图形的平移与旋转知识点汇总

合集下载

平移旋转图形知识点总结

平移旋转图形知识点总结

平移旋转图形知识点总结平移和旋转是几何学中两个重要的变换操作,它们可以改变图形的位置和方向,扩展了几何学的应用领域。

在本文中,我们将对平移和旋转的基本概念、性质和应用进行总结。

一、平移的基本概念平移是指图形在平面上沿着一定方向按照一定距离移动的变换操作。

在平移过程中,图形的大小和形状保持不变,只是位置发生改变。

平移可以用向量来描述,移动向量即为图形移动的方向和距离。

1. 平移的向量表示设图形A经过平移得到图形A',平移向量为向量→a,表示为A→A' = →a。

向量→a的方向和长度即为平移的方向和距离。

2. 平移的性质平移操作满足以下性质:(1)平移不改变图形的大小和形状;(2)平移不改变图形的面积和周长;(3)平移不改变图形的对称性。

3. 平移的表示方法平移可以通过向量、坐标和平移矩阵等多种方式来表示和描述。

在向量表示中,平移向量→a可以作为图形平移的唯一标识。

二、平移的应用平移在几何学和其他领域中有着广泛的应用,例如地图制作、计算机图形学和物理学等。

下面我们将介绍平移在几何学中的应用场景和相关问题。

1. 平移的作用(1)简化计算:通过平移操作,可以将图形移动到方便计算的位置,简化问题的解决过程;(2)构造对称图形:利用平移可以构造出一些对称图形,如平移正方形可以构造出菱形;(3)解决坐标运算:在坐标运算中,平移可以使坐标系原点发生偏移,方便计算。

2. 平移的问题在平移问题中,常见的问题包括:给定图形A和平移向量→a,求出图形A经过平移后的位置和形状;给定平移前后的图形A和A',求出平移向量→a。

解决这些问题需要灵活运用平移的基本性质和表示方法。

三、旋转的基本概念旋转是指图形围绕一点按照一定角度转动的变换操作。

在旋转过程中,图形的大小和形状保持不变,只是方向发生改变。

旋转可以用角度来描述,旋转角度即为图形旋转的方向和角度。

1. 旋转的角度表示设图形A经过旋转得到图形A',旋转角度为θ,表示为A→A' = θ。

图形的平移、旋转与轴对称单元知识点总结

图形的平移、旋转与轴对称单元知识点总结

二、图形的平移、旋转与轴对称1.图形的平移●平移的定义:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定距离的图形运动。

●平移两要素:平移的方向、平移的距离●平移前的图形:画虚线;箭头:表示平移的方向;平移后的图形:画实线。

●注意:平移几格不是原图形与平移后图形之间的格数,而是指图形的对应点之间的格数。

●关键点:一般是图形的各顶点或线段的交点。

●注意:平移前后,图形的大小、形状、方向都不变,只是位置变了。

●画平移后图形的方法:①找关键点②定平移方向、距离③找对应点④依次连线。

2.图形的旋转●旋转的定义:旋转是指在平面内,将某个图形绕一个定点沿某个方向旋转一个角度的图形运动。

这个定点称为旋转中心,旋转的角度称为旋转角度。

●旋转三要素①旋转中心:点/轴②旋转方向:顺时针方向/逆时针方向③旋转角度●怎样描述图形的旋转:将某图形绕某点沿某时针方向旋转某度到某位置。

●画旋转后图形的方法:①找旋转中心②找准关键线段③旋转关键线段④画出旋转后的图形●旋转中心:一般是两个图形的公共点●关键线段:过旋转中心的线段。

为了保证旋转角度,一般选与方格纸重合的线段作为关键线段。

●注意:旋转前后,图形的大小、形状都不发生改变,但位置和方向一般会发生变化。

3.轴对称图形●定义:轴对称图形沿一条直线对折后,两部分能完全重合,折痕所在的直线叫做它的对称轴(对称轴画虚线,画超出图形)。

●轴对称图形至少有一条对称轴。

●轴对称图形中每一组对称点到对称轴的距离相等。

●轴对称图形中对称点的连线与对称轴互相垂直。

●轴对称图形和对称轴的数量:①正方形(4条对称轴)②长方形(2条对称轴)③等腰三角形(1条对称轴)④等边三角形也叫正三角形(3条对称轴)⑤菱形(2条对称轴)⑥圆形(无数条对称轴)⑦等腰梯形(1条对称轴)⑧五角星(5条对称轴)⑨正五边形(5条对称轴)●生活中的轴对称图形或轴对称现象:京剧脸谱、剪纸、国徽、天坛、北京故宫、凯旋门、蝴蝶、空调、人的五官和身体等●画对称轴的方法:①找一组对应点②画对应点间线段的中垂线③画虚线●画轴对称图形另一半的方法:①找关键点②定对称点③依次连线(一般画虚线)4.设计图案●利用平移设计图案的方法:①选好基本图形②确定平移的方向③确定平移的距离④进行多次平移●利用旋转设计图案的方法:①选和基本图形②确定旋转方向和角度③确定旋转中心④依次画出每次旋转后的图形●利用轴对称设计图案的方法:①选好基本图形②确定对称轴③画出基本图形的另一半5.探索规律●观察图形变化时,先确定变化方式(平移、旋转或轴对称),再确定位置变化的规律。

图形的平移与旋转知识点汇总

图形的平移与旋转知识点汇总

第十五章图形的平移与旋转一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

一个图形经过平移后得到一个新图形,这个新图形与原图形是互相重合的,互相重合的点称为,互相重合的角称为,互相重合的线段称为。

注意:1.平移有两个要素:(1)沿某一方向移动;(2)移动一定的距离;2.平移的方向就是原图上的点指向它的对应点的方向;图像上每点都沿同一方向移动距离,这个距离是指对应点之间的长度;3.平移前后两图形是全等的。

