.【选修4-5】(10分)(2023·全国乙卷·文·23·★★)已知()22f x x x =+− (1)求不等式()6x f x ≤−的解集;(2)在直角坐标系xOy 中,求不等式组()60f x yx y ⎧≤⎨+−≤⎩所确定的平面区域的面积.答案:(1)[2,2]−; (2)8.解析:(1)依题意,32,2()2,0232,0x x f x x x x x −>⎧⎪=+≤≤⎨⎪−+<⎩,不等式()6f x x ≤−化为:2326x x x >⎧⎨−≤−⎩或0226x x x ≤≤⎧⎨+≤−⎩或0326x x x <⎧⎨−+≤−⎩,解2326x x x >⎧⎨−≤−⎩,得无解;解0226x x x ≤≤⎧⎨+≤−⎩,得02x ≤≤,解0326x x x <⎧⎨−+≤−⎩,得20x −≤<,因此22x −≤≤,所以原不等式的解集为:[2,2]−(2)作出不等式组()60f x yx y ≤⎧⎨+−≤⎩表示的平面区域,如图中阴影ABC ,由326y xx y=−+⎧⎨+=⎩,解得(2,8)A−,由26y xx y=+⎧⎨+=⎩, 解得(2,4)C,又(0,2),(0,6)B D,所以ABC的面积11|||62||2(2)|822ABC C AS BD x x=⨯−=−⨯−−=.。
2023年全国统一高考数学试卷(文科)(甲卷)
2023年全国统一高考数学试卷(文科)(甲卷)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(★)(5分)过点(1,2)且在两坐标轴上截距互为相反数的直线条数为( )A.1 B.2C.3 D.42.(★★)(5分)已知m,n是两条不重合的直线,α,β是不重合的平面,下面四个命题中正确的是( )A.若m⊂α,n∥α,则m∥nB.若m⊥n,m⊥β,则n∥βC.若α∩β=n,m∥n,则m∥α且m∥βD.若m⊥α,m⊥β,则α∥β3.(★)(5分)已知双曲线方程为=1,则其渐近线方程为( )A.y=B.y=±C.y=±D.y=±4.(★★)(5分)点A,B的坐标分别是(-1,0),(1,0),直线AM与BM相交于点M,且直线AM与BM的斜率的商是λ(λ≠1),则点M的轨迹是( )A.直线B.圆C.椭圆D.抛物线5.(★★)(5分)下列命题中的假命题是( )A.对于命题,,则¬p:∀∈R,x2+x>0B.“x=3”是“x2-3x=0”的充分不必要条件C.若命题p∨q为真命题,则p,q都是真命题D.命题“若x2-3x+2>0,则x>2”的逆否命题为:“若x≤2,则x2-3x+2≤0”6.(★)(5分)已知某几何体是由一个侧棱长为6的三棱柱沿着一条棱切去一块后所得,其三视图如图所示,侧视图是一个等边三角形,则切去部分的体积等于( )A.4B.8C.12D.207.(★★)(5分)直线2ax+(a2+1)y-1=0(a>0)的倾斜角的取值范围是( )A.[-) B.(0,] C.(] D.[)8.(★★★)(5分)已知圆C:x2+y2-8x+15=0,直线y=kx+2上至少存在一点P,使得以P为圆心,1为半径的圆与圆C有公共点,则k的取值范围是( )A.B.C D.9.(★★)(5分)平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,则直线m与直线BC所成角的正弦值为( )A.B.C.1 D.10.(★★)(5分)已知在平行六面体ABCD-A′B′C′D′中,AB=3,AD=4,AA′=5,∠BAD=120°,∠BAA′=60°,∠DAA′=90°,则AC′的长为( )A.B.C.D.11.(★★)(5分)已知双曲线=1(a>0,b>0),过其右焦点F作x轴的垂线交双曲线于A、B两点,若双曲线的左顶点C满足•≥0,则双曲线离心率的最大值是( ) A.B.2C.D.312.(★★★)(5分)如图,在四棱锥P-ABCD中,侧面PAD是边长为4的正三角形底面ABCD为正方形侧面PAD⊥底面ABCD,M为平面ABCD上的动点,且满足=0,则点M到直线AB的最远距离为( )A.2B.3+C.4+D.4+2二、填空题:本题共4小题,每题5分,共20分13.(★)(5分)已知椭圆=1的左右焦点分别为F1,F2,过右焦点F2的直线AB与椭圆交于A,B两点,则△ABF1的周长为16.14.(★★)(5分)在三棱锥A-BCD中,AB⊥平面ACD,∠CAD=90°,AB=2,AC=3,AD=4,则三棱锥A-BCD的外接球的表面积为29π.15.(★★)(5分)已知实数x,y满足不等式组,则+1的最大值为6.16.(★★★)(5分)给出下列命题,其中所有正确命题的序号是③④.①抛物线y2=8x的准线方程为y=2;②过点M(2,4)作与抛物线y2=8x只有一个公共点的直线l仅有1条;③P是抛物线y2=8x上一动点,以P为圆心作与抛物线准线相切的圆,则此圆一定过定点Q(2,0).④抛物线y2=8x上到直线x-y+3=0距离最短的点的坐标为M(2,4).三、解答题:本题共6小题,共70分,解答应写出文字说明证明过程或演算步骤17.(★)(10分)已知命题p:=1表示椭圆,命题:q:∃x∈R,mx2+2mx+2m-1≤0.(1)若命题q为真,求实数m的取值范围;(2)若p∨q为真,¬p为真,求实数m的取值范围.18.(★★)(12分)已知平行四边形ABCD的三个顶点的坐标为A(-1,4),B(-2,-1),C(2,3).(1)在△ABC中求边AC的高线所在直线的一般方程;(2)求平行四边形ABCD的对角线BD的长度;(3)求平行四边形ABCD的面积.19.(★★★)(12分)如图,已知在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(1)试在棱CD上确定一点M,使平面BEM∥平面PAD,说明理由.(2)若F为棱PC上一点,满足BF⊥AC,求二面角F-AB-C的余弦值.20.(★★)(12分)为了落实国家“精准扶贫”的各项政策,帮助广大人民群众实现共同富裕的目标,各地政府结合当地实际情况展开了一系列的帮扶活动,某村在当地政府的支持指导下,计划种植A,B两种蔬菜.已知A,B的种植成本分别为每亩3000元和5000元,每亩的预期产量分别为3000千克和3500千克,该村目前可利用的空地为40亩,可利用的资金为150000元,A,B两种蔬菜的市场利润分别为3元/千克和4元/千克.假设计划种植A种蔬菜x亩,B种蔬菜y亩,请你设计一个最佳的种植方案帮助该村实现利润z最大,并求出最大利润.21.(★★)(12分)已知圆O:x2+y2=4,直线l:y=kx+4.(1)若直线l与圆O交于不同的两点A,B,当|AB|=2时,求实数k的值;(2)若k=1,P是直线上的动点,过P作圆O的两条切线PC、PD,切点分别为C、D,试探究:直线CD是否过定点.若存在,请求出定点的坐标;若不存在,请说明理由.22.(★★★)(12分)已知椭圆C:=1,直线l:y=kx+1,若椭圆C上存在两个不同的点P,Q关于l对称,设PQ的中点为M.(1)证明:点M在某定直线上;(2)求△OPM面积的取值范围.。
高考全国甲卷:《文科数学》2022年考试真题与答案解析
