高电压工程 第一章课后答案

合集下载

高电压技术_1到8章_课后习题答案

高电压技术_1到8章_课后习题答案

1-1气体放电过程中产生带电质点最重要的方式是什么,为什么?答: 碰撞电离是气体放电过程中产生带电质点最重要的方式。

这是因为电子体积小,其自由行程(两次碰撞间质点经过的距离)比离子大得多,所以在电场中获得的动能比离子大得多。

其次.由于电子的质量远小于原子或分子,因此当电子的动能不足以使中性质点电离时,电子会遭到弹射而几乎不损失其动能;而离子因其质量与被碰撞的中性质点相近,每次碰撞都会使其速度减小,影响其动能的积累。

1-2简要论述汤逊放电理论。

答: 设外界光电离因素在阴极表面产生了一个自由电子,此电子到达阳极表面时由于α过程,电子总数增至d e α个。

假设每次电离撞出一个正离子,故电极空间共有(d e α-1)个正离子。

这些正离子在电场作用下向阴极运动,并撞击阴极.按照系数γ的定义,此(d e α-1)个正离子在到达阴极表面时可撞出γ(d e α-1)个新电子,则(d e α-1)个正离子撞击阴极表面时,至少能从阴极表面释放出一个有效电子,以弥补原来那个产生电子崩并进入阳极的电子,则放电达到自持放电。

即汤逊理论的自持放电条件可表达为r(d eα-1)=1或γde α=1。

1-3为什么棒-板间隙中棒为正极性时电晕起始电压比负极性时略高?答:(1)当棒具有正极性时,间隙中出现的电子向棒运动,进入强电场区,开始引起电离现象而形成电子崩。

随着电压的逐渐上升,到放电达到自持、爆发电晕之前,在间隙中形成相当多的电子崩。

当电子崩达到棒极后,其中的电子就进入棒极,而正离子仍留在空间,相对来说缓慢地向板极移动。

于是在棒极附近,积聚起正空间电荷,从而减少了紧贴棒极附近的电场,而略为加强了外部空间的电场。

这样,棒极附近的电场被削弱,难以造成流柱,这就使得自持放电也即电晕放电难以形成。

(2)当棒具有负极性时,阴极表面形成的电子立即进入强电场区,造成电子崩。

当电子崩中的电子离开强电场区后,电子就不再能引起电离,而以越来越慢的速度向阳极运动。

高电压技术第三版本课后习题包括答案.docx

高电压技术第三版本课后习题包括答案.docx

精品文档第一章作业1-1 解释下列术语(1)气体中的自持放电;( 2)电负性气体;(3)放电时延;( 4) 50% 冲击放电电压;( 5)爬电比距。

答:(1)气体中的自持放电:当外加电场足够强时,即使除去外界电离因子,气体中的放电仍然能够维持的现象;(2)电负性气体:电子与某些气体分子碰撞时易于产生负离子,这样的气体分子组成的气体称为电负性气体;(3)放电时延:能引起电子崩并最终导致间隙击穿的电子称为有效电子,从电压上升到静态击穿电压开始到出现第一个有效电子所需的时间称为统计时延,出现有效电子到间隙击穿所需的时间称为放电形成时延,二者之和称为放电时延;(4)50% 冲击放电电压:使间隙击穿概率为 50% 的冲击电压,也称为50% 冲击击穿电压;(5)爬电比距:爬电距离指两电极间的沿面最短距离,其与所加电压的比值称为爬电比距,表示外绝缘的绝缘水平,单位cm/kV 。

.精品文档1-2 汤逊理论与流注理论对气体放电过程和自持放电条件的观点有何不同?这两种理论各适用于何种场合?答:汤逊理论认为电子碰撞电离是气体放电的主要原因,二次电子来源于正离子撞击阴极使阴极表面逸出电子,逸出电子是维持气体放电的必要条件。

所逸出的电子能否接替起始电子的作用是自持放电的判据。

流注理论认为形成流注的必要条件是电子崩发展到足够的程度后,电子崩中的空间电荷足以使原电场明显畸,流注理论认为二次电子的主要来源是空间的光电离。

汤逊理论的适用范围是短间隙、低气压气隙的放电;流注理论适用于高气压、长间隙电场气隙放电。

1-3 在一极间距离为1cm 的均匀电场电场气隙中,电子碰撞电离系数α=11cm-1 。

今有一初始电子从阴极表面出发,求到达阳极的电子崩中的电子数目。

解:到达阳极的电子崩中的电子数目为n a e d e11 159874答:到达阳极的电子崩中的电子数目为59874 个。

.精品文档1-5 近似估算标准大气条件下半径分别为1cm 和 1mm 的光滑导线的电晕起始场强。

高电压技术智慧树知到课后章节答案2023年下内蒙古机电职业技术学院

高电压技术智慧树知到课后章节答案2023年下内蒙古机电职业技术学院

高电压技术智慧树知到课后章节答案2023年下内蒙古机电职业技术学院第一章测试1.流注理论未考虑( )的现象。

A:表面游离 B:光游离 C:碰撞游离 D:电荷畸变电场答案:表面游离2.先导通道的形成是以()的出现为特征。

A:表面游离 B:碰撞游离 C:光游离 D:热游离答案:热游离3.电晕放电是一种()。

A:自持放电 B:非自持放电 C:电弧放电 D:均匀场中放电答案:自持放电4.气体内的各种粒子因高温而动能增加,发生相互碰撞而产生游离的形式称为()。

A:表面游离 B:热游离 C:碰撞游离 D:光游离答案:热游离5.()型绝缘子具有损坏后“自爆”的特性。

A:乙丙橡胶 B:电工陶瓷 C:钢化玻璃 D:硅橡胶答案:钢化玻璃6.以下哪个不是发生污闪最危险的气象条件?()A:毛毛雨 B:大雾 C:凝露 D:大雨答案:大雨7.以下哪种材料具有憎水性?()A: 硅橡胶 B:电瓷 C:玻璃 D:金属答案: 硅橡胶8.SF6气体具有较高绝缘强度的主要原因之一是()。