平移的特征:平移不改变图形和,只改变了图形的位置;经过平移,对应点所连的线段(或 )且相等;对应线段(或)且相等,对应角。

二、1、旋转:在平面内,将一个图形绕一个沿某个方向转动一定,这样的图形运动称为旋转。

这个定点称为,转动的角称为。

任意一对对应点与旋转中心的连线所成的角都是 .注意:1.旋转中心在旋转过程中保持不动;2.图形的旋转是由,和所决定的;3.作平移图与旋转图。

(确定关键点,将关键点沿一定的方向移动相同的距离,连接关键点)旋转的特征:图形中每一点都绕着旋转中心按同一旋转方向旋转了同样大小的;对应点到旋转中心的距离;对应线段,对应角;图形的形状与大小都没有发生变化。

图形的变换包括、和旋转,这三种图形变换的共同点是:只改变图的,不改变图形的和。

2、旋转对称图形:在平面内,一个图形绕一个定点旋转一定的角度后能与自身,这样的图形称为旋转对称图形。

3、中心对称图形:在平面内,一个图形绕某个点旋转角度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形。

这个点叫做对称中心。

中心对称图形是旋转角度为°的特殊旋转对称图形,但旋转对称图形不一定是中心对称图形。

4、成中心对称:把一个图形绕着某一点旋转180º,如果它能够和另一个图形重合,就称这两个图形成中心对称。

这个点叫做对称中心;这两个图形中的对应点,叫做关于中心的。

在成中心对称的两个图形中,连结对称点的线段都经过,并且被对称中心。

苏教版平移旋转知识点总结

苏教版平移旋转知识点总结

苏教版平移旋转知识点总结一、平移的基本概念平移是几何学中的一个重要概念,它指的是一个图形在平面上沿着某一方向移动一定的距离,但是保持其形状和大小不变。

在平移中,所有图形的点都按照相同的方向和距离移动,相互之间的位置关系不发生改变。

在苏教版的教学中,平移的基本概念主要包括以下几个方面:1. 平移的定义平移是指图形在平面上沿着某一方向移动一定的距离,但是保持其形状和大小不变。

在平移中,所有点都按照相同的方向和距离移动,相互之间的位置关系不发生改变。

2. 平移的性质平移具有以下几个基本性质:(1)平移不改变图形的大小和形状;(2)平移可以将一个图形移动到另一个位置;(3)平移的结果仍然是原图形,只是位置发生了变化。

3. 平移的表示方法平移可以用向量来表示,即通过指定平移的方向和距离来确定一个平移向量。

苏教版的教学中通常会介绍平移向量的概念和表示方法,帮助学生理解平移的基本原理。

二、平移的计算方法在实际计算中,我们经常需要对图形进行平移操作,因此掌握平移的计算方法是非常重要的。

苏教版的教学中通常会介绍平移的计算规律和具体步骤,帮助学生掌握如何进行平移操作。

平移的计算方法主要包括以下几个步骤:1. 确定平移的向量平移的向量是指定平移的方向和距离,通常用一个有序对(x,y)来表示。

我们可以通过测量或计算来确定平移的向量,从而确定平移的具体操作。

2. 进行平移操作确定了平移的向量之后,就可以对图形进行平移操作了。

操作的具体步骤是将图形上的每一个点按照平移的向量进行相应的平移,从而得到平移后的图形。

3. 检验平移结果常可以通过计算和比较图形的各个点的坐标来进行检验。

通过以上步骤,我们可以比较容易地对图形进行平移操作,从而实现平移的目的。

三、旋转的基本概念旋转是几何学中的另一个重要概念,它指的是一个图形围绕某一点按照一定的角度进行旋转,但是保持其大小不变。

在苏教版的教学中,旋转的基本概念主要包括以下几个方面:1. 旋转的定义旋转是指一个图形围绕某一点按照一定的角度进行旋转,但是保持其大小不变。

三年级上册平移和旋转的知识点

三年级上册平移和旋转的知识点

三年级上册平移和旋转的知识点一、平移。

1. 平移的定义。

- 物体或图形在同一平面内沿直线运动,而本身没有发生方向上的改变,这种运动现象就是平移。

例如,在水平的传送带上,物体随着传送带直线移动;或者在电梯里,人随着电梯上下直线运动等都是平移现象。

2. 平移的特点。

- 平移后的图形与原图形的形状和大小完全相同。

例如,将一个正方形沿着水平方向平移一段距离后,得到的新正方形和原来的正方形边长一样,四个角也都是直角。

- 平移后的图形与原图形对应点之间的连线平行(或在同一条直线上)且相等。

比如一个三角形平移后,它原来的顶点和对应平移后的顶点连线是平行且相等的。

3. 平移的方向和距离。

- 方向:平移的方向可以是水平方向(向左或向右)、垂直方向(向上或向下)或者是斜着的方向。

例如,汽车在笔直的公路上向左行驶是水平方向的平移;火箭垂直升空是垂直方向的平移;而一个物体沿着与水平方向成45度角的方向移动就是斜方向的平移。

- 距离:平移的距离是指图形上每个点平移的长度。

可以通过数方格的方法来确定平移的距离,在方格纸上,一个方格的边长可以作为一个单位长度。

例如,一个图形从方格纸的左上角平移到右上角,经过了5个方格,那么平移的距离就是5个单位长度。

二、旋转。

1. 旋转的定义。

- 物体绕着一个点或一个轴做圆周运动的现象就是旋转。

像风车绕着中心轴转动、时钟的指针绕着中心点转动等都是旋转现象。

2. 旋转的特点。

- 旋转后的图形与原图形的形状和大小不变。

例如,一个圆形的表盘不管指针怎么旋转,表盘的形状和大小都不会改变。

- 图形的旋转是由旋转中心、旋转方向和旋转角度决定的。

3. 旋转中心、旋转方向和旋转角度。

- 旋转中心:是物体旋转时所绕着的那个点或轴。

例如,风车的旋转中心就是风车叶片中间固定的那个点;地球的自转是以地轴为旋转中心的。

- 旋转方向:分为顺时针方向和逆时针方向。

顺时针方向是指和时钟指针转动方向相同的方向,逆时针方向则是与时钟指针转动方向相反的方向。

三年级数学上册---平移、旋转及轴对称( 知识梳理+例题精讲+易错专练)

