高中数形结合问题总结知识讲解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数形结合问题总
结
数形结合思想在高中数学中的应用
灵宝实验高中 王少辉
一、什么是“数形结合思想”?
数形结合是一种数学思考方法;是数学研究和学习中的重要思想;也是解决数学问题的有效方法。“以形助数”可以使复杂问题简单化、抽象问题具体化;能够把抽象的数学语言变为直观的图形语言、把抽象的数学思维变为直观的形象思维;“以数助形”有助于把握数学问题的本质。
二、什么类型的题可以用“数形结合思想”解决?
“数”和“形”是数学研究的两个基本对象。
数,通俗地说一般是指文字语言、数学符号语言、代数式等;
形,通俗地说一般指图形语言、函数图象、代数式的几何意义等。
既能用“数”表示,又能用“形”表示的知识就可以用数形结合思想解决。
数形结合的思想方法是数学教学内容的主线之一,应用数形结合思想,可以解决以下问题:
①集合问题②函数问题③方程与不等式问题④三角函数问题⑤向量问题⑥数列问题⑦线性规划问题⑧解析几何问题⑨立体几何问题⑩绝对值问题
三、数形结合思想应用举例
(一)在集合中的应用
【知识点】集合的基本运算
在这个知识点中集合的三种运算除了抽象的符号语言描述之外,还有直观的图形语言。所以在解决某些集合的运算问题时,我们可以用数形结合思想。
【例1】
(1)已知B A B C A C B A C B C A N x x x U U U U U ,},10,1{},9,7,5{},6,4,2{},,10|{*求===∈≤=I I I
(2)已知集合A ={x |-2≤x ≤7},B ={x |m +1 【小结】 数形结合在集合中的应用,主要体现在集合的基本运算中: (1)离散的集合用Venn 图表示 (2)连续的数集用数轴表示,注意端点 (二)在函数中的应用 1.二次函数区间求值问题 二次函数的图象我们都很熟悉,所以在解决二次函数的相关问题时,我们就可以借助图象来进行。 【例2】已知12)(2+-=ax x x f ,求f (x )在[1,2]上的最小值 【跟踪训练】已知12)(2+-=x x x f ,求f (x )在[t,t+2]上的最小值 2.函数性质综合应用 函数的性质在图象上都有直观的反应,所以在利用函数性质解决某些问题时,我们就可以借助图象来进行。 【例3】设函数⎩⎨⎧>≤+-=4 ,log 4,4)(22x x x x x x f ,若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是________. 【例4】已知函数⎩⎨⎧<+-≥=0 ,20,2)(x x x x f ,则满足不等式)2()3(2x f x f <-的x 的取值范围为 3.函数零点个数问题 函数零点、方程的根与函数图象的交点密切相关,所以在解决函数零点个数问题,方程根的个数问题时,常使用数形结合思想。 【例5】已知函数f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x 2-2x ,如果函数g (x )=f (x )-m (m ∈R )恰有4个零点,则m 的取值范围是________. 【例6】已知定义在R 上的偶函数f (x )满足f (x -4)=f (x ),且在区间[0,2]上f (x )=x ,若关于x 的方程f (x )=log a x 有三个不同的实根,求a 的取值范围. 【小结】 数形结合在函数中的应用,主要体现在函数图象的应用中 (1)二次函数求给定区间上的最值问题 ①轴动区间定 ②轴定区间动 (2)函数性质(奇偶性、单调性、周期性)的综合应用 ①求范围 ②解不等式 (3)函数零点个数、方程根的个数 转化为图象交点个数问题 【跟踪训练1】 函数f (x )=|x -2|-ln x 在定义域内的零点的个数为( ) A.0 B.1 C.2 D.3 解析 由题意可知f (x )的定义域为(0,+∞).在同一直角坐标系 中画出函数y 1=|x -2|(x >0),y 2=ln x (x >0)的图象,如图所 示: 由图可知函数f (x )在定义域内的零点个数为2. 答案 C 【跟踪训练2】若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值范围是________. 解析 在同一个坐标系中画出函数y =|x |与y =a -x 的图象,如图所示. 由图象知当a >0时,方程|x |=a -x 只有一个解. 答案 (0,+∞) 【跟踪训练3】已知函数⎩⎨⎧>-≤+=0 ,130,)(x x x a e x f x (a ∈R ),若函数f (x )在R 上有两个零点,则a 的取值范围是( ) A.(-∞,-1) B.(-∞,0) C.(-1,0) D.[-1,0) 解析 当x >0时,f (x )=3x -1有一个零点x =13. 因此当x ≤0时,f (x )=e x +a =0只有一个实根, ∴a =-e x (x ≤0),则-1≤a <0. 答案 D 【跟踪训练4】(2016·山东卷)已知函数⎩⎨⎧>+-≤=m x m mx x m x x x f ,42|,|)(2,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________. 解析 在同一坐标系中,作y =f (x )与y =b 的图象. 当x >m 时,x 2-2mx +4m =(x -m )2+4m -m 2, ∴要使方程f (x )=b 有三个不同的根,则有4m -m 2 即m 2-3m >0.又m >0,解得m >3. 答案 (3,+∞) 四、作函数图象的常用方法 数形结合的关键在于准确作出函数的图象,那么如何作函数图象就是最关键的步骤,同学们一定要掌握。下面介绍两种高中数学中最常用的方法。 1.利用描点法作函数的图象 步骤:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线. 2.利用图象变换法作函数的图象 (1)平移变换 ①y =f(x+a)(a>0)的图象把y =f(x)的图象向左平移a 个单位即可 ; ②y =f(x -a)(a>0)的图象把y =f(x)的图象向右平移a 个单位即可 ; ③y =f(x)+b (b>0)的图象把y =f(x)的图象向上平移b 个单位即可;