A:电负性 B:无腐蚀性 C:不燃性 D:无色无味性答案:电负性9.冲击系数是()放电电压与静态放电电压之比。

A:50% B:100% C:25% D:75% 答案:50%10.在高气压下,气隙的击穿电压和电极表面()有很大关系。

A:电场分布 B:粗糙度 C:形状 D:面积答案:粗糙度第二章测试1.固体介质因受潮发热而产生的击穿过程属于()。

A:电击穿 B:电化学击穿 C:闪络 D:热击穿答案:热击穿2.对固体电介质,施加下列电压,其中击穿电压最低的是()。

A:直流电压 B:工频交流电压 C:雷电冲击电压 D:高频交流电压答案:高频交流电压3.电介质的tgδ值()。

A:随电压升高而下降 B:随频率增高而增加 C:随湿度增加而增加 D:随温度升高而下降答案:随频率增高而增加4.偶极子极化()。

A:与温度的关系很大 B:在频率很高时极化加强 C:所需时间短 D:属弹性极化答案:与温度的关系很大5.下列因素中,对液体电介质击穿电压影响最小的是()。

高电压技术第三版课后习题答案完整版

高电压技术第三版课后习题答案完整版

高电压技术第三版课后习题答案HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】第一章作⏹1-1解释下列术语(1)气体中的自持放电;(2)电负性气体;(3)放电时延;(4)50%冲击放电电压;(5)爬电比距。

答:(1)气体中的自持放电:当外加电场足够强时,即使除去外界电离因子,气体中的放电仍然能够维持的现象;(2)电负性气体:电子与某些气体分子碰撞时易于产生负离子,这样的气体分子组成的气体称为电负性气体;(3)放电时延:能引起电子崩并最终导致间隙击穿的电子称为有效电子,从电压上升到静态击穿电压开始到出现第一个有效电子所需的时间称为统计时延,出现有效电子到间隙击穿所需的时间称为放电形成时延,二者之和称为放电时延;(4)50%冲击放电电压:使间隙击穿概率为50%的冲击电压,也称为50%冲击击穿电压;(5)爬电比距:爬电距离指两电极间的沿面最短距离,其与所加电压的比值称为爬电比距,表示外绝缘的绝缘水平,单位cm/kV。

1-2汤逊理论与流注理论对气体放电过程和自持放电条件的观点有何不同这两种理论各适用于何种场合答:汤逊理论认为电子碰撞电离是气体放电的主要原因,二次电子来源于正离子撞击阴极使阴极表面逸出电子,逸出电子是维持气体放电的必要条件。

所逸出的电子能否接替起始电子的作用是自持放电的判据。

流注理论认为形成流注的必要条件是电子崩发展到足够的程度后,电子崩中的空间电荷足以使原电场明显畸,流注理论认为二次电子的主要来源是空间的光电离。

汤逊理论的适用范围是短间隙、低气压气隙的放电;流注理论适用于高气压、长间隙电场气隙放电。

1-3在一极间距离为1cm的均匀电场电场气隙中,电子碰撞电离系数α=11cm-1。

今有一初始电子从阴极表面出发,求到达阳极的电子崩中的电子数目。

解:到达阳极的电子崩中的电子数目为n a e d e11159874答:到达阳极的电子崩中的电子数目为59874个。

高电压技术_1到8章_课后习题答案0

高电压技术_1到8章_课后习题答案0

⾼电压技术_1到8章_课后习题答案01 ⽓体的绝缘特性与介质的电⽓强度1-1⽓体放电过程中产⽣带电质点最重要的⽅式是什么,为什么?答: 碰撞电离是⽓体放电过程中产⽣带电质点最重要的⽅式。

这是因为电⼦体积⼩,其⾃由⾏程(两次碰撞间质点经过的距离)⽐离⼦⼤得多,所以在电场中获得的动能⽐离⼦⼤得多。

其次.由于电⼦的质量远⼩于原⼦或分⼦,因此当电⼦的动能不⾜以使中性质点电离时,电⼦会遭到弹射⽽⼏乎不损失其动能;⽽离⼦因其质量与被碰撞的中性质点相近,每次碰撞都会使其速度减⼩,影响其动能的。

1-5操作冲击放电电压的特点是什么?答:操作冲击放电电压的特点:(1)U 形曲线(2)极性效应(3)饱和现象;(4)分散性⼤;(5)邻近效应。

1-9某母线⽀柱绝缘⼦拟⽤于海拔4500m 的⾼原地区的35kV 变电站,问平原地区的制造⼚在标准参考⼤⽓条件下进⾏1min ⼯频耐受电压试验时,其试验电压应为多少kV ?解:查GB311.1-1997的规定可知,35kV 母线⽀柱绝缘⼦的1min ⼲⼯频耐受电压应为100kV ,则可算出制造⼚在平原地区进⾏出⼚1min ⼲⼯频耐受电压试验时,其耐受电压U 应为0044100154kV 1.110 1.1450010a U U K U H --====-?-? 第⼆章液体的绝缘特性与介质的电⽓强度2-3⾮极性和极性液体电介质中主要极化形式有什么区别?2-9如何提⾼液体电介质的击穿2-3⾮极性和极性液体电介质中主要极化形式有什么区别?答:⾮极性液体和弱极性液体电介质极化中起主要作⽤的是电⼦位移极化,偶极⼦极化对极化的贡献甚微;极性液体介质包括中极性和强极性液体介质,这类介质在电场作⽤下,除了电⼦位移极化外,还有偶极⼦极化,对于强极性液体介质,偶极⼦的转向极化往往起主要作⽤。

2-9如何提⾼液体电介质的击穿电压?答:⼯程应⽤上经常对液体介质进⾏过滤、吸附等处理,除去粗⼤的杂质粒⼦,以提⾼液体介质的击穿电压第三章第三章,固体的绝缘特性与介质的电⽓强度3-1什么叫电介质的极化?极化强度是怎么定义的?3-4固体介质的击穿主要有那⼏种形式?它们各有什么特征?3-5局部放电引起电介质劣化、损伤的主要原因有那些?3-1什么叫电介质的极化?极化强度是怎么定义的?答:电介质的极化是电介质在电场作⽤下,其束缚电荷相应于电场⽅向产⽣弹性位移现象和偶极⼦的取向现象。

高电压技术课后答案

高电压技术课后答案

第一章电力系统绝缘配合1、 解释电气设备的绝缘配合和绝缘水平的泄义答:电气设备的绝缘配合是指综合考虑系统中可能出现的各种作用过电压、保护装苣特性及设备的绝缘特性, 最终确建电气设备的绝缘水平。

电气设备的绝缘水平是指电气设备能承受的各种试验电压值,如短时工频试验电压,长时工频试验电压,雷电 冲击试验电压及各种操作冲击电压2、 电力系统绝缘配合的原则是什么答:电力系统绝缘配合的原则是根据电气设备在系统应该承受的各种电压,并考虑过电压的限压措施和设备的 绝缘性能后,确能电气设备的绝缘水平。

3、 输电线路绝缘子串中绝缘子片数是如何确定的答:根据机械负荷确定绝缘子的型式后绝缘子片数的确定应满足:任工作电压下不发生雾闪:在操作电压下不 发生湿闪;具有一定的雷电冲击耐受强度,保证一定的耐雷水平。