三年级数学上册---平移、旋转及轴对称( 知识梳理+例题精讲+易错专练)

第6讲平移、旋转及轴对称一、思维导图二、知识点梳理知识点一:平移在同一平面内,物体或图形沿着某一直线方向运动的现象叫做平移。

平移时物体或图形的形状、大小和方向没有变化,只是位置改变了。

知识点二:旋转物体或图形绕一个点或一个轴运动的现象叫做旋转。

旋转时物体或图形的形状和大小不变,其自身的运动方向发生了变化。

注意:旋转分为顺时针旋转和逆时针旋转。

知识点三:轴对称图形一个图形沿着一条直线对折后,折痕两边的部分能够完全重合的图形就是轴对称图形。

轴对称图形沿对称轴对折后,两边能够完全重合,即对称的点、对称的线段都能够完全重合,对称点到对称轴的距离相等。

三、例题精讲考点一:平移和旋转1.能够通过下图平移得到的图形是()。

A.B.C.D.2.在括号中填“平移”或“旋转”。

(1)小明进教室开门时,门的运动是()。

(2)小丽拧开纯净水瓶盖,瓶盖的运动是()。

(3)小红拉开窗帘,窗帘的运动是()。

(4)老师将课桌拖到最后一排,桌子的运动是()。

3.观察下面的图形,然后填空。

(1)小汽车向()平移了()格。

(2)小船向()平移了()格。

(3)飞机向()平移了()格。

4.如图所示。

(1)小狗先向左走4格,再向下走6格,它能吃到肉骨头吗?如果能,请你把小狗的行走过程在方格中画出来;如果不能,请你帮小狗设计一个正确的行走方案。

(2)小狗吃完肉骨头后接着想去吃大鸡腿,它应该怎么走?考点二:轴对称图形5.图形是从()对折的纸上剪下来的。

A.B.C.D.6.如图,一个大正方形被分成16个大小相同的小正方形,其中四个小正方形已涂成阴影,若再将一个小正方形涂成阴影,使所有阴影区域构成轴对称图形,则这个小正方形的编号为()。

7.拿一张长纸条,将它一反一正折叠起来,并画出字母E。

用小刀把画出的字母E挖去,拉开就可以得到一条以字母E为图案的花边,如图。

观察整条花边,左起和右起的三个图案各为一组,这两组图案有什么关系?8.(1)下面五个图形中,是轴对称图形的有()。

旋转翻转与平移的变换知识点总结

旋转翻转与平移的变换知识点总结

旋转翻转与平移的变换知识点总结几何变换是数学中一个重要且常见的概念,对于图形的旋转翻转与平移等操作,能够使得图形在平面内发生变化。

本文将对旋转翻转与平移的变换知识点进行总结,以便更好地理解和应用这些概念。

一、旋转变换旋转变换是指将图形按照一定的角度围绕某一点旋转。

在平面几何中,旋转变换包括顺时针旋转和逆时针旋转两种方式。

1. 顺时针旋转:顺时针旋转是将图形按照顺时针方向进行旋转,一般以正角度表示。

例如,将一个图形按照顺时针旋转90度,就是将原始图形的每个点绕着旋转中心点顺时针旋转90度。

2. 逆时针旋转:逆时针旋转是将图形按照逆时针方向进行旋转,一般以负角度表示。

与顺时针旋转类似,逆时针旋转也是将原始图形的每个点绕着旋转中心点逆时针旋转一定角度。

旋转变换可以用矩阵表示,其中旋转角度为θ,旋转矩阵为:cosθ -sinθsinθ cosθ二、翻转变换翻转变换是指将图形按照某一轴进行对称,常见的有水平翻转和垂直翻转两种方式。