高考精品文档高考全国甲卷文科数学·2022年考试真题与答案解析同卷地区贵州省、四川省、云南省西藏自治区、广西自治区高考全国甲卷:《文科数学》2022年考试真题与答案解析一、选择题本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合5{2,1,0,1,2},02A B x x ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B =( ) A.{}0,1,2 B.{2,1,0}-- C.{0,1} D.{1,2} 答案:A2.某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图,则( )A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差 答案:B3.若1i z =+.则|i 3|z z +=( ) A.B.C.D.答案:D4.如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为( )A.8B.12C.16D.20 答案:B5.将函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭的图像向左平移π2个单位长度后得到曲线C ,若C 关于y轴对称,则ω的最小值是( )A.16B.14C.13D.12 答案:C6.从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为( )A.15B.13C.25D.23答案:C7.函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为( )A.B.C.D.答案:A8.当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=( ) A.1-B.12-C.12 D.1 答案:B9.在长方体1111ABCD A B C D -中,已知1B D 与平面ABCD 和平面11AA B B 所成的角均为30°,则( ) A.2AB AD =B.AB 与平面11AB C D 所成的角为30°C.1AC CB =D.1B D 与平面11BB C C 所成的角为45︒ 答案:D10.甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=V V 甲乙( )B.答案:C11.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点。
2023年全国乙卷文科高考数学试题+答案解析
绝密★启用前2023年普通高等学校招生全国统一考试(全国乙卷∙文科)数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.2+i 2+2i 3 =()A.1B.2C.5D.5【答案】C【解析】∵2+i 2+2i 3=2-2i -1=1-2i ,∴|2+i 2+2i 3|=1-2i =12+(-2)2=5,选C 。
2.设全集U ={0,1,2,4,6,8},集合M ={0,4,6},N ={0,1,6},则M ⋃C U N =()A.{0,2,4,6,8} B.{0,1,4,6,8}C.{1,2,4,6,8}D.U【答案】A【解析】∵N ={2,4,8},∴M ⋃C U N ={0,2,4,6,8},选A.3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A.24B.26C.28D.30【答案】D【解析】如图所示,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2, AA 1=3,点H ,I ,J ,K 为所在棱上靠近点B 1,C 1,D 1,A 1的三等分点,O ,L ,M ,N 为所在棱的中点,则三视图所对应的几何体为长方体ABCD -A 1B 1C 1D 1去掉长方体ONIC 1-LMHB 1之后所得的几何体,该几何体表面积为:2×(2×2)+4×(2×3)-2×(1×1)=30,选D 。
4.在△BC 中,内角A,B,C 的对边分别是a,b,c,若acosB -bcosA =c,且C =π5,则∠B =()A.π10B.π5C.3π10D.2π5【答案】C【解析】∵sinAcosB -sinBcosA =sinC,即sinAcosB -sinBcosA =sin (A +B )=sinAcosBsinBcosA,∴sinBcosA =0,∵B ∈(0,π),∴sinB >0,∴cosA =0,A =π2,∴B =π-A -C =3π10,选C 。
新高考数学试卷文科
一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知函数f(x) = x^3 - 3x,则f'(1)的值为()A. 0B. 1C. -1D. -32. 在△ABC中,角A、B、C的对边分别为a、b、c,若a=5,b=7,且sinA=sinB,则△ABC的面积为()A. 14B. 21C. 35D. 493. 已知等差数列{an}的公差为d,若a1=2,a5=12,则d的值为()A. 2B. 3C. 4D. 54. 下列函数中,在定义域内为奇函数的是()A. f(x) = x^2B. f(x) = x^3C. f(x) = |x|D. f(x) = e^x5. 若复数z满足|z-1|=|z+1|,则z在复平面上的几何位置是()A. 实轴上B. 虚轴上C. 第一象限D. 第二象限6. 已知数列{an}的前n项和为Sn,若a1=3,an+1-an=2n,则S5的值为()A. 25B. 30C. 35D. 407. 已知等比数列{bn}的公比为q,若b1=2,b4=16,则q的值为()A. 1B. 2C. 4D. 88. 若函数f(x) = x^2 + kx + 1在x=2时取得极小值,则k的值为()A. -2B. -1C. 0D. 19. 在平面直角坐标系中,若点P(2,3)关于直线y=x的对称点为P',则P'的坐标为()A. (2,3)B. (3,2)C. (3,-2)D. (-2,3)10. 已知函数f(x) = log2(x+1),则f(x)的单调递增区间是()A. (-1, +∞)B. [0, +∞)C. (-∞, -1)D. (-1, 0)二、填空题(本大题共5小题,每小题5分,共25分。
把答案填写在题目的横线上。
)11. 已知函数f(x) = (x-1)^2 + 2,则f(x)的最小值为______。
12. 若等差数列{an}的公差为d,且a1=1,a5=13,则d=______。
全国高考文科全国卷数学试题及答案
年普通高等学校招生全国统一考试文科数学卷3注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上;2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;回答非选择题时,将答案写在答题卡上;写在本试卷上无效;3.考试结束后,将本试卷和答题卡一并交回;一、选择题:本大题共12小题,每小题5分,共60分;在每小题给出的四个选项中,只有一项是符合题目要求的;1.已知集合A={1,2,3,4},B={2,4,6,8},则A B中元素的个数为A.1 B.2 C.3 D.42.复平面内表示复数(2)=-+的点位于z i iA.第一象限B.第二象限C.第三象限D.第四象限3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量单位:万人的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.已知4sin cos 3αα-=,则sin 2α=A .79- B .29- C . 29D .795.设,x y 满足约束条件326000x y x y +-≤⎧⎪≥⎨⎪≥⎩,则z x y =-的取值范围是A .-3,0B .-3,2C .0,2D .0,36.函数1()sin()cos()536f x x x ππ=++-的最大值为A .65B .1C .35D .157.