具体做法:按工作电压下所需的泄露距离初步确左绝缘子串的片数,然后按照操作过电压和耐雷水平进行验算 和调整。

4、 变电站内电气设备的绝缘水平是否应该与输电线路的绝缘水平相配合为什么答:输电线路绝缘与变电站中电气设备之间不存在绝缘水平相配合问题。

通常,线路绝缘水平远高于变电站内 电气设备的绝缘水平,以保证线路的安全运行。

从输电线路传入变电站的过电压由变电站母线上的避雷器限制,而 电气设备的绝缘水平是以避需器的保护水平为基础确左的。

第二章内部过电压1、 有哪几种形式的工频过电压答:主要有空载长线路的电感-电容效应引起的工频过电压,单相接地致使健全相电压升髙引起的工频过电压 以及发电机突然甩负荷引起的工频过电压等。

2、 电源的等值电抗对空长线路的电容效应有什么影响答:电源的等值电抗凡可以加剧电容效应,相当于把线路拉长。

电源容疑愈小,电源的等值电抗凡愈大,空载 线路末端电压升髙也愈大。

3、 线路末端加装并联电抗器对空长线路的电容效应有什么影响答:在超髙压电网中,常用并联电抗器限制工频过电压,并联电抗器接于线路末端,使末端电压下降。

高电压技术课后题答案详解

高电压技术课后题答案详解

第一章电介质的极化、电导和损耗第二章气体放电理论1)流注理论未考虑的现象。

表面游离2)先导通道的形成是以的出现为特征。

C- C.热游离3)电晕放电是一种。

A--A.自持放电4)气体内的各种粒子因高温而动能增加,发生相互碰撞而产生游离的形式称为C--C.热游离5)以下哪个不是发生污闪最危险的气象条件?D-D.大雨6)以下哪种材料具有憎水性?A--A.硅橡胶20)极性液体和极性固体电介质的相对介电常数与温度和电压频率的关系如何?为什么?极化液体相对介电常数在温度不变时,随电压频率的增大而减小,然后就见趋近于某一个值,当频率很低时,偶极分子来来得及跟随电场交变转向,介电常数较大,当频率接近于某一值时,极性分子的转向已经跟不上电场的变化,介电常数就开始减小。

在电压频率不变时,随温度的升高先增大后减小,因为分子间粘附力减小,转向极化对介电常数的贡献就较大,另一方面,温度升高时分子的热运动加强,对极性分子的定向排列的干扰也随之增强,阻碍转向极化的完成。

极性固体介质的相对介电常数与温度和频率的关系类似与极性液体所呈现的规律。

21)电介质电导与金属电导的本质区别为何?1)带电质点不同:电介质为带电离子(固有离子,杂质离子);金属为自由电子。

2)数量级不同:电介质的γ小,泄漏电流小;金属电导的电流很大。

3)电导电流的受影响因素不同:电介质中由离子数目决定,对所含杂质、温度很敏感;金属中主要由外加电压决定,杂质、温度不是主要因素。

22)简要论述汤逊放电理论。

设外界光电离因素在阴极表面产生了一个自由电子,此电子到达阳极表面时由于α过程,电子总数增至eαd 个。

假设每次电离撞出一个正离子,故电极空间共有(eαd -1)个正离子。

这些正离子在电场作用下向阴极运动,并撞击阴极.按照系数γ的定义,此(eαd -1)个正离子在到达阴极表面时可撞出γ(eαd -1)个新电子,则( eαd -1)个正离子撞击阴极表面时,至少能从阴极表面释放出一个有效电子,以弥补原来那个产生电子崩并进入阳极的αd电子,则放电达到自持放电。

高电压技术第二版习题答案

高电压技术第二版习题答案

高电压技术第二版习题答案高电压技术第二版习题答案高电压技术第二版习题答案第一章1—1 气体中带电质点是通过游离过程产生的。

游离是中性原子获得足够的能量(称游离能)后成为正、负带电粒子的过程。

根据游离能形式的不同,气体中带电质点的产生有四种不同方式:1. 碰撞游离方式在这种方式下,游离能为与中性原子(分子)碰撞瞬时带电粒子所具有的动能。

虽然正、负带电粒子都有可能与中性原子(分子)发生碰撞,但引起气体发生碰撞游离而产生正、负带电质点的主要是自由电子而不是正、负离子。

2. 光游离方式在这种方式下,游离能为光能。

由于游离能需达到一定的数值,因此引起光游离的光主要是各种高能射线而非可见光。

3. 热游离方式在这种方式下,游离能为气体分子的内能。

由于内能与绝对温度成正比,因此只有温度足够高时才能引起热游离。

4. 金属表面游离方式严格地讲,应称为金属电极表面逸出电子,因这种游离的结果在气体中只得到带负电的自由电子。

使电子从金属电极表面逸出的能量可以是各种形式的能。

气体中带电质点消失的方式有三种:1. 扩散带电质点从浓度大的区域向浓度小的区域运动而造成原区域中带电质点的消失,扩散是一种自然规律。

2. 复合复合是正、负带电质点相互结合后成为中性原子(分子)的过程。

复合是游离的逆过程,因此在复合过程中要释放能量,一般为光能。

3. 电子被吸附这主要是某些气体(如SF6 、水蒸汽)分子易吸附气体中的自由电子成为负离子,从而使气体中自由电子(负的带电质点)消失。

1—2 自持放电是指仅依靠自身电场的作用而不需要外界游离因素来维持的放电。

外界游离因素是指在无电场作用下使气体中产生少量带电质点的各种游离因素,如宇宙射线。

讨论气体放电电压、击穿电压时,都指放电已达到自持放电阶段。

汤生放电理论的自持放电条件用公式表达时为Y (e a S - 此公式表明:由于气体中正离子在电场作用下向阴极运动,撞击阴极,此时已起码撞出一个自由电子(即从金属电极表面逸出)。

高电压技术习题答案

高电压技术习题答案

第一章 气体放电的基本物理过程(1)在气体放电过程中,碰撞电离为什么主要是由电子产生的?答:气体中的带电粒子主要有电子和离子,它们在电场力的作用下向各自的极板运动,带正电荷的粒子向负极板运动,带负电荷的粒子向正极板运动。