1. 水平翻转:水平翻转是将图形按照水平轴进行对称,即以水平轴为对称轴,上下颠倒图形。

例如,将一个图形按照水平轴进行翻转,原先在上部的图形点转移到下部。

2. 垂直翻转:垂直翻转是将图形按照垂直轴进行对称,即以垂直轴为对称轴,左右颠倒图形。

例如,将一个图形按照垂直轴进行翻转,原先在左侧的图形点转移到右侧。

翻转变换可以用矩阵表示,其中水平翻转可用矩阵表示为:-1 00 1垂直翻转可用矩阵表示为:1 00 -1三、平移变换平移变换是指将图形沿着平面平行移动一段距离。

平移变换可以将图形从一个位置移动到另一个位置,而不改变图形的大小和形状。

平移变换通常用向量表示,其中平移向量为:(dx, dy)。

图形的每个点都将根据平移向量的数值进行水平和垂直方向上的移动。

四、综合应用旋转翻转与平移的变换在实际生活中有广泛的应用,尤其是在计算机图形学和计算机视觉领域。

在计算机图形学中,通过对图像进行旋转、翻转和平移等变换,可以实现图像的缩放、旋转和平移操作。

图形的平移和旋转知识点总结

图形的平移和旋转知识点总结

图形的平移和旋转【图形的平移】(1)平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.注意:①平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换.②图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离,这两个要素是图形平移的依据.③图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的大小,这个特征是得出图形平移的基本性质的依据.(2)平移的基本性质:由平移的基本概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.注意:①要正确找出“对应线段,对应角”,从而正确表达基本性质的特征.②“对应点所连的线段平行且相等”,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据.(3)简单的平移作图平移作图:确定一个图形平移后的位置所需条件为:①图形原来的位置;②平移的方向;③平移的距离.例1.如图,△ABC 绕C 点旋转后,顶点A 的对应点为点D ,试确定顶点B•对应点的位置,以及旋转后的三角形.分析:绕C 点旋转,A 点的对应点是D 点,那么旋转角就是∠ACD ,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB ′=ACD ,•又由对应点到旋转中心的距离相等,即CB=CB ′,就可确定B ′的位置,如图所示. 解:(1)连结CD(2)以CB 为一边作∠BCE ,使得∠BCE=∠ACD (3)在射线CE 上截取CB ′=CB 则B ′即为所求的B 的对应点. (4)连结DB ′则△DB ′C 就是△ABC 绕C 点旋转后的图形.例2.如图,四边形ABCD 是边长为1的正方形,且DE=14,△ABF 是△ADE 的旋转图形. (1)旋转中心是哪一点? (2)旋转了多少度? (3)AF 的长度是多少?(4)如果连结EF ,那么△AEF 是怎样的三角形?分析:由△ABF 是△ADE 的旋转图形,可直接得出旋转中心和旋转角,要求AF•的长度,根据旋转前后的对应线段相等,只要求AE 的长度,由勾股定理很容易得到.•△ABF 与△ADE 是完全重合的,所以它是直角三角形. 解:(1)旋转中心是A 点. (2)∵△ABF 是由△ADE 旋转而成的 ∴B 是D 的对应点 ∴∠DAB=90°就是旋转角 (3)∵AD=1,DE=14∴=4∵对应点到旋转中心的距离相等且F是E的对应点∴AF=4(4)∵∠EAF=90°(与旋转角相等)且AF=AE ∴△EAF是等腰直角三角形.【图形的旋转】(1)旋转的概念:图形绕着某一点(固定)转动的过程,称为旋转,这一固定点叫做旋转中心。

图形的平移和旋转知识点复习

图形的平移和旋转知识点复习

第三章图形的平移与旋转知识点一:平移及平移作图1、平移的概念及性质:(1) 平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小。

(2)平移的特点:①图形上的每一个点都沿同一个方向移动相同的距离。

②平移不改变图形的形状、大小,方向,只改变图形的位置。

(3) 平移的基本性质:经过平移,对应点所连的线段,对应线段,对应角。

2、平移作图:方法一:根据性质:对应点连接的线段平行且相等,做出平行线段,找到对应点,再将各点连接;方法二:根据性质:对应线段平行且相等,直接做出平移后的图形。

平移三要素:(1)(2)(3)。

例1:下图中的图形A向右平移了格得到图形A′。

A A′二、巩固练习1.经过平移,图形上每个点都沿同一个方向移动了一段距离,下面说法正确的是()A 不同的点移动的距离不同B 既可能相同也可能不同C 不同的点移动的距离相同D 无法确定2.如图,若线段是由线段平移而得到的,则线段、关系是.4.分别画出将□向下平移4格,向左平移8格后得到的图形。

4.如图,经过平移,△的顶点A移到了点D,请作出平移后的三角形。

作法:1.分别过点B、C沿方向作线段、,使它们与平行且相等2.顺次连结D、E、F则△即为所求。

5.如图,已知△,画出△沿方向平移4后的△A′B′C′.知识点二:旋转及旋转作图1.旋转的概念及性质旋转的概念:在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。

这个定点称为,转动的角称为。

旋转不改变图形的大小和形状。

2.旋转的性质(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形;(4)图形的旋转由和决定。

3.旋转作图两种情况:①给出绕着旋转的定点,旋转方向和旋转角的大小;②给出定点和图形的一个特殊点旋转后的对应点。

作图步骤:①作出图形的几个关键点旋转后的对应点;②顺次连接各点得到旋转后的图形。

(完整版)图形的平移与旋转知识点

(完整版)图形的平移与旋转知识点

第三章图形的平移与旋转复习要点专点一:图形的平移1.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

平移是由移动的方向和距离决定的。

2.平移的性质:(1)平移不改变图形的形状和大小:即平移前后的线段相等,平移前后的三角形或多边形全等。

(2)平移后的图形与原来图形的对应线段平行且相等,对应角相等。

(3)平移后两图形的对应点所连的线段平行且相等。

专点二:图形的旋转1.旋转的定义:在平面内,将一个图形绕着一个定点沿着某个方向(顺时针或逆时针)旋转一定的角度,这样的图形运动成为旋转,这个定点称为旋转中心,旋转的角度称为旋转角。

2.旋转的性质:(1)旋转不改变图形的形状和大小:即旋转前后的图形是一组全等形。

(2)旋转后的图形与原来的图形的对应线段相等,对应角相等。

(3)经过旋转,图形上的每一点都绕着旋转中心沿相同的方向转动了相同的角度。

(4)任意一对对应点与旋转中心的距离相等。

考点三、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

2、性质(1)关于中心对称的两个图形是全等形。

(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。

考点四、坐标系中对称点的特征1、关于原点对称的点的特征:两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)2、关于x轴对称的点的特征:两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)3、关于y轴对称的点的特征:两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)专点五:利用轴对称、旋转和平移作图1.平移作图的一般步骤:(1)确定平移的方向和距离;(2)确定构成图形的关键点(线段两个端点,三角形三个顶点,n边形n 个顶点);(3)按照平移的方向和距离平移各个关键点;(4)顺次连接各个关键点的对应点,所得的图形就是平移后的图形。