函数2sin 1xy x x=++的部分图像大致为 A . B .C .D .8.执行右面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为 A .5 B .4 C .3 D .29.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .π B .34π C .2πD .4π10.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥11.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为12,A A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .63B .33C .23D .1312.已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a =A .12-B .13C .12D .1二、填空题:本题共4小题,每小题5分,共20分; 13.已知向量(2,3),(3,)a b m =-=,且a b ⊥,则m = .14.双曲线2221(0)9x y a a -=>的一条渐近线方程为35y x =,则a = .15.ABC ∆的内角,,A B C 的对边分别为,,a b c ;已知60,3C b c ===,则A =_________;16.设函数1,0,()2,0,x x x f x x +≤⎧=⎨>⎩ 则满足1()()12f x f x +->的x 的取值范围是__________;三、解答题:共70分;解答应写出文字说明、证明过程或演算步骤;第17~21题为必考题,每个试题考生都必须作答;第22、23题为选考题,考生根据要求作答; 一必考题:共60分; 17.12分设数列{}n a 满足123(21)2n a a n a n +++-=.1求{}n a 的通项公式; 2求数列{}21na n +的前n 项和. 18.12分某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温单位:℃有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:10,1515,2020,2525,3030,3535,40最高气温天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率;1求六月份这种酸奶一天的需求量不超过300瓶的概率;2设六月份一天销售这种酸奶的利润为Y单位:元,当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.19.12分如图,四面体ABCD中,△ABC是正三角形,AD=CD.1证明:AC⊥BD;2已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.20.12分在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为0,1.当m 变化时,解答下列问题:1能否出现AC ⊥BC 的情况说明理由;2证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 21.12分已知函数()2(1)ln 2x ax a x f x =+++. 1讨论()f x 的单调性; 2当0a <时,证明3()24f x a≤--. 二选考题:共10分;请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分;22.选修4―4:坐标系与参数方程10分在直角坐标系xOy 中,直线1l 的参数方程为2,x t y kt =+⎧⎨=⎩t 为参数,直线2l 的参数方程为2,x m my k =-+⎧⎪⎨=⎪⎩m 为参数,设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线C .1写出C 的普通方程:2以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设3l:(cos sin )0ρθθ+-=,M 为3l 与C 的交点,求M 的极径.23.选修4—5:不等式选讲10分已知函数()||||f x x x =+1--2.1求不等式()f x ≥1的解集;2若不等式()f x x x m 2≥-+的解集非空,求m 的取值范围.年普通高等学校招生全国统一考试文科数学参考答案一、选择题1.B 2.C 3.A 4.A 5.B 6.A 7.D 8.D 9.B 10.C 11.A 12.C 二、填空题13.2 14.5 15.75° 16.1(,)4-+∞三、解答题 17.解: 1因为123(21)2n a a n a n +++-=,故当2n ≥时, 1213(23)2(1)n a a n a n -+++-=-两式相减得(21)2n n a -= 所以2(2)21n a n n =≥- 又由题设可得12a = 从而{}n a 的通项公式为221n a n =- 2记{}21na n +的前n 项和为n S 由1知21121(21)(21)2121n a n n n n n ==-++--+ 则1111112 (1335212121)n nS n n n =-+-++-=-++ 18.解:1这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为216360.690++=,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为2当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则64504450900Y =⨯-⨯=;若最高气温位于区间20,25,则63002(450300)4450300Y =⨯+--⨯=;若最高气温低于20,则62002(450200)4450100Y =⨯+--⨯=-所以,Y 的所有可能值为900,300,-100Y 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为3625740.890+++=,因此Y 大于零的概率的估计值为 19.解:1取AC 的中点O ,连结,DO BO ,因为AD CD =,所以AC DO ⊥又由于ABC ∆是正三角形,故BO AC ⊥从而AC ⊥平面DOB ,故AC BD ⊥2连结EO由1及题设知90ADC ∠=,所以DO AO = 在Rt AOB ∆中,222BO AO AB += 又AB BD =,所以ODABCE222222BO DO BO AO AB BD +=+==,故90DOB ∠=由题设知AEC ∆为直角三角形,所以12EO AC =又ABC ∆是正三角形,且AB BD =,所以12EO BD =故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1:120.解:1不能出现AC BC ⊥的情况,理由如下:设12(,0),(,0)A x B x ,则12,x x 满足220x mx +-=,所以122x x =- 又C 的坐标为0,1,故AC 的斜率与BC 的斜率之积为121112x x --⋅=-,所以不能出现AC BC ⊥的情况 2BC 的中点坐标为21(,)22x ,可得BC 的中垂线方程为221()22x y x x -=- 由1可得12x x m +=-,所以AB 的中垂线方程为2mx =-联立22,21()22m x x y x x ⎧=-⎪⎪⎨⎪-=-⎪⎩又22220x mx +-=,可得,212m x y ⎧=-⎪⎪⎨⎪=-⎪⎩所以过A,B,C 三点的圆的圆心坐标为1(,)22m --,半径2r =故圆在y轴上截得的弦长为3=,即过A,B,C 三点的圆在y 轴上截得的弦长为定值; 21.