电子与离子相比,它的质量更小,半径更小,自由行程更大,迁移率更大,因此在电场力的作用下,它更容易被加速,因此电子的运动速度远大于离子的运动速度。

更容易累积到足够多的动能,因此电子碰撞中性分子并使之电离的概率要比离子大得多。

所以,在气体放电过程中,碰撞电离主要是由电子产生的。

(2)带电粒子是由哪些物理过程产生的,为什么带电粒子产生需要能量 ?答:带电粒子主要是由电离产生的,根据电离发生的位置,分为空间电离和表面电离。

根据电离获得能量的形式不同,空间电离又分为光电离、热电离和碰撞电离,表面电离分为正离子碰撞阴极表面电离、光电子发射、热电子发射和强场发射。

原子或分子呈中性状态,要使原子核外的电子摆脱原子核的约束而成为自由电子,必须施加一定的外加能量,使基态的原子或分子中结合最松弛的那个电子电离出来所需的最小能量称为电离能。

(3)为什么SF6气体的电气强度高?答:主要因为SF6气体具有很强的电负性,容易俘获自由电子而形成负离子,气体中自由电子的数目变少了,而电子又是碰撞电离的主要因素,因此气体中碰撞电离的能力变得很弱,因而削弱了放电发展过程。

1-2 汤逊理论与流注理论对气体放电过程和自持放电条件的观点有何不同?这两种理论各适用于何种场合?答:汤逊理论的基本观点:电子碰撞电离是气体电离的主要原因;正离子碰撞阴极表面使阴极表面逸出电子是维持气体放电的必要条件;阴极逸出电子能否接替起始电子的作用是自持放电的判据。

它只适用于低气压、短气隙的情况。

气体放电流注理论以实验为基础,它考虑了高气压、长气隙情况下空间电荷对原有电场的影响和空间光电离的作用。

在初始阶段,气体放电以碰撞电离和电子崩的形式出现,但当电子崩发展到一定程度之后,某一初始电子的头部集聚到足够数量的空间电荷,就会引起新的强烈电离和二次电子崩,这种强烈的电离和二次电子崩是由于空间电荷使局部电场大大增强以及发生空间光电离的结果,这时放电即转入新的流注阶段。

高电压习题第1章参考答案

高电压习题第1章参考答案

第一章参考1、 空气主要由氮和氧组成,其中氧分子的电离电位较低,为。

(1) 若由电子碰撞使其电离,求电子的最小速度;(2) 若由光子碰撞使其电离,求光子的最大波长,它属于那种性质的射线(3) 若由气体分子自身的平均动能产生热电离,求气体的最低温度。

答:电子的质量319.10953410 e m -=⨯千克;每个电子伏特为×10-19焦耳;氧分子的电离能焦耳191910025.2010602.15.2--⨯=⨯⨯=i W 。

(1) 电子的动能221v m Q e =,因此若要产生碰撞电离,i W Q ≥,电子最小速度为: 秒米/ 100978.2101095434.9/10025.202/263119⨯=⨯⨯⨯==--e i m W v (2) 光子的最大波长对应于光子最小频率,由电离条件i eU hv ≥可得最大波长为:)(1092.95.121024.11024.1866m U eU hc i i ---⨯=⨯=⨯==λ 查图2-1-1可知属于紫外线范围。

(3)由气体的平均动能与气体温度的关系kT w 23=,以及氧气分子的电离能,可知 )(1067.91038.1310025.2023242319k k w T ⨯=⨯⨯⨯⨯==--2、 试论述气体放电过程的、 系数。

答: 系数表示一个电子在走向阳极的1cm 路程中与气体质点相碰撞所产生的自由电子数(平均值)。

当气隙电场强度与气体相对密度值之比δ/E 不变时,实验结果和理论推导都证实, 系数与气体的相对密度成正比。

值对E 值非常敏感,场强E 的较小变化就会引起 值的较大变化。

系数表示一个正离子撞击到阴极表面时从阴极逸出的自由电子数(平均值)。

系数与阴极的逸出功有关,因而与阴极的材料及表面状态有关。

值也与撞击离子的势能和动能有关,但气隙击穿电压对 的变化不敏感,故通常可将 视为常数。

3、 什么叫帕邢(巴申)定律在何种情况下气体放电不遵循巴申定律 答:帕邢定律:在均匀电场中,例如当S <0.26cm (空气)时,气体的击穿电压U b 与气体相对密度 、极间距离S 并不具有单独的函数关系,而是仅与它们的乘积S 函数关系,只要乘积不变,U b就不变。

(完整版)高电压课后习题答案

(完整版)高电压课后习题答案

e g o o df o r s o 第1章 气体的绝缘特性与介质的电气强度1-1气体放电过程中产生带电质点最重要的方式是什么,为什么?答: 碰撞电离是气体放电过程中产生带电质点最重要的方式。

这是因为电子体积小,其自由行程(两次碰撞间质点经过的距离)比离子大得多,所以在电场中获得的动能比离子大得多。

其次.由于电子的质量远小于原子或分子,因此当电子的动能不足以使中性质点电离时,电子会遭到弹射而几乎不损失其动能;而离子因其质量与被碰撞的中性质点相近,每次碰撞都会使其速度减小,影响其动能的积累。

1-2简要论述汤逊放电理论。

答: 设外界光电离因素在阴极表面产生了一个自由电子,此电子到达阳极表面时由于过程,电子总数增至个。

假设αdeα每次电离撞出一个正离子,故电极空间共有(-1)个正离子。

这些正离子在电场作用下向阴极运动,并撞击阴极.按照系de α数的定义,此(-1)个正离子在到达阴极表面时可撞出(-1)个新电子,则(-1)个正离子撞击阴极表面时,γdeαγde αdeα至少能从阴极表面释放出一个有效电子,以弥补原来那个产生电子崩并进入阳极的电子,则放电达到自持放电。

即汤逊理论的自持放电条件可表达为r(-1)=1或=1。

deαγd e α1-3为什么棒-板间隙中棒为正极性时电晕起始电压比负极性时略高?答:(1)当棒具有正极性时,间隙中出现的电子向棒运动,进入强电场区,开始引起电离现象而形成电子崩。