平移和旋转知识点总结

平移和旋转知识点总结

平移和旋转知识点总结一、平移的基本概念平移是指物体沿着某一方向按照一定距离进行移动的操作。

在平面上,平移是指将图形在水平方向和垂直方向上进行平移,将图形中的每一个点沿着相同的距离进行移动。

在三维空间中,平移是指将物体在三个坐标轴方向上进行移动,即沿着 x 轴、y 轴和 z 轴进行平移。

在进行平移变换时,可以使用矩阵的乘法来进行描述。

对于二维坐标系中的点 (x, y),如果要将其进行平移变换,可以使用以下的矩阵表示:```1 0 tx0 1 ty0 0 1```其中 tx 和 ty 分别表示在 x 方向和 y 方向上的平移距离。

对于三维空间中的点 (x, y, z),平移变换可以使用以下的矩阵表示:```1 0 0 tx0 1 0 ty0 0 1 tz0 0 0 1```其中 tx、ty 和 tz 分别表示在 x 轴、y 轴和 z 轴方向上的平移距离。

二、平移的性质1. 平移变换具有可加性,即两个或多个平移变换的效果可以合并为一个平移变换。

设 T1 和 T2 分别表示两个平移变换,对于任意的点 P,有 T2(T1(P)) = T3(P),其中 T3 为合并后的平移变换。

2. 平移变换的逆变换也是一个平移变换。

即如果对一个点进行一次平移变换 T,再对其进行逆变换 T^-1,则得到的结果还是一个平移变换,并且可以合并为一个恒等变换。

即 T^-1(T(P)) = P。

3. 平移变换不改变点之间的相互位置关系。

对于图形中的任意两点 A 和 B,它们之间的距离和方向在进行平移变换后不会发生改变,只是位置发生了移动。

三、平移的应用1. 平移变换在计算机图形学中有着广泛的应用。

在计算机图形学中,平移变换可以用来实现图形在屏幕上的移动、拖拽等操作。

在图形处理软件中,也可以使用平移变换来进行图形的平移操作。

2. 在工程和建筑设计中,平移变换可以用来描述物体在平面或空间中的移动和位置调整。

例如在建筑设计中,可以使用平移变换来进行建筑结构的调整和优化。

第11章 图形的运动(知识清单)-(沪教版)[001]

第11章 图形的运动(知识清单)-(沪教版)[001]

第11章 图形的运动知识清单【考点剖析】1.平移:..⎧⎪⎪⎨⎪⎪⎩:将图形上所有点按某个方向作相同距离的位置移动:平移后各对应点之间的距离;平移的:平移后,对应点之间距离、对应线段长度、对应角大小相等平移后图形的大小、形定义平移的距离性质状都不变. 2.旋转:...︒⎫⎬⎭:把一个图形绕一定点旋转一个图中心对称一个定义:将一个图形上所有点绕一定点按某个方向转动一个角度. 定点叫旋转中心;转动的角度叫旋转角.性质:图形旋转后,对应点到旋转中心的距离相等;对应线段的长度、 对应角的大小相等;旋转对称图形一个角度中心对称图形18旋转前后图形的大小与形状不变:把一图形绕一定点旋转后与初始图形重合:把一图形绕一定点旋转后与初始图形重合0}⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩两个图角度后与另一个图!形重合. 3.翻折.⎧⎪⎧⎪⎨⎪⎨⎪⎪⎪⎩⎩轴对称图形轴对称性质:把一个图沿某一条直线折叠,直线两旁的部分能完全重合定义:把一个图沿某直线翻折,能与另一个图形重合.::两个图关于一条直线对称,这两图对应线段的长度、对应 角的大小相等,它们的形状相同、大小相等. 要点一、图形的平移平移的概念将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移.如图:平移三角形ABC 就可以得到三角形A ′B ′C ′,点A和点A ′,点B 和B ′,点C 和点C ′是对应点,线段AB和AB ′,BC 和B ′C ′,AC 和A ′C ′是对应线段,∠A与∠A ′,∠B与∠B′∠C与∠C′是对应角.平移的性质图形平移后,对应点之间的距离、对应线段的长度、对应角的大小相等.图形平移后,图形的大小、形状都不变。

要点诠释:1、平移后各对应点之间的距离叫做图形平移的距离.2、平移的两个要素: 平移的方向和平移的距离.要点二、图形的旋转旋转的概念 在平面内,将一个图形上的所有点绕一个定点按照某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心(如点O ),转动的角度叫做旋转角(如∠AO A ′).如图:三角形A ′B ′C ′是三角形ABC 绕点O 旋转所得,则点A和点A ′,点B 和B ′,点C 和点C ′是对应点,线段AB和AB ′,BC 和B ′C ′,AC 和A ′C ′是对应线段,,∠BOB′,∠COC′是旋转角.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.旋转的性质(1)对应点到旋转中心的距离相等(OA= OA ′); C'B'A'AB C(2)对应线段的长度相等(AB=AB′);(3)对应点与旋转中心所连线段的夹角等于旋转角(∠AOA′);要点诠释:1、图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.2、旋转前后图形的大小和形状没有改变.旋转对称图形与中心对称图形的比较:中心对称把一个图形绕着某一个点旋转180°后,和另一个图形重合,那么叫做这两个图形关于这个点对称也叫做这两个图形中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.要点诠释:1、中心对称是旋转角为180°的旋转对称;2、寻找对称中心,只需分别联结两对对应点,所得两条直线的交点就是对称中心;3、对称点所连线段经过对称中心,而且被对称中心平分.。