解:1fx 的定义域为(0,)+∞,1(1)(21)()221x ax f x ax a xx++'=+++=若0a ≥,则当(0,)x ∈+∞时,()0f x '>,故()f x 在(0,)+∞单调递增若0a <,则当1(0,)2x a ∈-时,()0f x '>;当1(,)2x a∈-+∞时,()0f x '< 故()f x 在1(0,)2a -单调递增,在1(,)2a-+∞单调递减; 2由1知,当0a <时,()f x 在12x a=-取得最大值,最大值为 111()ln()1224f a a a-=--- 所以3()24f x a ≤--等价于113ln()12244a a a---≤--,即11ln()1022a a-++≤ 设()ln 1g x x x =-+,则1()1g x x '=- 当(0,1)x ∈时,()0g x '>;当(1,)x ∈+∞,()0g x '<; 所以()g x 在0,1单调递增,在(1,)+∞单调递减; 故当1x =时,()g x 取得最大值,最大值为(1)0g = 所以当0x >时,()0g x ≤从而当0a <时,11ln()1022a a -++≤,即3()24f x a≤-- 22.解: 1消去参数t 得1l 的普通方程1:(2)l y k x =-;消去参数m t 得2l 的普通方程21:(2)l y x k=+ 设(,)P x y ,由题设得(2),1(2).y k x y x k =-⎧⎪⎨=+⎪⎩消去k 得224(0)x y y -=≠ 所以C 的普通方程为224(0)x y y -=≠2C 的极坐标方程为222(cos sin )4(22,)ρθθθπθπ-=<<≠联立222(cos sin )4,(cos sin )0ρθθρθθ⎧-=⎪⎨+=⎪⎩得cos sin 2(cos sin )θθθθ-=+ 故1tan 3θ=-,从而2291cos ,sin 1010θθ== 代入222(cos sin )4ρθθ-=得25ρ=,所以交点M23.解:13,1,()21,12,3,2x f x x x x -<-⎧⎪=--≤≤⎨⎪>⎩当1x <-时,()1f x ≥无解;当12x -≤≤时,由()1f x ≥得,211x -≥,解得12x ≤≤; 当2x >时,由()1f x ≥解得2x >所以()1f x ≥的解集为{|1}x x ≥2由2()f x x x m ≥-+得2|1||2|m x x x x ≤+---+,而 22|1||2|||1||2||x x x x x x x x +---+≤++--+235(||)24x =--+5 4≤且当32x=时,25|1||2|4x x x x+---+=故m的取值范围为5 (,]4 -∞。
2023年高考数学(四川卷)(文科)(word版+答案)全解析
2023年普通高等学校招生全国统一考试(四川)数 学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3到8页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己地姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出解析后,用铅笔把答题卡上对应题目地解析标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它解析标号。
不能答在试卷卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出地四个选项中,只有一项是符合题目要求地。
参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24RS π=如果事件A 、B 相互独立,那么 其中R 表示球地半径)()()(B P A P B A P ⋅=⋅ 球地体积公式如果事件A 在一次试验中发生地概率是P,那么334R V π=n 次独立重复试验中恰好发生k 次地概率 其中R 表示球地半径kn k kn n P P C k P --=)1()(一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出地四个选项中,只有一项是符合题目要求地。
1、设集合U={1,2,3,4,5},A={1,2,3},B={2,3,4} ,则C U (A ∩B )=(A ){2,3} (B ) {1,4,5} (C ){4,5} (D ){1,5}2、函数1ln(21),()2y x x =+>-地反函数是(A )11()2x y e x R =- ∈ (B )21()x y e x R =- ∈ (C ) 1(1()2xy e x R =- ) ∈ (D )21()xy e x R =- ∈3、 设平面向量(3,5(2,1)a b = ) ,=- ,则2a b -=(A )(7,3) (B )(7,7) (C )(1,7) (D )(1,3)4、(tanx+cotx)cos 2x=(A )tanx (B )sinx (C )cosx (D )cotx 5、不等式2||2x x -<地解集为(A )(-1,2) (B )(-1,1) (C )(-2,1) (D )(-2,2)6、将直线3y x =绕原点逆时针旋转90°,再向右平移1个单位,所得到地直线为(A )1133y x =-+ (B )113y x =-+ (C )33y x =- (D )31y x =+7、△ABC 地三个内角A 、B 、C 地对边边长分别是a b c 、、 ,若a =,A=2B,则cosB=(A ) (B (C (D学校 班级 姓名 考号/密///////////封/////////////线/////////////内/////////////不/////////////要/////////////答/////////////题///////8、设M 是球O 地半径OP 地中点,分别过M 、O 作垂直于OP 地平面,截球面得到两个圆,则这两个圆地面积比值为(A )14(B )12(C )23(D )349、定义在R 上地函数()f x 满足:()(2)13,(1)2,f x f x f ∙+==则(99)f =(A )13 (B ) 2 (C )132(D )21310、设直线l α⊂平面,过平面α外一点A 且与l 、α都成30°角地直线有且只有(A )1条 (B )2条 (C )3条 (D )4条11、已知双曲线22:1916x y C -=地左右焦点分别为F 1、F 2 ,P 为C 地右支上一点,且||||212PF F F =,则△PF 1F 2 地面积等于(A )24 (B )36 (C )48 (D )9612、若三棱柱地一个侧面是边长为2地正方形,另外两个侧面都是有一个内角为60°地菱形,则该棱柱地体积为(A(B) (C)(D)第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分。
学科网高考文科数学试卷