随着电压的逐渐上升,到放电达到自持、爆发电晕之前,在间隙中形成相当多的电子崩。

当电子崩达到棒极后,其中的电子就进入棒极,而正离子仍留在空间,相对来说缓慢地向板极移动。

于是在棒极附近,积聚起正空间电荷,从而减少了紧贴棒极附近的电场,而略为加强了外部空间的电场。

这样,棒极附近的电场被削弱,难以造成流柱,这就使得自持放电也即电晕放电难以形成。

(2)当棒具有负极性时,阴极表面形成的电子立即进入强电场区,造成电子崩。

当电子崩中的电子离开强电场区后,电子就不再能引起电离,而以越来越慢的速度向阳极运动。

《高电压工程》习题答案完整版

《高电压工程》习题答案完整版

《高电压工程》习题答案第一章1. 解释绝缘电阻、吸收比、泄漏电流、tan δ的基本概念。

为什么可以用这些参数表征绝缘介质的特性?绝缘电阻:电介质的电阻率很大,只有很小的泄漏电流(一般以μA 计)流过电介质,对应的电阻很大,称为绝缘电阻。

绝缘电阻是电气设备和电气线路最基本的绝缘指标。

绝缘电阻值的大小常能灵敏的反映绝缘情况,能有效地发现设备局部或整体受潮和脏污,以及绝缘击穿和严重过热老化等缺陷。

吸收比:吸收比K 定义为加上直流电压后60s 与15s 时的绝缘电阻值之比。

即ss R R K 1560=。

若绝缘良好,比值相差较大;若绝缘裂化、受潮或有缺陷,比值接近于1,因此绝缘实验中可以根据吸收比K 的大小来判断绝缘性能的好坏。

泄漏电流:流过电介质绝缘电阻的纯阻性电流,不随时间变化,称为泄漏电流。

泄漏电流实际上就是电气线路或设备在没有故障和施加电压的作用下,流经绝缘部分的电流,因此,它是衡量电器绝缘性好坏的重要标志之一。

tan δ :介质损耗因数是在交流电压作用下,电介质中电流的有功分量与无功分量的比值。

即CR I I =δtan 。

tan δ是反映绝缘介质损耗大小的特征参数。

2. 为什么一些电容量较大的设备如电容器、电力电缆等经过直流高压实验后,要用接地棒将其两极间短路放电长达5-10min?因为容型设备的储存电荷较多,放电实质是一个RC电路,等效的公式为U(1-e T),其中时间常数T=R*C ,电容越大,放电的时间越长。

为了操作安全以及不影响下一次试验结果,因此要求电容要充分放电至安全程度,时间长达5-10min。

3. 试比较气体、液体、固体电介质的击穿场强大小及绝缘恢复特性。

固体电介质击穿场强最大,液体电介质次之,气体电介质最小;气体电介质和液体电介质属于自恢复绝缘,固体电介质属于非自恢复绝缘。

4. 何谓电介质的吸收现象?用电介质极化、电导过程的等值电路说明出现此现象的原因。

为什么可以说绝缘电阻是电介质上所加直流电压与流过电介质的稳定体积泄漏电流之比?(1)一固体电介质加上直流电压U,如图1-1a所示观察开关S1合上之后流过介质电流i的变化情况。

高电压技术第三版课后习题答案

高电压技术第三版课后习题答案

高电压技术第三版课后习题答案Last revision date: 13 December 2020.第一章作1-1解释下列术语(1)气体中的自持放电;(2)电负性气体;(3)放电时延;(4)50%冲击放电电压;(5)爬电比距。

答:(1)气体中的自持放电:当外加电场足够强时,即使除去外界电离因子,气体中的放电仍然能够维持的现象;(2)电负性气体:电子与某些气体分子碰撞时易于产生负离子,这样的气体分子组成的气体称为电负性气体;(3)放电时延:能引起电子崩并最终导致间隙击穿的电子称为有效电子,从电压上升到静态击穿电压开始到出现第一个有效电子所需的时间称为统计时延,出现有效电子到间隙击穿所需的时间称为放电形成时延,二者之和称为放电时延;(4)50%冲击放电电压:使间隙击穿概率为50%的冲击电压,也称为50%冲击击穿电压;(5)爬电比距:爬电距离指两电极间的沿面最短距离,其与所加电压的比值称为爬电比距,表示外绝缘的绝缘水平,单位cm/kV。

1-2汤逊理论与流注理论对气体放电过程和自持放电条件的观点有何不同这两种理论各适用于何种场合答:汤逊理论认为电子碰撞电离是气体放电的主要原因,二次电子来源于正离子撞击阴极使阴极表面逸出电子,逸出电子是维持气体放电的必要条件。