旋转和平移知识点总结

旋转和平移知识点总结

旋转和平移知识点总结一、旋转1.1 定义在数学中,旋转是指以某一点为中心,按一定的角度和方向将图形绕该点旋转的过程。

常见的旋转包括顺时针旋转和逆时针旋转,以及以原点为中心的旋转和以其他点为中心的旋转。

1.2 性质(1)旋转是等距变换,旋转前后图形的每个点到中心的距离保持不变。

(2)旋转是保角变换,旋转前后图形上的两个点和中心组成的角度保持不变。

(3)根据旋转的不同角度和方向,可以将图形旋转成不同的位置和姿态。

1.3 公式以原点为中心的逆时针旋转公式:x' = x * cosθ - y * sinθy' = x * sinθ + y * cosθ以任意点(a,b)为中心的逆时针旋转公式:x' = (x-a) * cosθ - (y-b) * sinθ + ay' = (x-a) * sinθ + (y-b) * cosθ + b1.4 实际应用旋转在计算机图形学、几何建模、航空航天、地理信息系统等领域都有广泛的应用。

例如,在计算机图形学中,旋转可以用来实现图形的变换和动画效果;在航空航天领域,旋转可以用来控制飞机和卫星的姿态;在地理信息系统中,旋转可以用来实现地图的旋转和放大缩小等功能。

二、平移2.1 定义平移是指保持图形大小、形状和方向不变的情况下,将图形沿着某一方向移动一定的距离的过程。

平移可以分为水平平移和垂直平移,分别是在x轴和y轴方向上进行平移。

2.2 性质(1)平移是等距变换,平移前后图形上的任意两点之间的距离保持不变。

(2)平移不改变图形的大小和形状,只改变图形的位置。

2.3 公式水平平移公式:x' = x + ay' = y垂直平移公式:x' = xy' = y + b2.4 实际应用平移在地图导航、工程设计、计算机图形学等领域都有广泛的应用。

例如,地图软件中的平移功能可以让用户在地图上任意移动视角;在工程设计中,平移可以用来调整建筑物或设备的位置;在计算机图形学中,平移可以用来实现图形的移动和拼接。

图像的平移与旋转 知识点

图像的平移与旋转 知识点

第三章图像的平移与旋转第一节图形的平移1.在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动叫做平移。

2.一个图形经过平移后得到一个新的图形,这个图形能与原图形相互重合,只是位置发生了变化。

我们把能够相互重合的点称为对应点,能够相互重合的角称为对应角,能够相互重合的线段称为对应线段。

3.平移的条件:确定一个图形平移后的位置,除需要原来的位置外,还需要一一对应的点的位置或平移的方向和距离,平移的方向为原图上的点指向它的对应点的方向,这一对对应点连接的线段的长是平移的距离。

注:(1)图形的平移有两个基本的条件:方向(任意方向);距离(2)平移改变了图形的位置,但不改变图形的形状和大小。

4.平移的性质:(1)平移后的图形与原图形对应点所连线段平行或在一条直线上且相等;(2)平移后的图形与原图形对应线段平行(或在一条直线上)且相等;(3)平移后的图形与原图形对应角相等。

5.平移作图常见形式及作法:第二节图形的旋转1.旋转:在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转。

这个定点被称为旋转中心,转动的角称为旋转角。

旋转不改变图形的形状和大小。

注:旋转是在平面内,而不是在空间内;旋转后的图形与原图形的形状、大小都相同,但形状、大小都相同的两个图形不一定可以通过旋转得到;旋转的角度一般小于360度。

2.旋转的三要素:图形的旋转由旋转中心、旋转的角度和旋转的方向所决定。

3.旋转的性质:一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等。

4.简单的旋转作图:旋转、平移、轴对称的异同:(1)三者的相同点:都是在平面内的图形变换不涉及立体图形的变换;三中变换都是只改变图形的位置,不改变形状和大小,其对应边相等,对应角相等。

(2)不同点:旋转、平移及轴对称的运动方式不同,旋转的运动方式是将一个图形旋转一定角度;而平移的运动方式则是将一个图形沿一条直线对折;旋转、平移及轴对称的对应线段、对应角之间的关系不同。

小学数学形的旋转与平移知识点整理

小学数学形的旋转与平移知识点整理

小学数学形的旋转与平移知识点整理一、形的旋转知识点整理1. 旋转的定义:旋转是指将图形以一个固定的点为中心,按照一定的角度将图形转动,得到一个新的位置。

2. 旋转的要素:旋转中需要确定的要素包括旋转中心、旋转角度和旋转方向。

3. 旋转中心:旋转中心是图形旋转的中心点,可以是任意点。

4. 旋转角度:旋转角度是指图形旋转的角度大小,可以是正数或负数,表示顺时针或逆时针旋转。

5. 旋转方向:旋转方向可以是顺时针方向或逆时针方向。

二、常见图形的旋转变化1. 点的旋转:点在旋转中不发生变化,位置保持不变。

2. 直线的旋转:直线在旋转中不发生变化,仍保持直线。

3. 长方形的旋转:长方形在旋转中会绕旋转中心旋转,但边长和角度保持不变。

4. 正方形的旋转:正方形在旋转中会绕旋转中心旋转,边长和角度保持不变。

5. 圆的旋转:圆在旋转中会绕旋转中心旋转,半径和角度保持不变。

三、形的平移知识点整理1. 平移的定义:平移是指将图形沿着平行的直线方向移动,而大小和形状保持不变。

2. 平移的要素:平移中需要确定的要素包括平行移动的距离和平移的方向。

3. 平移的方向:平移可以是水平方向或垂直方向的移动。

4. 平移的距离:平移的距离指的是图形在平移中沿平行直线方向的移动长度。

四、常见图形的平移变化1. 点的平移:点的平移是指点在平行直线上进行移动,移动后的位置和移动前的位置等距离。

2. 直线的平移:直线的平移是指直线上的所有点沿平行的直线方向进行移动,移动后的直线与原直线平行,并且距离相等。

3. 矩形的平移:矩形的平移是指矩形上的所有点沿平行的直线方向进行移动,移动后的矩形与原矩形形状相同,并且距离相等。

4. 圆的平移:圆的平移是指圆上的所有点沿平行的直线方向进行移动,移动后的圆与原圆形状相同,并且圆心之间的距离保持不变。

五、例题解析(以下为例题,题目解析可以根据实际情况进行扩展,但不得出现具体的题号或题目内容)1. 题目:将点A(3, 4)绕原点逆时针旋转90度,求旋转后的坐标。