考试时间:120分钟满分:150分一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 若复数 \( z = a + bi \)(其中 \( a, b \in \mathbb{R} \))的模为1,则\( |z|^2 \) 等于:A. \( a^2 + b^2 \)B. \( a^2 - b^2 \)C. \( a^2 - b \)D. \( ab \)2. 函数 \( f(x) = \frac{x^2 - 3x + 2}{x - 2} \) 的定义域为:A. \( \mathbb{R} \setminus \{2\} \)B. \( \mathbb{R} \)C. \( \mathbb{R} \setminus \{0\} \)D. \( \mathbb{R} \setminus \{-2\} \)3. 若 \( \log_2 x = 3 \),则 \( x \) 等于:A. 8B. 4C. 2D. 14. 已知等差数列 \( \{a_n\} \) 的前n项和为 \( S_n = 3n^2 + 2n \),则该数列的首项 \( a_1 \) 等于:A. 5B. 4C. 3D. 25. 下列命题中,正确的是:A. 若 \( a > b \),则 \( a^2 > b^2 \)B. 若 \( a > b \),则 \( \sqrt{a} > \sqrt{b} \)C. 若 \( a > b \),则 \( \frac{1}{a} < \frac{1}{b} \)D. 若 \( a > b \),则 \( \log_a b > 0 \)6. 下列函数中,是奇函数的是:A. \( f(x) = x^2 \)B. \( f(x) = |x| \)C. \( f(x) = x^3 \)D. \( f(x) = \sqrt{x} \)7. 已知向量 \( \vec{a} = (2, -3) \),\( \vec{b} = (1, 2) \),则\( \vec{a} \cdot \vec{b} \) 等于:A. 1B. -1C. 3D. -38. 下列函数中,在区间 \( (0, +\infty) \) 上是单调递减的是:A. \( f(x) = x^2 \)B. \( f(x) = \frac{1}{x} \)C. \( f(x) = e^x \)D. \( f(x) = \ln x \)9. 下列不等式中,正确的是:A. \( x^2 - 4 < 0 \) 的解集为 \( x \in (-2, 2) \)B. \( \sqrt{x^2} > 0 \) 的解集为 \( x \in (-\infty, 0) \cup (0,+\infty) \)C. \( |x| > 2 \) 的解集为 \( x \in (-\infty, -2) \cup (2, +\infty) \)D. \( x^2 + 1 > 0 \) 的解集为 \( x \in \mathbb{R} \)10. 下列数列中,是等比数列的是:A. \( \{1, 2, 4, 8, \ldots\} \)B. \( \{2, 4, 8, 16, \ldots\} \)C. \( \{1, 3, 5, 7, \ldots\} \)D. \( \{2, 4, 6, 8, \ldots\} \)二、填空题(本大题共5小题,每小题10分,共50分。
2024全国高考甲卷文科数学试题及答案
2024 年普通高等学校招生全国统一考试全国甲卷文科数学使用范围: 陕西、宁夏、青海、内蒙古、四川注意事项:1.答题前, 务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时, 必须使用2B铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦擦干净后, 再选涂其它答案标号.3.答非选择题时, 必须使用 0.5 毫米黑色签字笔, 将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答, 在试题卷上答题无效.5.考试结束后, 只将答题卡交回.一、选择题: 本题共 12 小题, 每小题 5 分, 共 60 分. 在每小题给出的四个选项中, 只有一项是符合题目要求的.1.集合A={1,2,3,4,5,9},B={x∣x+1∈A}, 则A∩B=( )(A) {1,2,3,4}(B) {1,2,3,4}(C) {1,2,3,4}(D) {1,2,3,4}【参考答案】A【详细解析】因为A={1,2,3,4,5,9},B={x∣x+1∈A}={0,1,2,3,4,8}, 所以A∩B= {1,2,3,4}, 故选(A).2. 设z=√2i, 则z⋅z‾=( )(A) 2(B) 2(C) 2(D) 2【参考答案】D【详细解析】因为z=√2i, 所以z⋅z‾=2, 故选(D).3.若实数x,y满足约束条件(略), 则z=x−5y的最小值为 ( )(A)5(B) 12(C) -2(D) −72【参考答案】D【详细解析】将约束条件两两联立可得 3 个交点: (0,−1)、(32,1)和(3,12), 经检验都符合约束条件. 代入目标函数可得: z min=−72, 故选(D).4.等差数列{a n}的前n项和为S n, 若S9=1,a3+a7=( )(A) -2(B) 73(C) 1(D) 29【参考答案】D【详细解析】令d=0, 则S9=9a n=1,a n=19,a3+a7=29, 故选(D).5.甲、乙、丙、丁四人排成一列, 丙不在排头, 且甲或乙在排尾的概率是( )(A) 14(B) 13(C) 12(D) 23【详细解析】甲、乙、丙、丁四人排成一列共有 24 种可能. 丙不在排头, 且甲或乙在排尾的共有 8 种可能, P=824=13, 故选(B).6. 已知双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1(0, 4)、F2(0,−4), 且经过点P(−6,4), 则双曲线C的离心率是( ) (A) 135(B) 137(C) 2(D) 3【参考答案】C【详细解析】e=c=|F1F2|a=2, 故选(C).7.曲线f(x)=x6+3x在(0,−1)处的切线与坐标轴围成的面积为 ((A) 1(B)3 2(C) 12(D) √3 2【参考答案】A【详细解析】因为y′=6x5+3, 所以k=3,y=3x−1,S=12×13×1=16, 故选(A).8.函数f(x)=−x2+(e x−e−x)sin x的大致图像为 ( ) 【参考答案】B【详细解析】选(B).9.已知cos αcos α−sin α=13, 则tan (α+π4)=( )(A) 3(B) 2√3−1(C) -3(D) 13【参考答案】B【详细解析】因为cos αcos α−sin α=√3, 所以tan α=1−√33,tan (α+π4)=tan α+11−tan α=2√3−1, 故选(B).10.直线过圆心, 直径【参考答案】直径【详细解析】直线过圆心, 直径.11.已知已知m、n是两条不同的直线,α、β是两个不同的平面: (1)若m⊥α,n⊥α, 则m//n; (2)若α∩β=m,m//n, 则n//β; (3)若m//α,n//α,m与n可能异面, 也可能相交, 也可能平行; (4)若α∩β=m,n与α和β所成的角相等, 则m⊥n, 以上命题是真命题的是( )(A)(1)(3)(B)(2)(3)(C)(1)(2)(3)(D)(1)(3)(4)【参考答案】A【详细解析】选(A).12.在△ABC中, 内角A,B,C所对边分别为a,b,c, 若B=π3, b2=94ac, 则sin A+sin C=( )(A)23913(B) √3913 (C) 72(D)3√1313【参考答案】C【详细解析】因为 B =π3,b 2=94ac , 所以 sin A sin C =49sin 2 B =13. 