所逸出的电子能否接替起始电子的作用是自持放电的判据。

流注理论认为形成流注的必要条件是电子崩发展到足够的程度后,电子崩中的空间电荷足以使原电场明显畸,流注理论认为二次电子的主要来源是空间的光电离。

汤逊理论的适用范围是短间隙、低气压气隙的放电;流注理论适用于高气压、长间隙电场气隙放电。

1-3在一极间距离为1cm的均匀电场电场气隙中,电子碰撞电离系数α=11cm-1。

今有一初始电子从阴极表面出发,求到达阳极的电子崩中的电子数目。

解:到达阳极的电子崩中的电子数目为n a e d e11159874答:到达阳极的电子崩中的电子数目为59874个。

1-5近似估算标准大气条件下半径分别为1cm和1mm的光滑导线的电晕起始场强。

高电压工程课后答案

高电压工程课后答案

1.1以空气作为绝缘的优缺点如何答:优点:空气从大气中取得;制取方便;廉价;简易;对轴密时要求不高..缺点:空气比重较大;摩擦损失大;导热散热能力差..空气污染大;易使绝缘物脏污;且空气是助燃物当仿生电流时;易烧毁绝缘;电晕放电时有臭氧生成;对绝缘有破坏作用..1.2为什么碰撞电离主要是由电子而不是离子引起答:由于电子质量极小;在和气体分子发生弹性碰撞时;几乎不损失动能;从而在电场中继续积累动能;此外;一旦和分子碰撞;无论电离与否均将损失动能;和电子相比;离子积累足够造成碰撞电离能量的可能性很小1.5负离子怎样形成;对气体放电有何作用答:在气体放电过程中;有时电子和气体分子碰撞;非但没有电离出新电子;碰撞电子反而别分子吸附形成了负离子;离子的电离能力不如电子;电子为分子俘获而形成负离子后电离能力大减;因此在气体放电过程中;负离子的形成起着阻碍放电的作用..1.7非自持放电和自持放电主要差别是什么答:非自持放电必须要有光照;且外施电压要小于击穿电压;自持放电的外施电压要大于击穿电压;且不需要光照条件1.13电晕会产生哪些效应;工程上常用哪些防晕措施答:电晕放电时能够听到嘶嘶声;还可以看到导线周围有紫色晕光;会产生热效应;放出电流;也会产生化学反应;造成臭氧..工程上常用消除电晕的方法是改进电极的形状;增大电极的曲率半径..1.14比较长间隙放电击穿过程与短间隙放电放电击穿过程各有什么主要答:长时间放电分为先导放电和主放电两个阶段;在先导放电阶段中包括电子崩和流注的形成和发展过程;短间隙的放电没有先导放电阶段;只分为电子崩流注和主放电阶段..2.1雷电放电可分为那几个主要阶段答:主要分为先导放电过程;主放电过程;余光放电过程..2.4气息常见伏秒特性是怎样制定的如何应用伏秒特性答:制定的前提条件是①同一间隙②同一波形电压③上升电压幅值..当电压较低时击穿发生在波尾;取击穿时刻t1作垂线与此时峰值电压横轴的交点为1;当电压升高时;击穿也发生在峰值;取击穿时刻的值t2作垂线与此时峰值电压横轴的交点为2;当电压进一步升高时;击穿发生在波前;取此时击穿时刻t3作垂线与击穿电压交点为3;连接123如图:应用:伏秒特性对于比较不同设备绝缘的冲击击穿特性有重要意义;如果一个电压同时作用于两个并联气隙s1和s2上;若某一个气隙先击穿了;则电压被短接截断;另一个气隙就不会击穿..2.2国家标准对雷电冲击全波;雷电冲击截波;操作冲击的波形是怎样规定的答:国家规定雷电冲击电压标准波形分为全波和截波两种;全波的波形先是很快上升到峰值;然后逐渐下降到零..截波是模拟雷电冲击波被某处放电而截断的波形;我国规定波前时间 ;允许偏差视在半峰值时间 ;允许偏差峰值允许偏差 ;截断时间2.7为什么高真空和高压力都能提高间隙的击穿电压简述各自运用的局答:在高气压条件下;气压增加会使气体密度增大;电子的自由行程缩短;削弱电离工程从而提高击穿电压;但高气压适用于均匀电场的条件下而且要改进电极形状;点击应仔细加工光洁;气体要过滤;滤去尘埃和水分在高真空条件下虽然电子的自由行程变得很大;但间隙中已无气体分子可供碰撞;故电离过程无从发展;从而可以显着提高间隙的击穿电压;但是在电气设备中气固液等几种绝缘材料往往并存;而固体液体绝缘材料在高真空下会逐渐释放出气体;因此在电气设备中只有在真空断路器等特殊场合下才采用高真空作为绝缘..2.8什么是细线效应答;当导线直径很小时;导线周围容易形成比较均匀的电晕层;电压增加;电晕层逐渐扩大;电晕放电所形成的空间电荷使电场与均匀电场类似;这种现象成为细线效应..3.2均匀电场中污面闪络电压比纯空气间隙的击穿电压要低;原因是什么答:①固体介质表面吸附水分形成水膜;水膜中的离子在电场中沿介质表面移动;电极附近逐渐累积电荷;使介质表面电压分布不均匀;从而使沿面闪络电压低于空气间隙的击穿电压②介质表面电阻不均匀以及介质表面有伤痕裂纹也会畸变电场的分布;使闪络电压降低;③若电极和固体介质端面间存在气隙;气隙处场强大;极易发生电离;产生的带电质点到达介质表面会畸变原电场分布;从而使闪络电压降低3.6介质材料;作用电压种类;大气环境温度等对沿面闪络电压有何影响答:介质材料:对不易吸潮的介质沿面闪络电压较高;易吸潮介质沿面闪络电压较低;烘干介质表面;可提高沿面闪络电压..在均匀电场中;工频和直流电压作用下的沿面闪络电压要低于高频和冲击电压作用下的闪络电压大气环境影响:当空气中相对湿度小于0.4是;湿度对各种固体介质的闪络电压无影响;当气体中相对湿度大于0.4;对于亲水性介质;随着湿度的增加闪络电压明显下降;对于憎水性材料由于吸湿很少;闪络电压随着湿度的增加下降不多4.6电介质的电导与金属电导有何区别答:电介质的电导主要由离子造成;电阻率在范围内;随着温度升高;电阻率下降;金属电导主要由电子造成;电阻率在范围;随着温度的升高金属的电阻率增加4.7直流和交流电场下的电介质损耗有何差别选择交流电气设备的绝缘材料一般应注意什么问题答:在直流电压作用下的介质损耗仅漏导损失;交流时有漏导损失和极化损失;仅用ρv;ρs不够;需用其他特征量来表示介质在交流电压作用下的能量损耗..在选择交流电气设备中需要考虑tanδ;若tanδ过大引起绝缘介质严重发热们甚至导致热击穿;固tanδ应尽量小4.13固体介质点击穿的特点是什么;为提高其电击穿常采取什么措施答:固体电介质电击穿特点:电压作用时间短;击穿电压高;与电场的均匀程度关系极大;与介质特性有关;在极不均匀电场中及冲击电压作用下会出现累积效应措施:①改进绝缘设计;改善电场分布②改进制造工艺;去除杂质③改善运行条件防潮防污加强散热等措施4.14固体电介质热击穿有什么特点;高压设备的绝缘材料受潮后为什么容易造成热击穿答:热击穿主要是由介质损耗的存在;固体电解质在电场中逐渐升温;导致介质电阻下降发热增大;同时刻;若发热超过散热;电介质温度不断上升至击穿..高压设备的绝缘材料受潮后;绝缘电阻降低;致使电流增大;损耗发热增大4.15绝缘材料在冲击电压作用下常常是电击穿而不是热击穿;在高频电压下常常是热击穿;为什么答:雷电冲击考验的是绝缘材料内部绝缘性;标准雷电波波尾时间在取值;不会产生热击穿;高频电压下;绝缘材料的绝缘性会降低;将承受很大的电流;且试验时间较长;产生热击穿4.16纯净液体介质的电击穿理论和气泡理论;二者差别在哪里答:电击穿理论事是液体在强场发射产生的电子在电场中被加速;与液体分子发生碰撞电离;首先是典礼开始阶段;流注发展阶段;最后是主流贯通整个间隙气泡击穿理论是由于气泡εr=1小于液体的;所以液体中的气泡承担了更高的场强;气泡现行电离;气泡中的气体温度升高;体积膨胀;进一步电离;使油分解出气体;若电离的气泡在电场中堆积成气体通道没击穿就在次通道内产生..4.19为什么油的洁净度较高时改善油间隙电场的均匀性能显着提高工频或直流的击穿电压答:由于液体击穿电压的分散性和电场的均匀程度有关;电场的不均匀程度增加时;击穿电压的分散性减小;但在品质较差的油中;固体杂质的聚集和排列时电场畸变;油电场均匀带来的好处不明显;故当油的洁净度较高时;尽量应使隙电场均匀..4.21固体绝缘材料的耐热等级用什么表示;其含义是什么答:耐热级别分别有Y;A;E;B;FM;H;200;220;250等几种;为了使绝缘材料有一个经济合理的使用寿命;才有了耐热等级的划分;即规定一个最高持续工作温度;若材料使用温度超过规定温度则劣化加速;使用温度越高;寿命越短..4.22名词解释“小桥理论”答:液体中的杂质在电场力的作用下;排列成杂质小桥;且杂质的电导较大;使泄露的电流增加;病进而使“小桥“强烈发热;使油和水局部沸腾气化;最后沿此气桥发生击穿5.1绝缘诊断技术暴扣哪些基本环节答:1传感器与测量放法:正确选用各种传感器及测量手段;检测或监测被测对象的各种特性2数据处理:对原始信息加以分析处理;提取反应被试对象运行状态最敏感有效的特征参数3根据提取的特征参数和对绝缘老化过程的知识以及运行经验;参照有关规程对绝缘运行状态进行识别;判断;即完成诊断过程。