平移旋转对称的知识点归纳

平移旋转对称的知识点归纳

平移旋转对称的知识点归纳一、平移平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动。

1. 平移的性质平移后图形的形状和大小不变,只是位置发生了变化。

例如,一个正方形平移后还是正方形,边长和角度都不会改变。

对应点所连的线段平行且相等。

比如,一个三角形平移后,原来三角形的顶点和它平移后对应顶点所连的线段是平行且相等的。

2. 平移的应用在建筑设计中,经常会用到平移。

比如平移窗户的位置,来调整房间的采光和通风。

在图案设计中,通过平移可以创造出很多美丽的图案。

像一些地砖的图案,就是通过平移一个基本图形得到的。

二、旋转旋转是指在平面内,一个图形绕着一个定点旋转一定的角度得到另一个图形的变化。

1. 旋转的性质旋转前后图形的形状和大小不变。

例如,一个圆形旋转后还是圆形,半径不会改变。

对应点到旋转中心的距离相等。

比如,一个正多边形旋转后,它的各个顶点到旋转中心的距离都相等。

对应点与旋转中心所连线段的夹角等于旋转角。

2. 旋转的应用在机械制造中,一些零件的设计会用到旋转。

比如齿轮的设计,就是通过旋转来实现动力的传递。

在艺术创作中,旋转可以创造出独特的视觉效果。

像一些舞蹈动作,就有旋转的元素。

三、对称对称分为轴对称和中心对称。

1. 轴对称定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

性质:对称轴是对应点连线的垂直平分线。

例如,等腰三角形的对称轴是底边上的高所在的直线,它垂直平分底边。

轴对称图形的对应线段相等,对应角相等。

应用:在服装设计中,经常会用到轴对称。

很多衣服的图案是轴对称的,这样看起来更加美观。

2. 中心对称定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

性质:中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

中心对称图形的对应线段相等,对应角相等。

平移旋转知识点总结

平移旋转知识点总结

平移旋转知识点总结一、平移的基本概念1、平移的定义平移是指图形沿着一条直线方向移动,移动的距离和方向保持一致。

在平移过程中,图形的大小和形状都不发生变化,只是位置发生了改变。

可以将平移看作是图形的每个点都按照同一个方向和距离进行移动,从而得到了一个新的位置。

2、平移的表示平移可以用向量来表示,假设有一个向量V(u,v),其中u和v表示平移的水平和垂直方向上的距离。

对于一个点P(x,y),通过向量表示的平移操作可以表示为P'=(x+u, y+v)。

这表示点P经过向量V的平移操作后得到了新的点P'(x+u, y+v)。

3、平移的性质平移具有以下几个重要的性质:(1)平移是保形变换,即平移前后的图形形状相同;(2)平移不改变图形的大小;(3)平移不改变图形的角度;(4)平移保持了图形内的任意两点间的距离关系。

二、旋转的基本概念1、旋转的定义旋转是指图形以一个固定的点为中心,按照一定的角度转动。

在旋转过程中,图形的大小和形状都不发生变化,只是方向发生了改变。

可以将旋转看作是图形的每个点都按照同一个中心和角度进行转动,从而得到了一个新的方向。

2、旋转的表示旋转可以用矩阵来表示,假设有一个点P(x,y),以原点为中心,顺时针旋转角度为θ的旋转操作可以表示为P'=(x*cosθ-y*sinθ, x*sinθ+y*cosθ)。

这表示点P经过矩阵表示的旋转操作后得到了新的点P'(x',y')。

3、旋转的性质旋转具有以下几个重要的性质:(1)旋转是保形变换,旋转前后的图形形状相同;(2)旋转不改变图形的大小;(3)旋转保持了图形内的任意两点间的距禿;(4)旋转不改变图形的中心;(5)对任意两个点A和B,它们的连线在旋转前后的夹角不变。

三、平移和旋转的混合变换在实际问题中,往往需要对图形进行平移和旋转的组合变换。

对于平移和旋转的组合变换,其实际操作可以分为两步:首先进行平移,然后进行旋转。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十五章图形的平移与旋转
一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

一个图形经过平移后得到一个新图形,这个新图形与原图形是互相重合的,互相重合的点称为,互相重合的角称为,互相重合的线段称为。

注意:1.平移有两个要素:(1)沿某一方向移动;(2)移动一定的距离;
2.平移的方向就是原图上的点指向它的对应点的方向;图像上每点都沿同一方向移动距离,这个距离是指对应点之间的长度;
3.平移前后两图形是全等的。

平移的特征:平移不改变图形和,只改变了图形的位置;
经过平移,对应点所连的线段(或 )且相等;
对应线段(或)且相等,对应角。

二、1、旋转:在平面内,将一个图形绕一个沿某个方向转动一定,这样的图形运动称为旋转。

这个定点称为,转动的角称为。

任意一对对应点与旋转中心的连线所成的角都是 .
注意:1.旋转中心在旋转过程中保持不动;
2.图形的旋转是由,和所决定的;
3.作平移图与旋转图。

(确定关键点,将关键点沿一定的方向移动相同的距离,连接关键点)
旋转的特征:图形中每一点都绕着旋转中心按同一旋转方向旋转了同样大小的;对应点到旋转中心的距离;对应线段,对应角;图形的形状与大小都没有发生变化。