由余弦定理可得: b 2=a 2+c 2 −ac =94ac , 即: a 2+c 2=134ac,sin 2 A +sin 2 C =134sin A sin C =1312, 所以 (sin A +sin C)2=sin 2A +sin 2C +2sin A sin C =74,sin A +sin C =√72, 故选(C).二、填空题: 本题共 4 小题, 每小题 5 分, 共 20 分.13.略14. 函数 f(x)=sin x −√3cos x 在 [0,π] 上的最大值是【参考答案】2【详细解析】 f(x)=sin x −√3cos x =2sin (x −π3)⩽2, 当且仅当 x =5π6时取等号. 15. 已知 a >1,1log8a−1log a4=−52, 则 a = . 【参考答案】 64【详细解析】因为 1log8a−1loga4=3log 2a−12log 2 a =−52, 所以 (log 2 a +1)(log 2 a −6)=0, 而 a >1,故 log 2 a =6,a =64.16. 曲线 y =x 3−3x 与 y =−(x −1)2+a 在 (0,+∞) 上有两个不同的交点, 则 a 的取值范围为 .【参考答案】 (−2,1)【详细解析】令 x 3−3x =−(x −1)2+a , 则 a =x 3−3x +(x −1)2, 设 φ(x)=x 3−3x +(x −1)2,φ′(x) =(3x +5)(x −1),φ(x) 在 (1,+∞) 上递增, 在 (0,1) 上递减. 因为曲线 y =x 3−3x 与 y =−(x −1)2+a 在 (0,+∞) 上有两个不同的交点, φ(0)=1,φ(1)=−2, 所以 a 的取值范围为 (−2, 1).三、解答题:共 70 分. 解答应写出文字说明, 证明过程或演算步骤. 第 17 题 第 21 题为必考题, 每个考题考生必须作答. 第 22、23 题为选考题, 考生根据要求作答.(一)必考题: 共 60 分.17.(12 分)已知等比数列 {a n } 的前 n 项和为 S n , 且 2S n =3a n+1−3. (1)求 {a n } 的通项公式; (2)求数列 {S n } 的通项公式. 【参考答案】见解析.【详细解析】(1)因为 2S n =3a n+1−3, 所以 2S n+1=3a n+2−3, 两式相减可得: 2a n+1=3a n+2− 3a n+1, 即: 3a n+2=5a n+1, 所以等比数列 {a n } 的公比 q =53, 又因为 2S 1=3a 2−3=5a 1−3, 所以 a 1=1,a n =(53)n−1;(2) 因为 2S n =3a n+1−3, 所以 S n =32(a n+1−1)=32[(53)n−1].18.(12 分)题干略. 【详细解析】(1) χ2=150(70×24−26×30)296×54×50×100<6.635, 没有 99% 的把握;(2) p ‾>p +1.65√p(1−p)150, 故有优化提升. 19.(12 分)如图, 已知 AB//CD,CD//EF,AB =DE =EF =CF =2, CD =4,AD =BC =√10,AE =2√3,M 为 CD 的中点. (1)证明: EM// 平面 BCF ; (2)求点 M 到 ADE 的距离.【参考答案】见解析【详细解析】(1)由题意: EF//CM,EF =CM , 而 CF 平面 ADO,EM ⊈ 平面 ADO , 所以 EM //平面BCF;(2)取DM的中点O, 连结OA,OE, 则OA⊥DM,OE⊥DM,OA=3,OE=√3, 而AE=2√3,故OA⊥OE,S△AOE=2√33. 因为DE=2,AD=√10, 所以AD⊥DE,S△AOE=√10.DM设点M到平面ADE的距离为ℎ, 所以V M−ADE=13S△ADE⋅ℎ=13S△AOE⋅DM,ℎ=4√3√10=2√305, 故点M到ADE的距离为2√30 5.20.(12 分) 已知函数f(x)=a(x−1)−ln x+1.(1)求f(x)的单调区间; ◻(2)若a⩽2时, 证明: 当x>1时, f(x)<e x−1恒成立. 【参考答案】见解析若a⩽0,f′(x)<0,f(x)的减区间为(0,+∞), 无增区间;若a>0时, 当0<x<1a 时, f′(x)<0, 当x>1a时, f′(x)>0, 所以f(x)的减区间为(0,1a ), 增区间为(1a,+∞);(2)因为a⩽2, 所以当x>1时, e x−1−f(x)=e x−1−a(x−1)+ln x−1⩾e x−1−2x+ ln x+1. 令g(x)=e x−1−2x+ln x+1, 则g′(x)=e x−1−2+1x. 令ℎ(x)=g′(x), 则ℎ′(x)=e x−1−1x2在(1,+∞)上递增, ℎ′(x)>ℎ′(1)=0, 所以ℎ(x)=g′(x)在(1,+∞)上递增, g′(x)>g′(1)=0, 故g(x)在(1,+∞)上递增, g(x)>g(1)=0, 即: 当x>1时, f(x)< e x−1恒成立.21.(12 分) 已知粗圆C:x2a2+y2b2=1(a>b>0)的右焦点为F, 点M(1, 32在椭圆C上, 且MF⊥x轴.(1)求椭圆C的方程;(2) P(4,0), 过P的直线与椭圆C交于A,B两点, N为FP的中点, 直线NB与MF交于Q,证明: AQ⊥y轴.【参考答案】见解析【详细解析】(1)设椭圆C的左焦点为F1, 则|F1F|=2,|MF|=32. 因为MF⊥x轴, 所以∣MF1=52,2a=|MF1|+|MF|=4, 解得: a2=4,b2=a2−1=3, 故椭圆C的方程为: x24+y 23=1;{3x 12+4y 12=123(λx 2)2+4(λy 2)2=12λ2可得: 3⋅x 1+λx 21+λ⋅x 1−λx 21−λ+4⋅y 1+λy 21+λ⋅y 1−λy 21−λ=12, 结合上式可得: 5λ− 2λx 2+3=0.P(4,0),F(1,0),N (52,0), 则 y Q =3y 25−2x 2=3λy 25λ−2λx 2=−λy 2=y 1, 故AQ ⊥y 轴.x 2y 1)(x 1y 2+x 2y 1)=x 12y 22−x 22y 12=(4+4y 123)y 22−(4+4y 223)y 12=4(y 2−y 1)(y 2+y 1)=4(y 2−y 1)(x 1y 2+x 2y 1),即: x 1y 2+x 2y 1=y 2+y 1,2x 2y 1=5y 1−3y 2.P(4,0),F(1,0),N (52,0), 则 y Q =3y 25−2x 2=3y 1y 25y1−2y 1x 2=y 1, 故 AQ ⊥y 轴.(二)选考题: 共 10 分. 请考生在第 22、23 题中任选一题作答, 并用 2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分, 如果多做, 则按所做的第一题计分.22.[选修 4-4: 坐标系与参数方程](10 分)在平面直角坐标系 xOy 中, 以坐标原点 O 为极点, x 轴的正半轴为极轴建立极坐标系, 曲线 C 的极坐标方程为 ρ= ρcos θ+1. (1)写出 C 的直角坐标方程;(2)直线 {x =ty =t +a (t 为参数)与曲线 C 交于 A 、B 两点, 若 |AB|=2, 求 a 的值.【参考答案】见解析【详细解析】(1)因为 ρ=ρcos θ+1, 所以 ρ2=(ρcos θ+1)2, 故 C 的直角坐标方程为: x 2+y 2=(x +1)2, 即: y 2=2x +1; ◻(2) 将 {x =ty =t +a 代入 y 2=2x +1 可得: t 2+2(a −1)t +a 2−1=0,|AB|=√2|t 1−t 2|=√16(1−a)=2,解得: a =34.[选修 4-5: 不等式选讲](10 分)实数 a,b 满足 a +b ⩾3. (1)证明: 2a 2+2b 2>a +b ;(2)证明: |a−2b2|+|b−2a2|⩾6.【解析】(1)因为a+b⩾3, 所以2a2+2b2⩾(a+b)2>a+b;(2) |a−2b2|+|b−2a2|⩾|a−2b2+b−2a2|=|2a2+2b2−(a+b)|=2a2+2b2−(a+b)⩾(a+b)2−(a+b)=(a+b)(a+b−1)⩾6.。