高电压技术第三版课后习题答案完整版

高电压技术第三版课后习题答案完整版

高电压技术第三版课后习题答案HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】第一章作⏹1-1解释下列术语(1)气体中的自持放电;(2)电负性气体;(3)放电时延;(4)50%冲击放电电压;(5)爬电比距。

答:(1)气体中的自持放电:当外加电场足够强时,即使除去外界电离因子,气体中的放电仍然能够维持的现象;(2)电负性气体:电子与某些气体分子碰撞时易于产生负离子,这样的气体分子组成的气体称为电负性气体;(3)放电时延:能引起电子崩并最终导致间隙击穿的电子称为有效电子,从电压上升到静态击穿电压开始到出现第一个有效电子所需的时间称为统计时延,出现有效电子到间隙击穿所需的时间称为放电形成时延,二者之和称为放电时延;(4)50%冲击放电电压:使间隙击穿概率为50%的冲击电压,也称为50%冲击击穿电压;(5)爬电比距:爬电距离指两电极间的沿面最短距离,其与所加电压的比值称为爬电比距,表示外绝缘的绝缘水平,单位cm/kV。

1-2汤逊理论与流注理论对气体放电过程和自持放电条件的观点有何不同这两种理论各适用于何种场合答:汤逊理论认为电子碰撞电离是气体放电的主要原因,二次电子来源于正离子撞击阴极使阴极表面逸出电子,逸出电子是维持气体放电的必要条件。

所逸出的电子能否接替起始电子的作用是自持放电的判据。

流注理论认为形成流注的必要条件是电子崩发展到足够的程度后,电子崩中的空间电荷足以使原电场明显畸,流注理论认为二次电子的主要来源是空间的光电离。

汤逊理论的适用范围是短间隙、低气压气隙的放电;流注理论适用于高气压、长间隙电场气隙放电。

1-3在一极间距离为1cm的均匀电场电场气隙中,电子碰撞电离系数α=11cm-1。

今有一初始电子从阴极表面出发,求到达阳极的电子崩中的电子数目。

解:到达阳极的电子崩中的电子数目为n a e d e11159874答:到达阳极的电子崩中的电子数目为59874个。

高电压工程第二版答案1到11章

高电压工程第二版答案1到11章

1-1答:汤逊理论的核心是:①电离的主要因素是空间碰撞电离。

②正离子碰撞阴极导致的表面电离是自持放电的必要条件。

汤逊理论是在气压较低,Pd值较小的条件下的放电基础上建立起来的,因此这一理论可以较好地解释低气压,短间隙中的放电现象,对于高气压,长间隙的放电现象无法解释(四个方面大家可以看课本P9)。

流注理论认为:。

(P11最下面),该理论适用于高气压长间隙的放电现象的解释。

1-2答:自持放电的条件是式(1-9),物理意义为:当一个电子从阴极发出向阳及运动的过程中,发生碰撞电离,产生正离子,在正离子到达阳极后,碰撞阴极再次产生电子,只有当产生的电子比上一次多的时候才会形成电子崩,进而出现自持放电现象。

因此该式为自持放电的条件。

1-3答:均匀场放电特点:再均匀电场中,气体间隙内的流注一旦形成,放电将达到自持的成都,间隙就被击穿;极不均匀场放电特点:P13下侧。

1-4答:由大到小的排列顺序为:板—板,负极性棒—板,棒--棒,正极性棒—板。

其中板--板之间相当于均匀电场,因此其击穿电压最高,其余三个的原因见P20图1-20以及上面的解析。

1-5答:冲击特点见P23:①当冲击电压很低时。

②随着电压的升高。

③随着电压继续升高。

④最后。

用50%冲击击穿电压或伏秒特性来表示击穿特性,但是工程上为方便起见,通常用平均伏秒特性或者50%伏秒特性来表示气体间隙的冲击穿特性。

1-6答:伏秒特性的绘制方法见P24,其意义在于(P23最下面)并且通过伏秒特性,可以进一步对保护间隙进行改进设计,从而更好地保护电气设备的绝缘。

1-7答:(1)工频电压作用下的特点:见P19—P20,包括均匀场,稍不均匀场,极不均匀场的放电特点。

(2)雷电冲击电压作用下的特点:同1-5题。

(3)操作冲击电压作用下的特点:P25第二段:研究表明。

正极性操作冲击电压击穿电压较负极性下要低得多。

1-8答:影响气体间隙击穿的主要因素为气体间隙中的电场分布,施加电压的波形,气体的种类和状态等.1-9答:提高间隙击穿电压的措施:一,改善电场的分布:①②③二,削弱活抑制电离过程①②③具体内容见P28。

高电压技术》课程习题及参考答案

高电压技术》课程习题及参考答案

高电压技术》课程习题及参考答案《高电压技术》课程习题及参考答案绪论1.现代电力系统的特点是什么?答:机组容量大;输电容量大,距离长;电网电压达到750KV的特高压;高压绝缘和系统过电压的问题愈显突出。

2.高电压技术研究的内容是什么?答:(1)高压绝缘及高压试验方法(2)系统过电压的产生及防护第1章高电压绝缘1.电介质的电气性能有哪些?答:电介质的电气性能包括极化,电导,损耗,击穿。

2.固体介质击穿有哪些类型?各有什么特点?答:固体介质击穿类型有:电击穿,热击穿,电化学击穿电击穿:击穿电压很高,过程快,与设备的温度无关;热击穿:击穿过程较长,击穿电压不高,与环境温度和介质自身品质有关;电化学击穿:设备运行时间很长,在电、热、化学的作用下,绝缘性能已经较差,可能在不高的电压下击穿。

3.什么是绝缘子的污闪?防止污闪的措施有哪些?答:污秽的绝缘子在毛毛雨或大雾时发生的闪络,称为污闪。

防止污闪的措施有:定期清扫绝缘子;在绝缘子表面上涂一层憎水性的防尘材料;增加绝缘子片数或使用防污绝缘子。

第2章高电压下的绝缘评估及试验方法1.表征绝缘劣化程度的特征量有哪些?答:耐电强度,机械强度,绝缘电阻,介质损失角正切,泄漏电流等2.绝缘缺陷分哪两类?答:绝缘缺陷分为:集中性和分布性两大类。