图形的变换包括、和旋转,这三种图形变换的共同点是:只改变图的,不改变图形的和。

2、旋转对称图形:在平面内,一个图形绕一个定点旋转一定的角度后能与自身,这样的图形称为旋转对称图形。

3、中心对称图形:在平面内,一个图形绕某个点旋转角度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形。

这个点叫做对称中心。

中心对称图形是旋转角度为°的特殊旋转对称图形,但旋转对称图形不一定是中心对称图形。

4、成中心对称:把一个图形绕着某一点旋转180º,如果它能够和另一个图形重合,就称这两个图形成中心对称。

这个点叫做对称中心;这两个图形中的对应点,叫做关于中心的。

在成中心对称的两个图形中,连结对称点的线段都经过,并且被对称中心。

如果两个图形的所有对应点连成的线段都经过某一点,并且被该点,那么这两个图形一定关于这一点。

5、(1)轴对称图形:如果一个图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。

折痕所在的直线叫做对称轴。

(2)两个图形成轴对称:对于两个图形来说,如果沿一条直线对折后,它们能完全重合,那么称这两个图形成轴对称,这条直线就是对称轴。

(3)注意:
①轴对称是说两个图形的位置关系;而轴对称图形是说一个具有特殊形状的图形。

②成轴对称的两个图形,必定是全等图形。

(4)轴对称的性质:对应点所连的线段被对称轴垂直平分;对应线段相等;对应角相等。

(3)简单的轴对称作图:
求作一个几何图形关于某条直线对称的图形,可以转化为求作这个图形上的关键点关于这条直线对称的点。

后依次连结各关键点即可。

三、图形的全等
1、一个图形经过翻折、平移和旋转等图形变换,能够与另一个图形完全重合,就把这两个图形叫做全等图形。

2、多边形是全等图形,也称为全等多边形。

相互重合的顶点叫做对应顶点;相互重合的边叫做对应边,相互重合的角叫做对应角。

3、全等符号“≌”,读作“全等于”。

4、全等多边形的性质:全等多边形的对应边相等、对应角相等;
全等多边形的判定方法:边、角分别对应相等的两个多边形全等。

全等三角形的性质:全等三角形的对应边、对应角分别相等;
全等三角形的判定方法:如果两个三角形的边、角分别对应相等,那么这两个三角形全等。

四、作图
作平移图和旋转图,关键是要找准图形的关键点,画出关键点平移或旋转后的对应点,最后连结这些点。

平移作图要注意:①方向;②距离。

整个平移作图,就是把整个图案的每一个关键点按一定方向和一定的距离平行移动。

A B C
D
E F
A
B C
D
E
F
经过次(填偶数或奇数)翻折(对称轴平行)后的图形可以看成是原图形经过一次平移得到的;经过多次平移后的图形可以通过次平移就能得到。

旋转作图要注意:①旋转方向;②旋转角度。

整个旋转作图,就是把整个图案的每一个关键点绕旋转中心按一定的旋转方向和一定的旋转角度旋转移动。

画一个图形关于某点的中心对称图形,关键是画出已知图形中有关的特殊对称点,方法为:连结图形上的特殊点与,并延长倍即可确定这些特殊点的。

一、选择题
1、下列说法正确的是()
A、平移不改变图形的形状和大小,而旋转则改变图形的形状和大小
B、平移和旋转的共同点是改变图形的位置
C、图形可以向某方向平移一定距离,也可以向某方向旋转一定距离
D、在平移和旋转图形中,对应角相等,对应线段相等且平行
2、下列图形中既是轴对称图形,又是中心对称图形的是()
A、平行四边形
B、等边三角形
C、正方形
D、直角三角形
3、下列说法不正确的是()
A、中心对称图形一定是旋转对称图形
B、轴对称图形一定是中心对称图形
C、在成中心对称的两个图形中,连结对称点的线段都被对称中心平分
D、在平移过程中,对应点所连的线段也可能在一条直线上
4、如图3,图形旋转一定角度后能与自身重合,则旋转的角度可能是( )
A、300
B、600
C、900
D、1200
5、如图4,面积为12cm2的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,则图中的四边形ACED的面积为()
A、24cm2
B、36cm2
C、48cm2
D、无法确定
6、如图5,在正方形ABCD中,E为DC边上的点,连结BE,将△BCE绕点C顺时针旋转900得到△DCF,连结EF,若∠BEC=600,则∠EFD的度数为()
A、100 B0、200 D、250
图3 图4 图5
二、填空题
7、等边三角形至少旋转__________度才能与自身重合。

8、如图6,△ABC以点A为旋转中心,按逆时针方向旋转600,得△AB'C',则
w
D
B
A A
B C B,
C,
A
B C
D
E
F G
A
B
A,
B,
△ABB'是_________三角形。

9、如图7,在四边形ABCD中,AD∥BC,BC>AD,∠B与∠C互余,将AB,CD分别平移到EF和EG的位置,则△EFG为________三角形,若AD=2cm,BC=8cm,则FG=____________。

图6 图7 图8
10、如图8,把三角形△ABC绕着点C顺时针旋转350,得到△A'B'C,A'B'⊥AC,则∠A的度数是__________。

三、解答题
11、根据要求,在给出的方格图中画出图形:
⑴画出四边形ABCD关于点D成中心对称的图形A'B'C'D',
⑵将图形A'B'C'D'向右平移8格,再向下平移2格后的图形A"B"C"D"。

C。

相关文档
最新文档