2022年全国统一高考数学试卷(文科)(全国新课标)
2022年全国统一高考数学试卷〔文科〕〔全国新课标〕2022年全国统一高考数学试卷〔文科〕〔全国新课标Ⅲ〕一、选择题:此题共12小题,每题5分,共60分。
在每题给出的四个选项中,只有一项为哪一项符合题目要求的。
1.集合A?{?1,0,1,2},B?{x|x2?1},那么AA.{?1,0,1} A.?1?iB.{0,1} B.?1?i2.假设z(1?i)?2i,那么z?( )C.1?iD.1?i3.两位男同学和两位女同学随机排成一列,那么两位女同学相邻的概率是( ) 1111A. B. C. D.36424.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并成为中国古典小说四大名著.某中学为了了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,那么该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为( ) A.0.5 A.2 A.16A.a?e,b??1 那么( )B.0.6 B.3 B.8B.a?e,b?1C.0.7 C.4 C.4C.a?e?1,b?1D.0.8 D.5 D.2D.a?e?1,b??15.函数f(x)?2sinx?sin2x在[0,2?]的零点个数为( )6.各项均为正数的等比数列{an}的前4项和为15,且a5?3a3?4a1,那么a3?( ) 7.曲线y?aex?xlnx在点(1,ae)处的切线方程为y?2x?b,那么( )8.如图,点N为正方形ABCD的中心,?ECD为正三角形,平面ECD?平面ABCD,M是线段ED的中点,B?( )C.{?1,1} D.{0,1,2}A.BM?EN,且直线BM,EN是相交直线 B.BM?EN,且直线BM,EN是相交直线C.BM?EN,且直线BM,EN是异面直线 D.BM?EN,且直线BM,EN是异面直线9.执行如下图的程序框图,如果输入ò为0.01,那么输出的s值等于( )A.2?1 42 B.2?1 52C.2?1 62D.2?1 72x2y210.F是双曲线C:??1的一个焦点,点P在C上,O为坐标原点.假设|OP|?|OF|,那么?OPF的面45积为( )3579A. B. C. D.22226,?x?y…11.记不等式组?表示的平面区域为D.命题p:?(x,y)?D,2x?y…9;命题q:?(x,y)?D,2x?y…0?2x?y?12.下面给出了四个命题①p?q ②?p?q ③p??q ④?p??q 这四个命题中,所有真命题的编号是( ) A.①③B.①②C.②③D.③④12.设f(x)是定义域为R的偶函数,且在(0,??)单调递减,那么( )2233????11332A.f(log3)?f(2)?f(2) B.f(log3)?f(2)?f(22)442233????11332C.f(2)?f(2)?f(log3) D.f(2)?f(22)?f(log3)44二、填空题:此题共4小题,每题5分,共20分。
2023年全国统一高考数学试卷(文科)(乙卷)(解析版)
2023年全国统一高考数学试卷(文科)(乙卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)|2+i2+2i3|=( )A.1B.2C.D.5【答案】C【解答】解:由于|2+i2+2i3|=|1﹣2i|=.故选:C.2.(5分)设全集U={0,1,2,4,6,8},集合M={0,4,6},N={0,1,6},则M∪∁U N =( )A.{0,2,4,6,8}B.{0,1,4,6,8}C.{1,2,4,6,8}D.U【答案】A【解答】解:由于∁U N={2,4,8},所以M∪∁U N={0,2,4,6,8}.故选:A.3.(5分)如图,网格纸上绘制的是一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A.24B.26C.28D.30【答案】D【解答】解:根据几何体的三视图转换为直观图为:该几何体是由两个直四棱柱组成的几何体.如图所示:故该几何体的表面积为:4+6+5+5+2+2+2+4=30.故选:D.4.(5分)在△ABC中,内角A,B,C的对边分别是a,b,c,若a cos B﹣b cos A=c,且C=,则∠B=( )A.B.C.D.【答案】C【解答】解:由a cos B﹣b cos A=c得sin A cos B﹣sin B cos A=sin C,得sin(A﹣B)=sin C=sin(A+B),即sin A cos B﹣sin B cos A=sin A cos B+sin B cos A,即2sin B cos A=0,得sin B cos A=0,在△ABC中,sin B≠0,∴cos A=0,即A=,则B=π﹣A﹣C==.故选:C.5.(5分)已知f(x)=是偶函数,则a=( )A.﹣2B.﹣1C.1D.2【答案】D【解答】解:∵f(x)=的定义域为{x|x≠0},又f(x)为偶函数,∴f(﹣x)=f(x),∴,∴,∴ax﹣x=x,∴a=2.故选:D.6.(5分)正方形ABCD的边长是2,E是AB的中点,则•=( )A.B.3C.2D.5【答案】B【解答】解:正方形ABCD的边长是2,E是AB的中点,所以=﹣1,,,=2×2=4,则•=()•()=+++=﹣1+0+0+4=3.故选:B.7.(5分)设O为平面坐标系的坐标原点,在区域{(x,y)|1≤x2+y2≤4}内随机取一点,记该点为A,则直线OA的倾斜角不大于的概率为( )A.B.C.D.【答案】C【解答】解:如图,PQ为第一象限与第三象限的角平分线,根据题意可得构成A的区域为圆环,而直线OA的倾斜角不大于的点A构成的区域为图中阴影部分,∴所求概率为=.故选:C.8.(5分)函数f(x)=x3+ax+2存在3个零点,则a的取值范围是( )A.(﹣∞,﹣2)B.(﹣∞,﹣3)C.(﹣4,﹣1)D.(﹣3,0)【答案】B【解答】解:f′(x)=3x2+a,若函数f(x)=x3+ax+2存在3个零点,则f′(x)=3x2+a=0,有两个不同的根,且极大值大于0极小值小于0,即判别式Δ=0﹣12a>0,得a<0,由f′(x)>0得x>或x<﹣,此时f(x)单调递增,由f′(x)<0得﹣<x<,此时f(x)单调递减,即当x=﹣时,函数f(x)取得极大值,当x=时,f(x)取得极小值,则f(﹣)>0,f()<0,即﹣(﹣+a)+2>0,且(﹣+a)+2<0,即﹣×+2>0,①,且×+2<0,②,则①恒成立,由×+2<0,2<﹣×,平方得4<﹣×,即a3<﹣27,则a<﹣3,综上a<﹣3,即实数a的取值范围是(﹣∞,﹣3).故选:B.9.(5分)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( )A.B.C.D.【答案】A【解答】解:某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,甲、乙两位参赛同学构成的基本事件总数n=6×6=36,其中甲、乙两位参赛同学抽到不同主题包含的基本事件个数m==30,则甲、乙两位参赛同学抽到不同主题概率为P===.