3.绝缘的预防性试验分哪两类?答:非破坏性(绝缘特性)试验和破坏性试验两类。

4.电介质的等值电路中,各个支路分别代表的物理意义是什么?答:纯电容支路代表无损极化,电容支路代表有损极化,纯电阻支路代表电导支路。

5.测量绝缘电阻的注意事项有哪些?答:1)被试品的电源及对外连接线应折除,并作好安全措施2)对被试品充分放电3)兆欧表的转速保持120转/ 分4)指针稳定后读数5)对于大电容量试品,应先取连接线,后停表。

6)测试后对被试品放电7)记录当时的温度和湿度。

6.试比较几种基本试验方法对不同设备以及不同的绝缘缺陷的有效性和灵敏性。

答:测量绝缘电阻能反映集中性和分布性的缺陷,适用任何设备;测量泄漏电流能更灵敏地反应测绝缘电阻所发现的缺陷;测量介质损失角正切能发现绝缘整体普遍劣化及大面积受潮。

高电压技术习题与答案

高电压技术习题与答案

第一章 气体放电的基本物理过程一、选择题1)流注理论未考虑 B 的现象。

A .碰撞游离 B .表面游离 C .光游离 D .电荷畸变电场 2)先导通道的形成是以 C 的出现为特征。

A .碰撞游离 B .表面游离 C .热游离 D .光游离 3)电晕放电是一种 A 。

A .自持放电 B .非自持放电 C .电弧放电 D .均匀场中放电 4)气体内的各种粒子因高温而动能增加,发生相互碰撞而产生游离的形式称为 C 。

A.碰撞游离 B.光游离 C.热游离 D.表面游离 5)___ B ___型绝缘子具有损坏后“自爆”的特性。

A.电工陶瓷 B.钢化玻璃 C.硅橡胶 D.乙丙橡胶 6)以下哪个不是发生污闪最危险的气象条件?D A.大雾 B.毛毛雨 C.凝露 D.大雨 7) 污秽等级II 的污湿特征:大气中等污染地区,轻盐碱和炉烟污秽地区,离海岸盐场3km~10km地区,在污闪季节中潮湿多雾但雨量较少,其线路盐密为 C 2/cm mg 。

A.≤0.03B.>0.03~0.06C.>0.06~0.10D.>0.10~0.258)以下哪种材料具有憎水性?A A. 硅橡胶 B.电瓷 C. 玻璃 D 金属二、填空题9)气体放电的主要形式:辉光放电、 电晕放电、 刷状放电、 火花放电、 电弧放电 。

10)根据巴申定律,在某一PS 值下,击穿电压存在 极小(最低) 值。

11)在极不均匀电场中,空气湿度增加,空气间隙击穿电压 提高 。

12)流注理论认为,碰撞游离和 光电离 是形成自持放电的主要因素。

13)工程实际中,常用棒-板或 棒-棒 电极结构研究极不均匀电场下的击穿特性。

14)气体中带电质子的消失有 扩散 、复合、附着效应等几种形式15)对支持绝缘子,加均压环能提高闪络电压的原因是 改善(电极附近)电场分布 。

16)沿面放电就是沿着 固体介质 表面气体中发生的放电。

17)标准参考大气条件为:温度C t 200=,压力=0b 101.3 kPa ,绝对湿度30/11m g h = 18)越易吸湿的固体,沿面闪络电压就越__低____19)等值盐密法是把绝缘子表面的污秽密度按照其导电性转化为单位面积上____NaCl ______含量的一种方法20)常规的防污闪措施有:增加爬距,加强清扫,采用硅油、地蜡等涂料三、计算问答题21)简要论述汤逊放电理论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1-1答:汤逊理论的核心是:①电离的主要因素是空间碰撞电离。

②正离子碰撞阴极导致的表面电离是自持放电的必要条件。

汤逊理论是在气压较低,Pd值较小的条件下的放电基础上建立起来的,因此这一理论可以较好地解释低气压,短间隙中的放电现象,对于高气压,长间隙的放电现象无法解释(四个方面大家可以看课本P9)。

流注理论认为:。

(P11最下面),该理论适用于高气压长间隙的放电现象的解释。

1-2答:自持放电的条件是式(1-9),物理意义为:当一个电子从阴极发出向阳及运动的过程中,发生碰撞电离,产生正离子,在正离子到达阳极后,碰撞阴极再次产生电子,只有当产生的电子比上一次多的时候才会形成电子崩,进而出现自持放电现象。

因此该式为自持放电的条件。

1-3答:均匀场放电特点:P19第二段;极不均匀场放电特点:P20第二段。

1-4答:由大到小的排列顺序为:板—板,负极性棒—板,棒--棒,正极性棒—板。

其中板--板之间相当于均匀电场,因此其击穿电压最高,其余三个的原因见P20图1-20以及上面的解析。

1-5答:冲击特点见P23:①当冲击电压很低时。

②随着电压的升高。

③随着电压继续升高。

④最后。

用伏秒特性来表示击穿特性,但是工程上为方便起见,通常用平均伏秒特性或者50%伏秒特性来表示气体间隙的冲击穿特性。

1-6答:伏秒特性的绘制方法见P24,其意义在于通过伏秒特性,可以进一步对保护间隙进行改进设计,从而更好地保护电气设备的绝缘。

1-7答:(1)工频电压作用下的特点:见P19—P20,包括均匀场,稍不均匀场,极不均匀场的放电特点。

(2)雷电冲击电压作用下的特点:同1-5题。

(3)操作冲击电压作用下的特点:P25第二段:研究表明。

正极性操作冲击电压击穿电压较负极性下要低得多。

1-8答:影响气体间隙击穿的主要因素为P27—P28(1),(2),(3).
1-9答:提高间隙击穿电压的措施:一,改善电场的分布:①②③二,削弱活抑制电离过程①②③具体内容见P28。

1-10答:纯空气间隙形成的电场接近于均匀电场,其击穿电压较高。

由于沿面电位分布不均匀;固体介质与电极接触不良,存在小间隙;固体介质表面具有一定的粗糙度等因素,使表面的电场发生了畸变,因此其击穿电压明显下降,而且,当其表面潮湿污染时,沿面放电电压会更低。

1-11答:SF6气体为电负性气体,容易附着电子形成负离子,不容易被电场加速,电离能力大为下降,因此其起着阻碍放电的作用,所以其具有较高的绝缘强度。

相关文档
最新文档