故选:A.10.(5分)已知函数f(x)=sin(ωx+φ)在区间(,)单调递增,直线x=和x=为函数y=f(x)的图像的两条对称轴,则f(﹣)=( )A.﹣B.﹣C.D.【答案】D【解答】解:根据题意可知=,∴T=π,取ω>0,∴ω==2,又根据“五点法“可得,k∈Z,∴φ=,k∈Z,∴f(x)=sin(2x)=sin(2x﹣),∴f(﹣)=sin(﹣)=sin(﹣)=sin=.故选:D.11.(5分)已知实数x,y满足x2+y2﹣4x﹣2y﹣4=0,则x﹣y的最大值是( )A.1+B.4C.1+3D.7【答案】C【解答】解:根据题意,x2+y2﹣4x﹣2y﹣4=0,即(x﹣2)2+(y﹣1)2=9,其几何意义是以(2,1)为圆心,半径为3的圆,设z=x﹣y,变形可得x﹣y﹣z=0,其几何意义为直线x﹣y﹣z=0,直线y=x﹣z与圆(x﹣2)2+(y﹣1)2=9有公共点,则有≤3,解可得1﹣3≤z≤1+3,故x﹣y的最大值为1+3.故选:C.12.(5分)设A,B为双曲线x2﹣=1上两点,下列四个点中,可为线段AB中点的是( )A.(1,1)B.(﹣1,2)C.(1,3)D.(﹣1,﹣4)【答案】D【解答】解:设A(x1,y1),B(x2,y2),AB中点为(x0,y0),,①﹣②得k AB==9×=9×,即﹣3<9×<3⇒,即或,故A、B、C错误,D正确.故选:D.二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前
2018年普通高等学校招生全国统一考试(全国3卷)
文科数学
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答案卡一并交回。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项符合)
1.已知集合{}
012
B=,,,则A B=()
=-≥,{}
|10
A x x
A.{}0B.{}1C.{}
,,
012
12
,D.{} 2.()()
+-=()
i i
12
A.3i
-+C.3i-
--B.3i
D.3i+
3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()
4.若1
α=,则cos2α=()
sin
3
A .89
B .79
C .79-
D .89
- 5.若某群体中的成员只用现金支付的概率为,既用现金支付也用非现金支付的概率为,则不用现金支付的概率为( )
A .
B .
C .
D . 6.函数
()2tan 1tan x f x x =+的最小正周期为( ) A .4π B .2π C .π D .2π
7.下列函数中,其图像与函数ln y x =的图像关于直线1x =对称的是( )
A .()ln 1y x =-
B .()ln 2y x =-
C .()ln 1y x =+
D .()ln 2y x =+
8.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,
则ABP ∆面积的取值范围是( )
A .[]
26, B .[]48, C . D .⎡⎣ 9.函数422y x x =-++的图像大致为( )
10.已知双曲线22
221x y C a b
-=:(00a b >>,)的离心率为()40,到C 的渐近线的距离为( )
A
B .2
C
D .11.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .若ABC ∆的面积为2224
a b c +-,则C =( )
A .2π
B .3π
C .4π
D .6
π 12.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为
D ABC -体积的最大值为( )
A .
B .
C .
D .
二、填空题(本题共4小题,每小题5分,共20分)
13.已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________.
14.某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解
客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.
15.若变量x y ,满足约束条件23024020.x y x y x ++⎧⎪-+⎨⎪-⎩
≥,≥,≤则13z x y =+的最大值是________. 16.已知函数(
))
ln 1f x x =+,()4f a =,则()f a -=________. 三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤,第17~31
题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.)
(一)必考题:共60分。
17.(12分)等比数列{}n a 中,15314a a a ==,.
⑴求{}n a 的通项公式;
⑵记n S 为{}n a 的前n 项和.若63m S =,求m .
18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生
产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:
⑴根据茎叶图判断哪种生产方式的效率更高并说明理由;
⑵求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:
⑶根据⑵中的列表,能否有99%的把握认为两种生产方式的效率有差异
附:()()()()()2
2n ad bc K a b c d a c b d -=++++,()20.0500.0100.0013.8416.63510.828P K k k ≥. 19.(12分)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上
异于C ,D 的点.
⑴证明:平面AMD ⊥平面BMC ;
⑵在线段AM 上是否存在点P ,使得MC ∥平面PBD 说明理由.
20.(12分)已知斜率为k 的直线l 与椭圆22143
x y C +=:交于A ,B 两点.线段AB 的中点为()()10M m m >,. ⑴证明:12k <-; ⑵设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:2FP FA FB =+ .
21.(12分)已知函数()21x
ax x f x e +-=. ⑴求由线()y f x =在点()01-,处的切线方程;
⑵证明:当1a ≥时,()0f x e +≥.
(二)选考题:共10分,请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分.
22.[选修4—4:坐标系与参数方程](10分)
在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ=⎧⎨=⎩(θ为参数),过
点(
0,且倾斜角为α的直线l 与O ⊙交于A B ,两点.
⑴求α的取值范围;
⑵求AB中点P的轨迹的参数方程.
23.[选修4—5:不等式选讲](10分)
设函数()211
f x x x
=++-.
⑴画出()
=的图像;
y f x
⑵当[)
+
≤,求a b
f x ax b
∈,,()
x+∞
+的最小值.。